
Design and Implementation of a Dynamic Component
Model for Federated AUTOSAR Systems

Ze Ni
Software and Systems
Engineering Laboratory
SICS Swedish ICT AB

zeni@sics.se

Avenir Kobetski
Software and Systems
Engineering Laboratory
SICS Swedish ICT AB

avenir@sics.se

Jakob Axelsson
Software and Systems
Engineering Laboratory
SICS Swedish ICT AB

jax@sics.se

ABSTRACT
The automotive industry has recently agreed upon the em-
bedded software standard AUTOSAR, which structures an
application into reusable components that can be deployed
using a configuration scheme. However, this configuration
takes place at design time, with no provision for dynamically
installing components to reconfigure the system. In this pa-
per, we present the design and implementation of a dynamic
component model that extends AUTOSAR with the possi-
bility to add plug-in components at runtime. This opens up
for shorter deployment time for new functions; opportunities
for vehicles to participate in federated embedded systems;
and involvement of third-party software developers.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific archi-
tectures; D.2.12 [Inter-operability]: Distributed objects

Keywords
AUTOSAR, Software Components, Dynamically Reconfig-
urable Software, Federated Embedded Systems

1. INTRODUCTION
Automotive embedded systems are expanding rapidly in func-
tionality and complexity, and a car nowadays typically con-
tains several dozen electronic control units (ECUs) that are
connected through communication networks. Each ECU
runs control functionality using sensors and actuators, but
there are also control functions that are distributed over
several ECUs. The vehicular industry commonly relies on
external suppliers of both ECU hardware and software, and
with rising complexity, it has become increasingly costly to
integrate these ECUs into a functioning system.

To cope with the increasing complexity of in-vehicle soft-
ware, the automotive industry has for the last decade been
developing the standard Automotive Open System Architec-
ture (AUTOSAR) [7]. It decouples the basic software that

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA. Copyright is held
by the owner/author(s). Publication rights licensed to ACM. ACM 978-1-
4503-2730-5/14/06. . . $15.00. http://dx.doi.org/10.1145/2593069.2593121

needs to exist in all ECUs, from the application software
which is specific to that node. It also provides a component
model that eases reuse of parts of the application software,
and allows it to be redistributed if the underlying hardware
topology is changed, thereby improving flexibility and scal-
ability. The automotive industry is very cost sensitive, and
ECU hardware is traditionally kept to a minimum. There-
fore, AUTOSAR has been designed to execute with limited
resources and hence configuration of the system is done at
design time with no structural dynamics during execution.

By making it possible to dynamically reconfigure parts of
an AUTOSAR system, several benefits could be reached.
Firstly, it would drastically decrease the time to market since
software can be added or modified very late in the develop-
ment process, and even allow feature upgrades in already
produced vehicles. Secondly, in combination with external
wireless communication, it gives the possibility for creating
federated embedded systems (FES) [9], i.e. embedded sys-
tems in different products that cooperate with each other.
Thirdly, it would create a foundation for open innovation
where an ecosystem of third party developers can develop
new services that add to the value of the products.

The purpose of this paper is to describe the implementation
driven design of a dynamic component model that allows
installation of plug-in components on top of statically con-
figured software. This involves extensions to the architec-
tural concepts in embedded software, first outlined in [3],
and off-board support systems that are paramount for the
configuration and management of the dynamic components.

The paper is organized as follows. Section 2 gives an intro-
duction to central AUTOSAR concepts. Section 3 contains
the main contributions of this paper, namely the dynamic
component model and its life cycle management. Section 4
demonstrates the concepts on an example, inspired by a test
platform, implemented in this work. Section 5 reviews the
related work, while Section 6 concludes the paper.

2. OVERVIEW OF AUTOSAR
AUTOSAR is a layered software architecture that decouples
application software (ASW) from lower level basic software
(BSW) by means of a standardized middleware called run-
time environment (RTE).

The BSW consists of an operating system that has evolved
from the OSEK standard [10]; system services for, e.g., mem-

ory management; communication concepts; ECU and micro-
controller hardware abstractions; and complex device drivers
for direct access to hardware. Since the underlying hardware
is generally resource constrained, the BSW is typically lim-
ited to such functionality that can be statically pre-defined.
An example of limitations is that neither file system manage-
ment nor dynamic memory handling is typically supported.

The ASW consists of a number of software components (SW-
C). Each SW-C declares a number of ports for communica-
tion with the rest of the system. They can be either required
ports (meaning that the component is expecting some input)
or provided ports (used by the SW-C for its output). The
ports can implement different interaction schemes, including
sender-receiver or client-server. The internal functionality,
or the runnable, of the component only accesses its ports,
and not any other components, which promotes reuse and
transferability of SW-Cs between ECUs. The runnables are
mapped to OS tasks. SW-Cs can also be composite, i.e.
containing other SW-Cs inside.

The communication between SW-Cs, as well as between SW-
Cs and the underlying software layers, is based on a concept
called Virtual Function Bus (VFB). The idea of VFB is to
allow SW-Cs to communicate with each other as if they were
all allocated to the same ECU. If they are in fact on differ-
ent ECUs in a particular implementation, the communica-
tion between them has to be mapped to network messages
without involving the SW-Cs themselves.

RTE is the realisation of VFB, providing the actual message
transfer to and from SW-C ports. RTE provides an API to
the ASW, and in turn calls the API of the BSW. Apart from
communication, the RTE also handles other functionality,
such as events, critical sections, etc.

In addition to technical concepts, AUTOSAR provides a de-
velopment methodology which relies on different tools for
software configuration, including BSW composition, alloca-
tion of SW-Cs to ECUs, and dependencies between SW-C
ports, which are defined statically at design time in a num-
ber of description files. These files are then processed by
AUTOSAR tools, creating executable software that imple-
ment the BSW, RTE, and ASW for a particular ECU.

Although AUTOSAR provides a lot of flexibility in recon-
figuring a system, it does not offer any possibility to make
dynamic additions, but any changes require the software to
be rebuilt and the ECU to be reprogrammed.

3. THE DYNAMIC AUTOSAR CONCEPT
In the following, the key contributions of this paper are pre-
sented, describing a dynamic software concept that extends
the AUTOSAR architecture to allow software reconfigura-
tion at runtime. The first part looks inwards, proposing
additional structural components and relations for making
the ECU software reconfigurable. The second part takes
a higher view, discussing necessary support structures for
managing the additional software throughout its life cycle.

3.1 Dynamic Component Model
Several considerations are important in the design of a dy-
namic AUTOSAR architecture. First of all, it should fit in

with the current practice of automotive software, adapting
to such standardized AUTOSAR concepts as SW-Cs, com-
munication ports, RTE, etc. At the same time, it should be
non-static, both regarding software management and com-
munication channels. In parallel, it is utterly important that
the additional software (further called plug-ins) does not
compromise the built-in functionality. These issues are ad-
dressed by introducing special-purpose SW-Cs, a dedicated
runtime environment for the plug-ins, and a number of spe-
cial purpose SW-C ports, as presented below.

3.1.1 Special-purpose software components
The boundary between the standard and the dynamic AUTO-
SAR software is designed to pass through the SW-C level.
In other words, AUTOSAR SW-Cs sandbox in the plug-ins,
allowing them to interact with the rest of the system through
standard SW-C ports, while the underlying concepts, such
as the RTE, BSW and legacy ASW remain unchanged. Fig-
ure 1 gives an overview of how the plug-in concept is related
to the built-in software. In the figure, dotted lines are used
to show the plug-ins and their connections, whereas solid
lines are used for the AUTOSAR SW-Cs and their links.

Figure 1: The dynamic component structure.

A special-purpose SW-C, called plug-in SW-C, refines or-
dinary AUTOSAR SW-Cs by embedding a virtual machine
(VM), a dynamically evolving middleware, called Plug-in
Runtime Environment (PIRTE), and a number of plug-in
components. The VM is assigned its own memory, as well
as computational and communication resources, which it in
turn distributes to the plug-ins. This allows to execute the
plug-ins under a best effort scheme, avoiding competition
for resources with the built-in functionality.

Another type of dynamic SW-Cs, normally only present on
one ECU, is the external communication manager (ECM)
SW-C. It inherits from the plug-in SW-C and adds a com-
munication module for interacting with the external world.
It serves as a gateway for plug-in installation, allowing to
download and distribute plug-in binaries to the different
ECUs, as well as to transfer information to and from off-
board services, e.g. for participating in FESs.

For the concept to work, OEMs must provide plug-in and
ECM SW-Cs, which to start with only contain VMs and
APIs in the form of provided and required SW-C ports, con-
nected to the rest of the system through the RTE. The ECM
SW-C should contain addressing information to a trusted
server, containing plug-in databases. For safety reasons, the

built-in software should monitor the exposed API and pro-
vide fault protection mechanisms for the critical signals.

3.1.2 Plug-in Runtime Environment
Similarly to the standard AUTOSAR concepts, plug-ins are
accessed through provided and required plug-in ports, me-
diated by the PIRTE. Differently from the standard RTE,
PIRTE contains both a static and a dynamic part. The
static part consists of a mapping between the SW-C ports
and the so-called virtual ports, which build up the actual
static API available to the plug-ins. The dynamic part of
the PIRTE is responsible for the installation and manage-
ment of the plug-ins. Also, it allows dynamic configuration
of the plug-in ports, connecting them either directly with
other plug-in ports on the same SW-C, or with the virtual
ports, for further transportation of the signals through RTE
to the end recipient. This is done using context information,
shipped with the binaries, and stored in the PIRTE.

A context typically consists of two parts, Port Initialization
Context (PIC) and Port Linking Context (PLC). The PIC is
used for communication between plug-ins on different SW-
Cs and consists of data mapping between port names, de-
fined by the plug-in developer, and SW-C unique port ids.
The PLC describes the connections that should be estab-
lished between the new plug-in ports and the virtual ports.

When a plug-in that is designed to communicate with the
outside world is installed, an additional context message,
the External Connection Context (ECC), is included into
the installation package. An ECC is extracted by the ECM
PIRTE and contains the location information of the external
resource, e.g. its IP-address; the message id; and the internal
routing information within the vehicle consisting of the id
of the recipient ECU and the plug-in port.

3.1.3 Special-purpose ports
We distinguish between three types of SW-C ports, see Fig-
ure 1. While they look the same to the underlying RTE,
they carry different types of data and are handled differ-
ently by the PIRTE. A pair of type I ports connect each
plug-in SW-C with the ECM SW-C. Further, plug-in SW-Cs
are connected to each other through pairs of type II SW-C
ports, while type III ports are the typical AUTOSAR SW-C
ports for the communication with the built-in software.

Internally, SW-C ports are made available to the plug-ins
through a type-dependant mapping done in PIRTE to the
so-called virtual ports. The mapping works also in the other
direction, wrapping the plug-in data into correct format be-
fore outputting it to the SW-C ports.

Type I SW-C ports. There are several reasons for the plug-
in SW-Cs to communicate with the external world, e.g. for
plug-in installation, transfer of diagnostic messages, or for
participation in a FES. This kind of communication is always
handled by the ECM PIRTE, and relayed to the plug-in SW-
Cs through type I SW-C ports.

During its initialization, the ECM PIRTE creates a socket
client to set up a connection with a pre-defined trusted
server. When new plug-in binaries arrive to the ECM from
the server, they come together with a message type id (e.g.

0 for the installation package); the plug-in name; an id of
the recipient plug-in SW-C; and a context describing the
plug-in configuration for the particular vehicle. The ECM
PIRTE extracts the id and uses it to write the binaries and
the context on the appropriate type I SW-C port.

In the receiving SW-C, the plug-in PIRTE stores the instal-
lation package and processes the context. Once this process
is finished successfully, PIRTE writes an acknowledgement
message on its type I SW-C port, to be forwarded by the
ECM to the trusted server.

Other kinds of external messages are relayed in the simi-
lar way. The only exception occurs when a message is des-
tined to a plug-in in the ECM SW-C. In that case, the ECM
PIRTE writes or reads directly to/from the plug-in port.

Type II SW-C ports. In the case of two plug-ins being lo-
cated on the same SW-C, their ports are linked directly in
PIRTE, according to the PLC information. In the other
case, they are linked to the appropriate virtual ports, which
map the sender port id to the id of the recipient plug-in
port, again using the information extracted from the PLC.
The recipient id is attached to the data before it is sent out
on the type II SW-C port for further transportation through
the RTE. On the receiving side, the procedure is reversed,
the attached id is extracted, and the data is written to the
plug-in port having the right id.

In such a way, any number of plug-in ports can communi-
cate through one pair of static type II SW-C ports. Note
that from the plug-in’s perspective, its ports are normally
mapped to other ports on the same SW-C, either plug-in
or virtual, allowing the plug-in code to be unaffected by its
allocation. Also, the plug-in and SW-C ports can have com-
pletely different formats, as long as the PIRTE is able to
translate between these formats in its virtual ports.

Type III SW-C ports. Type III SW-C ports are used for
communication with the built-in software, both BSW and
ASW located in other non-plug-in SW-Cs. This is the sim-
plest kind of ports from the PIRTE’s perspective. Again,
port connections are based on the PLC information, while
virtual ports are used to transform between plug-in and
AUTOSAR formats. However, no additional data is at-
tached in such transformation.

3.2 Life Cycle Management of the plug-ins
For security reasons, all plug-in management is done through
a pre-defined trusted server, which relieves the resource-
constrained embedded system from much of the firewall is-
sues. The address of the server is defined by the OEM and
can only be altered by reprogramming the built-in software
(the static part of the ECM PIRTE), which is a non-dynamic
procedure with its own security mechanisms.

The server not only serves as a gateway for the plug-in bi-
naries, but it is also responsible for verifying that new plug-
ins are compatible with a particular vehicle configuration.
Also, plug-ins may have dependencies on each other, which
needs additional supervision. Thus, the trusted server acts
as a central point of intelligence, performing compatibility
checks and generating the different types of context that are

Figure 2: The structure of the trusted server

needed for successful plug-in configuration, see Section 3.1.

3.2.1 Structure of the trusted server
Figure 2 gives an overview of how the server is structured.
On the top level from the users perspective, the server has
a User and a Vehicle module, recording user profiles and
associated vehicle details respectively. Each Vehicle has
an associated configuration Vehicle Conf, which consists of
hardware configuration in the HW Conf module, built-in
software configuration in the SystemSW Conf module, and
records of the installed plug-ins in the InstalledAPP module.

On the developer side, the APP module represents the ap-
plication code stored on the server. Typically, an application
consists of one or several plug-in binaries. Furthermore, each
APP comes with one or several configurations (SW conf),
which describe for various vehicle models how the plug-ins
should be distributed in the vehicle and how the different
plug-in ports should be connected. Combining the vehicle
and plug-in configurations, the server creates a context for
the specific combination of APP and Vehicle.

The trusted server provides two modules that communicate
externally. The Web Services module presents an interface
to the user of the server, whether it is the vehicle user, the
OEM, or the plug-in developer. The Pusher module is used
to interact with the vehicles through their ECM modules.

3.2.2 Plug-in operations
The server provides three kinds of operations through the
Web Services module: user setup, upload of plug-ins and
configurations, and plug-in (re)deployment. Except for typ-
ical settings, such as creating a user account, the user setup
involves binding of a Vehicle module to a User, allowing the
server to keep track of specific Vehicle-User -configurations.

Upload operations are typically done by OEMs or third
party plug-in developers. OEMs should upload descriptions
of the hardware resources that are available to plug-ins (HW
conf), together with the exposed API, in terms of virtual
ports in the available plug-in SW-Cs (SystemSW conf). Fi-
nally, the plug-in developers upload their binary code and
descriptions of how to distribute their plug-ins on the avail-
able ECUs and how to connect the plug-in and virtual ports,
based on the information in HW conf and SystemSW conf.

Plug-in installation is normally triggered by the user through
a web portal. To begin with, the server checks whether
the target vehicle meets the pre-requisites of the plug-in by
comparing the vehicle configuration with the list of SW conf
modules for the plug-in. If a match is found, i.e. there
exists a description of how to distribute and connect the
plug-ins in the vehicle, the turn comes to check the plug-in
dependencies. In some cases, certain pre-requisite plug-ins
must be installed in order for the new plug-ins to function.
Conversely, the deployment operation can be hindered by
an already installed plug-in being in conflict with the new
plug-in functionality.

If the compatibility check fails, the server presents the rea-
son for the failure to the user. If the check passes, the server
creates a PIC context by assigning SW-C-scope unique ids
to the plug-in ports, using the knowledge about the already
installed plug-ins. Next, the port connection information,
found in SW conf, is translated into a PLC context. Spe-
cial care must be taken with the plug-in ports that will be
connected to plug-ins located in other SW-Cs. In that case,
the port ids of the recipient side must be included into the
context that is communicated to the sending side SW-C. If
any plug-in is designed to communicate externally, a package
with ECC information is prepared for the ECM PIRTE.

Finally, the server extracts appropriate binaries from the
APP database, combines them with the generated contexts
into installation packages, adds the ids of the destination
ECUs and the message types, and sends the packages to the
target vehicle through the Pusher module. Afterwards, the
server keeps track of the returning acknowledgement mes-
sages (acks) and records them into the InstalledAPP table.

When the uninstallation operation is invoked, the server
starts by consulting its InstalledAPP table to check which
plug-ins belong to this APP and whether there are some
other installed plug-ins that are dependent on the plug-ins
being uninstalled. If this is the case, the user is notified
about the need to also uninstall the dependent plug-ins.
Otherwise, uninstallation messages, containing the plug-in
names and the ids of the ECUs on which they run, are sent
to the vehicle and the InstalledAPP table is updated once
successful uninstallation has been fully acknowledged.

Finally, the restore operation is used when an ECU hard-
ware has been physically replaced, e.g. in a workshop. The
server filters out previously installed plug-ins in the replaced
ECU by querying the InstalledAPP module. Next, the usual
installation steps are followed for each plug-in.

4. EXAMPLE APPLICATION
In parallel with the concept development, an open-source
test platform was implemented to demonstrate the theoreti-
cal ideas. ARM-based Raspberry Pi (RPi) boards were used
as representatives for the more powerful control units that
are expected in the future. An open-source AUTOSAR im-
plementation, ArcticCore [2], extended with a number of
RPi-related drivers, see [17], served as the basic software.
Each RPi unit was equipped with one plug-in SW-C running
a Java virtual machine. Finally, the RPis were intercon-
nected and one RPi was appointed as the ECM, responsible
for the communication with the trusted server.

Figure 3: Overview of the example application.

In the following, an example application demonstrates the
ideas presented in Section 3. The application enables a sim-
ple FES which connects a model car carrying two RPis to a
smart phone and allows to remotely control the cars motion.
It consists of two plug-ins, see Figure 3, the communicator
(COM), located on the ECM RPi (ECU1) and listening to
the signals from a smart phone, and the operator (OP), lo-
cated on the other RPi (ECU2) and responsible for forward-
ing the actual control signals to the hardware.

The plug-in SW-Cs are connected in RTE by pairs of type
I and type II ports, for exchanging external and plug-in
messages respectively. SW-C2 provides an interface for the
plug-ins to access basic software through three type III SW-
C ports, translated into virtual ports WheelsReq, SpeedReq,
and SpeedProv by PIRTE2 (V4-V6 in Figure 3). At start-up,
PIRTE1 creates a connection with the trusted server.

Once the user triggers installation, the plug-ins are wrapped
with necessary information, e.g. {0, ’COM’, ECU1, com.pkg}
and {0, ’OP’, ECU2, op.pkg}, and sent to the ECM PIRTE.
In its turn, it installs the COM-package, distributes the OP-
package through its provided type I port, S2, and finally
forwards the S3-port’s ack message to the server.

The op.pkg contains the PIC, PLC and binaries for the OP
plug-in. The PIC simply describes initialization of the plug-
in ports with ids P0-P3, while PLC encodes connection con-
figuration between the new plug-in ports and PIRTE’s vir-
tual ports. For example, assuming that P3 is a provided
plug-in port that contains speed values, the APP Conf for
this plug-in would indicate that it should be connected to
the SpeedReq virtual port, which would be expressed by a
{P3-V5}-post in the PLC. The whole PLC for OP of this ex-
ample looks as follows: {P0-V3, P1-V3, P2-V4, P3-V5}. In
the same way, the PLC of com.pkg defines the connections
of the COM plug-in as {P0-, P1-, P2-V0.P0, P3-V0.P1}.
Note the additional information in the last two PLC posts,
notifying PIRTE1 that messages through these connections
should be forwarded to ports P0 and P1 respectively on the
recipient side, i.e. in the virtual port V3 of PIRTE2. The
first two ports are not connected to any virtual port, mean-
ing that PIRTE1 will communicate with them directly.

Since the COM plug-in is designed to communicate exter-
nally with a cell phone, its installation package also con-
tains an ECC, in the following form: {{111.22.33.44:56789,
ECU1, ’Wheels’, P0}, {111.22.33.44:56789, ECU1, ’Speed’,

P1}}. The first post parts are used by PIRTE1 to set up a
communication link to the cell phone, while the rest define
the destination ports. When a messages arrive, depending
on its id, ’Wheels’ or ’Speed’, it is written to P0 or P1.

The P0/P1 write operation triggers the COM software to
perform its task. In this case, it simply formats and writes
the data to its provided ports, P2 or P3, relaying the infor-
mation to the associated virtual port, V0. Here, the destina-
tion plug-in port ids, P0 and P1 respectively, are appended
and the contents are forwarded to S0. Next, RTE transfers
the signals to S3 on SW-C2. These are mapped to V3, where
the recipient ids are decoded and the signals are written on
either P0 or P1. The OP code transforms the signals into
appropriate calls to the basic software and finalizes the sig-
nal chain by writing to P2/P3, leading to a new signal in
S4/S5 and a call to the underlying software. Note that there
may exist unused virtual ports, such as V6 in SW-C2, which
are set up by the OEM for the use of future plug-ins.

5. RELATED WORK
Several well-established component-based frameworks exist
for embedded systems, such as Koala [13] and SaveCCM [8].
They are both similar to the AUTOSAR model in principle,
and thus only provide static configuration of the system.

Other researchers have investigated the use of Java in AUTO-
SAR based systems, such as the KESO compiler [16]. How-
ever, this solution generates native code for each ECU, and
is thus less suitable for dynamic reconfiguration.

Dynamic reconfiguration in automotive systems has been
studied in the DySCAS project [1]. It defines a completely
new architecture, with focus on mechanisms for self-reconfi-
guration. This however adds a lot of complexity to the archi-
tecture, which is avoided in our work with a more restricted
and pragmatic approach based on plug-ins.

Outside the automotive domain, several component based
systems with dynamic reconfiguration mechanisms have been
reported. In [5], an approach is described that focuses on
state-preserving updates of resource-constrained nodes. How-
ever, it is not based on a VM, but requires node-specific bi-
naries to be generated. In [6], a dynamic adaptation strat-
egy for resource constrained devices is presented, based on
the notion of models@run.time. It assumes a mix of static
and dynamic software components and allows to tune the
dynamic ones to adapt the system behavior, e.g. memory
usage. In difference, it does not offer a way to incorporate
dynamic behaviour within a fully statical context, such as
AUTOSAR.

In the avionics domain, the integrated modular avionics
(IMA) architecture [15] strongly resembles the ideas of AUTO-
SAR. It aims at hardware/software decoupling, thus opening
up for hardware optimization and a more flexible software
development. However, the IMA systems will still be static
between controlled upgrades, just as today’s AUTOSAR sys-
tems are only updated (re-flashed) at service intervals.

A Java VM based approach is SEESCOA [14], which defines
its own component model. It deals, among other things,

with issues related to transferring the state of components
from the old version to a new version during upgrades. This
issue is dealt with more pragmatically in our approach, by
mandating a plug-in to be stopped before being updated,
and then restarted fresh.

The well-spread OSGi technology [11] defines a dynamic
component architecture for Java-based applications, includ-
ing life cycle management and security issues. Besides being
restrictive in the choice of programming language, typical
OSGi implementations tend to be too resource demanding
for automotive applications. However, Concierge [12], an
OSGi implementation tailored to embedded devices, could
possibly be considered.

This work differs from all the above in that it provides dy-
namic installation of software components in an AUTOSAR
based control system, executing the plug-ins in a Java VM.
As described in [4], the success of FES is not only dependent
on technology, but business relations are equally important,
and key enablers are to have a solid architecture and good
processes, methods, and tools.

6. CONCLUSIONS AND FUTURE WORK
This work pushes the limits of the classical AUTOSAR ar-
chitecture, opening up for the installation of additional plug-
in software in AUTOSAR based vehicles at runtime. In this
paper, the main structural concepts that allow this shift to
happen were outlined, roughly divided into vehicle internal
and server side concepts.

The server structure defines the types of information that
need to be provided by OEMs and plug-in developers to
achieve a dynamic and modular plug-in management, adap-
table to different vehicle platforms. It places high emphasis
on the server as the main point of intelligence, somewhat
relieving the vehicular system from the burdens of plug-in
configuration and supervision.

On the vehicle side, the concepts of dynamic software com-
ponents, plug-in runtime environment, and different kinds
of software ports were proposed. These concepts allow to
achieve a truly flexible and modular AUTOSAR plug-in en-
vironment, where plug-ins can be reallocated between the
ECUs in a rather intuitive fashion, simply by reconfiguring
their port connections. At the same time the legacy SW-C
ports remain unchanged, allowing the underlying system to
be static, while the plug-ins evolve dynamically.

This work opens up many directions for future research. Pri-
marily, we intend to continue validating the results in the
experimental platform, but also move it to an industrial set-
ting and try it in a real vehicle. In addition, there is a need
to investigate the characteristics of plug-in applications, by
simply developing many more examples to discover what
support is needed, both on the tool side and in the platform,
to produce reliable quality plug-ins. In doing so, it will be
important to find a safe way of handling dependencies and
conflicts between different plug-ins. The possibility of us-
ing this technology for building FESs also contains many
opportunities for researchers, to better understand how to
actually build a well-functioning system-of-systems.

7. ACKNOWLEDGMENTS
This project is supported by Vinnova (grant no. 2012-02004),
Volvo Cars, and the Volvo Group.

8. REFERENCES
[1] R. Anthony, et al. Towards a dynamically

reconfigurable automotive control system architecture.
In Embedded System Design: Topics, Techniques and
Trends. Springer, 2007.

[2] ArcticCore product page. http://www.arccore.com.
Accessed on 2013-11-12.

[3] J. Axelsson and A. Kobetski. On the conceptual design
of a dynamic component model for reconfigurable
autosar systems. In 5th Workshop on Adaptive and
Reconfigurable Embedded Systems, Philadelphia, 2013.

[4] J. Axelsson, E. Papatheocharous, and J. Andersson.
Characteristics of software ecosystems for federated
embedded systems: A case study. To appear in
Information and Software Technology Journal, 2014.

[5] M. Felser, R. Kapitza, J. Kleinöder, and
W. Schröder-Preikschat. Dynamic software update of
resource-constrained distributed embedded systems. In
Embedded System Design: Topics, Techniques and
Trends. Springer, 2007.

[6] F. Fouquet, et al. A dynamic component model for
cyber physical systems. In Proc. of the 15th ACM
SIGSOFT symposium on Component Based Software
Engineering, 2012.

[7] S. Fürst, et al. Autosar–a worldwide standard is on
the road. In 14th Intl VDI Congress Electronic
Systems for Vehicles, 2009.

[8] H. Hansson, M. Åkerholm, I. Crnkovic, and
M. Torngren. Saveccm-a component model for
safety-critical real-time systems. In Proc. of 30th
IEEE Euromicro Conference, 2004.

[9] A. Kobetski and J. Axelsson. Federated robust
embedded systems: Concepts and challenges.
Technical report, SICS Swedish ICT, 2012.

[10] The OSEK/VDX portal. http://portal.osek-vdx.org.
Accessed on 2013-11-12.

[11] The OSGi alliance portal. http://www.osgi.org.
Accessed on 2013-11-12.

[12] J. S. Rellermeyer and G. Alonso. Concierge: a service
platform for resource-constrained devices. ACM
SIGOPS Operating Systems Review, 41(3), 2007.

[13] R. Van Ommering, F. Van Der Linden, J. Kramer, and
J. Magee. The koala component model for consumer
electronics software. IEEE Computer, 33(3), 2000.

[14] Y. Vandewoude and Y. Berbers. Run-time evolution
for embedded component-oriented systems. In Proc. of
IEEE Intl Conf. on Software Maintenance, 2002.

[15] C. B. Watkins and R. Walter. Transitioning from
federated avionics architectures to integrated modular
avionics. In Digital Avionics Systems Conf., 2007.

[16] C. Wawersich and I. T. M. Stilkerich. The use of java
in the context of autosar 4.0. In Embeded World, 2011.

[17] S. Zhang, A. Kobetski, E. Johansson, J. Axelsson, and
H. Wang. Porting an autosar-compliant operating
system to a high performance embedded platform. In
3rd Embedded Operating Systems Workshop, 2013.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

