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Abstract—The AUTOSAR consortium has developed as the
worldwide standard for automotive embedded software sys-
tems. From a processor perspective, AUTOSAR was originally
developed for single-core processor platforms. Recent trends
have raised the desire for using multi-core processors to run
AUTOSAR software. However, there are several challenges in
reaching a highly efficient and predictable design of AUTOSAR-
based embedded software on multi-core processors. In this paper
a solution framework comprising both the mapping of runnables
onto a set of tasks and the scheduling of the generated task
set on a multi-core processor is suggested. The goal of the
work presented in this paper is to minimize the overall inter-
runnable communication cost besides meeting all corresponding
timing and precedence constraints. The proposed solution frame-
work is evaluated and compared with an exhaustive method to
demonstrate the convergence to an optimal solution. Since the
exhaustive method is not applicable for large size instances of the
problem, the proposed framework is also compared with a well-
known meta-heuristic algorithm to substantiate the capability of
the frameworks to scale up. The experimental results clearly
demonstrate high efficiency of the solution in terms of both
communication cost and average processor utilization.

Keywords-AUTOSAR; runnable; mapping; multi-core schedul-
ing; feedback-based search; Simulated Annealing; SMSA.

I. INTRODUCTION

In the area of automotive systems, AUTOSAR [1] is becom-
ing the standard software architecture specifying and dictating
how embedded software is developed. As the automotive
industry now is facing a migration from traditional single-core
processors to parallel multi-core processors, some extensions
to how AUTOSAR should be used in the new context are
required in order to gain the full potential advantages of
multi-core processors. The multi-core technology raises new
challenges related to both timing predictability as well as to
the possibility of obtaining a reasonable performance when
executing embedded software. Such a challenge is inherent in
the communication between software components located on
different cores of the multi-core processor.

AUTOSAR software contains a set of software components
that each component is constructed by hosting a set of
runnables - each runnable being a small piece of executable
code. Hence, a particular software constructed according to
AUTOSAR can be considered as a set of runnables. The
runnables should be mapped into a task set. We call the
process of assigning runnables to tasks, mapping. The mapping

directly effects on the schedulability of the crated task set.
The generated task set should then be allocated to the cores
of a multi-core processor. A balanced allocation of the task
set onto a multi-core (i.e., load balancing) usually results in
an acceptable performance in terms of makespan however,
such a solution may increase the overall communication cost
inherent in communication in-between the runnables when the
runnables (and therefore, also tasks) are able to communicate
with each other. Increasing the communication cost does not
only aggravate the overall performance but it can also reduce
schedulability of the system.

The overall goal of the work presented in this paper is to
provide a solution to map AUTOSAR runnables onto tasks
that are then allocating on the cores of a multi-core processor.
In doing this, we intend to make a schedulable solution which
is able to minimize the inter-runnable communication cost. We
distinguish between different communication cost depending
on if the runnables that are communicating with each other
are allocated within the same task, or if they are allocated
in different tasks on the same core or on different tasks on
different cores.

To address the challenges related to the overall goals of
this paper, a comprehensive framework is required including
solutions for both mapping of runnables to tasks and allocating
of tasks onto the cores. It is worth noting that mapping
and scheduling must be contemplated together because if
the task set is not properly formed, even an optimal task
scheduling in terms of communication cost may not lead to an
acceptable solution, and vice versa. In this paper, we propose
a solution framework to minimize the overall communica-
tion cost while at the same time satisfying all timing and
precedence constraints. The allocating is carried out based
on a new evolutionary algorithm inspired from Simulated
Annealing (SA). Moreover, to guide the search towards an
optimal solution, the framework has integrated a refinement
function which allows us to merge the initial task set. Such
a design leads to a feedback search which evaluates each
individual of search space based on the feedback generated
by the refinement function, hence the probability of achieving
the general optimum substantially increases.

The main contributions of this paper can be expressed as
follows:

1) We propose a feedback-based solution framework for
execution of embedded software on a multi-core pro-978-1-4799-5359-2/14/$31.00 c�2014 IEEE
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cessor, subject to minimizing communication cost. Our
solutions cover both mapping and scheduling while the
most of the existing solutions found in the related work
only focus on scheduling.

2) We present a discussion on some alternative approaches
which can be applied to tackle with the problem, whether
they are feasible, and what would be the expected
performance for them, indicating directions for future
work.

The rest of this paper is organized as follows: In Section II
a brief survey on related work is presented. The problem is
described in detail and assumptions are defined in Section III.
The solution framework to form the task set and the scheduling
is introduced in Section IV. In Section V the performance of
the proposed algorithm is assessed in comparison with other
alternative approaches. Finally, the concluding remarks and
future work is discussed in Section VI.

II. RELATED WORK

A large number of studies have been conducted to solve
the challenges related to static allocation of real-time tasks
to a set of processors [2], [3]. However, only few of them
have taken precedence constraint into account, for example [4],
[5], [6]. In these papers, the task set is often described by an
acyclic directed graph where the tasks indicate nodes, and the
edges between the tasks display causal dependencies. Yosemi
and Sorel in 2008 presented an algorithm for schedulability
analysis of hard real-time tasks in the presence of precedence
constraints on a single processor [4]. They also considered
the context switch overhead and, according to fixed priority,
the number of context switches was accounted. In [5] two
algorithms based on the Branch and Bound (BB) technique
were proposed for the static allocation of communicating
periodic tasks in distributed real-time systems. The first tech-
nique assigns tasks to the processors and the latter schedules
assigned tasks on each processor. Due to the exponential nature
of BB this approach is only feasible for small and moderate
size of problems however, it fails in finding a solution for most
real-world sized systems.

The mapping methodology has been widely applied to
synthesis and hardware/software co-design of heterogeneous
MPSoC systems [7]. It has also been employed to software
synthesis of embedded distributed real-time systems [8]. The
approaches introduced for conventional real-time systems can-
not be directly applied for AUTOSAR systems because, in ad-
dition to task assignment, there is another level in AUTOSAR
systems which is the mapping of runnables into a task set.
On the other hand, an improper task set even with an optimal
task assignment may not result in a reasonable performance
for the system. Therefore, it is desirable to contemplate both
mapping of runnables into a task set and assignment of the
task set onto a multi-core phases together.

In the context of AUTOSAR, several studies for mapping
of runnables exist, however, they target distributed single-core
processing nodes [9], [10], [11], [12], [13]. Among them [13]
is more related to our work because, it also considers the phase
of runnable mapping to the OS tasks. However, its goal is to

minimize the end-to-end latency in a distributed automotive
systems. The authors apply a genetic algorithm to cope with
the problem. To the best of our knowledge, the mapping of
AUTOSAR runnables onto multi-core processors with the goal
to minimize the overall communication cost has not yet been
carefully studied. This is the focus of this paper.

III. PROBLEM MODELING

Let’s suppose a set of software components, each of which
comprises a set of runnables. Therefore, the problem to
be solved can be considered as a set of strictly periodic
runnables which could be concurrently run on different cores.
Let R = {Ri : i = 1,2, ...,m} be the set of m � 2 runnables
to be allocated among a set of N � 2 processing nodes,
r = {r j : j = 1,2, ...,N} of a multicore chip. Let’s suppose
that we have a homogenous multi-core system in which all
the cores have the same processing power. The runnable Ri
has a Worst Case Execution Time (WCET) denoted by ei. In
addition, a set of independent transactions {Gi : i = 1,2, ...,M}
represent end-to-end latency requirements between a sequence
of runnables. In fact, each transaction is a directed acyclic
graph in which each node is a runnable and links show data
dependency between them. This dependency does not imply
triggering, in the sense that a successor can start irrespective of
the state of its predecessor however. To fulfill the mission of a
transaction all successors must start to run with the fresh data
generated by its predecessor. The communication between the
runnables can be performed based on non-blocking read/write
semantics [14]. Fig. 1 shows an illustrative example. Without
loss of generality we can assume that all runnables are covered
by at least one transaction, because if a runnable is not
included in any transaction, then we assume a new transaction
which contains this runnable.

Fig. 1. A sample of a transaction.
The transaction Gi has a relative end-to-end deadline de-

noted by Di before which the execution of the transaction
must finish, i.e., all runnables of the transaction must finish
their execution before this deadline. The transaction deadline is
corresponding to the mission of that transaction. For example,
the mission could be the braking system in a car where the
whole process should be done before a specific end-to-end
deadline. We assume that the transactions are periodic in
nature however, the transaction period (denoted by Pi) is not
given as an input of the problem. Nevertheless, a conservative
assumption is that the period of the transaction is equal to its
relative deadline, i.e., Pi = Di.

Another challenge that should be covered by our model is
the dependency between the transactions which means that the
transactions may share the same runnable(s). In such cases,
the problem can be categorized into two main groups. The
first group is when there is not any internal state within the
shared runnable(s) whereas, in the second group we have a set
of internal states within the shared runnables. Dealing with
the first group is much easier than the second group as we



can make a copy from the shared runnable(s) and thereby,
make independent transactions. Although this approach might
generate extra overhead, it significantly decreases the problem
complexity. Fig. 2 shows an illustrative example. To tackle
with the second group we need to preserve a kind of mutual
exclusion for different runs of the shared runnable(s). Hence,
the shared runnables can be considered as a sort of critical
instance of a transaction. In other words, we expect if the
transaction Gi and G j have a shared runnable Rk then when Gi
is running Rk, G j can not run the Rk until the execution of Rk
is finished within Gi. The second group is out of the scope of
this paper and we only cover the first group here.

Fig. 2. Two transactions with a common runnable
To complete the problem representation, another graph is

also required to represent data communication between the
runnables. In this paper we assume that a pair of runnables
may transfer data with each other, while there is not any prece-
dence among their execution order. An undirected graph called
Runnables Interaction Graph (RIG) shows and represents this
information. Each node of the RIG represents a runnable and
the arcs between the runnables show data communication
between them. In other words, there is not necessarily data
dependency between them. It is worth noting that the direction
of transferring data between a pair of runnables does not matter
in this graph, because it is only used to minimize the overall
communication cost between the runnables. Furthermore, there
is a label on each arc called communication rate - cri j,
that indicates the rate of data that should be transferred
between the runnables per hyper-period. The hyper-period is
the Least Common Multiple (LCM) of the periods of all the
transactions which is denoted by h. Considering data transfer
rate per hyper-period allows us to compare communication
cost between various runnables irrespective of their periods.
Fig. 3 illustrates a RIG instance.

Fig. 3. A sample of a RIG in an AUTOSAR system.

The communication cost to transfer data between each pair
of runnables depends both on the mapping of runnables onto
the cores and the final task set structure. It can be modeled as
follows:

• If the runnables are hosted in the same task, then we
consider cost a for transferring each unit of data.

• If the runnables are hosted in different tasks on the same
core, then the cost of communication is b.

• If the runnables are allocated to different cores, then g is
the cost of communication.

It should be mentioned that since we would like to address
the problem in a general manner without restricting the prob-
lem to a specific hardware or a specific operating system, we
simply assume the existence of such constant transferring costs
(a, b, and g). However, in practice they strongly depend on
the memory management mechanism, the cache mechanism
and the hardware configuration.

IV. SOLUTION FRAMEWORK

In this section two solution frameworks are introduced, each
of which comprises both the mapping and scheduling phases.
In the following two subsections they are explained in detail.

A. Framework 1: SMSA

In the first framework, the mapping function is simply
carried out by considering each transaction as one task. In
this case, the task deadline is set equal to the transaction
deadline, and the task period denoted by Ti is equal to the
transaction period (as is mentioned before the transaction
period is considered equal to the transaction deadline). In
this way, if a task meets its deadline then the correspond-
ing transaction meets its end-to-end deadline as well. The
next step in order to complete the framework is the task
scheduling phase. To fulfill the scheduling phase, we use a
new evolutionary algorithm called Systematic Memory Based
Simulated Annealing (SMSA). Based on recent studies, SMSA
outperforms pure Simulated Annealing (SA) [15] [16] when
it is applied to solve scheduling problems. SA is a stochastic
memory-less algorithm. In that sense, SA does not use any
information gathered during the search. SA starts from an
initial solution, and it proceeds in several iterations. A random
neighbor is generated at each iteration (SA visits only one
of the neighbors). The moves that enhance the cost function
are always passed. Otherwise, the neighbor is selected with
a probability that depends on the current temperature and the
amount of reduction of the objective function.

SMSA covers some major drawbacks of SA in order to
gain more efficiency. Firstly, SMSA visits the subset of the
neighborhood and selects the best member of this subset (sys-
tematic nature) versus SA that only visits one of the neighbors.
This subset is selected randomly and thus the stochastic nature
of SA is still exploited. Secondly, SA sometimes falls into
loops and accepts a specific solution more than once; it is the
main disadvantage of SA. To avoid the cycling all the visited
solutions during the search process must be stored however,
it requires a large amount of memory and on the other hand
searching in such a large memory takes a lot of time. The
wide range of experimental results regarding the performance
of SA manifested that the probability of re-visiting recently
visited solutions is dramatically higher than the old ones.
Accordingly, SMSA utilizes a limited memory to keep recently
visited solutions to prevent cycling (memory-based).

SMSA is used as a scheduling algorithm with the following
configuration:

• Problem Space: The set of all possible allocations for
a given set of tasks and processing cores is called the
problem space.



• Solution Representation: Each point in the problem space
is corresponding to an assignment of tasks to the cores
that potentially could be a solution for the problem.
The solution representation strongly affect the algorithm
performance. We represent each solution with a vector
of M elements, and each element is an integer value
between one and N. The vector is called SR. Fig. 4 shows
an illustrative example for a solution. The third element
of this example is two, which means that the third task
(corresponding to the third transaction) is assigned to
the second core. Furthermore, this representation causes
satisfaction of the no redundancy constraint in the sense
that each task should be assigned to no more than one
core.

Fig. 4. Representation for assigning the tasks onto the cores.

• Initial Solution: It is generated randomly. However, in the
future work a more effective heuristic algorithm is used
to generate the initial solution.

• Neighborhood Structure: The neighbors of the current
solution are a sub set of the problem space that are reach-
able by moving any single task to any other processing
core. Therefore, each solution has M(N � 1) different
neighbors, because each task can run on one of the other
N �1 cores.

• Selecting Neighbor: SMSA in each step, instead of con-
sidering all neighbors (i.e., M(N �1) neighbors), selects
one task randomly and then it examines all neighbors of
the current solution in which the selected task is assigned
to another core. Hence, it visits N�1 neighbors, and then
the best solution of this subset is designated irrespective
of whether it is better than the current solution. We call
this process stochastic-systematic selection, because we
use a combination of systematic and stochastic process
to select the neighbor.

• Total Cost Function: The total cost is a function that
returns a real value for the assignment SRz, and this value
is used to evaluate each solution. The total cost function
can be computed by Eq. 1.

TC(SRz) =
m

Â
i=1

m

Â
j=i+1

TYi(SRz)

h
⇥CRi j(SRz)+s⇥P(SRz)

(1)
where Yi(SRz) is a function that returns the index of the
task to which Ri is assigned by the assignment of SRz,
and P(SRz) is the penalty function that reflects the amount
of violation from the acceptable solution. It means if the
value of the penalty function is zero, then the assignment
SRz meets all the end-to-end deadlines. Otherwise, some
of the deadlines are missed. s is the penalty coefficient
used to guide the search towards valid solutions. This
coefficient tunes the weight of the penalty function with
regards to both range of cost function and the importance
of the constraint violation. For example, in a soft real-time
system, where missing a low number of deadlines may be
tolerable, the coefficient should be set to a lower value.

Furthermore, CRi j(SRz) denotes the cost of transferring
data which is defined by Eq. 2.

CRi j(SRz) =

8
><

>:

a⇥ cri j if I
b⇥ cri j else if II
g⇥ cri j else

(2)

where I denotes a condition in which Ri and R j belong
to the same task whereas, II denotes a condition in
which the corresponding tasks of Ri and R j are located
on the same core. Let’s suppose that Earliest Deadline
First (EDF) scheduler is used as a local scheduler on
each core. Based on the EDF utilization test, we can
make sure that if the utilization of a processing node
derived by the proposed solution is less than one, then
the solution meets all deadlines. It should be mentioned
that although this schedulability test is merely valid for
an independent task set, as we map a whole transaction to
one task, the precedence relations between the runnables
of a transaction do not generate precedence constraints
between the tasks, and thus the generated task set is
independent. Therefore, Eq. 3 is applied to calculate the
penalty function.

P(SRz) =
N

Â
i=1

max{0,Uri(SRz)�1}

Uri(SRz) = Â
8k,tk allocated totheri

Ek(SRz)

Tk

(3)

where Uri(SRz) indicates utilization of the ith processing
core, and Ek(SRz) denotes the worst case execution time
of the kth task for the assignment SRz, that is calculated
by

Ek(SRz) = tcomput + tcommun

tcomput = Â
8l,Rl2tk

el

tcommun = f (
Tk

h
⇥ Â

8i,Ri2tk

Â
8 j,R j2R

CRi j(SRz))

(4)

where tcomput implies the computation time which is
independent from assignment of tasks to the cores thus,
can be calculated in advance, and tcommun represents the
communication time of tk for the assignment SRz, and
f (X) is the function which returns the corresponding
communication time if the cost of communication is
X . We can assume that the cost of transferring data is
equivalent to the transferring time, i.e., f (X) =X , thereby
Eq. 5 is achieved.

tcommun =
Tk

h Â
8i,Ri2tk

Â
8 j,R j2R

CRi j(SRz) (5)

• Cooling Schedule: There are two common types of cool-
ing schedules, namely, monotonic and non-monotonic.
The cooling schedule of both SA and SMSA in this paper
is assumed monotonic in the sense that in each iteration,
the current temperature is decreased with a constant
gradient. In the original monotonic SA, the temperature



in the current iteration is equal to µ ⇥ the temperature
in the previous iteration, where µ is a real value between
zero and one. According to [17], a much more efficient
monotonic cooling schedule can be achieved by

yi = (
(ys �y f )(b+1)

b
)(

1
i+1

�1)+ys, i = 1,2, ...,b
(6)

where ys and y f are the start and final temperature
respectively, and b is the expected number of observed
temperatures which should reflect the inputs parameters
that effect on complexity of the problem. We set it equal
to m2 ⇥N. Tuning the value of ys and y f has a strong
impact on both the execution time and convergence of
SA and SMSA. Clearly, increasing the distance between
the start and the final temperature would improve the
solution quality, however, this would also increase the
running time of the algorithm. Thus, a tradeoff should be
made regarding this issue. Based on [18] an appropriate
value for the initial and final temperatures of the SA can
be achieved by the Eq. 7 and 8 respectively, and we use
them in the SMSA.

ys =
TCbest �TCworst

log0.9
(7)

y f =
TCbest �TCworst

log0.01
(8)

where TCbest denotes the lower bound of the total cost
function in the problem space, and the TCworst indicates
the upper bound for this function. It is not difficult to
estimate an upper bound and a lower bound for the total
cost function. The Eq. 9 creates an upper bound whereas
Eq. 10 makes a lower bound for the total cost function.

TCworst = g⇥
TYi(SRz)

h
⇥

m

Â
i=1

m

Â
j=i+1

cri j +s⇥ Â
8k,tk2t

Emax
k
Tk

(9)
where Emax

k denotes the maximum execution time of the
kth task which can be easily calculated by this assumption
that the tk communicate with other tasks by the cost g.

TCbest = g⇥
m

Â
i=1

m

Â
j=i+1

cri j (10)

• Stopping Condition: The algorithm terminates when yi
becomes less than y f .

The pseudo code of the algorithm is provided in Alg. 1.
The execution time of SMSA is potentially longer than that

of SA because, to select a neighbor in SMSA, the total cost
function for (N�1) neighbors is computed while when using
SA it is computed for one neighbor only. To compensate the
slower execution time of SMSA, we suggest a fast method to
compute the total cost of each solution that is used instead of
the mentioned total cost function (Eq. 1). The following three
minor changes can make it significantly faster.

1) According to the above-mentioned definition of neigh-
borhood structure, for each neighbor, only one of tasks
moves to another core and the rest of tasks remain on the

Algorithm 1 SMSA
1: Inputs: task set t generated based on the transaction set, and the RIG
2: Initialize the algorithm parameters ys, y f , Q, and s
3: Generate the initial solution SR0 randomly
4: TCV0 = TC(SR0) {Compute the total cost function for SR0}
5: SRb = SRc = SR0 {assign the initial solution to both of the current solution and the best solution}
6: TCVb = TCVc = TCV0 {assign cost of initial solution to both cost of current and cost of best solution}
7: Add SR0 to the queue of recently visited solutions
8: yc = ys {assign the start temperature to the current temperature}
9: repeat

10: SRn = Select one of the neighbors based on the stochastic-systematic selection
11: if SRn is not visited recently then
12: TCVn = TC(SRn)
13: D = TCVn �TCVc
14: if D  0 then
15: SRc = SRn
16: TCVc = TCVn
17: Add SRn to the queue
18: if TCVn  TCVb then
19: SRb = SRn
20: TCVb = TCVn
21: end if
22: else
23: Generate a uniform random value x in the range (0,1)
24: if x < e

�D
x then

25: SRc = SRn
26: TCVc = TCVn
27: Add SRn to the queue
28: end if
29: end if
30: else
31: Update location of SRn in the queue
32: end if
33: update yi based on the Eq. 6
34: until yi  y f
35: return the SRb

previous cores. Therefore, for each solution, instead of
recomputing the execution time of all tasks, we need to
only recompute the execution time of the task which
moved, along with the execution time of other tasks
communicating with this task. To implement this idea,
before starting the SMSA, and after creating the task
set t, for each task ti, we create the list Li which
includes the tasks communicating with ti including ti
itself. Accordingly, if in a neighbor, the location of tk is
changed, then to compute the total cost of that neighbor,
only execution time of tasks in the Lk are recomputed,
and the execution time of other tasks are the same with
the current solution. However, for the initial solution we
should still use the Eq. 1 to compute the total cost.

2) We can restrict the range of the second summation in
Eq. 5 while the result is still correct. It can be re-written
as

tcommun =
Tk

h Â
8i,Ri2tk

Â
8 j,R j2tl and tl2Ll

CRi j(SRz) (11)

3) The term CRi j(SRz) is common between Eq. 1 and Eq. 4,
and thus we can store it when we are computing the
cost function and reuse (instead of re-computing) it in
the function for calculating the execution time of tasks.

In this paper, SMSA with the new fast total cost function is
called SMSA+. Experimental results in Section V manifest the
significant speed-up of SMSA+ in comparison to SMSA.

B. Framework 2: The Refinement Approach
In this section the second solution framework is presented.

This framework is quite similar to the first framework however



with one major difference. A task set is generated similar
to how it is done in the first framework and then we use
SMSA to allocate the task set onto the cores. However, a
REfinement Function (REF) is defined which attempts to
merge the tasks which communicate together, and are allocated
on the same core. The basic notion of this function is that if
we merge two tasks which communicate together into one
task, then the communication cost will be reduced because,
communication between these tasks is achieved at a lower
cost a instead of the cost of b. It should be mentioned that
based on [19], if we merge two tasks, then period of the
created task is set to the greatest common divisor (gcd) of
periods of those tasks. Therefore, if two tasks with different
periods are merged together, then period of the new task may
become a significantly lower value, and thus the dedicated
utilization of the new task may be significantly higher than the
sum of utilization of those two tasks. Accordingly, in order to
avoid a large increase of CPU utilization, REF does not merge
the tasks with different periods. It is worth noting that if we
allow to merge tasks with different periods looking both at
the communication cost and the amount of increase of CPU
utilization, then the problem is clearly a trade-off between
communication and CPU utilization, which is out of the scope
of this paper.

The interesting point in merging tasks with the same period
is that it does not only reduce communication cost, but it
also reduce CPU utilization. This decrease of utilization is
derived based on the Eq. 11, because the links between the
merged tasks (which are supposed to merge) are turned from
the cost b to a lower cost a. In Section V, the capability
of the REF to decrease the CPU utilization along with the
total communication cost reduction is demonstrated by a large
number of experiments. The pseudo code of the REF is
presented in Alg. 2. Some further points of the REF algorithm
are as follows:

• Two tasks communicate with each other if and only if at
least one of the runnables of the first task communicates
with one of the runnables of the second task.

• Two tasks are mergeable if they are located on the same
core, they have the same period, and they communicate
with each other.

There are three options to integrate Alg. 2 with SMSA. The
first one is that we run REF before SMSA, and the second
one is to run REF after SMSA and the last option is to
call REF from inside SMSA. The first option restricts the
search space and thus it might loose an optimal solution in
which due to the configuration of the RIG, two tasks with
the same period should be allocated to different cores. Even
worse than that is the dependency of the task execution time to
the assignment of tasks (based on the Eq. 5) which leads that
when the tasks have not still scheduled, the execution time of
tasks are unknown, and thereby merging some communicating
tasks can result in an unschedulable task set. Accordingly,
the first option is not taken into account in this paper. The
second option is named SMSA with Non-Feedback Refine-
ment (SMSANFR) where after finishing SMSA, based on the
generated assignment it attempts to merge the tasks in order

TABLE I
APPLICATION PARAMETERS AND THE CORRESPONDING VALUE RANGES.
Parameters Description Value ranges

c communication rate per hyper-period [0,2000] KB
e runnable execution time [2,100] msec

Di transaction deadline [400,1200] msec
|G| number of runnables in each transaction [1,10]

to minimize the communication cost. However, since SMSA
is not aware about the task refinement procedure (Not using
feedback of the refinement function), it may select another
solution as the optimal one. For example, let’s suppose that
X and Y are two candidates for the solution of the problem
and before refinement X outperforms but after refinement
due to a stronger merging is applicable on Y , it surpasses.
To manage this issue, we adopt the last option where inside
SMSA we invoke REF to refine the task set before evaluation
of each individual. In this way, SMSA reflects the effect of task
merging in guiding the search towards an optimal solution.
This algorithm is called SMSA with Feedback Refinement
(SMSAFR). To implement this algorithm, it is sufficient to
invoke REF at the beginning of the total cost function and
then the total cost is computed for the new task set created
by REF. In the evaluation section, the higher efficiency of the
SMSAFR in comparison to both SMSA+ and SMSANFR is
shown. However, the SMSAFR takes a little longer execution
time because we call REF several times compared to the first
and second options in which a call is made only one time after
the scheduling.

Algorithm 2 REF
1: Inputs: the task set t and the SR vector
2: for each task i do
3: for each task j do
4: if ti and t j are meregeable then
5: Merge them into the task ti
6: Update tasks’ indices
7: Decrement the number of tasks
8: end if
9: end for

10: end for
11: return the updated task set

V. PERFORMANCE EVALUATION

In this section the performance of the proposed algorithms is
assessed based on a large number of experiments. We created
a set of randomly generated applications which are supposed
to be executed on a multi-core processor. In Tab. I application
parameters along with the corresponding value ranges are
mentioned. In addition, two types of multi-core chips with the
size of four cores and eight cores respectively are considered
as the hardware configuration.

For each problem size, all the algorithms (SA, SMSA,
SMSA+, SMSANFR, and SMSAFR) ran 20 times to reach
%95 confidence interval. They are run in C# 4.5 and on a
PC with 2.2 GHz Intel Core i7 and 6 GB of RAM memory.
Furthermore, in order to illustrate the quality of the proposed
algorithms, we also implemented an exhaustive approach to
generate the exact solution. The exhaustive algorithm is based
on the the Back-Tracking (BT) search which traverses a search
tree whose leaves correspond to potential solutions to the task



assignment problem. We use a fast bounding method that
prunes unpromising branches that cannot lead to an optimal
solution. To find out whether a vertex is promising or not,
the CPU utilization of all the cores should be computed,
and if the CPU utilization of at least one of them is greater
than one, then the solution is unpromising, and otherwise it
is a promising solution. To compute the CPU utilization we
need to calculate the tasks’ execution times for each vertex
of the search tree. This simple way consumes a long time to
compute tasks’ execution times for each vertex. A faster and
smarter way could be to compute a minimum execution time
for each task irrespective of scheduling of tasks, that could
be performed before starting the BT algorithm. In order to
calculate the minimum task execution time, we assume the cost
b for all communication between tasks. It leads to a minimum
utilization for each vertex and if the minimum utilization of a
core is greater than one, then the actual utilization is definitely
equal or higher, and thus the vertex is unpromising. It should
be noted that only for the leaves, the total cost function (Eq. 1)
is invoked which of course, works with the actual utilization.
Since, the execution time of the BT algorithm for large size
problem instances is extremely high, we only run it for the
small and moderate size of the problem.

TABLE II
ALGORITHM PARAMETERS AND THE CORRESPONDING VALUE RANGES.
Parameters Description SA SMSA

ys start temp. by Eq. 7 by Eq. 7
y f final temp. by Eq. 8 by Eq. 8
n expected # of observed temps - m2 ⇥N
µ cooling factor 0.99 -
Q size of queue - m
n expected # of observed temps - m2 ⇥N
s penalty coefficient 10⇥Costmax

Ba = 1
a intra-task bandwidth 5GB/sec = 5000KB/msec

Bb = 1
b inter-task bandwidth 4GB/sec = 4000KB/msec

Bg =
1
g inter-core bandwidth 2GB/sec = 2000KB/msec

As we mentioned before the algorithm parameters have a
substantial impact on the performance of both SMSA and
SA. In order to ensure a fair comparison, we strive to select
the best value for the SA parameters. For this purpose, for
each parameter all possible values in a reasonable range are
checked, and the value which conducts the global optimum is
chosen. All algorithm parameters are listed in Tab. II.

The bandwidth values in this table are selected based on
the average of the actual bandwidth for some of the common
multi-core processors in the market such as Intel, AMD Phe-
nom. However, based on the published specifications by the
Intel and AMD, the theoretical bandwidth of inter and intra-
core are multiple times more than the mentioned values in the
table (around [12,32] GB/sec for the intra-core bandwidth, and
[2.8,18] GB/sec for the inter-core bandwidth).

In Tab. III the generated results by SA, SMSA, SMSA+,
and BT for running five different applications on a four-core
processor are listed. As a minor remark it should be mentioned
that the execution times’ columns in the table imply the
execution time of searching in the problem space (not tasks’
execution times). It is noticeable that in all experiments, SMSA
outperforms SA in term of both the total communication

cost and the execution time, that this preference is becoming
significant when the size of problem grows up. In average
the SMSA reduces the total communication cost by 17% in
comparison to SA. In addition the deviation of SMSA from
optimal solution is less than 1% in the experiments. Another
interesting point which can be observed by this table is that the
execution time of SMSA+ is 32% better than that of SMSA.
In order to evaluate the second solution framework, a set of

Fig. 5. Total cost results.

larger applications are considered which are supposed to be
executed on an eight-core processor. Fig. 5 represents results
of the experiments where each horizontal element is a pair of
the number of transactions and the number of runnables while
vertical elements denotes the sum of inter-runnable commu-
nication time. As we already expected SMSAFR surpasses
other algorithms. On average SMSAFR decreases the total
communication time by 24%, 18%, 6% in comparison to SA,
SMSA and SMSANFR respectively. On the other hand, as we
already anticipated the execution time of SMSAFR is 14%
slower than the SMSANFR on average. As based on our
model the processing power of the cores are the same, the only
possible way to reduce the average of utilization of the cores is
to make the communication time between the runnables lower.
Therefore, it is reasonable that SMSAFR generates superior
solutions in terms of CPU utilization in comparison to the
other algorithms discussed in the paper. On average SMSAFR
reduces the average processor utilization by 11%, 10%, 3% in
comparison to SA, SMSA and SMSANFR respectively. Fig. 6
illustrates the results where the applications are executing on
an eight-core processor.

Fig. 6. Average utilization results.



TABLE III
EXPERIMENTAL RESULTS FOR VARIOUS APPLICATIONS RUNNING ON A FOUR-CORE PROCESSOR.

Problem Size Simulated Annealing SMSA Back Tracking
# of Trans-

actions
# of

Runnables
Total Comm.

Cost (sec)
Execution
Time (sec)

Total Comm.
Cost (sec)

Execution Time (sec)
SMSA/SMSA+

Total Comm.
Cost(sec)

Execution
Time (sec)

9 40 1.0832 1.42 1.0832 3.15/2.21 1.0832 16.90
11 44 1.2047 1.78 1.1692 3.41/2.41 1.1692 129.27
13 50 1.3315 1.97 1.3165 3.80/2.64 1.3165 1880.04
14 53 1.3618 2.35 1.3374 5.46/3.59 1.3345 6132.66
15 60 1.4712 2.87 1.4370 6.31/4.23 1.4348 11988.58

average 1.2904 2.078 1.2686 4.42/3.016 1.2674 4029

VI. CONCLUSION

In this paper, we have investigated some challenges related
to achieving a resource efficient and predictable design of
AUTOSAR software for multi-core real-time systems. Specif-
ically, we have looked into the challenges of designing a
resource efficient solution in terms of minimizing the overall
communication cost inherent in communication among AU-
TOSAR runnables executing on a multi-core processor. We
have discussed possible solutions addressing this problem,
and among the different design options encountered, two
solution frameworks have been proposed and explained in
detail. The first solution framework tries to achieve a good
mapping of runnables to tasks, that in turn are mapped to
the cores of a multi-core processor. The second framework
tries to, in addition to the mapping of the first framework,
also merge tasks on the same core such that the level of
inter-task communication is reduced and thereby the overall
communication cost will decrease. Furthermore, in this frame-
work, to avoid increasing CPU utilization, only the tasks with
the same period are allowed to be merged. There is a third
solution that we have left for future work, also allowing a
reshuffling of tasks among the cores in order to find a globally
minimal communication cost for the whole system. There
are additionally two revenues of future work of this paper.
Firstly, allowing the merging algorithm to merge tasks with
arbitrary periods if the ratio of decreasing the communication
cost at the expense of increasing the CPU utilization is higher
than a constant coefficient. This constant coefficient should
be determined based on an acceptable trade-off between the
communication cost and the CPU utilization. The final target
for future work is to extend the communication efficient
mapping problem setting towards a heterogeneous distributed
system in which each inter-connected node could be a multi-
core processor.
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