
Data Cache Locking for Higher Program Predictability

Xavier Vera

xavier.vera@mdh.se

Björn Lisper

bjorn.lisper@mdh.se

Abstract

Caches have become increasingly important with the widening gap between main memories
and processors speed. However, they are a source of unpredictability due to their characteristics,
resulting in programs behaving in a different way than expected.

Cache locking mechanisms adapt caches to the needs of real-time systems. Locking the cache
is a solution that trades performance for predictability: at a cost of generally lower performance,
the time of accessing the memory is predictable.

This paper combines static cache analysis with data cache locking to estimate the worst-
case memory performance (WCMP) in a safe, tight and fast way. In order to get predictable
cache behavior, we first lock the cache for those parts of the code where the static analysis
fails. To minimize the performance degradation, our method loads it, if necessary, with data
likely to be accessed. Experimental results show that this scheme is fully predictable, without
compromising the performance of the transformed program. When compared to an algorithm
that assumes compulsory misses when the state of the cache is unknown, our approach eliminates
all overestimation for the set of benchmarks, giving an exact WCMP of the transformed program
without any significant decrease in performance.

Keywords: Worst-Case Execution Time, Data Cache Analysis, Embedded Systems, Safety
Critical Systems.

1 Introduction

With ever-increasing clock rates and the use of new architectural features, the speed of processors

increases dramatically every year. Unfortunately, increased memory latency affects all computer

systems, being a key obstacle to achieve high processor utilization. The basic solution that almost

all systems rely on is the cache hierarchy.

While caches are useful, they are effective only when programs present sufficient data locality

in their memory accesses. Various hardware and software approaches have been proposed lately

to exploit caches efficiently. Software-controlled prefetching [27] hides the memory latency by

overlapping a memory access with computation and other accesses. Another useful optimization

is applying loop transformations such as tiling [4, 7, 20, 34] and data transformations such as

padding [5, 17, 28, 30]. In all cases, a fast and accurate assessment of a program’s cache behavior

at compile time is needed to make an appropriate choice of parameter values.

1

1.1 Caches in Real-Time Systems

Real-time systems rely on the assumption that tasks’ worst-case execution times (WCETs) are

known. In order to get an accurate WCET, a tight worst-case memory performance (WCMP) is

needed. However, cache behavior is very hard to predict which leads to an overestimation of the

WCMP, and thus for the WCET as well. For that reason, many safety-critical systems such as

antilock brake systems do not use caches: it is very hard to prove that the system is reliable under

all circumstances. For instance, the ARM966E-S processor does not have a cache in order to have

predictable memory timings1.

When using caches in hard real-time systems there is an unacceptable possibility that a high

cache miss penalty combined with a high miss ratio might cause a missed deadline, jeopardizing

the safety of the controlled system. A system with disabled caches will however waste a lot of re-

sources; not only the CPU will be underutilized but the power consumption will be larger. Memory

accesses that fall into the cache are faster and consume less power than accesses to larger or off-chip

memories.

Frameworks of WCET prediction are used to ensure that deadlines of tasks can be met. While

the computation of WCET in presence of instruction caches has progressed in such a way that

makes it possible to obtain an accurate estimate of the WCET [1, 2, 14], there has not been much

progress with the presence of data caches. The main problem when dealing with data caches is that

each load/store instruction may access multiple memory locations (such as those that implement

array or pointer accesses).

Cache locking allows some or all of the contents of the cache to be locked in place. Disabling

the normal replacement mechanism, provided that the cache contents is known, makes the time

required for a memory access predictable. This ability to lock cache contents is available on several

commercial processors (PowerPC 604e [16], 405 and 440 families [8], Intel-960, some Intel x86,

Motorola MPC7400 and others). Each processor implements cache locking in several ways, allowing

in all cases static locking (the cache is loaded and locked at system start) and dynamic locking (the

state of the cache is allowed to change during the system execution).

Whereas loading and locking the cache offers predictability, it does not guarantee good response

time of tasks (thus, we are trading performance for predictability). On the other hand, static cache

analysis allows us to predict the WCMP and does not affect the performance. However, the best

static cache analyses are limited to codes free of data-dependent constructs.

We introduce a method that combines both static cache analysis and cache locking in order

to achieve both predictability and good performance. Furthermore, it allows computing a WCMP

estimate of tasks in a fast and tight way. Our approach first transforms the original program issuing

lock/unlock instructions to ensure a tight analysis of the WCMP at static time. In order to keep a

high performance, load instructions are added when necessary. Later, the actual computation of the

WCMP estimate is performed. We present results for a collection of programs drawn from several

related papers in the real-time area [1, 18, 33]. This collection includes both kernels operating on

1http://www.arm.com/aboutarm/4X8JJ6/$File/ARM966E.pdf

2

arrays and scalar programs, such as SQRT or FIBONACCI. We have also used FFT to show the

feasibility of our approach for typical DSP codes. For the sake of concreteness, we present results

for a direct-mapped and a set-associative cache with different cache lines. We have chosen the cache

architecture of two modern processors widely used in the real-time world: microSPARC-IIep [26]

and PowerPC 604e [16].

1.2 An Overview

This paper addresses the bounding of WCMP in the presence of data caches. Moreover, we want

an accurate analysis that combined with a low-level analysis (i.e., pipeline timing analysis) allows

us to obtain a tight WCET. In particular, we use a static data cache analysis. We first start

modifying the program, issuing lock/unlock instructions when necessary. There are typically parts

of the code which are analyzable and where each access can correctly be categorized as a cache hit

or miss. For some other parts in which data-dependent situations arise (such as indirection arrays)

or where multiple paths can be taken, we lock the cache and load it, if necessary, with data likely

to be accessed.

There are a few important concepts useful for developing a static cache analysis. The state of

the cache can only be determined if all memory addresses are known. The state of the cache is

unknown from the point in the code where an unknown cache line is accessed. In order to simplify

WCET computation when studying pipelined processors, we want to guarantee hits or misses for

each memory access. Thus, even if we know the memory addresses of the further memory accesses,

the cache behavior can not be predicted exactly; it may be that the unknown memory access has

trashed the cache line we planed to reuse; it may be that it has actually brought the data we are

going to access.

We have developed a compile time algorithm that identifies those regions of code where we can

not exactly determine the memory accesses, and locks the cache. It uses a locality analysis based

on Wolf and Lam’s reuse vectors [34] to select the data to be loaded. Since the state of the cache

is known when leaving the region, we can apply a static analyzer for the next regions of code, thus

having both predictability and good performance.

Once the program is transformed, the static analyzer determines the worst-case memory perfor-

mance. It analyzes scalars and array accesses whose indices are affine functions of the loop indices.

We have implemented Ghosh et al’s Cache Miss Equations (CMEs) [13], extending its applicability

following Vera and Xue’s work [32]. This allows us to analyze very large codes consisting of subrou-

tines, call statements, IF statements and arbitrarily nested loops free of data-dependent constructs.

We have extended this analysis in such a way that it takes in account memory accesses in locked

regions, as well as the state of the cache at the entry and exit points of the locked regions.

We have implemented our system in the SUIF2 compiler. It includes many of the standard

optimizations, which allows us to obtain a code competitive to product compilers. Using SUIF2,

we identify high level information (such as array accesses and loop constructs) that can be further

passed down to the low level passes as annotations. We are currently integrating our WCMP

3

calculation to an existing WCET tool [9] that already analyzes pipelines and instruction caches.

The WCET tool generates possible paths which are analyzed by the WCMP method. Finally, the

cache behavior is fed back and used to compute the WCET (i.e., the longest path) of the task.

The rest of the paper is organized as follows. Section 2 reviews the flow analysis used in our

approach. Section 3 describes an algorithm for having a predictable and high performance data

cache. Section 4 presents our experimental framework, and Section 5 discusses our results. Section 6

contains some related works in the area that aim at analyzing the cache behavior statically and

computing the WCET in presence of data caches. Finally, we conclude and give a road map to

future extensions in Section 7.

2 Merging of Paths

Real-time requirements on a system are passed on as requirements on all system parts. That implies

that is necessary to know the execution time for the tasks in a real-time system. Since execution

time varies, the WCET (i.e., the longest execution time for a program for all possible input) is used

as a safe upper limit.

The analysis from a high-level point of view is concerned with the possible paths through the

program. The temporal behavior of the processor is the basis which all other calculations rely on.

This means that caches have to be considered. A naive approach to compute the WCET of a task

would be to run the program for each possible input. However, this is not possible in practice due

to measurement time. Running the program with the input data that causes the WCET would

be a solution, but it is usually hard to know such data for regular programs. Besides, caches may

give different results for two identical runs due to the previous state of the cache. Therefore, static

analysis is needed.

Unfortunately, it is infeasible to analyze all possible paths. Approximations during computation

must be selected so that path explosion is reduced: a simple loop with an IF-THEN-ELSE statement

that iterates a hundred times generates 2100 possible paths. We use a common technique known as

merging to make the analysis more efficient. This basically consists of reducing the path explosion

by merging paths in those cases where a path enumeration is needed [10, 14, 24].

However, this approximation trades performance for accuracy. At every merge point, the most

pessimistic assumptions are made in order to have a safe estimate. In presence of caches, this

generally translates to an unknown state of the cache, since the final state of the cache for each

path is also merged.

Merge points can be chosen arbitrarily depending on accuracy and execution time desired. We

use the following merge points when the actual control flow is unknown:

Data dependent conditionals. Figure 1(a) shows an example of such a case. At compile time,

it is impossible to figure out which branch is going to be executed. The merge point is set in

such a way that it merges the outcome from both branches.

4

Merge Point

if (a[i]==0)
b[i]++;

else
c[i]--;

for (i=0;i<4;i++)
if (a[i])

break;

Merge Point

for (i=0;i<2;i++)
if (a[i]){

a[i]--;
break;

}
else

a[i]++;

(a) IF Construct (b) Loop Construct (c) Loop with IF

Figure 1: Basic merge operations.

lock();
if (a[i]==0)
b[i]++;

else
c[i]–;

unlock();

lock();
for (i=0;i<4;i++)
if (a[i])
break;

unlock();

lock();
for (i=0;i<2;i++){
lock();
if (a[i])
a[i]–;
break;

else
a[i]++;

unlock();
}
unlock();

lock();
for (i=0;i<2;i++){
if (a[i])
a[i]–;
break;

else
a[i]++;

}
unlock();

(a) IF Construct (b) Loop Construct (c) Loop with IF (d) Loop with IF (final code)

Figure 2: Non-analyzable codes with lock instructions.

Unknown number of iterations of a loop. This situation arises when either the bounds are

unknown or there is a jump out of the loop. Either way, a path is created for each possible

number of iterations, and all of them merged later when they exit the loop (see Figure 1(b)).

Notice that these two situations can be combined. When analyzing a loop with a data dependent

conditional, we may want to merge the branches of each iteration and later, all the iterations (see

Figure 1(c)).

Some of the problems can be partially solved at compile time. To address the symbolic loop

bound problem, we use interprocedural constant propagation to eliminate as many symbolic loop

bounds as possible. Inspecting the memory accesses for the different outcome branches of an IF

statement may allow us to detect that the memory accesses are actually the same, thus we do not

have to distinguish among them. The IF statement in Figure 3(a) shows such a case.

When all else fails, we generate the control flow graph and analyze all different paths for those

sections that are not statically analyzable. We lock those regions in order to avoid an unknown

state of the cache due to merging: when a memory access can not be classified as a hit or a miss,

5

both situations should be analyzed later in the pipeline analysis.

The approach presented here merges paths exactly in the situations described above. Figure 2

shows the codes with the lock instructions for the corresponding codes in Figure 1. A later step

goes through the graph looking for redundant lock/unlock instructions. Figure 2(d) shows the final

code for Figure 2(c) after removing unnecessary lock/unlock instructions.

3 Predictable Cache Behavior

In this section, we introduce our method to have a predictable program. We first discuss some

important concepts related to data cache analysis and how we solve the problem of predictabil-

ity. Then, we outline an algorithm to selectively load the cache, so that the performance is not

jeopardized. Finally, we present how this approach can be used to compute the WCMP and WCET.

Understanding data reuse is essential to predict cache behavior, since a datum will only be in

the cache if its line was referenced sometime in the past. Reuse happens whenever the same data

item is referenced multiple times. This reuse results in locality if it is actually realized; reuse will

result in a cache hit if no intervening reference flushes out the datum.

Given that, a static data cache analysis can be split into the following steps:

1. Reuse Analysis describes the intrinsic data reuse among all different memory references2.

2. Data Locality Analysis describes the subset of reuses that actually results in locality.

In the following, we describe each step and explain how we use data cache locking for those cases

where this cache analysis can not be applied.

3.1 Reuse Vectors

In order to describe data reuse, we use the well-known concept of reuse vectors [34]. They provide a

mechanism for summarizing repeated memory accesses which is limited to perfect loop nests. Vera

and Xue [32] extended them so they can describe reuse among arbitrary loop nests3.

Trying to determine all iterations that use the same data is extremely expensive. Thus, we

use a concrete mathematical representation that describes the direction as well as the distance

of the reuse in a methodical way. The shape of the set of iterations that uses the same data is

represented by a reuse vector space [34]. Whereas self reuse (both spatial and temporal) and group

temporal reuse is computed in an exact way, group spatial reuse is only considered among uniformly

generated references (UGRs), this is, references whose array index expressions differ at most in the

2We use memory reference to note a static read or write in the program. A particular execution of that read or
write at run-time is a memory access.

3An isolated statement is considered to be inside a loop that iterates only once.

6

for (int i=0;i<100;i++) {

if (a[i] ==0)

a[2*i]=b[i]–;
else

b[i] ++;

a[i+1] = b[i-1] ;

}

(a) Program code.

Reusing Reference Reused Reference Reuse Vector

Self-Spatial (1)
a[i]

a[i+1] Group-Temporal (1)

b[i] Self-Spatial (1)

Self-Spatial (1)
a[i+1]

a[i] Group-Spatial (0)

Self-Spatial (1)
b[i-1]

b[i] Group-Spatial (0)

(b) Reuse vectors for the highlighted references.

Figure 3: Example of how reuse vectors are computed.

constant term [12]. For instance, references a[i], a[i + 1] in Figure 3(a) are uniformly generated,

but they are not uniformly generated with a[2 ∗ i].

Figure 3(b) presents the reuse vectors for the references highlighted in Figure 3(a). The reference

a[i] may reuse from the same datum (hence, temporal reuse) that a[i + 1] (hence, group reuse)

accessed one iteration before. All four references are associated with the self-spatial reuse vector

(1), since they may reuse the same cache line (thus, spatial reuse) that they accessed one iteration

before. The other reuse vectors can be understood in a similar way.

Note that reuse vectors provide a pessimistic (safe) approach to describe reuse4. In the case

that a reuse vector is not present, we assume there is no reuse, thus, there will not be locality and

a cache miss will be computed.

3.2 Data Locality

Data locality is the subset of reuse that is realized; i.e., reuse where the subsequent use of data

results in a hit. To discover whether a reuse translates to locality we need to know all data brought

to the cache between the two accesses (this implies knowledge about loop bounds and memory

access addresses) and the particular cache architecture we are analyzing.

In order to get the best performance from the cache, we should try to lock it as few times as

possible. Besides, each locked region should be as small as possible. Thus, the more constructs

we can analyze statically, the better. CMEs [13] are mathematical formulas that provide a precise

characterization of the cache behavior for perfectly nested loops consisting of straight-line assign-

ments. Based on the description of reuse given by reuse vectors, some equations are set up that

describe those iteration points where the reuse is not realized. Solving them gives information

about the number of misses and where they occur. Vera and Xue [32] further extended them in

order to make whole program analysis feasible, by handling call statements, IF statements and

arbitrarily nested loops.

Even though generating the equations is linear in the number of references, solving them can

be very time consuming. Since hard real-time systems need a safe WCET bound, all different

4In presence of timing anomalies, some modifications have to be done in the pipeline analysis [25].

7

iteration points have to be analyzed. For soft real-time software with large data sets, we can use

probabilistic methods based on sampling [31, 32] to solve the equations in a faster way.

3.2.1 CMEs for Cache Locking

Given a memory reference, the equations are to investigate whether the reuse described by its reuse

vectors is realized or not. We now briefly discuss how we extend our analysis to caches with locking

features.

For these caches, we have to treat in a different manner references within a locked region

compared to those within an unlocked region. Regarding the reuse vectors, it is enough to ignore

reuse vectors whose tail reference is in a locked region. As those accesses within a locked region do

not bring data to the cache, they can not affect the result of future accesses. Furthermore, they

can not affect the decision of the LRU replacement policy since they do not create a recent use of

a memory line.

When analyzing potential cache set contentions, references within a locked region should be

ignored. Again, since they do not either bring data or modify the LRU state, they will not generate

any set contention. The effect of extra load instructions is implicit in the analysis, since they are

treated as usual memory accesses.

3.3 Data Cache Locking

In the discussion so far, we have ignored the effects of data-dependent memory accesses. Whereas

the inability of expressing reuse leads to an overestimation of the miss ratio, the presence of data-

dependent accesses makes the estimate of whether the reuse is realized or not infeasible. Further-

more, a safe approach that considered all further accesses as misses would have a large overestima-

tion.

One approach to deal with this problem in real-time systems is to lock the cache for the whole

execution of the program. Unfortunately, this translates to very poor cache utilization when data

does not fit the cache. In order to confirm this intuition, we have run all different programs (for a

detailed description of the benchmarks, see Section 4) in two different ways: (i) unlocked cache (i.e.,

enabled cache), and (ii) loading the cache with most accessed memory lines5 and locking it. We

have analyzed the following caches: 4KB, 8KB, 16KB and 32KB (32B per line) for three different

associativities (direct-mapped, 2-way and 4-way). We have also simulated the microSPARC I

cache architecture (direct-mapped, 512 bytes, 32B per line). We present results accounting only for

load/store instructions: we assume a conservative architecture where a cache hit takes 1 cycle and a

cache miss 50 cycles. Table 1 shows that the loss in performance for all different cache architectures

is significant (in some cases, it degrades more than 500% in cycles). Only in those cases where all

data fits the cache such as SQRT (it only accesses a few floating point values) or SRT (when the

cache is large enough to store the vector being sorted) cache locking performs well.

5We collect this information running the program once and collecting statistics for each memory line accessed.

8

Miss Ratio. Cycles
Program Analysis MIN MAX AVG Loss(%) Loss(%)

Unlocked 1,88 33,53 10,01
MM Locked+Load 59,14 99,36 82,27 721,77 599,55

Unlocked 5,67 8,33 7,94
CNT Locked+Load 18,08 98,72 64,45 710,92 565,67

Unlocked 3,57 14,29 7,66
ST Locked+Load 3,57 96,80 35,87 389,87 307,87

Unlocked 1,43 1,43 1,43
SQRT Locked+Load 1,43 1,43 1,43 0 0

Unlocked 0,49 0,49 0,49
FIB Locked+Load 0,49 0,49 0,49 0 0

Unlocked 8,37 16,74 10,93
SRT Locked+Load 8,37 93,73 18,49 69,16 58,28

Unlocked 0,9 1,74 0,96
NDES Locked+Load 0,9 6,56 1,33 38,4 12,3

Unlocked 0,59 56,10 9,18
FFT Locked+Load 0,59 93,64 20,15 119,37 97,66

Table 1: Comparison of performance between an unlocked cache and a locked cache loaded with
the most accessed lines for programs in Table 2. Loss represents average values.

Initially it may appear that obtaining a reasonable bound on the WCMP when the data accessed

is unknown is far from being feasible. This includes indirection arrays (e.g. a[b[i]]), variables

allocated dynamically (e.g. mallocs) and pointer accesses that can not be determined statically.

However, a tight prediction of the WCMP can be achieved by automatically locking and loading

the cache in those regions where we find those accesses.

Real-time codes are usually free from dynamic memory allocation. Otherwise, as long as the

actual calls to the malloc routine and the size of the memory allocated are known at static time, it

is possible to figure out where the mallocs go, just by keeping information about the allocated and

deallocated memory in the program. If everything else fails, the only option is to lock the cache

when accessing data allocated dynamically.

Pointer analysis is used to determine some pointer values, and programmer annotations can be

used to tighten the analysis. When analyzing indirection arrays in a loop, we lock the cache for the

loop nest. If the array being accessed fits the cache, we load it. Otherwise, we make sure that it is

not in the cache by invalidating those lines that contain parts of it6. This allows us to (i) predict

the result of the memory access, and (ii) reduce the variation of the execution time, since we can

not have a hit when we predicted a miss (and vice versa).

In order to obtain an accurate WCMP of a task with library calls, we would need to analyze

the source code of the library to generate annotations that would help our analysis. Otherwise,

just to ensure that those calls do not interfere with our analysis, we lock the cache before each

call statement and unlock it afterwards. The memory accesses within the library call will not be

guaranteed as hit/miss, thus both situations will be analyzed in the pipeline analysis.

6We can obtain this information from our static analyzer.

9

1 for each locked region do
2 R:=vector < pair <variable, memory references>>; // analyzable variables accessed within the region
3 R’:= sort (R,>); // the variable with more references is the first
4 for i=0 to (R’.size()-1) do // it iterates over the variables
5 // UGR is a vector <uniform generated reference class>
6 Compute UGR (UGR, R’[i].memory references()); // classes are computed
7 UGR’:= sort (UGR, >); // the class with more elements is the first
8 for j=0 to (UGR’.size()-1) do
9 if (!Has Locality(UGR’[j]) {
10 // Range of addresses touched is computed
11 Range:=Compute Range of Variable(R’[i].variable(), UGR’[j]);
12 Load (UGR’ [j], Range); // code is generated to load the cache
13 }
14 DD=vector <variable>; // variables with data-dependent accesses within the region
15 DD’:= sort (DD,>); // the most accessed variable is the first
16 for i=0 to (DD’.size()-1) do // it iterates over the variables
17 if (Fits in Cache(DD’[i]))
18 Load (DD’[i]);
19 else
20 Invalidate(DD’[i]);

Figure 4: Algorithm for selective loading.

3.4 Selecting Data to Lock in the Cache

The benefit of cache locking is clear from the predictability point of view. Locking the cache allows

us to analyze data-dependent constructs while not jeopardizing the analysis of the forthcoming

code. Unfortunately, it may happen that the program does not longer benefit from locality.

In order to overcome this problem, we can load the cache with data likely to be accessed. Nev-

ertheless, determining accurately which data in the cache gives best performance is too expensive;

it would be the same as knowing, before running the program, the most accessed memory lines

for each cache set. However, we can use a simple analysis based on the reuse vectors to determine

which data to load, if any.

Figure 4 gives an outline of the algorithm we use to load the cache selectively. We begin our

analysis collecting all analyzabe variables that are accessed in the locked region (l.2). For each

variable, we try to compute its range (if it is an array, it is the part of it accessed within the

region) and classify all its references in uniformly generated classes (l.6). We estimate the amount

of data that can be reused from outside the locked region using the reuse vectors. Our algorithm

is a simple volume analysis based on reuse vectors (l.9). It is a modified version of those proposed

previously [29, 34] in order to handle locked regions.

Since we want to maximize the locality, we start allocating those variables that are going to be

accessed most. Iteratively in descending order (l.8), we analyze the uniformly generated classes,

computing the range of memory lines to be loaded (l.11). If the data set is larger than the cache,

we may try to load a memory line that maps to a cache set that is already full. In those cases,

10

(a)
int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)
a[i]=99-i;

for (i=0;i<100;i++)
c[i]=b[a[i]]+c[i];

for (i=0;i<100;i++)
if (c[i]>15)
k++;

c[i]=0;

(c)
int a[100], b[100];
int c[100], k=0;
for (i=0;i<100;i++)
a[i]=99-i;

lock(); /*region 1*/
for (i=0;i<100;i++)
c[i]=b[a[i]]+c[i];

unlock();
for (i=0;i<100;i++){
register int temp=(c[i]>15);
lock();/*region 2*/
if (temp)
k++;

unlock();
c[i]=0;

}

(b)

Non-analyzable constructs:
b[a[i]]; c[i]>15

(d)

Region Variables Locality Load

c:0. . .99 N/A YES
1 b: N/A N/A YES

a:0. . .99 a[i] NO

2 k: 0 k NO

Figure 5: Example of how our algorithm works.

we do not reload it since it has been loaded by a variable with higher locality. Then, we analyze

variables that have non-analyzable accesses, assuming that the whole array is accessed. If there is

space in the cache (l.17), we load it, otherwise we remove all elements present in cache (l.20).

In the discussion so far, we have ignored the effects of possible conflicts with memory accesses

coming after the locked region. It may happen that we flush out a memory line that otherwise

would have been accessed later on. This would cause, in the worst case, one miss per each cache

line. However, keeping those lines could cause a poor performance for the locked region. Achieving

the best overall performance (i.e., deciding which memory lines to load taking into account the

whole program) is a challenging problem that we plan to address in the future.

3.5 Putting it All Together

In this subsection, we will use the code in Figure 5(a) to illustrate our algorithm. We assume, for

this example, a 4KB direct-mapped cache, with 16B per line. We run our compiler, which detects

those constructs that are not analyzable at compile time (Figure 5(b)). In Figure 5(c) we show

the code after deciding the regions that should be locked. When locking the whole loop body, the

compiler decides to lock the whole loop to avoid unnecessary locks/unlocks at every iteration.

The next step consists in deciding which data to load. Figure 5(d) summarizes the outcome

11

Code

WCET

flow info

SUIF2 lock mechanism
Data Cache
Prediction

WCET
computation

predictable
program

flow analysis

WCMP

Figure 6: A framework for WCET computation.

of the locality analysis. For the first region, it identifies three variables and the ranges for two of

them; for b it assumes the whole domain. Eventually, it checks the locality of the references. a is

already in the cache, but c and b are accessed for the first time, thus we would like to load them.

First, it loads c since it is more accessed than b. In this example, there is enough space in the cache

to load b too, but if there were not space enough in cache, we would prefer to load c rather than

b. Using the reuse vectors, we detect temporal locality between the two occurrences of a[i], and

the volume analysis says that neither access will flush the datum accessed out from the cache. A

similar analysis is performed for the second region, determining that k is already in cache.

Eventually, the worst-case memory performance will be computed. With the information of

when a memory access is to be a miss/hit, we compute that the longest path is the one where

c > 15 holds in all instances. It results in 26 misses due to first accesses to k and a, 50 misses due

to the loading of b and c and 775 hits. In case that array b did not fit the cache, we would estimate

all its accesses as a miss, since we would not know the memory lines being accessed (besides, we

would have invalidated array b since our analyzer would not take advantage of it).

4 Experimental Framework

Figure 6 depicts the framework used in our experiments. We try to implement the analysis as

general as possible, so we do not tie ourselves to any specific language. Instead, our compiler

is written using the SUIF2 internal representation, which can be generated from different front-

ends. We use SUIF2 to collect all information about memory accesses and control flow (it basically

applies abstract inlining [32] and detects loops and IF statements). On the other hand, a WCET

tool [9] generates the different paths that will be used to eventually obtain the longest path (i.e.,

one corresponding to the worst-case execution time). The communication between our method and

the WCET is currently being implemented. Thus, these paths are currently manually fed to our

system.

The core block is the one that computes the equations and solves them, generating the cache

behavior. For that purpose, we have followed the techniques outlined in the literature [13, 31, 32].

We have extended them to deal with locked regions (see Section 3.2.1). Equations are generated in

such a way they take in account the extra load/lock/unlock instructions.

12

Name Description

MM Multiply two 100x100 Int matrices
CNT Count and sum values in a 100x100 Int matrix
ST Calc Sum, Mean, Var (2 arrays of 1000 doubles)

SQRT Computes square root of 1384
FIB Computes the 30 first fib. numbers
SRT Bubblesort of 1000 double array
NDES Encrypts and decrypts 64 bits
FFT Fast Fourier transformation of 512 complex numbers

Table 2: Benchmarks used

An overview of the eight benchmark programs can be seen in Table 2. They are all written in

C, drawn from different real-time papers that analyze data cache behavior.

To check the accuracy of our method, we compare our results against a simulator7 modified

to handle locking caches. We present results in terms of memory cost. Thus, we account only

for load/store and lock/unlock instructions. We analyze two modern architectures to estimate the

miss penalties. For the microSPARC II-ep [26] (direct-mapped, 8KB bytes, 16B per line), each hit

takes 1 cycle and each miss 10 cycles. For the PowerPC 604e [16] (4-way, 16KB cache, 32B per

line), each hit is 1 cycle and each miss accounts for 38 cycles. Lock and unlock instructions take 1

cycle to execute in both processors. Instructions to load the cache are treated as normal memory

accesses. Writes and reads are modeled identically.

5 Experimental Results

We now present results from our simulation studies. We first compare the accuracy of our static

data cache analysis comparing it against a simulator. We show that the reuse vectors and the

modified equations accurately model the actual cache behavior. Then, we analyze the efficiency of

our loading algorithm for reducing the performance degradation due to the lock/unlock instructions.

Finally, we present our estimated WCMP for the set of benchmarks.

5.1 Accuracy

The results of our first set of experiments are shown in Table 3. Table 3(a) shows the accuracy of

our method for those codes where locking was not necessary. All the programs consist of a set of

subroutines, some of them containing IF statements. In all the cases, we predict exactly the same

results as yielded by the simulator. Moreover, we predict for each memory access exactly the actual

behavior.

Table 3(b) presents the results for those codes where our method issued lock/unlock instructions.

In order to show our capability to statically analyze the cache behavior in this situation, we analyze

7A locally written simulator. It has been validated over the years against the well-known DineroIII trace-driven
simulator [15].

13

Simulated Estimated Est/Sim
Name C. Cost Cost Ratio

S 7108684 7108684 1.00
MM P 8836226 8836226 1.00

S 75000 75000 1.00
CNT P 122500 122500 1.00

S 223 223 1.00
FIB P 279 279 1.00

S 31784 31784 1.00
ST P 32500 32500 1.00

(a) Codes where cache is not locked.

Simulated Estimated Est/Sim
Name C. Cost Cost Ratio

S 332 332 1.00
SQRT P 383 383 1.00

S 7509 7509 1.00
SRT P 12287 12287 1.00

S 9040 9040 1.00
NDES P 9450 9450 1.00

S 233344 233344 1.00
FFT P 807936 807936 1.00

(b) Codes with lock/unlock instructions.

Table 3: Dynamic results for data caching. S stands for microSPARC-IIep, P for PowerPC 604e.

Name C. Unlock Lock Lock & Load ∆U (%) ∆L(%) #Loads

S 158 330 158 108.8 0.0 1
SQRT P 214 881 214 311.6 0.0 1

S 7507 7507 7507 0.0 0.0 0
SRT P 12285 12285 12285 0.0 0.0 0

S 6299 6992 6992 11.0 11.0 0
NDES P 6970 6970 6970 0.0 0.0 0

S 88696 231296 118544 160.7 33.6 256
FFT P 52736 805888 52736 1428.1 0.0 128

Table 4: Memory cost in cycles for the lock & load algorithm. S stands for microSPARC-IIep, and
P for PowerPC 604e (∆U=loss of performance without loading the cache, ∆L=loss of performance
when loading the cache).

the same path that is actually executed in the simulator. Thus, we can isolate the results of our

analyzer from those of the WCMP computation. Our method obtains the same results as the

simulator in all cases.

The average execution time needed to analyze each configuration was 0.6 seconds. MM was

the program that took most time, with 3 seconds for each cache configuration, since we have to

evaluate more than 4 million accesses.

5.2 Performance of Data Locking

The goal of using data locking is to eliminate unpredictability by locking those regions in the

code where a static analyzer can not be applied. However, cache locking may cause degradation in

performance, which we try to avoid by means of loading the cache with data likely to be accessed. To

evaluate the effectiveness of this approach, we compare the memory cost of the resulting code with

lock/unlock instructions against the same code extended with selective load instructions. For the

sake of comparison, we do not consider the additional cycles due to extra loads and locks/unlocks.

In order to isolate the results from those of the WCMP computation, we consider the actual path

that is executed.

14

0

20

40

60

80

100

120

140

160

SQRT
S

SQRT
P

SRT
S

SRT
P

FFT
S

FFT
P

NDES
S

NDES
P

Program

N
or

m
al

iz
ed

 C
yc

le
s

Conflicts Overhead

Lock Inst. Overhead

Normal Accesses

0

500

1000

1500

2000

2500

3000

3500

4000

SQRT�S

SQRT�P

SRT����
S

SRT����
P

FFT����
S

FFT����
P

NDES�S

NDES�P

Programs

W
C

M
P

 in
 c

yc
le

s

Actual�WCMP

Disabled�WCMP

Pessimistic�WCMP

Our�WCMP

(a) Overall overhead of the cache locking. (b) Accuracy of our WCMP estimate.

Figure 7: Statistics of our approach. S stands for microSPARC-IIep, P for PowerPC 604e.

The results of this experiment are shown in Table 4. We analyze programs where lock/unlock

and load instructions where issued. We can see that in the general case, locking the cache without

loading it leads to a significant performance degradation, in one case as large as over 1000%. When

loading the cache, performance degradation is usually eliminated. In those cases where there are

conflicts among data accessed in the locked regions, loading the cache reduces the performance

degradation, but it can not eliminate it completely. Finally, last column presents the number of

extra loads issued to load the cache. It shows that the reduction of memory cost can be achieved

with few selected loads.

We have evaluated the overall overhead of the resulting code in more detail. Figure 7(a) contains

the results where cycles due to locks/unlocks and extra loads are considered. The memory cost is

normalized to the memory cost of the actual execution of the program without lock instructions.

We can see that the slowdown ranges from 0% to 43%, mainly because the cache is not big enough

to contain all data accessed in the locked regions. For instance, FFT has an overhead of 43% for

the microSPARC-II architecture. When the cache size is increased, the conflicts disappear and the

overhead is minimal.

In the following section, we show how this small degradation in performance allows having a

fully predictable program. Thus, we can compute the WCMP in a much tighter way than previous

approaches. Even though the actual execution time of the task may increase, the WCMP will be

smaller, thus we will be able to make better use of resources.

5.3 WCMP

Our locking algorithm will be successful if the presence of locked regions allows us to compute a

smaller WCMP than before. This is, if WCMP(task+lock+load)<WCMP(task).

In order to see the effectiveness of our approach, we have compared our method to compute

15

WCMP with two other methods that are currently used:

• Cache disabled (i.e., cache locked all the time).

• Cache unlocked, making pessimistic assumptions whenever we do not know what happens.

This can be seen as considering an empty cache where we would unlock the cache in our

approach.

We use as a reference the actual WCMP of the program without lock instructions.

Figure 7(b) shows the different estimates for each method. When we consider the cache disabled,

all memory accesses are considered as misses, producing a very large overestimation of the WCMP.

The values show that the estimated WCMP is between 5 and 38 times larger than the actual one.

The pessimistic approach performs better than considering the cache disabled, but it is still

far from a tight WCMP. The estimated WCMP is between 2 and 22 times larger than the actual

WCMP. Our approach gives an exact WCMP of the transformed program (i.e., the program with

lock instructions).

5.4 Summary

Overall, we have shown the effectiveness of our approach. Whereas some performance may be

lost due to the locking mechanism (in the worst case, the program runs 0.4 times slower), we

can achieve a perfect estimate of the WCMP for the benchmarks given. Besides, we have seen

that the estimate of the WCMP(task+lock+load) is much smaller than the best estimate of the

WCMP(task). For those programs where lock instructions are not issued, our estimate is exact and

there is no overhead.

We first have presented results that highlight the accuracy of our static approach. Later, we

have seen that in all cases, our selective locking technique allows us to fully predict the cache

behavior, which translates to an exact computation of the WCMP. We have shown that estimating

the WCMP without the help of locking the cache is very hard, and it usually yields very large

overestimates. Moreover, the knowledge of the memory behavior will allow us to compute tighter

WCET.

6 Related Work

In the past few years several strategies have been presented for analyzing cache memory behavior

analytically.

Predicting cache behavior is a key issue for cache optimizers. Ghosh et al [13] presented the

CMEs framework targeted at isolated perfect loop nests consisting of straight-line assignments.

They show that the CMEs can be helpful in reducing the number of cache misses for scientific

16

codes. Fraguela et al [11] use a probabilistic method to provide a fast estimate of cache misses,

describing reuse only among references in the same nest. Recently, Chatterjee et al [6] presented an

ambitious method for exactly predicting the cache behavior of loop nests by means of Presburguer

formulas. Because of the complexity and expense of their algorithm, they have only evaluated it on

very small kernels. Finally, Vera and Xue [32] examine the problem of analyzing whole programs.

This model is able to predict misses for large codes consisting of data independent constructs

(including calls and IF statements).

Meanwhile, the real-time community has intensified the research in the area of predicting WCET

of programs in presence of caches. Calculation of a tight WCET bound of a program involves

difficulties that come from the very characteristics of data caching. Even though some progress has

been done when studying processors with instruction caches [2, 14, 21], few steps have been done

towards analyzing data caches.

Alt et al [1, 10] provide an estimation of WCET by means of abstract interpretation. As well as

the usual drawbacks from abstract analysis (i.e., time consuming and lack of accuracy), they only

analyze memory references which are scalar variables. When providing experimental results, they

only deal with instruction caches. Lim et al [23] present a method that computes the WCET taking

in account data caching. However, they only analyze static memory references (i.e., scalars), failing

to study real codes with dynamic references (i.e., arrays and pointers). Kim et al [18] propose

a method that extends and improves the previous method extending the analysis that classifies

references as either static or dynamic. However, they deal neither with arrays nor with pointers

(i.e., only detecting temporal locality). Further, it is limited to basic blocks, without taking in

account possible reuse among different subroutines or loop nests. Li et al. [22] describes a method

which do not merge the cache state but tries to calculate possible cache contents along with the

timing of the program. The whole CPU is modeled by a linear integer programming problem, and

a new constraint is added for each element of a calculated reference. This requires a very large

computation time, and has problems of scalability with large arrays. Besides, they do not report

results for WCET in presence of data caches.

White et al [33] propose a method for direct-mapped caches based on static simulation. They

categorize static memory accesses into (i) first miss, (ii) first hit, (iii) always miss and (iv) always

hit. Array accesses whose addresses can be computed at compile-time are analyzed, but they fail to

describe conflicts which are always classified as misses. For instance, they overestimate the memory

cost by 10% and 17% for MM and ST respectively (we estimate the WCMP exactly without issuing

lock instructions).

Lundqvist and Stenström [24] propose an approach where variables that have non-analyzable

references are mapped onto a non-cacheable memory space. They show that the majority of data

structures in their benchmarks are predictable, but they do not present the overhead of the trans-

formed program. Neither they report results for WCET or WCMP using their approach. Finally,

Campoy et al [3] introduce the use of locking instruction caches. They use static locking, presenting

a genetic algorithm in an attempt to reduce the solution space when selecting the best contents

for the cache. They represent each memory block by means of one bit, which flips between 0/1

(in-cache/out-cache). On one hand, we have shown that static locking is not a good solution for

17

data caches. On the other hand, while this approach may work for small programs, it is not easy to

see how it can be extended to data caches:(i) each possible solution would occupy a lot of memory

(data is typically much larger than programs), and (ii) we would need a static analysis to evaluate

each potential solution.

7 Conclusions

This paper combines static cache analysis with data cache locking to estimate the worst-case mem-

ory performance in a safe, tight and fast way. First, an approach to statically analyze the cache

behavior is reviewed. It uses an extended version of the reuse vectors as a safe measure of reuse,

resulting in a set of equations that describes where this reuse translates to locality.

Second, we give a novel approach to overcome the problem of data-dependent constructs. We

describe how locking caches can be used to avoid interferences and unpredictability. Later, we

discuss how to load the cache in order to achieve good performance.

Finally, we combine both methods resulting in a tool that predicts the worst-case memory

performance in a tight and safe way, with an acceptable loss of performance. Combined with a

timing analysis platform, we may estimate the WCET much tighter than previous approaches.

Furthermore, it can be used for computing WCET estimates in multi-task systems when combined

with the cache partitioning technique [19].

Overall, this paper contributes with a unique technique that provides a considerable step toward

a useful worst-case execution time prediction of actual architectures. Written as a compiler pass,

it both issues lock/unlock/load instructions and computes the worst-case memory performance in

presence of k-way set associative data caches. Moreover, our framework can be used to guide the

compiler in order to generate code that exploits the cache memory and computes the WCMP at

the same time. Even though performance is not typically a key issue in real-time systems, a better

use of the cache is very useful in order to reduce power consumption.

While this work represents an important step towards program predictability in presence of data

caches, there are still some issues that can be investigated further. A better pointer analysis could

be beneficial to lock fewer regions, and would help us to classify their accesses as misses or hits. It

may also be interesting to take in account the overall performance when selecting data to lock in

the cache. We plan to investigate these research directions in order to have full predictability and

better performance.

Acknowledgements

The authors thank E. for his infinite patience answering all our questions about how to compute
WCET. We also thank J.C and J.G for reviewing previous drafts of this paper.

18

References

[1] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behaviour prediction by abstract interpreta-
tion. In Proceedings of SAS’96, Static Analysis Symposium, Lecture Notes in Computer Science (LNCS)
1145, pages 52–66. Springer-Verlag, September 1996.

[2] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bounding worst-case instruction cache performance.
In 15th Real-Time Systems Symposium, pages 172–181, 1994.

[3] M. Campoy, A. P. Ivars, and J. V. Busquets-Mataix. Static use of locking caches in multitask preemptive
real-time systems. In IEEE/IEE Real-Time Embedded Systems Workshop (Satellite of the IEEE Real-
Time Systems Symposium), 2001.

[4] S. Carr and K. Kennedy. Compiler blockability of numerical algorithms. In Supercomputing ’92, pages
114–124, Nov. 1992.

[5] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear array layout for
hierarchical memory systems. In ACM International Conference on Supercomputing (ICS’99), pages
444–453, Rhodes, Greece, Jun. 1999.

[6] S. Chatterjee, E. Parker, P. J. Hanlon, and A. R. Lebeck. Exact analysis of the cache behavior of
nested loops. In ACM SIGPLAN ’01 Conference on Programming Language Design and Implementation
(PLDI’01), pages 286–297, 2001.

[7] S. Coleman and K. S. McKinley. Tile size selection using cache organization and data layout. In ACM
SIGPLAN ’95 Conference on Programming Language Design and Implementation (PLDI’95), pages
279–290, Jun. 1995.

[8] IBM Microelectronics Division. The PowerPC 440 core, 1999.

[9] J. Engblom and A. Ermendhal. Modeling complex flows for worst-case execution time analysis. In
Proceedings of the IEEE Real-Time Systems Symposium (RTSS 2000), 2000.

[10] C. Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior prediction for real-time
systems. Real-Time Systems, 17:131–181, 1999.

[11] B. B. Fraguela, R. Doallo, and E. L. Zapata. Automatic analytical modeling for the estimation of
cache misses. In In Proceedings of International Conference on Parallel Architectures and Compilation
Techniques (PACT’99), 1999.

[12] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory management by global
program transformations. Journal of Parallel and Distributed Computing, 5:587–616, 1988.

[13] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: a compiler framework for analyzing and
tuning memory behavior. ACM Transactions on Programming Languages and Systems, 21(4):703–746,
1999.

[14] C.A. Healey, D. Whalley, and M. Harmon. Integrating the timing analysis of pipelining and instruction
caching. In 16th Real-Time Systems Symposium, pages 288–297, 1995.

[15] M. Hill. DineroIII: a uniprocessor cache simulator (http://www.cs.wisc.edu/˜ larus/warts.html).

[16] Motorola Inc. PowerPC 604e RISC Microprocessor Technical Summary, 1996.

[17] M. Kandemir, A. Choudhary, P. Banerjee, and J. Ramanujam. A linear algebra framework for auto-
matic determination of optimal data layouts. IEEE Transactions on Parallel and Distributed Systems,
10(2):115–135, Feb. 1999.

[18] S.K. Kim, S.L. Min, and R. Ha. Efficient worst case timing analysis of data caching. In IEEE Real-Time
Technology and Applications Symposium, 1996.

[19] D.B. Kirk. SMART (strategic memory allocation for real-time) cache design. In 10th Real-Time Systems
Symposium, Dec. 1989.

19

[20] M. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance of blocked algorithms. In 4th
International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’91), Apr. 1991.

[21] Y.T.S. Li, S. Malik, and A. Wolfe. Efficient microarchitecture modeling and path analysis for real-time
software. In 16th Real-Time Systems Symposium, pages 298–307, 1995.

[22] Y.T.S. Li, S. Malik, and A. Wolfe. Cache modeling and path analysis for real-time software. In 17th
Real-Time Systems Symposium, 1996.

[23] S.S. Lim, Y.H. Bae, G.T. Jang, B.D. Rhee, S.L. Min, C.Y. Park, H. Shin, K. Park, and C.S. Kim.
An accurate worst case timing analysis technique for RISC processors. In 15th Real-Time Systems
Symposium, pages 97–108, 1994.

[24] T. Lundqvist and P. Stenström. A method to improve the estimated worst-case performance of data
caching. In Proceedings of the 6th International Conference on Real-Time Computing Systems and
Applications (RTCSA’99), pages 255–262, Dec. 1999.

[25] T. Lundqvist and P. Stenström. Timing anomalies in dynamically scheduled microprocessors. In 20th
Real-Time Systems Symposium, Dec. 1999.

[26] Sun Microelectronics. microSPARC-IIep User’s Manual, 1997.

[27] T.C. Mowry, M.S. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for prefetching.
In Procs. of V Int. Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’92), pages 62–73, Oct. 1992.

[28] G. Rivera and C-W. Tseng. Data transformations for eliminating conflict misses. In ACM SIGPLAN
’98 Conference on Programming Language Design and Implementation (PLDI’98), pages 38–49, 1998.

[29] F.J Sánchez, A. González, and M. Valero. Static locality analysis for cache management. In Procs. of
International Conference on Parallel Architectures and Compilation Techniques (PACT’97), November
1997.

[30] O. Temam, E.D. Granston, and W. Jalby. To copy or not to copy: A compile-time technique for
accessing when data copying should be used to eliminate cache conflicts. In Supercomputing ’93, pages
410–419, 1993.

[31] X. Vera, J. Llosa, A. González, and N. Bermudo. A fast and accurate approach to analyze cache memory
behavior. In In Proceedings of European Conference on Parallel Computing (Europar’00), 2000.

[32] X. Vera and J. Xue. Let’s study whole program cache behaviour analytically. In In Proceedings of
International Symposium on High-Performance Computer Architecture (HPCA 8), Cambridge, Feb.
2002.

[33] R. T. White, F. Müller, C. Healy, D. Whalley, and M. Harmon. Timing analysis for data caches
and set-associative caches. In Proc. Third IEEE Real-Time Technology and Applications Symposium
(RTAS’97), pages 192–202, 1997.

[34] M.E. Wolf and M.S. Lam. A data locality optimizing algorithm. In ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation (PLDI‘91), pages 30–44, Jun. 1991.

20

