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Abstract—In this paper, we present a new reservation based
scheduling framework for soft real-time systems using EDF
algorithm (called CARB-EDF). This framework has the features
of Capacity Adaptation, Reclaiming and Borrowing. This frame-
work can simplify the initial configuration of the system, where
the system designer does not need to provide any estimations of
task execution times. We also present a Chebyshev’s inequality
based predictor to estimate task execution times. A number of
simulation-based experiments have been implemented. According
to the results compared with some related works, our scheduling
framework can provide a better performance with acceptable
extra scheduling overhead.

I. INTRODUCTION

A. Motivation

In modern real-time systems, the complexity of applications
has become higher and higher. In many applications, the
execution time of a task varies a lot during runtime. For
example, a video decoder task can have large diversity in
its execution times depending on processed content [1]. For
these tasks, the Worst-Case Execution Times (WCET) are
very difficult to be predicted. The WCET predictions may
also become very pessimistic in reality. As a result, designing
the system based on these estimations may result in a large
amount of waste of system resources, especially for soft real-
time systems where some deadline misses are acceptable.
On another hand, some estimations can be violated during
runtime, which is known as the overrun problem. This problem
has been addressed in many existing works (e.g. [2] [3]).
Therefore, many traditional scheduling framework based on
WCETs have become less and less applicable.

In order to efficiently use the system capacity and handle
the overrun problems, many works have been proposed, such
as CBS [4], BEBS [5], GRUB [6], HisReWri [7] and BACK-
SLASH [8]. These works solve the above problem in different
ways such as employing capacity reclaiming or capacity
stealing mechanisms. However, these solutions still require the
system designer to provide some preliminary estimations of
task executions, in order to define a proper reserved server
capacities. If the server capacity is selected incorrectly, the
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system performance can be obviously degraded, since the
servers cannot adapt themselves according to runtime changes.

On another hand, feedback-controlled scheduling (e.g. [9]
[10] [11]) can be used to solve the above problem, where
servers can adapt their capacities according to the runtime
workload. These frameworks can provide good performance
in general. However, when the system experiences some
sudden runtime changes (e.g. the occurrence of an extreme
overrun), it may take some time for the scheduler to adapt
this change. In other words, a job with overrun has a high
chance to miss its deadline due to the current insufficient
reserved capacity. For these cases, the capacity reclaiming and
borrowing mechanisms can provide help, where this job can
use reclaimed or borrowed capacity to handle the overrun.

Therefore, in this paper, we present a new scheduling
framework for soft real-time system, which is based on the
Earliest Deadline First (EDF) [12] scheduling algorithm with
the features of capacity adaptation, reclaiming and borrowing.
Under our framework, the system designers do not need to
provide any estimations of task execution times, since the
server capacities can adapt themselves during runtime.

B. Contribution

• We present a new reservation-based scheduling frame-
work for soft real-time systems, which can support ca-
pacity adaption, reclaiming and borrowing. Due to the
capacity adaptation mechanism, this framework can obvi-
ously decrease the requirements to the system designers.

• In order to achieve capacity adaptations, we present a
Chebyshev’s inequality based estimator to predict the
future execution times of tasks. The parameters of this
predictor are selected based on given probabilistic re-
quirements. As far as we know, tuning these parameters in
our framework is easier than in the related works while
considering unknown models (i.e. distributions) of task
executions.

• Introducing the concept of task criticality levels (which
has not been used in the above capacity reclaiming and
borrowing based approaches) can provide more controls
to the system designers on server reservations.

• A number of simulation-based experiments have been
implemented including both hypothetical experiments and



a case study using video decoder tasks. From the exper-
imental results, we can observe that: (1) our execution
time predictor can provide a good estimation (i.e. can
always satisfy the given expectations); (2) our schedul-
ing framework can provide better performance than the
related works; (3) the extra scheduling overhead of our
framework is acceptable in reality.

C. Related Work

Many works have been proposed regarding dynamic
reservation-based scheduling of real-time tasks. Here we dis-
cuss some of the most relevant related works. In [13] and
[14], the authors present slack stealing algorithms to schedule
aperiodic tasks by safely (i.e. without deadline missing) post-
pone the deadlines of jobs with higher priorities. However,
these solutions require the prior knowledge of task execution
times which are not available for many real applications. In
[4], the authors introduced the Constant Bandwidth Server
(CBS) under EDF scheduling algorithm, which can isolate
task executions and bound the effect of task overruns by
constraining runtime server bandwidth. Under CBS, tasks can
borrow capacity from future server instances by extending its
deadline as a price. IRIS [15], which is extended from CBS,
provides a minimum budget in a fixed time interval and fairly
distribute the remaining capacity to needed servers. Similarly,
in CASH [16], the reclaimed capacities are organized in a
global queue. Each server consumes the reclaimed capacities
whose deadlines are earlier than or equal to its own, before
using its own budget. Unfortunately, CASH cannot provide a
good performance due to the blocking of unconsumed previous
slacks. In [17], the authors present an improved version of
CASH which can also support resource sharing. Some other
extensions of CBS have also been proposed (e.g. BEBS [5],
GRUB [6], CSS [18]). In this paper, the basic scheduling rules
are extended from BACKSLASH [8], which is improved from
CASH and employs both capacity reclaiming and borrowing
mechanisms. BACKSLASH also uses an EDF version of His-
ReWri [7], which retroactively allocate reclaimed capacities
to the jobs who has already borrowed capacities from future
jobs. However, BACKSLASH may face to a potential problem
that when a job borrows a large amount of capacity from its
future jobs (e.g. when a large overrun occurs), it may cause
many following jobs to miss their deadlines as a domino-
effect. This problem may happen when the server capacities
are not well defined. In our framework, we integrate a capacity
adaptation mechanism into BACKSLASH, which can provide
self-adaptations of server capacities during runtime. As a
result, the scheduler can decrease the effects of improperly
selected server capacities, and it can obviously decrease the
requirements to system designers.

Feedback-control mechanisms have already been utilized in
some real-time applications (e.g. [9] [10]). Most of these appli-
cations target on soft real-time requirements, since it is difficult
to provide hard timing guarantees using runtime feedback-
controls, especially when the controls are achieved by runtime
statistical predictions. FC-EDF [19] uses Proportional Integral

Derivative (PID) controllers, where the deadline miss ratios
of admitted tasks are selected as the controlled variable. In
[11], the authors present an adaptive hierarchical scheduling
framework using periodic servers, where the usage state of
assigned budgets are considered as the controlled variable.
The workload predictor used in this framework is based on
the AutoRegressive (AR) model. In [20], the author present
the framework AQuoSA, which is a combination of feedback
controls and CBS. Inspired by [20] and [11], we integrate
a feedback-controlled capacity adaptation mechanism into
BACKSLASH, where we use a different runtime statistical
predictor based on Chebyshev’s inequality to estimate task
execution times.

The rest of this paper is organized as follows. In Section II,
we briefly introduce the background knowledge of the sta-
tistical tool which is used in our execution time predictor.
In Section III, we present the details of our scheduling
framework. The results of the simulation-based evaluations
are presented in Section IV. Finally, Section V concludes this
paper and brings some ideas of future works.

II. BACKGROUND KNOWLEDGE

A. Statistical Tool

Precise probabilistic analyses always incur a large amount
of calculation overhead, which may not be affordable for on-
line scheduling frameworks. Instead, we employ some simple
statistical tools to analyze the runtime information, in order
to perform a feedback-controlled scheduling with acceptable
overhead.

a) Mean and Standard Deviation: Mean is a simple but
widely used way to present the center of a sample set (i.e. the
average value), which can be calculated as:

x =
1
n ∑xi, ∀xi ∈ X (1)

where x represents the mean value of the data set X consisting
of n samples.

Standard deviation is used to present the spread of a sample
set regarding its mean, which can be computed by:

σ =

√
1

n−1 ∑(xi− x)2, ∀xi ∈ X (2)

where σ denotes the standard deviation of the sample set X
with n samples, and the mean of this data set is x. A wider
spread of samples may result in a larger standard deviation
[21].

b) Chebyshev’s Inequality: Chebyshev’s inequality [22]
is a famous probability theory which has been utilized in many
different disciplines. Chebyshev’s inequality shows that in any
probability distribution, the percentage of samples, that are
more than k times standard deviations away from the mean,
will not exceed 1/k2. This inequality can be presented as:

Pr(|xi− x| ≥ kσ)≤ 1
k2 , ∀xi ∈ X (3)



k Max % beyond k Max % beyond
kσ from x kσ from x

1 100% 2.58 15%√
2 50% 3.16 10%

2 25% 5 4%
2.24 20% 10 1%

TABLE I
EXAMPLE VALUES OF CHEBSHEV’S INEQUALITY

where x and σ are the mean and the standard deviation of
the sample set X , and Pr(A) represents the probability of an
event A.

Generally, the inequality gives a poorer (i.e. pessimistic but
safe) bound comparing to the estimate where more information
of the involved distribution is provided. However, in our work,
the collected samples refer to the execution times of a task,
where the exact probability distribution may be very difficult
to be captured. Therefore, in this paper, we use Chebyshev’s
inequality which can be applied on arbitrary distributions. Ta-
ble I shows several example values of Chebyshev’s inequality.

III. SCHEDULING FRAMEWORK

A. Task Model

In this paper, a system consists of a set of periodic and
sporadic soft real-time tasks. A soft real-time task τi is
characterized as (Ti, Di, cli), where Ti denotes its minimum
inter-arrival time between successive jobs and Di represents
the relative deadline. We use Ji,p to denote the pth job of
task τi. If Ji,p arrives at time ai,p, the initial absolute deadline
of Ji,p (denoted as di,p) is ai,p +Di. Each task is assigned a
criticality level, where a more time-critical task has a higher
criticality level. When the system capacity is insufficient, the
scheduler will provide more guarantees to the tasks with higher
criticality levels. Moreover, we do not require any estimation
of the Worst Case Execution Time (WCET) for each task.

As a reservation-based scheduling framework, we use rate-
based servers (i.e. same as BACKSLASH [8]) in this paper,
which are similar to the concept of other bandwidth servers
such as CBS [4] and BEBS [5]. Each task is assigned a
dedicated server. The server of task τi can be characterized by
(T si,Csi), where T si denotes the replenishment period and Csi
represents the server capacity/budget within one replenishment
period. Theoretically, each server instance is designed for one
job of the corresponding task. Therefore, T si is always defined
to be equal to the period of the assigned task τi. The server
capacity Csi is calculated during runtime based on statistical
information (more details in III-D).

Each server instance also has an absolute deadline (denoted
as dsi,p = asi,p +T si), where asi,p denotes the release time of
the server instance for job Ji,p. When a job Ji,p is released,
it will activate the corresponding server instance (i.e. asi,p =
ai,p). The capacity of a server instance decreases when it is
serving job executions. Once the capacity of a server instance
for τi becomes 0: (1) if there is workload pending for this
server (e.g. the execution of the current job instance exceeds
the reserved capacity), it can immediately recharge its capacity
by Csi and the deadline is extended by T si; (2) if there is no

workload pending, it will be recharged until the release of the
next job (i.e. Ji,p+1). If a server instance reaches its absolute
deadline with remaining budget: (1) if there is still workload
pending for this server, it can recharge its capacity up to Csi
immediately, and the deadline is extended by T si; (2) if there
is no workload pending, it will be recharged until the arrival
of the next job.

B. Control Model

The basic idea of the control scheme used in this paper is
described in Figure 1. The system monitors the server capacity
error (meaning the difference between the reserved capacity
Csi and the prediction1el

i based on previous executions) after
the completion of each job (or a number of jobs). If the error
is greater than 0, which means that the current server capacity
may not be enough for the executions of the coming jobs, then
the capacity adaptation process is performed and a new Csi is
assigned according to the error.
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Fig. 1. The Block Diagram of the Control Scheme

The system may converge into two situations: (1) When the
total task utilization is lower than 1 (i.e. no overload): Assume
that no task contains deadlock, then the execution times of
each task are supposed to be following a certain bounded
distribution. Therefore, after a number of executions, the
execution time prediction will become stable (i.e. the execution
times of finished jobs are almost representative of the whole
distribution). Then the system will converge with a situation
that all the tasks get requested capacities regarding the runtime
predictions. (2) When the total task utilization is greater than 1
(i.e. overload occurs): According to our adaptation mechanism,
the tasks with higher criticality levels are provided with more
guarantees. Therefore, in this case, the system may converge
with a situation that the tasks with higher criticality levels are
assigned enough capacities regarding the predictions, while the
less critical tasks are assigned less capacity than their requests.
The overloaded situation is an improper system design, which
should be avoided in reality.

C. Assumptions

• The framework targets on single-core systems.
• The systems considered in this paper only contain soft

real-time tasks (or non-real-time tasks but no hard real-
time tasks).

• Tasks are independent from each other (i.e. they do not
share any resources), and do not contain any deadlock.

• Constraint deadlines are assumed for all the tasks (i.e.
Di ≤ Ti).

1The calculation of el
i and eh

i are presented in Section III-D.



D. Scheduling Rules

Our scheduling framework can be described in two phases:
an initial phase and an runtime phase.

1) Initial Phase: First of all, the scheduler reserves some
capacity Ur (i.e. presented by utilization) for future capacity
adaptations, which is used to decease the calculation overhead
of the scheduler (see Section III-D2a). Then the remaining
processor capacity (i.e. 1 − Ur) is evenly distributed to all the
tasks. The server capacity within each replenishment period
can be computed as

Csi =Usi × T si, (4)

where Usi denotes the assigned server bandwidth to τi. The
server capacity can be changed during runtime according to
the runtime workload.

2) Runtime Phase: In this subsection, we present the run-
time scheduling mechanism of the framework. First, we de-
scribe our capacity adaptation mechanism using a Chebyshev’s
inequality based estimator, which is the key issue of this
framework. Then we present the scheduling rules of the whole
framework which involves capacity adaptation, reclaiming and
borrowing mechanisms.

a) Capacity reallocation/adaptation: The scheduler
maintains two variables for each task τi: a variable el

i , which
represents a lower probabilistic upper bound of the execution
time of τi computed based on runtime statistics; and a variable
eh

i , which represents a higher probabilistic upper bound of the
execution time of τi. The calculation of el

i and eh
i will presented

in next subsection.
The main principles of the capacity adaptation scheme in

our framework are that:
(1). For any task τi, the scheduler provides at least a

guarantee to afford the execution of el
i (i.e. Csi ≥ el

i). If the
total capacity is not enough, the tasks with higher criticality
levels get more guaranteed service.

(2). If all the tasks get enough capacity for their basic
request (i.e. el

i for τi), the scheduler provides more capacity
for each task regarding its higher request (i.e. eh

i for τi). If
the total capacity is not enough, only the tasks with higher
criticality levels need to be served.

When the server capacity of a task τi can afford its basic
request el

i , the scheduler will not make any change since
the basic principle is fulfilled. The scheduler will reallocate
server capacities only when the el

i of a task exceeds its current
assigned server capacity Csi (i.e. el

i > Csi).
The reallocation is processed as follows (Algorithm 1):
• Step 1 (line 11 - 13): First, we need to calculate how

much more capacity that τi needs in order to guarantee
the execution of the latest estimated el

i (line 11 & 12).
Moreover, the scheduler needs to calculate the free system
capacity Ur which can be used for τi (line 13). In the
function Recalculate Ur() (line 1 - 9), the scheduler
checks the extra capacity of each task server which may
cost a waste regarding the current higher request (i.e. eh

p),
and then add them to Ur (line 4 - 6).

• Step 2.1 (line 14 - 22): If the free processor capacity
remained in the system is sufficient to afford the newly
estimated el

i , we directly reassign the server capacity Csi
to be equal to el

i (line 14 & 15). Then the corresponding
capacity, which has just been assigned to τi, should be
deducted from Ur (line 16).
After the above reassignment process, if there is still some
free capacity remaining, the scheduler will try to provide
more capacity to τi (line 17 - 21). In this case, τi can
either get the capacity of eh

i (i.e. the higher requested
capacity based on the current statistics) for each period,
or just consumes all the remaining Ur.
Finally, this reallocation process can be terminated
(line 22). The capacities of other task servers will not be
affected, since the scheduler just uses the free capacity
to handle the reassignment of Csi. Therefore, sufficient
free capacity Ur can obviously decrease the calculation
overhead of the scheduler. Note that, if the original Ur is
very large, the initial capacity of each task will become
much smaller. As a result, more adaptations may be
required, but the overhead of each adaptation is low. On
the other hand, if Ur is very small, the initial capacity of
each task will be much larger. In this case, the scheduler
may need to perform fewer adaptations, however, the
overhead of each adaptation may become large.

• Step 2.2 (line 24 - 37): If the free processor capacity is
not enough for the reassignment of Csi, the scheduler will
assess capacities from tasks with lower criticality levels
in order to provide enough service to τi.
First, the scheduler assigns all the remaining Ur to
τi, so that there will be no waste of system capacity
and the effects on other task servers can be decreased
(line 24 & 25).
Then the scheduler starts to steal the capacity from the
task with the lowest criticality level (line 26 - 36). In
order to avoid the problem that the reserved capacity
of a task may become 0 due to no available statistical
information, the capacities of the tasks with no previous
executions cannot be stolen. For each less critical task
τ j (i.e. cl j ≤ cli), the scheduler steals at most a capacity
of Cs j − el

j. This is to make sure that each task has at
least a guaranteed capacity of el

j. The scheduler assesses
the less critical tasks one by one following an ascent
order of the criticality levels of these tasks (line 26).
This loop terminates when: (1) τi gets enough capacity to
afford el

i (line 30), in which case the reallocation process
terminates successfully; (2) there is no task to further steal
capacity (line 37), in which case the reallocation process
also terminates but τi cannot get enough guarantee of el

i .
If case (2) occurs, we keep the system running, since: the
following executions of τi may get help from reclaimed
capacities; and the capacity can also be adjusted after
later executions. An alternative solution is that we can
allow τi to completely steal capacities from tasks with
lower criticality levels, until τi gets enough capacity. In



this case, the server capacities of the tasks with lower
criticality levels may become zero. Then these tasks need
to wait for later executions to recover their capacities.

Algorithm 1 Capacity Reallocation
1: Function Recalculate Ur():
2: {
3: for all task τp with at least one previous execution do
4: if Csp > eh

p then

5: Ur +=
Csp−eh

p
Tp

6: Csp = eh
p

7: end if
8: end for
9: }

10: when any task τi, el
i >Csi:

11: ∆ei = el
i −Csi

12: ∆Ui =
∆e
Ti

13: Recalculate Ur()
14: if Ur ≥ ∆Ui then
15: Csi = el

i
16: Ur−= ∆Ui
17: if Ur > 0 then
18: ∆U ′i =

eh
i −Csi

Ti
19: Csi+= min(∆U ′i ×Ti,Ur×Ti)
20: Ur = max(0,Ur−∆U ′i )
21: end if
22: return Reallocation Succcess
23: else
24: ∆Ui−=Ur
25: Ur = 0
26: for all task τ j with at least one previous execution,

where (τ j 6= τi)∧ (cl j ≤ cli)∧ (Cs j > el
j),

regarding an ascent order of criticality levels do

27: if
Cs j−el

j
Tj
≥ ∆Ui then

28: Csi = el
i

29: Cs j =Cs j−∆Ui×Tj
30: return Reallocation Succcess
31: else
32: ∆Ui−=

Cs j−el
j

Tj

33: Csi+=
Cs j−el

j
Tj
×Ti

34: Cs j = el
j

35: end if
36: end for
37: return Insu f f icient Capacity
38: end if

b) Runtime parameter maintenance: As mentioned
above, the scheduler needs to maintain two parameters for
each task (i.e. el

i and eh
i ) during runtime. These parameters are

computed based on the runtime statistical collections. First, we
introduce how to compute these two parameters. Basically, el

i
and eh

i are two probabilistic estimates with different levels of
expectations (i.e. PrL

i and PrH
i ), which are presented in Fig-

ure 2. el
i is combined with a given probability PrL

i according
to the user requirements. The probability of a job execution
time of τi which is larger than el

i , should not be greater than
PrL

i . eh
i is a higher estimate than el

i , which is combined with
a lower probability PrH

i . Similarly, the probability of a job
execution time of τi which exceeds eh

i , should not be greater
than PrH

i . The computation can also be presented as follows:

Pr(x > el
i) ≤ PrL

i
Pr(x > eh

i ) ≤ PrH
i

(5)

where x denotes the execution time of a job of τi, and el
i < eh

i ,
PrL

i > PrH
i .
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Fig. 2. el
i VS. eh

i . The curve represents the execution time distribution of an
example task. The x axis denotes the execution times, and the y axis denotes
the corresponding probabilities.

The values of PrL
i and PrH

i depend on the requirements
from the system designers. Apparently, a higher value of PrL

i
or PrH

i may result in a lower value of el
i or eh

i . Given specified
PrL

i and PrH
i , we can approximately compute the values of

k which is used in Chebyshev’s inequality. In Chebyshev’s
inequality, both the upper and lower tails of the involved
distribution are considered (i.e. the exceedances denote both
the samples higher than x+ kσ and the samples lower than
x− kσ). However, in our case, we are only interested in the
exceedances that are greater than the larger estimation, which
refers to the upper tail. Therefore, taking this into account, we
can approximately compute kH

i as
√

1/2PrH
i (i.e. same manner

for kL
i ). For example, in our experiments (Section IV), we set

PrL
i to be 0.1, and PrH

i to be 0.04. Then the corresponding
values of kL

i and kH
i for the PrL

r and PrH
i are 2.24 and 3.53

respectively.
After each execution of task τi, the corresponding exe-

cution time of this job will be recorded by the scheduler.
This execution time is added into the sample set Xi which
consists of all the collected execution times of τi. Based on
Chebyshev’s inequality, we can approximately compute the
current estimated el

i and eh
i by:

el
i = xi + kL

i ·σi
eh

i = xi + kH
i ·σi

(6)

where xi and σi can be computed using Eq. 1 & 2.
The above calculation can be performed after the completion

of each job. In this case, the scheduler can always keep the
latest information of task executions, and estimations can
be more precise. However, this solution may increase the
overhead of the scheduling framework. On another hand,
the scheduler can perform the calculation after every Ns
(Ns≥ 1) executions. Under this solution, the calculation can be
performed less frequently which can decrease the scheduling
overhead. However, the scheduler needs more memory to store
the latest Ns samples for each task, and the estimations may
become less precise than the former solution. Therefore, the
system designer can play with the value of Ns, in order to
balance the trade-off between overhead and memory cost.

c) Scheduling Rules: The basic scheduling rules of our
framework are extended from BACKSLASH [8] which is an
EDF based scheduling algorithm. This algorithm enables both
capacity reclaiming and borrowing. The rules are presented
below.



Rule 1: All the tasks are scheduled using the EDF
algorithm.

Rule 2: If the execution of a job does not consume
the whole reserved server capacity within the corresponding
replenishment period, the remaining capacity is then reclaimed
by the scheduler. This reclaimed capacity (also called slack
hereinafter) can be used for any other tasks in the system.
However, the reclaimed slack will be expired when it reaches
its deadline which is inherited from it original server. Assume
that the actual execution time of job J j,q is e j,q (where
e j,q <Cs j, the whole capacity Cs j is available for J j,q, and J j,q
only uses its own reserved capacity), the reclaimed capacity
can then be computed as

rc j,q = MIN((ds j,q− f j,q),Cs j− e j,q) (7)

where f j,q denotes the finishing time of J j,p.
Rule 3: If there are several slacks (i.e. reclaimed by dif-

ferent jobs) remained in the system, the scheduler dispatches
them using EDF algorithm. Moreover, a slack is always
allocated to the waiting task with the earliest original deadline.

Rule 4: For a released job who has the earliest deadline
among all the waiting jobs, if there are some reclaimed capac-
ities whose deadlines are earlier than or equal to the deadline
of this job, it will first use those reclaimed capacities and
temporarily inherit the deadlines of those reclaimed capacities.
Once a reclaimed capacity reaches its deadline or it has been
completely consumed, the scheduler will remove it from the
system. On the other hand, if the deadline of the executing
job is earlier than the reclaimed capacities, this job will first
uses its own capacity.

Rule 5: When there is no reclaimed capacity remained
in the system, the running job starts to use its own reserved
capacity.

Rule 6: After the running job exhausts all the reclaimed
capacities as well as its own reserved capacity, if this job
still does not finish its execution, it will borrow capacities
from the future jobs of the same task. When the running
job Ji,p is using the borrowed capacity from its future job
Ji,p+1, its deadline is temporally extended to asi,p + 2 · T si.
This temporary deadline extension of the running job is used
to guarantee that jobs from other tasks will not experience
extra interference due to the capacity borrowing mechanism.
Of course, this solution may punish the future jobs of τi by
introducing unpredictable internal interference. However, this
problem can be compensated by the capacity reclaiming and
capacity adaptation mechanisms.

Rule 7: As presented in [8] and [7], a job which has
consumed borrowed capacity from its future job, should also
be able to receive future reclaimed slacks. In other words, if
a job borrowed capacities from its future jobs to complete its
execution, it remains in the scheduler (i.e. before it reaches
its original deadline) and is still available to compete for
reclaimed capacities with its original deadline. When this job
gets a reclaimed slack, the scheduler will rewrite the history
to pay the reclaimed capacity back to the corresponding future
job whose capacity was borrowed.

Considering the integration of server capacity adaptations,
we add the following rules:

Rule 8: During a runtime adaptation phase, if a task has
not been executed yet (i.e. there is no previous executions of
this task), the scheduler keeps its initially assigned capacity
(i.e. cannot be stolen by tasks with higher criticality levels).
This is to avoid the case that a job may experience no reserved
capacity when it arrives.

Rule 9: The reallocation of server capacities do not affect
previous jobs, since the predictions are aiming for future jobs.
In other words, a reclaimed capacity can only be decreased
due to the consumption of other jobs or reaching its deadline.
This rule can also decrease the complexity of the scheduler
by reducing the extra calculations for reclaimed slacks.

Rule 10: Assume that the previous job Ji,p of a task τi has
borrowed capacity (with the size of Cb) from the next coming
job Ji,p+1. After the capacity adaptation process, if the newly
assigned server capacity Csi decreases which becomes less
than the originally borrowed capacity (i.e. Csi <Cb), then the
scheduler considers that the capacity of Ji,p+1 is completely
borrowed and the rest of the borrowed capacity (i.e Cb−Csi)
is borrowed from the following jobs (i.e. Ji,p+2, Ji,p+3, ...).
On the other hand, assume that the previous job Ji,p borrowed
capacities from several coming jobs, if the newly assigned
capacity is increased a lot which can afford all these borrowed
capacities (i.e. Csi >Cb), then the scheduler considers all these
capacities are borrowed from the next coming job (i.e. Ji,p+1).

IV. EVALUATION

We have implemented a number of simulation-based eval-
uations of our scheduling framework. First, we examine the
performance of the execution time predictor used in CARB-
EDF, and compare the results with the estimations generated
by the predictor used in [11]. Then we evaluate the per-
formance of the whole scheduling framework by comparing
with BACKSLASH. The evaluation includes both hypothetical
experiments and a case study of video decoder tasks. Finally,
we examine the extra scheduling overhead of our framework
due to the capacity adaptation mechanism.

A. Evaluation of the Estimator

The prediction mechanism is an important phase in
feedback-controlled scheduling frameworks. In this section,
we evaluate the estimator of our scheduling framework, which
is used to predict the execution times of future jobs based on
previous executions.

In [11], the authors used an AutoRegressive (AR) model
based estimator to predict future workload. The AR model
has been used to describe different time-varying processes in
many areas such as signal processing, economics, etc.. We
also try to use the estimator presented in [11] to predict the
future execution times, and compare the estimations between
this estimator and our predictor. Note that in the following
experiments, the parameters of this estimator are set the same
as [11]. Theoretically, tuning those parameters may provide
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Fig. 3. The exceedance probability of the estimations regarding different sample sizes. The x axis denotes the index of experiment sets, where each set
contains 5000 task executions. The y axis denotes the exceedance probability. ’Exc Cheb’ represents the estimations predicted by our estimator, and ’Exc AR’
represents the estimations predicted by the predictor presented in [11]. ’N L’ denotes that the estimations are based on the latest N samples, and ’ALL’ denotes
that the estimations are based on all the previous samples.

better estimations. However, the investigation of how to tune
those parameters is out of the scope of this paper.

In these experiments, we set the k value of our predictor
to be 2.24, which means that the exceedance probability is
supposed to be not greater than 10%. Here an exceedance
denotes that the execution time of the coming job is greater
than the current prediction.

In order to perform a precise statistical estimation, a large
amount of samples are necessary, because too few samples
cannot provide representative predictions. However, as an
on-line scheduling framework, the scheduling overhead (e.g.
calculation time, memory cost, etc.) needs to be controlled,
otherwise the performance of the system will be degraded.
In other words, we need to decrease the required sample size
while guaranteeing acceptable predictions. Therefore, we need
to evaluate the effect of sample size.

Figure 3 shows2 the exceedance probability of the estima-
tions regarding different sample sizes. For Figure 3-a&b, in
each experiments set the tasks have different parameters. For
Figure 3-c, we use the same task for each experiment set,
but start sampling with different phases. As we know, the
distribution of execution times varies a lot from task to task. In
the first set of experiments, we assume that the execution times
follow a known distribution. In Figure 3-a, the executions are
assumed to follow a normal distribution. The execution times
are randomly generated based on a fixed mean and varied
standard deviations, where the standard deviations change
from 10% to 100% of the mean. As shown in the results,
the exceedance probability of the predictions provided by the
estimator from [11] is around 30%. However, the exceedance
probability of the estimations from our predictor is lower than
5% which can always meet the requirement (i.e. 10%). On
another hand, the same as we mentioned above, the exceedance
probability of the estimations decreases as the sample size
goes up. From these results, we can observe that when the
estimations are predicted based on the latest 50 samples, the
exceedance probability is very close to the predictions using
all the previous executions. We can get a similar observation
from Figure 3-b, where the executions are randomly generated

2In the following figures, the connection lines are just used for the
convenience of visualization.

following exponential distributions.
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Fig. 4. The execution times of a video decoder task. The x axis denotes the
index of job executions, and the y axis denotes the execution time in µs.

Besides the above hypothetical distributions, we also eval-
uate our predictor with a real application. The utilized appli-
cation is a video decoder task which is also used in [1][23].
Figure 4 shows some example execution times of the video
decoder task. Assume that the task decodes 25 frames per
second, then the period of the task is 40 ms. The results are
shown in Figure 3-c. Similar to the above experiments, the
predictions from our estimator can always meet the require-
ment (i.e. the exceedance probability is always lower than
10%). Moreover, in this set of experiments, the predictions
using the latest 50 samples are also quite acceptable, since
the exceedance probabilities are very close to those of the
estimations using all the samples.

In order to further evaluate the performance of the predictor,
we also measured the gaps between predictions and the actual
execution times. A gap denotes the opposite of an exceedance.
In other words, we measure how much a prediction can be
higher than the actual execution time. Apparently, a larger
gap may result in a greater waste of resource. In the first set
of experiments, we randomly generate task execution times
based on normal distributions. As shown in Figure 5-a, while
focusing on the gaps of the results, the performance of using
the latest 50 samples is slightly better than using all the
previous samples. We also perform a number of evaluations
using the video decoder task, and the results are presented
in Figure 5-b. In these experiments, we can obviously observe
that using the latest 50 samples can provide tighter predictions
(i.e. with less gaps). The main reason is that when we do



the predictions using all the previous executions, the means
and standard deviations are very stable due to the large
amount of samples. These values may also be strongly affected
by extreme samples (i.e. the samples far from the mean).
Therefore, these predictions are not sensitive to the latest
variations of executions. On the other hand, using the latest
50 samples to do predictions will experience less effect from
extreme samples since these samples will be later replaced by
new executions.
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Fig. 5. The gaps between actual execution times and predictions. The x
axis denotes the index of experiment sets, where each set contains 5000 task
executions. The y axis denotes the average percentage of gaps regarding the
actual execution times. ’50 L’ denotes that the estimations are based on the
latest 50 samples, and ’ALL’ denotes that the estimations are based on all the
previous samples.

According to the above experiments, we can observe that
the predictions from our estimator can always meet the prob-
abilistic requirements. Moreover, considering the overhead of
the scheduling framework, we may not be able to use all the
previous executions to do estimations. Instead, we can perform
predictions using the latest 50 (or even 20) samples, which can
also provide acceptable estimations.

B. Evaluation of the Scheduling Framework

In this subsection, we present the performance evaluation
of the whole scheduling framework.

1) Hypothetical Experiments: First, we compare our frame-
work with BACKLASH regarding task Deadline Miss Ratios
(DMR). Here DMR denotes the percentage of jobs, which miss
their deadlines, among all the jobs in the collected sample set.
In order to perform a fair comparison, in each experiment set,
the task set used in our framework is exactly the same as the
set used in BACKSLASH.

In these experiments, we only consider hypothetical periodic
tasks. The execution times of all the tasks are randomly
generated from normal distributions. The periods of tasks are
randomly selected from range [100, 1000]. For the execu-
tion time distribution of each task, the standard deviation is
randomly selected from 5% to 30% of the mean. For each
experiment, the average3total task utilization of the system is
controlled within [0.8, 1.5]. The execution time predictions of
our framework are based on the latest 20 executions.

For our framework, no exact task information is required
(e.g. WCET). However, for BACKSLASH, we have to provide
some estimation of the execution time of each task, so that
we can define the server capacities. Since the task execution

3During the runtime, the temporary system utilization may exceed the given
average utilization.

times are randomly generated, it is difficult to get the exact
WCET (this problem is the same for many real applications).
Moreover, the average utilization of the evaluated task set
is quite high, as a result, if we use the WCET of each
task to reserve the corresponding server capacity, the total
server capacity will be much higher than the available system
bandwidth (i.e. 1). Therefore, in BACKSLASH, the server
capacity of each task is set according to its average execution
time.
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Fig. 6. The performance comparison between our framework and BACK-
SLASH. The x axis denotes the index of experiment sets, and the y axis
represents the DMR of the whole system. For each task set, the results are
collected from 50000 jobs.

The results of 8 sets of experiments have been presented in
Figure 6. As shown in the figure, in the first set of experiment,
the DMR of our framework is very low (i.e. 0.01%), but the
DMR of BACKSLASH is around 8%. In the worst case (i.e.
the 7th set of experiment), the DMR of our framework is less
than 41%, but the DMR of BACKSLASH is around 47%.

Generally, we can clearly observe that our framework
outperforms BACKSLASH. The main reason is that BACK-
SLASH does not have capacity adaptations. The performance
of BACKSLASH (and also most of the existing capacity
reservation scheduling frameworks) depends on the allocation
of server capacities. For a task whose execution times can
frequently exceed the reserved server capacity, the DMR can
become very high especially when the total system utilization
is high. Because if the reclaimed capacities from other jobs
are not enough, a job of this task may have to borrow from its
future jobs where it needs to extend its deadline (i.e. lower its
priority) as a price. This capacity borrowing can even cause a
domino effect, as result, many following jobs may miss their
deadlines. However, due to the capacity adaptation mechanism,
our framework can decrease the occurrence of the domino
effect by assigning more capacities to future jobs.

2) Case Study: In addition to the above hypothetical task
sets, we also evaluate our framework using the video decoder
task which is also used in Section IV-A. In the following exper-
iments, we compare our framework with both BACKSLASH
and a framework only with capacity adaptation and reclaiming
mechanisms (i.e. without capacity borrowing).

Besides the video decoder task, we add three other hypo-
thetical tasks in the system. The average total task utilization
is set around 0.85. The results are presented in Table II.

In the first experiment set, the video decoder task is consid-
ered as the most important task (i.e. it has the highest criticality
level, cli = 4). In this case, the DMR of the video decoder



Set 1 Set 2 Set 3
cli DMRCARB DMRBS DMRCAR cli DMRCARB DMRBS DMRCAR cli DMRCARB DMRBS DMRCAR

τv 4 0.06% 18.28% 1.92% 3 0.11% 18.28% 4.21% 1 0.22% 18.28% 5.57%
τ1 3 0.39% 0.16% 1.01% 4 0 0.16% 0.09% 3 0.16% 0.16% 0.36%
τ2 2 0.29% 2.01% 0.56% 2 0.36% 2.01% 0.77 2 0.37% 2.01% 0.92%
τ3 1 0.06% 1.1% 0.2% 1 0.04 1.1% 0.08 4 0 1.1% 0.02%

TABLE II
THE PERFORMANCE EVALUATION USING A CASE STUDY. τv DENOTES THE VIDEO DECODER TASK, AND THE OTHER TASKS ARE RANDOMLY GENERATED

HYPOTHETICAL TASKS. DMRCARB REPRESENTS THE DMR OF TASKS IN OUR FRAMEWORK, DMRBS DENOTES THE DMR OF TASKS USING
BACKSLASH, AND DMRCAR DENOTES THE DMR OF TASKS IN THE FRAMEWORK ONLY WITH CAPACITY ADAPTATION AND RECLAIMING (WITHOUT

BORROWING)MECHANISMS. A LOWER VALUE OF cli REPRESENTS A LOWER CRITICALITY LEVEL.

task in our framework is 0.06%, but under BACKSLASH, the
DMR of this task is 18.28%. While considering the whole
system, the total DMR of our framework is also much lower
than BACKSLASH. Moreover, for the framework where we
only keep the capacity adaptation and reclaiming mecha-
nisms (i.e. capacity borrowing is disabled), the performance
is significantly worse than our framework but still better
than BACKSLASH. The main reason of the performance
degradation of this framework is that runtime overruns can
only be handled by limited reclaimed capacities. When the
execution time distributions of some tasks have low standard
deviations (i.e. less spread), the reclaimed capacities will also
become low, because the reserved capacities are close to the
actual execution times due to the capacity adaptation process.
As a result, when a large job overrun occurs, the reclaimed
capacities may not be sufficient to handle it. In this case,
the job with overrun needs to use the benefits of capacity
borrowing mechanism.

In the second experiment set, we switch the criticality
levels of τv and τ1 (i.e. lower down the criticality level of
τv). As expected, in our framework, the DMR of the video
decoder task increases to 0.11%. This is because when the
total system utilization is very high, the scheduler will provide
more service to the more critical tasks. As a less critical task,
τv may not be able to get sufficient capacity. On another hand,
since the criticality level of τ1 increases, its DMR decreases
to 0. However, BACKSLASH does not have the concept of
criticality levels, which means that all the tasks are treated
evenly. Therefore, the results of BACKSLASH do not change.

In the third experiment set, we further lower down the
criticality level of τv by switching with τ3 (i.e. with the lowest
criticality level now). Similar to the above observations, in our
framework, the DMR of τv increases to 0.22%, and the DMR
of τ3 decreases 0.

Besides the measurement of DMR, we also examined the
tardiness [24] of the tasks under different scheduling frame-
works. The tardiness of a job represents the distance between
its actual finishing time and its original absolute deadline.
A negative tardiness means that the job misses its deadline,
and a positive tardiness means that the job can meet its
deadline. The results of the video decoder task in the third
experiment set are presented in Figure 7. As shown in the
results, for the jobs that missed their deadlines (i.e. with
negative tardiness), the largest tardiness under our framework
is around 25% of the task period, while the tardiness under
BACKSLASH may go beyond 100% (i.e. a video frame is

U=0.5 U=1
Task Num Mean STD Mean STD

6 0.022 0.178 0.024 0.156
8 0.021 0.151 0.044 0.206

10 0.027 0.164 0.038 0.206
20 0.031 0.172 0.058 0.237

TABLE III
THE OVERHEAD OF CAPACITY ADAPTATIONS. THE RESULTS ARE

PRESENTED IN ms. THE EVALUATION PC USES INTEL I5-3320 CPU @ 2.6
HZ, 8G RAM, AND WINDOW 7.

displayed one frame later than its originally expected time).
Moreover, the results also show that, under BACKSLASH
there are many successive jobs missing deadlines together,
which is known as the previously presented domino-effect
due to the capacity borrowing mechanism. However, in our
framework, this problem occurs much less frequently.

According to the results of this case study, we can get the
same observation as the former experiments that our frame-
work can provide a better performance than BACKSLASH in
general. On another hand, our framework can provide system
designers more controls on the tasks through the concept of
criticality levels. This can be very helpful for real applications
where tasks with different levels of importance are integrated
into one system.
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Fig. 7. The tardiness of the video decoder task under different scheduling
frameworks.

3) Overhead: As shown in the above result, our framework
can provide better performance than BACKSLASH due to the
capacity adaptation mechanism. However, in order to achieve
the capacity adaptations, some extra operations (e.g. collect-
ing samples, calculating and updating statistical information,
reallocating server capacities, etc.) need to be added to the
scheduler. As an online scheduling framework, the overhead
needs to be controlled so that the system performance will
not be degraded. Therefore, in this section, we present the
evaluation of the extra overhead of our framework.



Theoretically, the overhead is affected by both system
utilization and number of tasks. Therefore, we generate a
number of experiments with different values of these two sys-
tem parameters. The total overhead of the adaptation process
for each task is measured in real time, and the results are
presented in Table III. We notice that, for most of the jobs
whose executions do not cause capacity reallocation (i.e. do
not satisfy Algorithm 1 line 10), the scheduler just needs to
perform a few simple operations where the overhead is less
than 1 µs. Due to the limitation of our simulator, we cannot
capture the precise time less than 1 µs. Therefore, the overhead
which is less than 1 µs is alternatively considered as 1 µs. In
other words, the results shown in the table is more pessimistic
than the real values.

As shown in Table III, the average overhead increases
gradually as the number of tasks and system utilization go up.
Generally, these overheads are relatively low. Considering a
video decoder task which is used in our case study, the average
execution time of each job is around 15 ms. Even in the worst
experiment set presented above, the average overhead is less
than 0.5% of the average job execution time. Therefore, we
believe that the extra overhead due to our capacity adaptation
mechanism is acceptable in reality.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a new reservation-based scheduling
framework for soft real-time systems using EDF algorithm
(called CARB-EDF). This framework has the features of ca-
pacity adaptation (based on statistical predictions), reclaiming
and borrowing. Due to the capacity adaptation mechanism,
system designers do not need to provide any estimations of
task execution times in order to define proper selections of
server capacities. On the other hand, the imprecise runtime
predictions of task execution times can be compensated by
the capacity reclaiming and borrowing mechanism. Therefore,
our framework can provide a good performance in general.

A number of simulation-based experiments have been im-
plemented including both hypothetical experiments and a case
study using video decoder tasks. First, we measured the predic-
tor used in our framework with the one presented in [11]. As
shown in the results, our tunable predictor can provide better
estimations. We also compare the performance of our schedul-
ing framework with a similar framework BACKSLASH which
does not have the capacity adaptation mechanism. According
to the result, our framework can provide a better performance
regarding both deadline miss ratios and tardiness. Finally, we
examined the extra overhead of our scheduling framework
regarding the capacity adaptation process. The results show
that the overhead can be acceptable in reality.

In our future work, we would like to implement the pre-
sented scheduling framework in a real platform and examine
the actual runtime performance. On another hand, the current
framework focuses on single-core systems, we will also try to
extend this framework to multi-core systems.
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