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ABSTRACT
Dynamic RAM (DRAM) is a source of memory contention and
interference problems on commercial of the shelf (COTS) multi-
core architectures. Due to its variable access time, it can greatly
influence the task’s WCET and can lead to unpredictability. In this
paper, we provide a worst case delay analysis for a DRAM memory
request to safely bound memory contention on multicore architec-
tures. We derive a worst-case service time for a single memory re-
quest and then combine it with the per-request memory interference
that can be generated by the tasks executing on same or different
cores in order to generate the delay bound.

1. INTRODUCTION
The real-time applications that are executed concurrently on COTS
multicore platforms, face the new challenges due to sharing mul-
tiple different physical resources including CPU, shared caches,
memory bandwidth and memory. Contention for the shared phys-
ical resources is a natural consequence of sharing [1]. It does not
only reduce throughput but also affects the predictability of real-
time applications.

Modern multicore architectures use a single-port Double Data Rate
Dynamic RAM (DDR DRAM) as their main memory resource [2],
which is shared among all cores. It is becoming a significant source
of memory contention and interference problems that lead to unpre-
dictability. It exhibits a highly variable DRAM access-time. Mul-
tiple studies provide bounds on memory interference delay by con-
sidering a constant access time [3, 4], and a variable access time [5,
6] for tasks executing concurrently on different cores and contend-
ing for memory accesses. Many hardware-based solutions have
been proposed to eliminate these limitations at the level of DRAM
controller [7, 8]. However, the real-time applications developed for
COTS hardware cannot use this specialized hardware.

We provide a worst case delay analysis for a DRAM memory re-
quest to safely bound memory contention for multicore architec-
tures. First, a worst-case service time for a single memory request
is derived considering the worst case latency scenarios of DRAM
commands. The service time is then combined with the per-request
memory interference that can be generated by the tasks executing
on same or different cores to generate the delay bound. Our anal-
ysis is similar to the work of [6], except that we have added addi-
tional constraints for shared memory banks (details in Section 4).

Section 2 provides the background on DRAM. Section 3 explains
our system model. Memory interference delay analysis is presented
in Section 4 and finally Section 5 concludes the paper.

2. DRAM BACKGROUND
A DRAM memory system consists of a DRAM controller and a
memory device as shown in Figure 1. The controller serves the
memory requests (i.e. schedules memory requests generated by
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Figure 1: DDR DRAM banks : organization and functionality

CPU and sent to DRAM) and the memory device stores the actual
data. The memory device consists of ranks and only one rank is ac-
cessed at a time. Each rank consists of multiple DRAM banks that
can be accessed independently. The memory requests to different
banks can be served concurrently, this is called Bank-Level Paral-
lelism (BLP). Only one of them can transfer data at a particular time
on the data bus. 1

Each bank consists of a row-buffer, and a two-dimensional struc-
ture of rows and columns of DRAM cells that actually stores data,
as depicted in Figure 1. The data of a bank can only be accessed
from the row-buffer of the bank. Thus to access the data from a
bank, first the required row is cached into the row-buffer using the
row decoder, and then the data is accessed from that row. The data
of the particular column is accessed (read from and written to) from
the row-buffer using the column multiplexer as shown in Figure 1.
A column represents a small set of consecutive bits within a row.
Thus the row-buffer serves as a buffer for the last-accessed request.
All the subsequent requests to the columns of the same row do not
require caching the row into the buffer, and are directly performed
by accessing the required column of the row-buffer for faster ac-
cess. The row that is cached is called an open row. A request to
an open row is considered as a row-hit. If the currently opened
row is different than the requested row, then first the opened row is
saved and then the requested row is fetched into the row-buffer; it
is called a row-conflict.

DRAM controller performs internal scheduling algorithms to re-
order memory requests in order to improve the row-hit ratio and
to maximize the overall throughput [9]. Since the row-hit latency
is much less than the row-conflict latency, the DRAM controller
prefers the row-hit request over the row-conflict requests, thus it
unfairly prioritizes threads with high row-buffer locality. It sched-
ules memory requests using First-Ready First Come First Served
(FR-FCFS) algorithm [10] that prioritizes the ready DRAM com-
mands (row-hit memory request) over others and for ties it prior-

1This is similar for rank level parallelism. We consider one rank
and one channel in this work.



itizes older requests. It means that the memory requests arriving
earlier may be serviced later than ones arriving later in the mem-
ory system. FR-FCFS works better with the open row policy that
keeps the row-buffer open rather than close row policy that closes
the row-buffer after serving each request.

The following commands are used to access the data from a bank
(see Figure 1): Activate command (ACT) loads the requested row
into the row-buffer using the row decoder; Precharge (PRE) writes
back the currently opened row; (RD) reads the required data from
the row-buffer using the column multiplexer; and (WR) writes the
data into the row-buffer using the column muxtiplexer. RD/WR
commands are also called CAS. Additionally, a Refresh command
is issued regularly to refresh DRAM capacitors.

The memory controller must satisfy different timing constraints
that occur between various DRAM commands. The timing con-
straints are taken from the JEDEC standard [2] and are listed in Ta-
ble 1 with values for DDR3-1333MHz device. We consider 1333
MHz as this speed is approximately in the middle of DDR3.

Parameters Description DDR3 Unit
tCK DRAM clock cycle 1.5 nsec
BL Burst length of data bus 8 cols
CL Read latency 9 cycles
WL Write latency 7 cycles
tRCD ACT to Read/Write delay 9 cycles
tRP PRE to ACT delay 9 cycles
tWR Data end of Write to PRE delay 10 cycles
tWTR Write to Read delay 5 cycles
tRC ACT to ACT delay (same bank) 33 cycles
tRRD ACT to ACT delay (diff. bank) 4 cycles
tFAW Four ACT window 20 cycles
tRTP Read to PRE delay 5 cycles
tRAS ACT to PRE delay 24 cycles
tRTW Read to Write delay 7 cycles
tRFC Time to refresh a row 160 nsec
tREFI Average refresh interval 7.8 usec

Table 1: DRAM timing constraints [2].

Here we briefly mention different characteristics of the DRAM-
system that influence its memory access time. The details can be
found in [11]. (1) Row-buffer locality. Since a row-hit requires
fewer steps than a row-conflict, the latency of a row-hit is less than
a row-conflict and this is called row-buffer locality. (2) Bank-level
conflicts occur when multiple requests access the same bank. It
results in a higher number of row-conflicts to the same bank, con-
sequently the requests are serviced completely serially, and in this
case, the latency is increased significantly. (3) The direction of the
data bus should be changed upon the requests’ sequence read-to-
write or write-to-read and results in read-to-write latency and write-
to-read latency respectively. During this time the data bus cannot
be utilized. This latency exists whether the requests are made to the
same bank or different banks. (4) Scheduling algorithm FR-FCFS,
that unfairly prioritizes threads with high row-buffer locality.

Bank-level conflicts can be reduced by using private banks (sup-
ported by few hardware architectures like Freescale p4080 or by
OS-based bank partitioning [12]). Other three characteristics are
usually taken care in the memory-interference delay analysis for
using private and/or interleaved banks [5, 6].

3. SYSTEM MODEL
We assume a single-chip multicore processor with a set of identi-
cal cores that have uniform access to the main-memory. Each core
has a set of local resources (primarily a set of caches for instruc-

tions and/or data and busses to access these from the cores) and a
set of resources that are shared amongst all cores (typically a Last-
Level Cache (LLC), a main-memory, a memory bus, and the LLC
and DRAM are connected by a command bus and a data bus). The
architecture like Intel i5 3550, etc. complies with these assump-
tions. For simplicity, we consider one rank and a single channel.
More than one channel can be considered independently since each
channel has a separate command and data bus.

We assume that a local cache miss is stalling, which means when-
ever there is a miss in a LLC, the core is stalling until the cache-line
is fetched from memory. We assume that all memory requests from
the LLC to the shared DRAM go through the same channel and
the data and command busses can be used in parallel. DRAM con-
troller actually queues requests, however, at any given time only
one of these requests is being served by the channel. Since the
data is transferred in the burst-mode (a burst read/write allows to
read/write the whole cache line after specifying only its start ad-
dress, for a DIMM in a COTS-system has a cache line size of 64 B,
a burst is 8 consecutive 64-bit pieces of memory), therefore, a sin-
gle memory request can cache the data of one cache miss, thus the
number of LLC misses is equal to the number of generated memory
requests. Similar to [13, 6] we assume that each task has its own
private partitions in the cache [14] that is sufficient to store one row
of a DRAM bank. Further, we assume that cache-related preemp-
tion delays (CRPD) [15] are zero due to the partitioned cache.

We assume that the multicore processor uses DDR DRAM as its
main memory, and it is not put on low power state at any time. The
memory controller uses open row policy and employs FR-FCFS
policy similar to [6] and we assume that DRAM records the ar-
rival times of memory requests when they arrive at the controller.
DRAM bank partitioning is considered to divide banks into parti-
tions where memory request can access one bank in DRAM. We
assume both private banks and interleaved banks (where memory
request can access all banks in DRAM) are available and only one
can be used at a time.

4. MEMORY INTERFERENCE DELAY AN-
ALYSIS

We present an analysis of worst case delay for a DRAM memory
request (D`). The analysis depends on the hardware architecture
and on the number of cores in the system. It is a sum of (1) worst
case service time for a single memory request and (2) worst case
delay this request under analysis can be delayed by other simulta-
neous requests (generated by other tasks executing on other cores).

4.1 Worst-case service time for a single mem-
ory request (Dlser.time)

We compute the worst-case service time for both, private banks (de-
noted asDlpser.time) and interleaved (or shared) banks (Dlsser.time).
We consider the worst cases of all previously mentioned charac-
teristics that influence the memory access time of DRAM, i.e.,
row-conflicts, a change in the data bus direction for each request,
and rescheduling algorithm. Since a row-conflict consists of three
DRAM commands: ACT, PRE and CAS (RD/WR) (see Figure 1),
thus Dlser.time is a sum of latencies for ACT, PRE and CAS com-
mands plus the DRAM timing constraints (given in Table 1) to meet
these three commands.

Dlser.time = (DlPRE +DlACT +max(TCPRE , TCACT ) +

DlCAS + TCCAS)× tCK (1)

where DlPRE , DlACT , DlCAS present latencies for ACT, PRE
and CAS commands respectively, while TCPRE , TCACT , TCCAS

present the timing constraints for these commands respectively.
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Figure 2: Timing constraints CAS commands for private banks
(WR to bank1, RD to bank2, WR to bank3)

4.1.1 Dlpser.time for private banks
The worst-case service time is denoted byDlpser.time, and all other
latencies are also presented with p symbol.

PRE command latency: DlpPRE = tCK each command takes
one clock cycle on address/command bus.

ACT command latency: According to the JEDEC standard [2]
(see Table 1), tRRD is the minimum separation time between two
ACT commands to different banks. And maximum four ACT com-
mands can be issued during one tFAW window. To consider the
worst-case, we take the max of both as

DlpACT = max(tRRD, tFAW − 3.tRRD).

CAS command latency: CAS latency is the sum of RD/WR la-
tency plus the time to transfer the data on the data bus. The read
(RD) and write (WR) latencies are CL and WL respectively (see
Table 1). The data is transferred in burst mode on both the rising
and falling edges of the double data rate DDR bus, therefore, the
time to transfer the data is BL/2. Thus the total time for RD com-
mand is CL+BL/2, and for WR command is WL+BL/2. For
worst-case, we take the maximum of RD and WR latencies, i.e.,

DlpCAS = max(CL+BL/2,WL+BL/2).

PRE, ACT and CAS commands’ timing constraint latencies:
For private banks, there is no timing constraint for PRE and ACT
commands, thus TCp

PRE = 0 and TCp
ACT = 0.

The timing constraints for CAS commands are due to the change in
the data flow direction of the data bus. It depends upon whether the
direction of the data bus is switching from Write to Read, or from
Read to Write. It is zero if there is no switching in the direction.
These constraints are depicted in Figure 2. In figures, the values of
commands are not drawn according to the scale. tWTR starts after
the data is transferred (BL/2), however, tRTW starts at the start of
the RD command.

TCp
CAS =

 tWTR if switching from write
tRTW − (CL+BL/2) if switching from read
0 if not switching,

(2)
Putting the values of all these latencies in equation 1 provides the
service time of a memory request using private banks.

4.1.2 Dlsser.time for shared banks:
For shared banks, the worst-case service time is denoted byDlsser.time,
and all latencies are presented with s symbol.

PRE command latency: When memory requests are accessing
the same bank then DlsPRE = tRP (see Table 1).

ACT command latency: is DlsACT = tRCD (see Table 1).

CAS command latency: RD and WR latencies for shared banks
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Figure 3: Timing constraints for shared banks

are the same as for private banks, i.e., CL and WL respectively.
The time to transfer the data on the data bus isBL/2. Thus the total
time for RD and WR isCL+BL/2, andWL+BL/2 respectively.
Note that for RD command, data can be transferred in parallel (on
the data bus) with the processing of data of the next command,
therefore, BL/2 can be safely removed from all RD equations for
simplicity. Thus RD latency becomes CL. For worst-case, we take
the maximum of RD and WR latencies, i.e.,

DlpCAS = max(CL,WL+BL/2).

PRE and ACT commands’ timing constraint latencies: The
timing constraints for PRE command depends on whether the pre-
vious command was RD or WR. It also depends on whether the
row for the previous command was open or close.

Case 1: previous RD and open-row, (means only RD command was
executed previously), thus tRTP (RD to PRE delay) is considered
(see Table 1). Since it includes the time to execute RD command
(CL) (see left part of Figure 3), thus CL is subtracted from tRTP .
Thus the timing constraint is max(tRTP − CL, 0).
Case 2: previous RD and close row, (means ACT and RD com-
mands were executed for the previous request), so the timing con-
straint is taken from the ACT command of the previous request
until the PRE command of the current request. tRAS is the delay
from ACT till PRE (see Table 1). It includes the time to execute
previous ACT and RD commands within it (see left part of Fig-
ure 3). To calculate the timing constraint, the execution times of
previous ACT and RD commands are subtracted from tRAS ; thus
it becomes tRAS − TRCD − CL.

Case 3: previous WR and open-row, the timing constraint is tWR−
tWTR (see right part of Figure 3).

Case 4: previous WR and close-row is similar to case 2, only RD
is replaced by WR latency, i.e., tRAS − tRCD − (WL + BL/2).
Thus, for RD and WR commands, TCs

PRE becomes

TCs
PRE(RD) = max(tRTP − CL, tRAS − tRCD − CL, 0).

TCs
PRE(WR) = max(tWR − tWTR, tRAS − tRCD − (WL +

BL/2)).

For worst case we take the maximum of both, i.e.
TCs

PRE = max(TCs
PRE(RD), TC

s
PRE(WR)) (3)

For timing constraint of ACT, tRC is considered for the shared bank
(see Table 1). It is the time starting from one ACT till the start of the
next ACT to the same bank, therefore, it includes the delays of CAS
and PRE commands within it. To compute the timing constraint of
ACT, the latencies of ACT and CAS commands are subtracted from
it (see left part of Figure 3).

TCs
ACT = tRC − tRCD −min(CL, (WL+BL/2))

TCs
ACT includes the timing constraint for PRE command TCs

PRE

within it (see left part of Figure 3). Since we take maximum of
TCPRE , TCACT in equation 1, so in worst case, the TCs

ACT will
be chosen when row is closed. And if the row is open then ACT



command will not be executed and TCs
ACT is zero, thus TCs

PRE

would be chosen there. The analysis in [6] does not consider both
these timing constraints (i.e. TCPRE and TCACT ) for shared
banks. Timing constraints for the shared banks are higher than the
private banks and a main source of increased latencies.

CAS command’s timing constraint latency: depends upon the
previous CAS command:

TCs
CAS =

{
TWTR if previous write
0 if previous read, (4)

4.2 Per-request interference delay
It is the interference delay to execute the number of memory re-
quests present in the memory controller and to be served before the
request under analysis. If M is number of cores, then M − 1 re-
quests from other cores will be there in worst-case. Because of our
assumption that core is stalling until the cache-line is fetched from
memory, the maximum number of requests does not increase M.
Considering the worst-case service time for each request (as pre-
sented in the previous Section 4.1), the interference delay becomes
(M−1)×Dlser.time. Adding the service time of the request under
analysis, the total time to serve the request including interference
becomes Dl = Dlser.time + (M − 1)×Dlser.time or simply

Dl =M ×Dlser.time (5)

For the private banks, Dlser.time is substituted by Dlpser.time in
the above equation. However for the shared banks, the reordering
effect should also be taken into account.

Consecutive row-hit requests: According to FR-FCFS policy,
the row-hit requests are given priority over the row-conflict re-
quests. Row-hit requests are reordered at the bank scheduler and
served before row-conflict requests. For worst case for m con-
secutive row-hit requests, we consider alternate read and write re-
quests (means a change in the direction of data bus at each re-
quest). The worst-case service time for m consecutive row-hits
is Dlconhit(m) = {dm/2e × (WL+ BL/2) + bm/2c × CL+
m × max(case1, case3) + TCs

PRE}. Since ACT command is
not issued for open-rows, timing constraints for ACT are not in-
cluded in Dlconhit(m). Also case1 and case3 (from last section)
are included for open-rows only. TCs

PRE of eq 3 is added if a PRE
command is issued after m consecutive hit requests.

The maximum row-hits served by the system are Ncols/BL where
Ncols is the number of columns in one row. In order to bound the
reordering effect, a hardware thresholdNcap is also supported [10].
Thus in worst case the maximum number of row-hits prioritized
over older row-conflicts isNreorder = min(Ncols/BL,Ncap) [6].
Substituting this number form inDlconhit, i.e. Dlconhit(Nreorder)
equation gives the maximum number of row-hits served before older
row-conflicts. Nreorder can be greater than M. The assumption
here is that each task can only have a single outstanding request,
but once a hit from a task is served, it will unblock and can issue a
new request that also results in a hit while the hits from other tasks
are served. Considering worst-case, of Nreorder hits and M − 2
misses before the request under analysis, Dlconhit(Nreorder) de-
lay for hits and Dlsser.time for miss, the total delay becomes
Dl = max(Dlconhit(Nreorder) + (M − 2)×Dlsser.time,

M − 1×Dlsser.time)

In case of no hitsNreorder = 0, andDl becomesM ×Dlsser.time.

According to [5], the refresh effect is added as
ki+1 =

⌈
(Totalmemoryinterferencedelay+ki)×tRFC

tREFI

⌉
and k0 =

0. Thus for DDR3-1333H, tRFC /tREFI is 160ns/7.8µs = 0.02,
thus will increase the total memory interference delay by 2%.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have safely bounded the memory contention for
DDR DRAM memory controller that are commonly used in COTS
multicore architectures. We have presented the worst case delay
analysis of a memory request for private and shared memory banks.
The analysis depends on the hardware architecture and on the num-
ber of cores. It is independent of the number of tasks executing in
the system.

Previously, we have proposed a multi-resource server (MRS) [16,
17] approach to bound memory interference from other servers ex-
ecuting concurrently on other cores. The memory bandwidth has
added as an additional server-resource to bound memory interfer-
ence by considering a constant memory access time. In future, we
intend to update the schedulability analysis of MRS by assuming
a variable access time for the memory requests and combining our
current analysis of (D`) for this purpose.
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