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Abstract. In software development, testers often focus on functional testing to
validate implemented programs against their specifications. In safety critical soft-
ware development, testers are also required to show that tests exercise, or cover,
the structure and logic of the implementation. To achieve different types of logic
coverage, various program artifacts such as decisions and conditions are required
to be exercised during testing. Use of model-checking for structural test genera-
tion has been proposed by several researchers. The limited application to mod-
els used in practice and the state-space explosion can, however, impact model-
checking and hence the process of deriving tests for logic coverage. Thus, there
is a need to validate these approaches against relevant industrial systems such
that more knowledge is built on how to efficiently use them in practice. In this
paper, we present a tool-supported approach to handle software written in the
Function Block Diagram language such that logic coverage criteria can be for-
malized and used by a model-checker to automatically generate tests. To this
end, we conducted a study based on industrial use-case scenarios from Bom-
bardier Transportation AB, showing how our toolbox COMPLETETEST can be
applied to generate tests in software systems used in the safety-critical domain.
To evaluate the approach, we applied the toolbox to 157 programs and found that
it is efficient in terms of time required to generate tests that satisfy logic coverage
and scales well for most of the programs.

1 Introduction

Advances in model-checking tools and technology in the last decade have made it a
pragmatically usable technique for test case generation from finite-state models [13].
There have been a number of approaches used for defining logic coverage using model
checkers, e.g., [7, 24, 25], however, these techniques are not directly applicable to real-
world programs of critical systems. When industrial software systems are being tested,
there is still the issue of potential combinatorial explosion of the state space which
thereby limits the application to models used in practice.

Many industrial application domains use safety-critical software to implement the
behavior of programmable logic controllers (PLCs). One of the programming languages
defined by the International Electrotechnical Commission (IEC) for PLCs is the Func-
tion Block Diagram (FBD). Programs developed in FBD are automatically transformed



into program code, which is compiled into machine code by using specific engineering
tools provided by PLC vendors. The motivation for using FBDs as a preferred language
arises because it is the standard in many industrial software systems, such as in the rail-
way domain. Such systems typically require a certain degree of certification [8], such as
some level of logic coverage which must be demonstrated on the developed software.
Although all software should aspire to correctness, safety critical software is gener-
ally held to a higher standard than other types of systems, which should be reflected
in their testing. However, there is no commonly accepted level of test thoroughness for
safety-critical software. In this paper, we show how to efficiently generate test cases
that achieve several levels of coverage, including MC/DC and decision coverage. It
should be noted that the generated tests are not intended to replace requirement-based
test design at the FBD program level, but to complement it with a structural perspective.

In our previous work we proposed the use of logical coverage for FBD programs
[12] and defined a model-based test generation method based on the UPPAAL tool.
While this approach is promising, there is a need to validate it using realistic pro-
grams of critical systems. To this end, we conduct an experimental evaluation using
157 programs of a train control system, written in the FBD language. We develop a
toolbox, named COMPLETETEST4, suitable for transforming an FBD program to a for-
mal representation of both its functional and timing behavior. This is done by imple-
menting an automatic model–to–model transformation from FBDs to timed automata.
Timed automata, introduced by Alur and Dill [3], were chosen because there is an al-
ready existing formal semantics and tool support for simulation and model-checking
using UPPAAL [22]. The transformation accurately reflects the data-flow characteristics
of the FBD language by constructing a complete behavioral model which assumes a
read-execute-write program semantics. The translation method consists of four sepa-
rate steps. The first three steps involve mapping all the interface elements and the ex-
isting timing annotations. The final step produces a formal behavior for every standard
component in the FBD program. These steps are independent of timed automata and
therefore are generic in the sense that they could also be used when translating an FBD
program to a different target language. The toolbox uses a test generation technique
based on model-checking, tailored for logic coverage of FBD programs. A generated
test consists of a sequence of input vectors. As the main purpose of the tool at present is
to generate test cases that satisfy coverage criteria, the tool does not generate expected
outputs. Expected outputs can be provided manually to the toolbox by a human tester.

The paper is organized as follows. Section 2 provides an overview of PLC software,
the IEC 61131-3 standard, timed automata and logic coverage. Section 3 describes the
transformation scheme into timed automata. Section 4 and Section 5 present the test
case generation method required for logic coverage criteria. In Section 6, we describe
the tool box used for testing FBD software and demonstrate its application by showing
relevant user scenarios. In Section 7, we evaluate the toolbox on industrial programs in
terms of its efficiency and usability. Section 8 describes related work. Section 9 presents
our conclusions.

4 COMPLETETEST is available at http://www.completetest.org/.



2 Preliminaries

This paper describes a toolbox for generating tests that cover the logical structure of
FBD programs, by transforming them first to networks of timed automata. Our tech-
nique will be illustrated throughout this paper using a complete, small, but non-trivial
FBD program that exhibits many of the features of FBDs. We show how this program
can be translated into a timed automaton and used to illustrate the approach, the toolbox
evaluation and its practical implications. In this section, we provide some background
details on FBD programs, timed automata and logical coverage.

2.1 Programmable Logic Controllers

PLCs are widely used in real-time software for many types of software systems in-
cluding nuclear plants and train systems. A PLC is an integrated embedded system that
contains a processor, a memory, and a communication bus. The semantics of a program
running on a PLC has the following representative characteristics:

– programs execute in a cyclic loop where every cycle contains three phases: read
(reading all inputs and storing the input values), execute (computation without in-
terruption), and write (update the outputs).

– Input and output channels correspond to sensors and actuators respectively.

The language can be specified on an implementable subset of timed automata [3].
Dierks [10] proposed a new class of automata suitable for PLCs and this definition is
the basis for implementing a model-to-model transformation for PLC software.

FBD, a PLC programming language standardized by IEC 61131-3, is very popular
in industry because of its graphical notations and its data flow nature [23]. Blocks in
an FBD program form the basis for a structured and hierarchical application. They may
be supplied by the manufacturer, defined by the user, or predefined in a library. An
application generator is utilized to automatically transform each block to a C compliant
program with its own thread of execution. A block cannot be recursive as it cannot call
itself [27]. However, blocks may have multiple instances within a program.

Although our description is not limited to a particular PLC software development
style for FBD programs, it is exemplified by a generic PLC control application com-
pliant with the IEC 61131-3 standard. A PLC periodically scans an FBD application
program, which is loaded into the application memory. As an example of the FBD
generic model, we consider first the hierarchical structure of a PLC and the functional
integration. An FBD control program is considered as a hierarchical application. The
FBD program is created as a composition of interconnected blocks, which may have
intra-program data flow communication. When activated, a program consumes one set
of input data and then executes to completion. The code is used on the specific PLC and
is the actual application code from the IEC 61131-3 compliant FBD program.

The IEC 61131-3 standard proposes a hierarchical software architecture for structur-
ing and running any FBD program. This architecture specifies the syntax and semantics
of a unified control software based on a PLC configuration, resource allocation, task
control, program definition, function and function block repository, and program code
[23, 27].
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Fig. 1. Running Example: Compressor Start Enable program showing the graphical nature of the
language.

The systems we are studying contain a particular type of blocks called PLC timers.
These timers are output instructions that provide the same functions as timing relays
and are used to activate or deactivate a device after a preset interval of time. There are
two different timer blocks (i) On-delay Timer (TON) and (ii) Off-delay Timer (TOF).
A timer block keeps track of the number of times its input is either true and false and
outputs different signals based on these counters. In practice many other time configura-
tions can be derived from these basic timers. In order to study how to generate test cases
using a model checker for these types of FBD programs, we use a formal representation
that can cope with timers and timing information.

2.2 The Compressor Start Enable Program

The translation scheme, test generation, and logic coverage will be illustrated by trans-
lation of a complete, small, but typical FBD program that includes many of the FBD
features. Figure 1 contains this FBD program for which we will ultimately generate test
cases. It was developed by an engineer from Bombardier Transportation responsible for
developing train control software in Västerås, Sweden.

The train is made up of motorized cars and intermediate trailer cars with pan-
tographs. These cars are combined to create a fixed eight car train, each with its own
complete software control system that applies regulation to a heating and/or air con-
ditioning system. The task of the train operating the ventilation compressor mode is



imposed by the controller FBD program depicted in Figure 1. The program requests
permission to start the ventilation compressor from the auxiliary load control. When
granted, it will forward the command to the ventilation controller. The Compressor
Start Enable will request permission to start the ventilation compressor. When granted,
the signals are forwarded to the ventilation controller.

The request will time out (HVAC ACO E CmprRn) when the compressor start signal
is acknowledged (CmprEnAck) and required (HVAC ACO S CmprEnRq) provided the
clock is greater than or equal to ten seconds. Additionally, the ventilation should be ac-
tive (HVAC ACO S CmprRn) when the compressor is running (HVAC ACO S CmprRn In).
The ventilation request is started (HVAC ACO S CmprStaRq) when the compressor is en-
abled (HVAC ACO S CmprEnRq) and the compressor is not running (CmprRn In). When
the external supply (CmprEnBypass) is not available, the compressor should be enabled
(CmprStaEn) only when the compressor is allowed to start from auxiliary load control
(HVAC ACO S CmprEnAck). If the external supply is available, then the compressor is
enabled.

The program consists of basic functions (e.g., AND, SEL, MOVE) and function
blocks (e.g., FltDly). In Figure 1, AND is a function. In contrast, FltDly is a function
block because it maintains an internal state and produces outputs based on this state
and inputs. Recall that in order to express timing constraints within one component,
standard PLC timers are used. The timers in a PLC are operated by an internally gen-
erated clock that originates in the processor module. Consider the following PLC timer
FltDly defined as a tuple:

FltDly = 〈FltDly1, (IN, PT, ENABLE, FLT, BLK),Bt〉,
where FltDly1 is the name identifier, IN, PT , ENABLE, BLK, and FLT are the

set of ports and parameters in Port, and Bt is the behavior description. This timer
component is an attempt to specify its interface and behavior. From a semantic point of
view, FBD programs are a special case of deterministic reactive systems. We use more
informative notations to denote the actual behavior. In the following section we present
several such notations to describe how FBD programs can be handled by the UPPAAL
model checker.

2.3 Networks of Timed Automata

A timed automaton is a standard finite-state automaton extended with a collection of
real-valued clocks. The model was introduced by Alur and Dill [3] and has gained
in popularity as a suitable model for real-time systems. We consider model checking
algorithms that perform analysis to check for a reachability property of the form ∃ ♦ β .
∃ is the existential quantifier, ♦ is the temporal operator meaning eventually, and β is
a formula designed to capture the requirements of a particular type of logic coverage.
The reachability property states that there exists a path σ through the states of the
timed automaton such that β eventually holds. The property is presented to the model
checker, which then attempts to find an actual path that satisfies the property. A path σ

that satisfies the reachability property can be converted into a test case that satisfies the
desired coverage. We use a timed modal logic to specify properties. The logic may be



seen as properties that can be expressed as logical formulae in the Timed Computational
Tree Logic (TCTL) [2].

An example of a network of timed automata modeled in UPPAAL is shown in Figure
2. The network consists of an automaton of a lamp and an automaton of a user. A
network of timed automata in this case can be written as Lamp ‖User. The user operates
the lamp by pressing the on/off switch. By pressing the switch, the lamp can be in
three possible locations: Off, Dim and Bright. The automaton of the lamp starts at the
Switched Off location and contains one clock x. If the user presses the light switch, the
lamp switches to Dim and the clock is reset, by the update assignment x := 0. When
Dim, the lamp remains on as long as the clock is less than or equal to five time units (i.e.,
invariant x <= 5). A state of the automaton Lamp depends on its current location and
on the current values of its clocks. If the user presses the light switch before three time
units, then the lamp switches to location Bright. In this location, the lamp automaton
stays ON until the user presses the light switch again. Both automata synchronize via
the actions press! and press? i.e., by sending via channel press! and receiving using
press?. Based on the states of the Lamp automaton, one can denote traces starting from

the initial state as a sequence of alternating transitions σ = (Off ,0)
press−−−→ (Dim,0)

delay−−−→
(Dim,2)

press−−−→ (Bright,2).

Fig. 2. Example of a network of timed automata.

We provide a brief summary of the notation and concepts in Appendix A, for readers
unfamiliar with timed automata theory. Further information can be found in [1].



2.4 Logic-based Coverage Criteria

Coverage criteria are a code-based means of assessing the thoroughness of test cases.
They are normally used at the unit test level to check that various aspects of the code
structure have been exercised by the test cases. Out of the many criteria that have been
defined and studied, we have implemented three logic-based criteria that measure the
thoroughness of test coverage of the control flow structure of FBD programs.

FBD program flow is controlled by atomic Boolean expressions called conditions,
and by decisions made up of conditions combined with Boolean operators (NOT, AND,
OR, XOR, IMPLIES, EQUIV). A condition can be a single boolean variable, an arith-
metic or character comparison with a Boolean value (e.g., A > B or str1 == str2), or a
call to a function with a Boolean value, but does not contain any Boolean operators. The
test generation tool uses the UPPAAL model checker to generate test cases that satisfy
three types of logic coverage: decision coverage DC (also known as predicate cover-
age), condition coverage CC (also known as clause coverage) and Modified condition
decision coverage (MC/DC).

A set of tests satisfies decision coverage if running the test cases causes each de-
cision in the FBD program to have the value true at least once and the value false at
least once. Note that for any individual predicate, the true and false values might occur
under a single test case or under two different test cases. In general a single test case
will exercise more than one decision, and it is possible, but certainly not required, that
all decisions in a program might have both values exercised by a single test case. In the
context of traditional sequential programming languages, decision coverage is usually
referred to as branch coverage.

Condition coverage requires test cases that cause each individual condition to be ex-
ercised at least once with value true and once with value false. A set of test cases might
satisfy either condition coverage or decision coverage, or both of them. Modified con-
dition decision coverage captures the idea that the value of a decision can be controlled
by the value of each of its conditions independently of the values of all other conditions.
This means that for each individual condition c in a decision, there are sets of values of
all the other conditions so that the decision’s value differs for the two possible values
of the condition c.

For MC/DC each individual condition in each decision should be shown to be able to
determine the outcome of the decision during testing. MC/DC is a stronger requirement
than CC; any test set that satisfies MC/DC must also satisfy CC. For most non-trivial
decisions, MC/DC is also more strict than DC, even though there are decisions for
which a MC/DC-satisfactory test set does not satisfy DC. CC, DC and MC/DC, as well
as other logic criteria, are defined and exemplified in [9, 5].

3 Translation

The translation scheme will be illustrated on the running example. After translation, the
UPPAAL model checker can be applied to test that the program satisfies the required
logic coverage on the FBD program. The translation is performed starting from signals
which are translated into global variables shared by the corresponding blocks. Addi-
tionally, FBD blocks are mapped to input/output behavior (e.g., functional and timing)



between signals. This may be done by using predefined UPPAAL operators, as in the
case of basic blocks (e.g., AND, SEL, MOVE), or by capturing the functionality of more
complex blocks (e.g., FltDly) from their description.

In practice the timed behavior of an FBD program is defined as a network of timed
automata, extended with data input and output variables. We first perform an automatic
transformation of the FBD program to timed automata that obeys the read-execute-
write semantics of the FBD program, hence preserving the semantics of FBDs without
altering its structure. Next, we specify the execution of each block, and construct a
complete timed automata model by the parallel composition of local behaviors.

1 plc = plcSupervision ();
2
3 readinput1= input_HVAC_ACO_S_CmprEnRq ();
4 readinput2= input_HVAC_ACO_S_CmprRn_In ();
5 readinput3= input_HVAC_ACO_S_CmprEnAck ();
6 readinput4= input_HVAC_ACO_S_CmprEnBypass ();
7
8 block1= Function_AND1 ();
9 block2= Function_AND2 ();

10 block3= Function_MOVE1 ();
11 block4= Function_SEL1 ();
12 block5= Function_FltDly1 ();
13
14 writeoutput1= output_HVAC_ACO_C_CmprStaEn ();
15 writeoutput2= output_HVAC_ACO_S_CmprStaRq ();
16 writeoutput3= output_HVAC_ACO_S_CmprRn ();
17 writeoutput4= output_HVAC_ACO_E_CmprRn ();
18
19 system plc , readinput1 , readinput2 , readinput3 ,
20 readinput4 , block1 , block2 , block3 , block4 , block5 ,
21 writeoutput1 , writeoutput2 , writeoutput3 ,
22 writeoutput4;

Fig. 3. Interface elements created from structure and behavioral elements from the Compressor
Start Enable.

3.1 FBD Structure

For illustration, we start with the translation of the Compressor Start Enable Program.
For each block, a timed automaton is defined for the program description. Templates of
components are included and we list the composed timed automata network represent-
ing the FBD program as

AND1 ‖ AND2 ‖ SEL1 ‖MOV E1 ‖ FltDly1

The top-level structure of the UPPAAL model is shown in Figure 3 and represents
a parallel composition of several processes corresponding to inputs (lines 3-6), outputs
(lines 14-17), and blocks (lines 8-12).

An input named in the program HVAC ACO S CmprEnAck will be automatically
translated into a timed automata template named input HVAC ACO S CmprEnAck().



When an input signal in FBD has a name, the name is preserved during translation.
However, it is often the case that signals in FBDs are not named (e.g., in the Compres-
sor Start Enable program there are simply ”wires“ connecting two blocks). In such a
case, the name given to the signal corresponds to the name of the block which pro-
duces the signal. For example, the output signal produced by Function AND2() will
correspond to an UPPAAL variable named bool AND2 as shown in Figure 4.

1chan execute ,write , read;
2
3// variable definition for the FBD program
4// US_INT OR BOOL VAR_INPUT
5
6// input variable definition
7bool HVAC_ACO_S_CmprEnRq;
8bool HVAC_ACO_S_CmprRn_In;
9bool HVAC_ACO_S_CmprEnAck;
10bool HVAC_ACO_S_CmprEnBypass;
11
12// output variable definition ;
13bool HVAC_ACO_C_CmprStaEn;
14bool HVAC_ACO_S_CmprStaRq;
15bool HVAC_ACO_S_CmprRn;
16bool HVAC_ACO_E_CmprRn;
17
18// internal intermediate variables
19bool AND1;
20bool AND2;
21bool MOVE1;
22bool SEL1;
23bool FltDly1;
24clock BLK;
25bool ENABLE;
26const int PT=10;

Fig. 4. Input, Output, and Internal Signals translated for the Compressor Start Enable Program.

Several Boolean and integer variables are used for recording information in the
UPPAAL model and are shown in Figure 4: read, execute and write synchroniza-
tion channels are used to hard code the execution of the program, the BLK clock vari-
able is used to keep track of the elapsed time in FltDly, other variables (e.g., bool
HVAC ACO S CmprEnRq) are used for recording the inputs generated by the input au-
tomaton, PT represents the fault delay, while ENABLE records the compressor enable.

3.2 Cycle Scan and Triggering

A block in an FBD has an interface, consisting of a name identifier, input and out-
put ports, and a list of parameters. The interface is used to access the block behavior.
When the block is activated the behavior is started using the values read on the input
ports. When the behavior ends, i.e., when the block implementation terminates its exe-
cution, the output ports are updated. The behavior of a block is typically implemented
by a code fragment that updates local variables. In addition, the program contains a
clock variable for modeling a delay between the cycles. We show in Figure 5 how a



Fig. 5. Timed Automaton of a Program Cycle Scan and Execution Order.

cycle starts when the automaton enters the ReadInputs node and ends its computation
in UpdateScanTime node. For an FBD program, the execute operation of each block
is extended according to connections and IN and OUT variables corresponding to the
program inputs and outputs. A program composition is a set of interconnected blocks
closed under a specific execution order. The execution order N is automatically defined
according to the general rules included in the IEC 61131-3 standard. This predeter-
mined order directly dictates the data dependency. Using the program cycle requires
deterministic program execution, by restricting the underlying timed transition system.
The program is executed in a loop and the computation follows the run-to comple-
tion semantics. We use the notion of precedence to describe such dependencies on the
convention of reading such FBD programs in a top-to-bottom, left-to-right fashion. To
show an example of a program cycle scan as shown in Figure 5 different actions are
executed:

– read(IN) for reading variables from IN.
– write(OUT) for writing variables onto output ports.
– When the execution order holds, the ports are updated by read(IN), and write(OUT).

For the Compressor Start Enable program, the execution order is AND1, FltDly1,
AND2, SEL1, and MOVE1. For each block we assign a precedence priority to the corre-
sponding timed automaton. A counter is created in this step to represent the execution
priority of a block. In this way we ensure that block are executed one by one. After the
last block is evaluated, the counter is reset to repeat the scan cycle.

3.3 Translation of basic blocks

Simple FBD blocks are translated into predefined UPPAAL operators. In particular:



– The Logical Operator blocks are translated using the logical UPPAAL operators
and, not, or.

– The Arithmetic Operator blocks are translated using the arithmetic UPPAAL
operators +, =, - , /, *.

– The Comparison blocks are translated using the relational operators UPPAAL <,

>, <=, >=, =.
– The Selection blocks are translated using if-then-else statements.

Fig. 6. An automaton showing the AND logical block.

Fig. 7. A Timed Automaton showing a FltDly timer block.

The behavior mapped onto a basic block is modeled as an UPPAAL automaton as
shown in Figure 6 for an AND logical block. The execution of the translated FBD pro-
gram is determined in terms of the execution order N. A block is therefore initially in
location Waiting, and after performing the read action it starts executing until its inter-



nal computation is done. After completing the write action, which forwards data from
the output ports via connections, the block becomes Waiting again.

The parallel processes translated for the basic blocks for the Compressor Start En-
able program are the following:

– plcSupervision The automaton in Figure 5 controls the valid structural infor-
mation for the other automata. The structure of the FBD program is restricted to
reading inputs, execution of the components, and the writing of the outputs.

– input name This automaton non-deterministically generates valid input sequences
for the translated blocks. Valid sequences are restricted to Boolean and Integer
values.

– block AND1 and block AND2 The automaton in Figure 6 encodes a Boolean AND
function by reading the input values and returning a true or false value for the next
automaton.

– block SEL1 Selects one of two inputs depending on the value of a Boolean input.
Then the translation would be:
SEL1= if(G=true) then SEL1=IN1 else SEL1=IN0.

– block MOVE1 This automaton is a memory function when we turn on the input
port.

– output name The output startup-mode automaton checks the current value re-
ceived from the function automaton. It also updates the values of the variables OUT
and IN.

More stateful blocks are translated into UPPAAL automata. In particular:

– The Bistable blocks (e.g., SR and RS latches) are elements whose output de-
pends not only on the current inputs, but also on previous inputs and outputs.
These blocks can be implemented using logical, relational UPPAAL operators and
if-then-else statements.

– The Edge Detection blocks are translated using UPPAAL expressions involving
Boolean operators.

– The Counters blocks are translated by the use of UPPAAL ++ increment and --

decrement operators.
– The Timer blocks are translated as a special automaton that is initially in location
Waiting. After reading its inputs, it starts executing in location Running until its
internal computation is done. After computing the on-delay timer, it forwards data
to output ports and the block becomes Waiting again. One example of a Timer

block from the Compressor Start Enable program is shown in Figure 7. The FltDly
automaton counts time-based intervals when the input is true and activates its output
after a preset interval of ten seconds. The cycle scan interacts with the timer block
via the execute? action. The timer sets the output FltDly1 to true if IN variable
is true at least as long as the time PT and ENABLE are set to true.

4 Testing Function Block Diagram Software using the UPPAAL
Model-Checker

In this section, we describe an approach to automatically generating tests for FBD pro-
grams. Logic coverage criteria are used to define what test cases are needed and we use



a model-checker to generate test traces. In addition, the methodology presented in this
paper is tailored for FBD programs, and is composed of the following steps, mirrored
in Figure 8:

1. Model Transformation To test an FBD program we map it to a finite state system
suitable for model checking. In order to cope with timing constraints we have cho-
sen to map FBD programs to timed automata.

2. Logic Coverage Annotation We annotate the transformed model such that a condi-
tion describing a single test case can be formulated. This is a property expressible
as a reachability property used in most model checkers.

3. Test Case Generation We now use the model-checker to generate test traces. To pro-
vide a good level of practicality to our work, we use a specific model-checker called
UPPAAL which uses timed automata as the input modeling language 5. The verifi-
cation language supports reachability properties. In order to generate test cases for
logic coverage of FBD programs using UPPAAL, we make use of UPPAAL’s ability
to generate test traces witnessing a submitted reachability property [15]. Currently
UPPAAL supports three options for diagnostic trace generation: some trace lead-
ing to a goal state, the shortest trace with the minimum number of transitions, and
fastest trace with the shortest time delay.

While UPPAAL is a viable tool for model checking, it is not directly tailored to test
case generation in practice. We demonstrate how to work around this by automatically
generating traces for logic coverage of the control flow of FBD programs described in
timed automata and how we transform these traces to actual test cases. We discuss these
steps in further detail in the following sections.

As a result of the translation described in Section 3.3, we consider that the FBD
program is given as a closed network of timed automata as shown in Figure 9. This
model contains two sub-networks, one modeling the FBD Program and the other one
modeling its Input and Output Model. In addition, we consider a completely un-
constrained input environment that allows all possible interactions between the timed
automata network elements. In this way the cycle scan is used to control the FBD pro-
gram via read!, execute!, and write! actions. This corresponds to synchronization
actions implemented in UPPAAL as a hand-shaking synchronization: two automata take
a transition at the same time, one will have an a! and the other an a?, a being the syn-
chronization channel.

Let us assume the generic timed automata network of the Compressor Start Enable
program together with its cycle scan (plcSupervision()) and Input/Output models
shown in Figure 9. A trace produced by the model checker for a given reachability
property defines the set of actions executed on the Compressor Start Enable program
which in our case is considered the system model sys. An example of a diagnostic trace
has the following form:

(sys0)
a1−→ (sys1)

a2−→ ...
an−→ (sysn),

where (sysk) are states of the FBD program and PLC supervision with input environ-
ment constraints, respectively, and ak are either internal synchronization actions, time-
delays or read!, execute!, and write! global synchronizations. For FBD programs,

5 The UPPAAL tool is available at http://www.uppaal.org.
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the sequence represents only the global synchronizations shown in Figure 9. Test cases
are obtained by extracting from the test path the observable actions read!, execute!, and
write!. Obviously all the test obligations cannot be satisfied by a single test case. By
using a scan cycle we allow the test to be implemented as one or more paths separated
by resets. To introduce resets in the model, we annotate the cycle scan with a reset tran-
sition leading to the initial ReadInputs location. On this transition all variables and
parameters (excluding encoded internal variables) are reset to their default value. This
reset is hardcoded into the PLC supervision for any modeled FBD program in UPPAAL,
being an atomic communication between all timed automata.
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5 Analyzing Logic Coverage

The basic approach to generating test cases for logic coverage using model-checking is
to define a test as a finite execution path. By characterizing a logic coverage criterion
as a temporal logic property, model-checking can be used to produce a path for the test
obligation.

Ammann et al. [4] argued that criteria such as logic coverage that have constraints
involving more than one test trace cannot be handled in this way. The core problem
is that each execution is characterized by a temporal formula, and test obligations
span multiple runs of the model checker. This means that to ensure model-checking of
MC/DC test obligations one should satisfy constraints on multiple runs of the model-
checker. However, an FBD program has an implicit control loop, so a reset transition
can occur in the program without modifying the transformed timed automata in any
way. This reset transition restores the program to its initial state, making it possible
to handle test obligations over multiple program executions as a single execution path
containing subpaths separated by resets.

By using a translated FBD program, we use logic coverage to directly annotate both
the model and the temporal logic property to be checked. We propose the annotation
with auxiliary data variables and transitions in such a way that a set of paths can be
used as a finite test sequence. In addition, we propose to describe the temporal logic
properties as logic expressions satisfying certain logic coverage criteria. Informally,
our approach is based on the idea that to get logic coverage of a specific program, it
would be sufficient to (i) annotate the conditions and decisions in the FBD program,
(ii) formulate a reachability property for logic coverage, and (iii) find a path from the
initial state to the end of the FBD program. To apply the criteria, necessary properties
for the integration of logic coverage need to be fulfilled.



For each criterion, model checking allows the generation of paths for logical pred-
icates showing test obligations satisfaction. To do so, conditions and decisions have to
be formulated as temporal logic formulae. Hessel et al. [16] proposed one way to apply
coverage criteria to specifications described in timed automata. We extend this approach
to apply it to the conditions and decisions in an FBD program.

Decisions in an FBD program are blocks that can be evaluated to a Boolean value,
i.e., true or false. Decisions can be identified from the instrumentation points in the
FBD program (e.g., AND block). Let {di} be the set of decisions in an FBD program
and {ci j} be the set of conditions in di.

DC requires every di to evaluate to true and false, and is described by the following
two test obligations:

o1 = di

o2 = ¬di

These obligations guarantee that each decision di evaluates to both true and false, not
necessarily along the same execution path.

CC requires two test obligations for each clause ci j in a decision di, such that ci j
evaluates to both true and false:

o1 = ci j

o2 = ¬ci j

MC/DC imposes two requirements for test cases. First, for each condition ci j in
a decision di, test cases must show that ci j determines the value of decision di, and
second, ci j has to evaluate to true and false. As shown in [5], a condition ci j determines
a decision di if there is an assignment of values to all the variables in di except ci j such
that the value of di is different for the two values of ci j. This requirement is met if the
following logical expression is satisfied 6:

di(ci j ,true)⊕di(ci j , f alse)

Combining the two requirements for MC/DC coverage, we have the following two
test obligations:

o1 = ci j ∧ (di(ci j ,true)⊕di(ci j , f alse))

o2 = ¬ci j ∧ (di(ci j ,true)⊕di(ci j , f alse)).

For generating tests for DC, CC, and MC/DC we represent the test obligations over
a set of variables monitoring the decisions and conditions as a reachability property.
This approach is implemented in the toolbox by automatically creating a temporal logic
property used by the model checker to produce tests.

6 Overview of the Toolbox

In this section we outline some of the main aspects of the toolbox, including the user
interface and the architecture. We also present several technical solutions used in its
implementation to fully support the complexity required for model-checking while at
the same time presenting a clean and minimal user interface.

6 di(ci j ,v) denotes di with ci j replaced with v.



6.1 User Interface

The main goal for the design of the user interface was to meet the exact needs of an
industrial end user. Although there is a possibility for fine tuning the configuration
parameters of the underlying UPPAAL model-checker, most of them are set to default
values, making the toolbox immediately ready for use upon startup. Figure 10 depicts
menu options for the toolbox, listing chosen default values for the parameters and the
coverage criteria.

Fig. 10. User Menu of the Toolbox

Fig. 11. Graphical Interface of the Toolbox

Use-Case Scenario 1: Basic Test Generation

A very basic use-case scenario to get started with the toolbox would consist of:
1. Opening an FBD Progam XML file (File→ Open FBD Programs)
2. Generating tests (File→ Generate Tests)



These actions cause the tool to attempt to generate a set of test cases that cover all
of the decisions. The attempt continues until either all decisions have been covered,
or the tool has run for 10 minutes even if there are decisions still uncovered. We
found that pragmatically, when the toolbox is applied to FBD programs produced at
Bombardier Transportation AB, the model checker has been able to generate tests
in 0.05 to 133 seconds. Figure 11 depicts an output of the toolbox for this use-case
scenario executed on our running example (as defined in Section 2). The figure
shows several types of information presented to the user in a table with the test data
(points 1,2,3 in the figure), and a set of additional information and actions (points
4, 5 and 6 in the figure). The numbered points in the figure are:
1. Steps and Timing information regarding when the specific test data is provided

to the running FBD program.
2. Generated test input data needed to achieve a maximum coverage of the given

program.
3. Editable area of the test output data, where the user can provide expected out-

puts for a specific set of test inputs based on a defined behavior in the require-
ment. To maintain efficient use of space in the toolbox, expected values for test
outputs are provided in the form of a drop-down selection list for boolean val-
ues (true/false) or as a text field for other non boolean values (integers, doubles,
etc.).

4. Percentage of the logic coverage achieved by using generated tests.
5. Diagnostic information with respect to the time spent on generating tests, mem-

ory usage and size of the state space.
6. Optional action to compare expected values with computed ones. Invoking the

”Validate Test Items” button causes the entries in section 3 of the test data
table to be colored with green where the expected value matches the computed
one, and with red where there is a mismatch. Any subsequent updates to the
expected values will automatically update the coloring of that entry.

Use-Case Scenario 2: Selecting A Logic Coverage Criterion

Tests generated using Use-Case Scenario 1 aim at achieving maximum decision
coverage. If a user would like to use a logic coverage measurement other than the
default decision coverage (DC), this can be selected from the ”Coverage” menu.
Table 1 presents test inputs for the running example when the toolbox is using
both decision and condition coverage. Since the running example includes a timer
function block (FltDly), achieving maximum decision coverage is possible only if
we provide test inputs for a certain number of time units. In the running example,
the FltDly function block expects an input value to be true for at least 10 seconds.
This is why inputs to the program are set to true in steps 2, 3 and 4 for decision
coverage representing the state of the system at time=0, time=9 and time=10. Since
there are no observable changes in the way the system behaves between time=1
and time=8, the toolbox does not display those test steps. For an industrial user,
this minimization of test steps is very important, because it saves manual effort in
providing expected output values for the system under test.



Table 1. Test inputs generated for Decision Coverage (DC) and Condition Coverage (CC) on the
running example. In order for decisions to achieve a certain state, test inputs have to be provided
for several time units due to the usage of a timer.
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1 0 false false false false
Decision 2 0 true false true false
Coverage (DC) 3 9 true false true false

4 10 true true true true

Condition 1 0 false false false false
Coverage (CC) 2 0 true true true true

Use-Case Scenario 3: Changing Configuration Parameters

In addition to the basic use-case scenario of the toolbox, a user can perform various
configuration changes to the way tests are obtained. This is done by modifying the
model-checker’s settings in the ”Parameters” menu of the tool-box. For example,
the user can set the search algorithm to be ”Breadth First”, and/or set the output
trace of the model-checker to a ”Fastest” one, etc.

Use-Case Scenario 4: Fault Detection in FBD Programs

This example compares the expected values and computed values produced by the
program. We created a typical fault in the Compressor Start Enable program, by
removing the negated input for the AND block corresponding to the compressor
running (HVAC ACO S CmprRn In). Then we generated tests that satisfy DC for
both the original program (assumed to be correct) and the faulty program, as shown
in Table 2 (only three signals are shown because these are the inputs that affect
the output). For the original program we observe that the specification described
in Section 2.2 agrees with the actual output and therefore in all cases (step 1-4)
the output is green. Now by examining the output of the faulty program, the user
can determine that the ventilation request is not started (HVAC ACO S CmprStaRq)
when the compressor is enabled (HVAC ACO S CmprEnRq) and the compressor is
not running (HVAC ACO S CmprRn In), revealing a bug in the program.



Table 2. Manual fault discovery by checking the output (no negated input signal for the AND
block in Compressor Start Enable Program). When generating tests with DC for a faulty program,
the Compressor Start Request signal will indicate an erroneous false status when the Compressor
is not running and there is a request for enabling the compressor.
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1 (Original Program) 0 false false false
2 0 true false true
3 9 true false true
4 10 true true false

1 (Faulty Program) 0 false false false
2 0 true false true
3 9 true false true
4 10 true true false

Use-Case Scenario 5: Exporting Test Results

As a final use-case scenario of the toolbox, a user can export the resulting tests in a
comma separated values (CSV) format by selecting ”File→ Export Test Results”.
In this case, all the information from the test data table is saved, including both
computed and expected (i.e., user provided) output values. Such data could be used
outside of the toolbox for creation of a custom test report.

6.2 Toolbox Architecture

An overview of the toolbox architecture is presented in Figure 12. The actual toolbox
was developed as a Java Swing application using the NetBeans integrated development
environment and following a modular approach in the design of the toolbox architec-
ture. This resulted in the following modules being part of the toolbox:

FBD Import Editor
This module is used for validating whether the structure of a provided XML file
represents a valid PLCOpenXML file containing an FBD Program.

Translation Plugin
Once the FBD Import Editor module has been executed, the PLCOpenXML file



Use-case Scenarios
· Basic test generation
· Select logic coverage 
· Configuration
· Fault detection

· Exporting test results

Test Report

(Step) (T) (I) (O)
(1) (20s) (0, 1, 23) (1, 0)

Coverage: PC 100%

Toolbox User Interface

resultimport usage

UPPAAL Server

Trace ParserTranslation Plugin

FBD Import Editor

UPPAAL 
Model Checker

FBD 
PROGRAM

FB

F
F

command response

Fig. 12. Overview of the Toolbox Architecture.

containing the FBD Program is translated into an XML-format accepted by the
UPPAAL model checker. This translation is carried out by following the rules of
translation defined in Section 3.3.

UPPAAL Server
The UPPAAL Server module is used for external invoking of the UPPAAL model
checker. UPPAAL provides support for formal verification using a client-server ar-
chitecture, allowing the toolbox to connect as a client to the model checker and
verify properties against the model.

Trace Parser
The Trace Parser toolbox module collects diagnostic trace output from the UP-
PAAL model checker and parses this output into a JavaCC structure corresponding
to a set of inputs and outputs for a given model. This parsing mechanism is further
explained in Section 6.5.

User Interface
The function of the user interface is to provide a way for the user to communicate
with the tool including: (1) the selection of which FBD program to import and
generate tests for, (2) the selection of the coverage criterion to be used for test
generation, (3) the presentation of generated test inputs, and (4) the determination



of correctness of the result produced for each generated test by comparing the actual
test output with the expected output (as provided manually by the tool user).

6.3 PLCOpen XML Standard

The PLCOpen XML interchange format for PLC applications is the base for the model
translation to timed automata. PLCOpen is a vendor independent standard aiming to
provide a common programming interface for the use of the IEC 61131-3 standard. In
the toolbox, the XML file used as input for the translation to timed automata is in ac-
cordance to the PLCOpen standard defining the FBD programming language. Figure 13
depicts an example of a PLCOpen XML file corresponding to the Compressor Enable
Program. The program consists of specific XML elements consisting of the program
name (lines 5), the interface information (lines 6-20), and the block specification for
AND and FltDly (lines 22-53). The XML scheme is mainly storing program informa-
tion such the identifier for blocks and dependencies. As shown in Figure 13, localId
indicates the identifier of a block, and every refLocalId in the connection tag repre-
sents the dependency identifier for the connection to a certain block or input variables.
This structural format is used in the implemented translation from FBD to timed au-
tomata.

6.4 Implemented Model Translation

We define a translation inside the toolbox, which consists of the formal definition of
the FBD language. A program consists of the following elements: composite programs,
basic blocks, library blocks, connections, ports, and timing constraints.

The toolbox considers that each modeling element, except for the composite pro-
grams, has a set of ports through which it can exchange data. Ports are associated by
a set of data types, which are used for data representation, e.g., integer with a specific
range. A Port is associated with the same type of data as the associated internal variable.

For an FBD program the read-execute-write semantics means that input ports may
only be accessed at the beginning of each computation, and output ports are only written
at the end of the computation. Therefore, the behavior is augmented with an external
interface. The interface of a block consists of ports and the execution order information.
An input port has an associated variable holding the current data values. The internal
computation of a block starts with reading all input ports. This internal data is used
together with the behavioral model during execution, before writing the variables to the
output ports.

We have developed the model transformation shown in Figure 14. In order to sim-
plify the semantics of an FBD program, we focus on the PLCOpen language constructs
relevant to functional and timing modeling elements.

The PLCOpen language is implemented as an XML profile that provides the abil-
ity to describe FBD programs using this profile. The PLCOpen language provides both
structural and graphical information needed for implementing the actual translation.
The toolbox generates PLCOpen files in an XML format. As shown in Figure 14, we
introduce the timed automata as the interface between the FBD program and the UP-
PAAL input model. The Compressor Start Enable Program conforms to the PLCOpen



1<?xml version ="1.0" encoding ="UTF -8"?>
2<project xmlns="www.plcopen.org/xml/tc6.xsd">
3<types><dataTypes/>
4<pous>
5<pou name="HVAC_ACO_CmprEn" pouType="fBlock">
6<interface >
7<inputVars retain="false">
8<variable name="HVAC_ACO_S_CmprEnRq">
9<type><BOOL/></type>
10</variable >
11<variable name="HVAC_ACO_SCmprRnIn">
12<type><BOOL/></type>
13</variable >
14</inputVars >
15<outputVars retain="false">
16<variable name="HVAC_ACO_C_CmprStaEn">
17<type><BOOL/></type>
18</variable >
19</outputVars >
20</interface >
21<body><FBD>
22<block typeName="AND" localId="11">
23<inputVariables >
24<variable formalParameter="IN1"
25negated="true">
26<connection refLocalId="14"></connection >
27</variable >
28<variable formalParameter="IN2"
29hidden="true">
30<connection refLocalId="13"></connection >
31</variable >
32</inputVariables >
33<inOutVariables/>
34<outputVariables >
35<variable formalParameter="OUT"
36hidden="true">
37</variable >
38</outputVariables >
39</block >
40<block typeName="FltDly" localId="66">
41<inputVariables >
42<variable formalParameter="IN">
43<connection refLocalId="18"
44formalParameter="OUT">
45</connection >
46</variable >
47<variable formalParameter="PT">
48<connection refLocalId="21"/>
49</variable >
50<variable formalParameter="ENABLE">
51<connection refLocalId="22"/>
52</variable >
53</inputVariables >
54<inOutVariables/>
55<outputVariables >
56<variable formalParameter="FLT"></variable >
57<variable formalParameter="BLK"></variable >
58</outputVariables >
59</block >
60</FBD></body>
61</pou>
62</pous>
63</types>
64<instances ><configurations/></instances >
65</project >

Fig. 13. PLCOpen XML format for the Compresor Enable Program
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profile and meta-model. The structural translation described in Section 3.3 maps an
FBD program into timed automata. The structure of the timed automata model is the
basis of the model to text transformation into the UPPAAL input model.
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Fig. 15. Class Diagram representing the meta-model elements of the Function Block Diagram.

The modeling elements of an FBD program used in the translation are described
in Figure 15. These elements represent the structure of the model, the behavior, and
the timing information. The meta-model elements provide concepts used in component



based design. A Block element can be translated with Type, ExecutionOrder and
Model elements. Blocks can be composed using connections and ports. Furthermore,
a Block element can have a behavioral description as a Model element. The model
provided after the translation represents the model annotated with triggering and timing
information with assumed functionality.

6.5 Dynamic Traces - JavaCC - Test Cases

1State
2(
3plc.ExecuteProgram readinput1.Process
4readinput2._id10 readinput3.Process
5readinput4._id12 and1.Update
6and2._id18 fltdly1.Waiting
7sel1._id15 move1._id16
8writeoutput1._id5 writeoutput2._id6
9writeoutput3._id7 writeoutput4._id8
10)
11
12fltdly1.ET <=0 steps=1 HVAC_ACO_S_CmprEnRq =1
13HVAC_ACO_S_CmprRn_In =1 HVAC_ACO_S_CmprEnAck =0
14HVAC_ACO_S_CmprEnBypass =1 HVAC_ACO_C_CmprStaEn =0
15HVAC_ACO_S_CmprStaRq =0 HVAC_ACO_S_CmprRn =0
16HVAC_ACO_E_CmprRn =0
17
18AND1=0 AND2=0 FltDly1 =0 SEL1=0 MOVE1=0
19
20N=1 IN=5 OUT=1
21
22decisions [0]=0 decisions [1]=0 decisions [2]=0
23decisions [3]=0 decisions [4]=0 decisions [5]=0
24decisions [6]=0 decisions [7]=0 decisions [8]=0
25decisions [9]=0
26
27fltdly1.counter =0 move1.firstTime =0
28move1.RS_local =0 move1.decision =0
29
30Transitions:
31plc.ExecuteProgram ->plc.UpdateOutputs
32{ IN == InputVariables , execute!, 1 }
33
34and1.Update ->and1.Update
35{ !( HVAC_ACO_S_CmprEnAck && HVAC_ACO_S_CmprEnRq) &&
36N == 1, execute?, AND1 := 0, N++, decisions [0] := 1
37}

Fig. 16. An excerpt of a trace in response to a command to UPPAAL for the Compressor Enable
Program.

UPPAAL model-checking tool is mainly used for the verification of a certain prop-
erty of a model, resulting in a affirmative or a negative response. However, it is also
possible to obtain a full trace used in the process of verifying that property on a model.
An excerpt of such a trace for the running example is shown in Figure 16. To interpret



dynamic traces generated by UPPAAL, a grammar file was created for JavaCC7 parser
generator. The trace starts with the initial state and is followed by pairs of transitions
and states, i.e. the state can be reached from the previous state via the transition. A
state in the trace contains locations (lines 3-9), clocks (line 12), internal variables (lines
12-20), decisions and conditions (lines 22-25) in the same order as they appear in the
UPPAAL input file. The trace parsing using JavaCC is the process of analyzing the trace,
transforming the trace into a state machine, extracting the necessary information (i.e.,
values of the input and output variables, clock valuation) needed for testing of an FBD
program. In the end tests are merged based on the program cycle scan as one or more
test cases separated by resets.

7 Experimental Evaluation and Discussions

Our goal in this section is to evaluate the toolbox on industrial FBD programs and to
acquire experience regarding its efficiency and usability. We therefore conduct a set
of analyses using programs developed by Bombardier Transportation AB in Sweden.
The system has been in development for more than two years and uses processes influ-
enced by safety-critical requirements and regulations including the EN 50128 standard
[8] which requires different logic coverage levels (e.g., DC and MC/DC). In 2014 its
source code was made up of more than 350.000 lines of C code generated from FBD
programs. The development teams use both automated and manual testing from unit
testing through system testing.

Table 3. Information about the 157 subject programs.

Blocks Inputs Outputs Decisions

Maximum per Program 32 15 29 196
Average per Program 6.9 2.7 5.9 30

We investigate the following questions regarding the tool’s performance:

– Q1, Efficiency: What is the time required for the tool to generate tests that satisfy
the DC, CC and MC/DC logic coverage criteria?

– Q2, Coverage: How close does the tool come to generating tests that achieve 100%
coverage of each of the criteria?

The industrial system studied in this paper is the TCMS (Train Control and Manage-
ment System), developed by Bombardier Transportation AB engineers, which has been
deployed to the field. In this research we, have used all TCMS programs written in the
FBD standard language resulting in a total of 157 artifacts. Each of the programs is siz-
able and representative of industrial programs used in the train system’s development.
Information regarding the size of the system and number of blocks is provided in Table
3.

7 The JavaCCTMis available at https://javacc.java.net/.



For each program, the tool generated a model version in UPPAAL. Then, for each
implementation of a program, the toolbox:

– Generated test input vectors for three different coverage criteria. We used a reachability-
based approach for generation of tests aimed at satisfying DC, CC and MC/DC. If
the model checker is able to find a path to satisfy a reachability property, given
that such a path exists, then the approach is guaranteed to generate a test suite that
achieves maximum possible coverage of the program.

Table 4. Average, median, minimum, and maximum generation times for 123 of the 157 pro-
grams.

CC MC/DC DC

Average Generation Time (s) 1.53 4.54 1.93
Median Generation Time (s) 0.27 0.51 0.34
Minimum Generation Time (s) 0.05 0.06 0.06
Maximum Generation Time (s) 35.37 133.60 72.125

Hence, if the model checker succeeds in finding paths to satisfy all the reachability
properties for a given criterion, then the method will achieve 100% coverage for
that criterion. We have used the UPPAAL model checker in our experiments. Our
reachability-based test generation approach produces one test for each coverage
criterion as our goal is to assess the coverage and efficiency of the toolbox in terms
of time to generate tests. To generate the tests, the tool uses the random-depth first
search algorithm provided by the UPPAAL model checker. The tool terminates the
generation by determining the coverage requirements satisfied by each test.

– Assessed efficiency of each test based on coverage, and collected complexity mea-
sures for each program. We measured the generation time for each program and
determined the number of test requirements for each coverage criterion.

To answer Q1 and Q2, the tool generate tests aimed at achieving maximum logic
coverage. Since we are using a model checker for generating tests, the toolbox simply
produces the maximum achievable coverage with a proof that uncovered test obliga-
tions are not coverable. For 123 of the 157 programs (78%) the tool provided tests that
covered 100% of the required entities for each of the three coverage criteria. Table 4
gives the performance figures in terms of time needed to generate the tests. The gener-
ation time for MC/DC averaged approximately twice as long as for DC. The results are
summarized as boxplots in Figure 17 with the kernel density distribution of the gener-
ation time shown in Figure 18. The kernel densities estimates for the generation time
for DC (red), CC (green) and MC/DC (blue) are plotted on the same graph. It is quite
clear on the graph that the distribution of generation times is more variable for MC/DC.
It is also worth noting that the generation time modes (i.e., most frequent values in the
generation time data set) of a distribution are close to each other for all criteria. We
can observe that a few outliers caused the average generation time to greatly exceed the
median generation time for all coverage criteria.
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For 34 of the 157 programs, the tool did not terminate after running for a substantial
period of time. After discussions with engineers from Bombardier Transportation AB
regarding the needed time for a tester to provide a set of tests for a desired coverage,



we concluded that 10 minutes was a reasonable cut-off point for the model checker
to terminate its search. Recall, however, that the aim of these experiments was not to
provide measures of test effectiveness in the sense of bug-finding, but instead to evaluate
the applicability of using a model checking technique for test generation and its success
in meeting coverage requirements. We wanted to work with a realistic cut-off time that
could be used in practice if this approach is to be adopted. Therefore, in each case a run
of the model checker was terminated after 10 minutes.

Table 5. Achieved coverage for all Programs.

Case 1 2
Percentage of all Programs 78% 22%

Average DC Achieved 100% 82%
Average CC Achieved 100% 88%
Average MC/DC Achieved 100% 65%

As noted above, for 22% of the programs in this study, the tool did not generate
the required test suite in an acceptable period of time. To determine the circumstances
under which the toolbox does or does not successfully generate test suites that satisfy
one of the logic coverage criteria (Q2) we collected the average number of decisions for
both the case when the model checker finishes its execution (Case 1) and the case when
we forcefully terminated the tool because the running time reached 10 minutes (Case
2). Table 5 provides information about these two cases. Case 1 consists of the 78%
for which the tool generated tests achieving 100% DC, CC and MC/DC. The number
of decisions for Case 1 ranged from 1 to 22 with the average being 5. In contrast,
for Case 2, the set of programs for which the tool exceeds the allocated time before
generating a test set satisfying the coverage criterion, the decisions ranged from 12 to
196 with the average being 38. This indicates that as the number of decisions increases,
the performance deteriorates and the cost of using the tool may become prohibitive. This
factor contributes to a scalability issue which results in longer test sequences, especially
when generating tests for MC/DC.

It is important to note that during model-checking the reachability-based genera-
tion used by the toolbox is guided to achieve a desired coverage, and not to minimize
or optimize the test. A generated test may not be the minimal way to satisfy the cov-
erage criterion. However, a generated test might be able to satisfy more than one test
obligation. From the point of view of limiting the number of tests generated, we note
that our approach would perform better than other approaches including trap property
generation [25, 14], which can lead to a large number of duplicate tests because these
properties are derived by using the model-checker’s ability to generate counterexam-
ples.

Engineers from Bombardier Transportation AB indicated that their certification pro-
cess involves achieving a minimum of 80% DC for all programs. For 78% of the pro-
grams in this study, the tool automatically generated tests achieving 100% DC, CC and
MC/DC. For the other 22% of the programs, the results were less satisfactory. The data



about the achieved coverage is shown in Table 5. As can be seen from this data, the tool
generated tests with 82% DC on average. We conclude that we have provided evidence
that this is a suitable tool for test generation tailored to FBD programs; it scaled well for
most of the programs in this study and it is fully automated. There are, however, some
drawbacks. Most importantly, for 22% of the programs, even though the tests gener-
ated for the coverage criteria achieved on average at least 65% coverage, we cannot
determine whether the remaining test requirements are actually achievable, or if tests
satisfying the requirements are longer that the search depth. This is an issue particularly
for MC/DC where a fair number of test obligations were not satisfied.

From these experiments, it is clear that the toolbox can be sensitive to the number
of decisions and as a consequence to the length of the tests required to achieve the
desired coverage. In addition, the number of inputs considered during model checking
is affecting the efficiency of the test generation technique. However, model checking
does allow one to use a heuristic or meta-heuristic search technique [6, 26] to find the
desired tests. We plan to investigate this approach in future work. In addition, the idea
of combining symbolic execution or static analysis with model checking to achieve
test generation has been proposed [20], and may allow more efficient model checking.
Fraser et al. [13] noted that there is a lack of empirical evidence on how these model-
checking techniques compare to each other in practice, making it hard to select an
appropriate technique for a specific test purpose. We also plan to investigate how various
approaches compare in future work.

8 Related Work

Model checkers have been used to produce test cases satisfying various criteria and for
programs in a variety of formal languages [7, 17, 11]. Black et al. [4] discuss the prob-
lems encountered in using a model-checker for test case generation for full-predicate
coverage. They present reasons why model-checking is not directly applicable for gen-
erating tests to satisfy logic coverage criteria. In our previous work [12], we overcome
this issue by providing a way of generating test cases for logic criteria that are directly
applicable to FBD programs. We found that model-checkers are an appropriate tech-
nique for automated test generation in terms of performance when used on real-world
programs.

For data-flow programming languages such as FBD and Lustre, which describe the
relationship between inputs and outputs instead of the control flow of the program,
researchers proposed specific coverage metrics based on the structural aspects of the
programs [19, 18, 21]. For Lustre, structural coverage metrics are based on the activation
condition concept of the language that can be used when data travels from an input
edge to an output edge. In addition, Whalen et al. [28] defined an alternative approach
to measuring logic coverage for data flow programs called OMC/DC, a combination of
MC/DC and an additional obligation to be satisfied such that faults will be observed
through a variable monitored by the criteria.



9 Conclusion

In this paper we have shown how test case generation that aims to satisfy logic cover-
age on Function Block Diagrams can be solved as a model checking problem, by using
model checking tools to automatically create traces that can be transformed into exe-
cutable tests. We described a toolbox in which logic coverage criteria can be formalized
and used by a model-checker to generate test cases. We carried out an extensive empir-
ical study of the method by applying the toolbox to 157 real-world industrial programs
developed at Bombardier Industries. The results showed that model checking is suitable
for handling logic coverage for real-world FBD programs, and also revealed some po-
tential limitations of the toolbox when used for test generation. The evaluation showed
that the toolbox is efficient in terms of time required to generate tests that satisfy logic
coverage and that it scales well for most of the programs. Our overall conclusion is
that the model-checking approach provides a positive and useful addition to the testing
process for FBD programs.
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A Networks of Timed Automata

Let C be a finite set of reall-valued clocks and B(C) the set of clock constraints, which
are finite conjunctions of atomic guards of the form x ./ n, where x ∈C, n is a natural
number, and ./ ∈ {<,≤,=,≥,>}.

A timed automaton (A) over actions A , atomic propositions P and clocks C is a
tuple 〈N, l0,E, I,V 〉 where N is a finite set of control locations, l0 is the initial location,
E ⊆ N×B(C)×A ×R8×N is the set of edges. In the case of an edge 〈l,g,a,r, l′〉 ∈ E,
we write l

g,a,r−−→ l′ where the label g is a guard of the edge, r is the data- or clock reset
assignments of the edge, and a is the action of the edge. I : N → B(C) is a function
which for each control location assigns an invariant condition and V : N → 2P is a
function which for each control location provides a set of atomic propositions that are
true in the location.

The semantics of A is defined in terms of a state transition system, where the state
of A is defined as a pair (l,u), where l is a location and u ∈RC is a clock assignment in
C. A state of A depends on its current location and on the current values of its clocks.

A state of an automaton A is defined as a pair (l,u), where l is a location, u ∈ RC a
clock assignment in C to a value in R+, with the initial state (l0,u0), where u0 assigns
all clocks in C to zero.

The semantics of A is given by the timed transition system 〈S,s0,E,V 〉, where S is
the set of states of A, s0 is the initial state (l0,u0), E is the transition relation defined as
follows:

8 R denotes the reset set i.e., assignments to manipulate clock- and data variables.



– (l,u) d−→ (l,u⊕d), where u⊕d is the result obtained by incrementing all clocks of
the automata with the delay amount d such that for any 0≤ d′ ≤ d, the invariant of
l holds.

– (l,u) a−→ (l′,u′), corresponding to taking an edge l
g,a,r−−→ l′ for which the guard g is

satisfied by u. The clock valuation u′ of the target state is derived from reseting u
according to updated r.

We denote by T (A) all traces σ of A starting from the initial state (l0,u0) as a
sequence of alternating transitions σ = (l0,u0)

a1−→ (l1,u1)
a2−→ ...

an−→ (ln,un).
A network of timed automata B0 ‖ ... ‖ Bn−1 is a parallel composition of n timed

automata over C, A and synchronization functions (i.e., a! is correlative with a?). We
refer the reader to [1] for more information on the theory of timed automata. We con-
sider a timed modal logic to specify properties. The logic may be seen as properties of
A than can be expressed as logical formulae in the Timed Computational Tree Logic
(TCTL) [2].
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