
Architectural Concepts for Federated Embedded Systems
Jakob Axelsson

Swedish Institute of Computer Science (SICS)
SE-164 29 Kista

Sweden
+46 72 734 29 52

jakob.axelsson@sics.se

Avenir Kobetski
Swedish Institute of Computer Science (SICS)

SE-164 29 Kista
Sweden

+46 72 238 92 70
avenir.kobetski@sics.se

ABSTRACT
Federated embedded systems (FES) is an approach for systems-
of-systems engineering in the domain of cyber-physical systems.
It is based on the idea to allow dynamic addition of plug-in
software in the embedded system of a product, and through
communication between the plug-ins in different products, it
becomes possible to build services on the level of a federation of
products. In this paper, architectural concerns for FES are elicited,
and are used as rationale for a number of decisions in the
architecture of products that are enabled for FES, as well as in the
application architecture of a federation. A concrete
implementation of a FES from the automotive domain is also
described, as a validation of the architectural concepts presented.

Categories and Subject Descriptors
D.2.11 [Software Architecture]: Domain-specific architectures.

General Terms
Management, Documentation, Performance, Design, Reliability,
Standardization, Verification.

Keywords
Systems-of-systems; federated embedded systems; system
architecture; cyber-physical systems.

1 INTRODUCTION
With the increasing availability of affordable communication
services, the possibility to connect different systems to each other
has grown in importance, and led to large interest from industry
and academia in the challenges of creating systems of systems
(SoS) [14]. Some characteristics of an SoS is that a number of
independent systems are connected to create emergent functions
and properties at the SoS level. Each constituent system, which
will be referred to as a product in this paper, has a value on its
own, even when used outside the SoS, and may be delivered and
deployed independently by different manufacturers. The
integration of the products into an SoS can use any kind of
interface, including mechanical or electrical, but often the
communication interfaces through wired or wireless connections
are the most prominent ones.
Recently, SoS have also been given attention in the area of cyber-

physical systems (CPS). Here, the traditional embedded systems
(ES), where electronics and software of a product interact with the
physical world through sensors and actuators, are extended with
connectivity [5]. Due to their interaction with the physical world,
CPS are often subject to other, and more stringent, requirements
than other software-based systems, including dependability,
timing requirements, product cost, and various life-cycle related
qualities. For connected CPS, security also becomes an issue since
the communication interfaces provide an entry point which could
be subject to threat. The architecture of a typical CPS in a product
is a complex system in itself, using a distributed architecture
where a number of computer nodes are connected through internal
communication networks.

In this paper, we will present findings related to a kind of SoS in
the CPS area, which we call federated embedded systems (FES).
In a FES, the creation of the SoS is based on connecting the ES in
each product with each other, and also potentially with software
running on servers outside the embedded systems. In this way, it
becomes possible to create services on top of a combination of
products. We call such an SoS a federation, since the constituent
systems choose to participate voluntarily, for mutual benefit of the
participants. The federation services are the intended emergent
functions of the SoS. A single product may at any time participate
in a number of federations, and the actual federations they form
can vary dynamically over time, with participants coming and
leaving based on their interest in the federation.

To provide a simple example of a FES from the transportation
domain, consider a system that gives vehicles information about
the status of the traffic lights ahead of them, allowing them to
adapt their speed to pass without stopping. This has benefits both
to each vehicle since it can lower fuel consumption, and to the
road owners due to higher traffic throughput. The products
involved would be the vehicles, and in addition, a connection to
the traffic light controller is needed. Each vehicle could
communicate its position, planned path, and speed, and receive
information about the suggested speed to pass the next red light.
This suggestion can either be displayed to the driver, or fed into
the vehicle’s cruise control, if it is lower than the set speed.
A key benefit of FES is that the adaptation of a particular product
to a certain federation should be flexible and dynamic, allowing
the addition of services that were not thought of at the time of
designing the products, something that it is not possible with a
pre-defined communication interface. In traditional ES, the
example above would have required many years of
standardization on the level of individual communication
messages [19], and would only be implemented in new vehicles,
whereas FES allows new services to be deployed also in already
produced vehicles that just have the basic mechanism.

As described in [4], one of the key success factors in developing
FES is the software architecture. In fact, there are two
architectures that are relevant, namely the base product

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ECSAW, August 25-29 2014, Vienna, Austria.
Copyright 2014 ACM 978-1-4503-2778-7/14/08…$15.00.
http://dx.doi.org/10.1145/2642803.2647716

architecture whose ES will be enabled for participating in
federations, and the federation architecture, that structures the
services provided by that federation, which may need to include a
large number of different products. The product architecture can
be thought of as an infrastructure on which FES are built, whereas
the federation architecture is the applications using the
infrastructure.

Both these architectures have a number of challenges, some of
them shared, and others individual. Therefore, the two research
questions of this paper are as follows:

1. What are the important architectural characteristics
needed to enable a product for FES?

2. What are the important architectural characteristics of a
federation service to be built on products enabled for
FES?

The main contribution of the paper is thus a description of
important elements that could become a reference architecture for
FES. It also includes an initial validation of these findings.

The research method used is based on design science [11] and
constructive research [8], and it has been driven by interactions
with practitioners in over 10 companies who in a sense represent
stakeholders of different actors that are needed in an ecosystem
around FES. The research has been highly iterative, but some of
the main activities were:

1. Applications and key concepts: After formulating our
initial ideas, a series of workshops were conducted with
industry partners to brainstorm a large number of
applications and also identify key concepts needed [13].

2. Key stakeholders and concerns: Based on the selected
concept, a series of interviews were conducted with
industry representatives, leading to the identification of
a number of needs and concerns in the areas of business
models, architecture, and process, methods and tools
[4].

3. Architecture design: Given the requirements, the
important parts in the architectures for FES were
designed based on best practices for architecture
descriptions, as documented in international standards
[12].

4. Implementation and validation: To validate the
architectures, a system based on it was developed. The
application domain is automotive, and the
implementation is based on the AUTOSAR industry
standard [3].

This paper follows the structure of the research approach, with the
first step covered in this introduction. In the next section, the key
system concerns that drove the architecture are presented,
followed in Section 3 by the architectural concepts. In Section 4,
the implementation and validation is described, and in Section 5
some of the findings are discussed further. Finally, in Section 6,
the conclusions are summarized together with some directions for
further research.

2 ARCHITECTURAL CONCERNS
In this section, the main concerns of different stakeholders on the
architecture are discussed. They will be presented as a set of
qualities that are essential in FES. Some of the qualities are
equally relevant for both the federation and product architectures,
and others are primarily relevant for one of them (although there

may be minor implications also for the other). The section also
discusses some of the tradeoffs between the qualities. Since the
concerns described here are valid for a general FES, a specific
instance would normally have many other concerns that relate to
its functions and its environment. Table 1 gives a summary of the
concerns, and to which of the two architectures they primarily
apply.

2.1 Dependability
The first concern is dependability [2], which applies to both
architectures. For a federation service, the dependability is
important since the services are what are offered to its users, and
they will rely on the information provided by them.

For the products, they often have dependability requirements
when used stand-alone, and the added mechanisms of plug-in
software must not compromise their integrity, no matter what
plug-ins are installed.

2.2 Security
Security is related to dependability [2]. It is essential that opening
up the product architecture to federations does not lead to
possibilities to inject malware, or access private information in the
products. At the same time, the federation level functionality must
also be protected against tampering and intrusion attempts.

2.3 Assurability
Closely related to dependability is assurability, i.e., to be able to
efficiently and effectively deal with verification and validation.
On the federation level, this means to be able to assure the
qualities of the emergent services offered, which has to rely on
information and processing from all the participants, and hence
requires verification of parts of these.

For the products, it is mainly a question of verifying dependability
concerns of the base product, given a set of plug-ins.

Table 1. Summary of architectural concerns for FES.

Acronym Concern Product
architecture

Federation
architecture

D Dependability x x

S Security x x

A Assurability x x

V Variability x x

C Composability x

P Portability x x

O Openness x

F Flexibility x

R Resource usage x x

M Maintainability x

2.4 Variability
For federation services, variability is given by the fact that many
different product types could be potential members in the

federation, and a there may be variations between them, so that
different variants of the federation services are needed.

For the products, it is often the case that the same producer uses a
product-line approach, having somewhat different architectures, to
which the general mechanisms for participating in federations
need to be adapted. In both cases, the architectures must support
efficient ways of dealing with the variability.

2.5 Composability
For the federation services, a main concern is composability. A
product should be allowed to participate in several federations
simultaneously, and hence the services must be possible to
develop independently and be used in parallel within the same ES.
In cases of conflicts between services, these conflicts should be
detectable before connecting to the services.

2.6 Portability
For both architectures, a key issue is portability. On the federation
level, the services should be possible to execute on the hardware
platforms in different products, to avoid the need of the federation
developer to have development tools for many platforms.

In the product architecture, portability of the mechanisms that
enable federations is essential, and the intrusion in the existing
functionality of the control units should be minimized. Note that
due to the distributed nature of many ES, it could sometimes be
necessary to include federation mechanisms in several control
units, to be able to access local data in them.

2.7 Openness
The product architecture should exhibit openness to federation
services, allowing them to interact with the base application in a
control unit and access data in it.

2.8 Flexibility
The product architecture should offer a high flexibility in what
combinations of services can be installed, and in what interactions
they may have with the base application. This is to not limit what
federation services can be developed.

2.9 Resource usage
Most ES are resource constraint, since they are parts of products
where the cost is an important business factor. Therefore, the
resource usage of the federation mechanisms is important.
Inevitably, a dynamic mechanism for handling various numbers of
federations will require that additional processing power and
memory is installed in the control units, but this should be
minimized.
For the federation services, bandwidth for communication
between different products and servers can be a limited resource.

2.10 Maintainability
When a federation is operating, plug-ins will be distributed over
possibly a large number of products, and the maintainability of
the federation must be assured. This includes handling updates of
the software implementing federation services, managing
situations where the product is repaired (e.g., when control unit
hardware is replaced), and other life-cycle events.

2.11 Trade-offs
As usual, some of the architectural concerns are contradicting, and
trade-offs are needed. In this case, one important trade-off is

between openness on the one hand, and dependability and security
on the other hand. The openness is providing value to system
users in allowing the systems to participate in a wide range of
federations, but at the same time it can lead to risks in disturbing
the base product.

Another trade-off is between flexibility and resource usage. To
allow maximum flexibility, generous processing resources should
be provided in the control units, but that leads to higher product
cost.

3 ARCHITECTURAL DESIGN
After having described the architectural concerns, this section will
elaborate on key design decisions made in the product and
federation architectures, with the rationale for those decisions
expressed in relation to the concerns. In the next part of this
section, some of the programming concepts are presented that
were chosen to allow efficient development of FES. Then, in the
remaining two subsections, the key concepts of the product
architecture and federation architecture are described. The
description is on the level of a reference architecture, since it deals
with the concepts related to FES, whereas all concrete architecture
instances would also include many other aspects specific to its
functionality and domain. The main constructs in the architectures
are shown in Figure 1, with indication of the rationale based on
the concerns. In the figure, the shaded parts are belonging to the
federation architecture and the rest belong to the product
architecture. The letters in black circles indicate concerns, using
the acronyms indicated in Table 1.

3.1 Programming concepts
To be able to implement federation services that integrate
products and central servers, the functionality has to be expressed
as a number of software modules that can be allocated to different
parts in the federation. A key aspect of the architecture for FES is
the idea of using plug-in software in the products, and this concept
is described in the next subsection, followed by a presentation of
the structuring mechanism for services.

3.1.1 Plug-in software
In order to deal with the flexibility concerns, the ES in the
products will be extended with a mechanism for plug-in software
that can be added dynamically, in a way similar to how a smart
phone can be extended with apps. Through the combination of
connectivity and plug-in software, a large freedom is given to the
service developers in where to allocate software, and potentially,
much more data from the products can be accessed than would be
possible if only having a fixed communication interface with no
software in the ES. The resource usage of communication
bandwidth would be reduced, since only those signals actually
needed by a service are sent over the external interface. Also, it
becomes possible to allocate functionality that closes local control
loops directly in the product, without the need of going over
slower external communication. To make a given product adapted
for a certain federation, the correct plug-in modules have to be
added, and it is possible to dynamically select which federations
are relevant by adding or removing plug-ins during runtime.

A key benefit of FES is the flexible interfaces created through the
plug-in mechanisms, which makes it possible to add services that
were not thought of at the time of designing the products, Beyond
the use in SoS, the plug-in mechanism also has other uses, for
instance in shortening the deployment time of new features, and
opening up the ES for open innovation by third party.

3.1.2 Component-based software
The main idea about FES is to provide an efficient way of
building SoS where the emergent functionality is described as
federation services, and hence the programming concepts used to
create those services are very important. Based on the variability
and composability concerns, we advocate the use of a component-
based approach [9] for structuring all parts of a federation service,
including the plug-in software and software residing on servers. In
such an approach, all functionality is encapsulated in components
whose only relations to the outside are through their own ports.
To create a system, the components of different ports are
connected. The data that is transferred over these ports will, in the
context of FES, mainly be signals, which can be periodic or
aperiodic, and due to the highly distributed nature of the system,
the communication will be asynchronous.

In the description of a service, communication between
components is ignorant of whether they are allocated as a plug-in
to a product, or if they are on a server outside the ES, or a
combination. Due to the general nature of these mechanisms, it is
also possible for one federation to provide services through ports,
to which another federation can connect and build new services on
top of the ones provided by the first federation.

The components are all concurrent, and if they are plug-ins, they
are started immediately when they are installed on the control
unit, after which they stay alive until the unit is shut down.
Internally, the components may implement various application-
dependent states, but more generically, they will need to deal with
the formation of federations, i.e., if the product is currently
actively participating in a federation, or if it is only enabled for it
through the installation of the relevant plug-ins.

3.2 Federation architecture components
Having defined the core FES concepts of plug-in software and

connectivity, the federation level concepts will be studied next.
The presentation is on the level of a number of functions that are
needed for managing the operation of a federation and for
managing its lifecycle, as illustrated in Figure 1.

3.2.1 Federation operation management functions
In order to operate a federation, a number of functions are needed
to coordinate the execution, connecting products, etc. These
functions are to some extent application dependent, in that not all
applications necessarily require all functions, or the full
functionality, depending on the dynamic structure of the
federation. Therefore, the presentation here is limited to listing a
number of functions that may be needed.
The first set of functions relates to federation formation and
dissolving. Once a federation has been created by setting up the
necessary server-side software, and making plug-ins available to
products, a given product has to discover the federation. This can
mean different things, since a federation can only be relevant
under certain conditions, such as a certain location. Next, the
product needs to join the federation, to actually become an active
member of it, after which the operation phase starts. During
operation, the products need support for addressing specific other
products in the federation to let them communicate. Finally, a
product may choose to leave the federation, if it becomes
irrelevant. For all these functions, application specific rules need
to be described, and usually they will assign different roles to the
members.

Another set of functions deals with overall management of the
federation, including supervision of its operation, fault handling,
control¸ security mechanisms, and conflict handling in case
different participants try to take incompatible actions. These
functions primarily address the concerns for dependability and
security.

For all these functions, different possibilities exist when it comes

Product

Control
unit

PIRTE

Plug-‐in

Plug-‐in

Federation
server

Trusted
server

Federation	 service

Control
unit

ECM

Federation	 service

…

Network

Product

PIRTE

Plug-‐in
ECM …

…

R

F VC

SM

P S D

F R

O

Operation	 &	
life-‐cycle mgmt

Figure 1. Overview of FES architectures, with relations to concerns.

to distribution of functionality to the members. One extreme case
is complete centralization, where one server implements all the
management functionality, and the other extreme is totally
distributed, in which a federation consists only of products and no
servers, and has the management functions included in plug-ins.
Which solution is appropriate depends on the application
characteristics of the federation services, and has to be defined in
its specific architecture.

3.2.2 Federation life-cycle management
The main life-cycle phases of a federation are: development;
configuration; operation; and maintenance. Most development
aspects are covered in other parts of the paper, and the operation
was covered in the previous subsection, so here the focus is on
configuration and maintenance.

At the core of those phases is the handling of plug-ins in the
product. In the FES architecture, this is centralized in a
component called the trusted server [16], to efficiently deal with
concerns for maintainability and security, but also to minimize
resource usage in the ES. The trusted server is the only place
from where a plug-in can be downloaded into a certain product,
which means that many security mechanisms can be installed
there instead of in the product. The trusted server stores all
available plug-ins, and keeps track of which plug-ins are actually
installed in a given product instance. It is thus responsible for
maintenance activities, such as restoring plug-ins after a hardware
repair of a control unit in the product, or upgrading to new
versions.

3.3 Product architecture components
In this subsection, the elements that need to be included in the
product architecture to deal with plug-in execution and
communication are described, together with some tool support.

3.3.1 External communication manager
The communication with other systems is handled through the
External Communication Manager (ECM) component. This
includes both the external signaling of a plug-in which is part of a
federation service, and the communication related to plug-in
management.
There is only one instance of this component in each product, and
it is typically located in the control unit that contains the wired or
wireless communication interface. As shown in Figure 1, all
communication related to plug-in management is between the
ECM and the predefined trusted server, for reasons described
above.

When a plug-in arrives in the ECM from the trusted server, the
ECM will do three things: First it will examine what components
are parts of the plug-in, and on which control units they will be
distributed. Secondly, it will investigate the connections between
those components, and ensure that appropriate addressing
information is provided to implement the communication within
the target architecture. Lastly, it will send each plug-in to its
destination control unit, where it will start executing. Note that it
is possible to analyze these steps offline on the trusted server, and
thereby minimizing the intelligence needed in the ECM, which is
often desirable to minimize resource usage in the ES. The control
unit will acknowledge successful installation to the ECM, and
inform the trusted server of the status for future maintenance
actions.

In the case of a distributed product architecture, there are two
ways in which the plug-in code can be stored. One option is to

store it centrally in the control unit where the ECM is allocated. In
that case, the plug-ins will be retransferred to the different control
units on system startup, and then executed from RAM. If the
control units have provision for local storage, e.g. in FLASH
memory, another possibility is to store the code locally in each
control unit, which would reduce start up time. However, this
requires additional software mechanisms, such as a rudimentary
file system, which is not usually available in ES control units.

3.3.2 Plug-in runtime environment
At the heart of a FES is the mechanism for plug-in execution in
the product architecture. In our concept, this mechanism is
encapsulated in a component called the Plug-In Runtime
Environment (PIRTE), as shown in Figure 1. It consists of a
virtual machine (VM) executing a machine independent
representation of the plug-in software, thereby contributing to the
portability of the plug-ins.

Typically, a producer would need to provision for plug-in
execution in a number of control units based on different
hardware. Therefore, the VM itself should be written in a high-
level language to the greatest possible extend to increase its
portability between control units, and should only rely on a bare
minimum of hardware and operating system services.

PIRTE needs to have an interface to the underlying application
software in the control unit, in order to access data and influence
its behavior. To deal with security and dependability concerns,
this interface is the only way in which a plug-in can access any
parts of the control unit. To deal with openness, this interface is a
trade-off point where product developers must consciously decide
what input and output signals should be available to plug-ins.
Possibly, different interface subsets could be offered, depending
on the trust placed in the plug-ins.

The architecture does not make any assumptions about which
control units of a distributed ES should be equipped with PIRTE,
but it is possible to include as many PIRTE’s as the designers find
suitable. If several PIRTE’s are included, there needs to be a
logical communication channel between each of them, to allow
communication between plug-ins that are part of the same
federation service. Between each PIRTE component and the ECM
component in the product, a logical communication link is also
needed, to allow plug-in installation and management, and to
allow plug-ins to communicate outside the product.

Also related to dependability is the need to isolate the VM from
other application software in the control unit. PIRTE has to be
allocated to its own operating system task, which should have
lower priority than time critical application tasks, but should be
assured a minimal share of the processing resources. Also, the
VM will have its own memory area for stack and heap data. To
make the product flexible, sufficient memory and processing
resources need to be set aside for the PIRTE, while at the same
time limiting the resource usage in order to keep cost down.

To be able to execute multiple plug-ins simultaneously, which is
required for composability, the VM needs to be able to handle
threads. In many ES, only statically defined tasks are possible,
and the VM therefore has to provide its own threading concept.

3.3.3 Configuration support
As mentioned above, the product developers need to decide what
signals should be available for the plug-ins on a certain control
unit. If a component-based approach is used also for the control
unit’s built in functionality, which is sometimes the case [1][16],
then it is possible to extract all available signals in the application.

Then, a simple, interactive approach can be used where the
developer picks those signals that should be available to the plug-
ins, and the generic PIRTE can be instantiated based on that,
setting up all the required connections. This would address the
portability and variability concerns for the product architecture.
However, such a flexible approach may in practice lead to issues
with unstable and volatile interfaces towards the plug-ins between
product versions, which could negatively affect portability of
plug-ins between product generations, and lead to increased
variability on that side, if not used with care.

Even though complete tool support is possible for some parts of
the interface, in particular in those cases where signals are only
read by plug-ins, more elaborate efforts may be required for the
parts of the interface that allow a plug-in to write signals to the
product application. In particular, there is a risk that several
independent plug-ins could try to write conflicting signals to the
same interface, in which case an arbitration mechanism is needed
to ensure dependability. At this point, we have not identified any
general mechanisms to handle this, but it has to be dealt with
based on the characteristics of the underlying application.

3.3.4 Simulation
To deal with assurability concerns, in a situation where the plug-
ins are possibly developed by other organizations than the base
products, it is necessary to provide tool support. If the actual
product is not accessible to the plug-in developers, or if some
testing cannot be performed efficiently, simulation support is
needed, which captures the key characteristics of the product from
the plug-in’s point of view. This could be complemented with
other kinds of static or formal verification.

4 INSTANTIATION AND VALIDATION
To validate the architectures, and provide a means to gather more
empirical data on FES development and usage, a demonstrator has
been created. It is called the Mobile Open Platform for
Experimental Design (MOPED) [3], and consists of a model car
in scale 1:10, which is equipped with a distributed computer
system consisting of three control units based on Raspberry Pi
hardware, and connected via Ethernet. Two of the control units
execute software based on the AUTOSAR automotive software
standard [1], and the third is based on Linux, which makes the
configuration very representative of the software in a real vehicle.
Each AUTOSAR node has various sensors and actuators, whereas
the Linux node acts as a telematics unit responsible for external
communication. It will now be described how the FES
architectures have been instantiated in MOPED. The main focus
will be on the product architecture, and some of the key design
decisions made will be explained.

Since AUTOSAR uses a component-based approach, it was
decided to base the component model for services on similar
concepts, to maximize transparency between the built-in software
and plug-ins. However, the base software is implemented in C,
whereas it was decided to use Java for services, in order to make
use of existing Java VMs inside the PIRTE. Therefore, a Java
library with basic classes for ports and connectors was created and
used for programming services.

The PIRTE is generated from configuration files that exist within
the AUTOSAR framework. Those files, which are on XML
format specified by the AUTOSAR standard and hence tool
vendor independent, contain all the information about what ports
exist on application software components in the control unit. The
developer can thus easily select which ports to make visible for

plug-in software in this PIRTE. In the model car, one PIRTE is
created in each of the two AUTOSAR units, and the ECM is
allocated to the Linux telematics unit, since that is where the
external communication is placed. Since the Linux node has a file
system, which is not the case for AUTOSAR nodes, the plug-ins
are stored in the Linux node and transferred to the respective
PIRTE on system start-up.

To complete the development environment, a simulator has also
been constructed, that allows execution of plug-ins on a PC to test
new functionality prior to deploying them in the ES.

For life-cycle management of the plug-ins, a trusted server has
been implemented, that allows the users to select which plug-ins
to install in the car. Developers can upload new plug-ins, handle
variants for different platforms, and manage versions.

To create a federation service, such as the traffic light speed
adaptation mentioned in the introduction, would require the
implementation of different federation management functions on a
server, that can inform plug-ins in each car about the next time the
traffic light will switch. Joining and leaving this federation would
be based on the location of the car, since information about the
traffic light is really only relevant when the car is close to the light
and travelling in that direction. The federation management
functions such as supervision and fault-handling, are in this
example fairly uncomplicated.

5 DISCUSSION
Through the work presented in this paper, a foundation has been
laid for experimenting with SoS in the form of FES. We believe
that we have captured many elements of a future reference
architecture for such systems, but we also recognize that open
issues exist, that can only be resolved through further
investigations based on example applications. In this section,
some of these issues will be discussed.

In the current work, initial attempts to build federation services
have been described, including the management functions that are
needed in federations. Most likely, more can be done in
structuring these functions, e.g. in layers, and identifying
recurring patterns and levels of functionality in order to provide
blueprint solutions that can be used when creating a federation
service. This can be complemented with other types of support,
such as programming libraries with useful routines that are
needed.
In the proposed FES architecture, a component-based approach is
used, and we think there are strong arguments for this. In the case
study, this was realized in Java, mainly due to the availability of
VMs and the wide spread use of the language. At the moment,
there is really no evidence that points at a need for a programming
language of such complexity for this kind of applications. It
would be relevant to look at what a minimalistic language would
be, which could also lead to a minimal VM with even less
requirements on resources for plug-in execution, thereby
removing some of the barriers of adaptation in very small ES,
such as sensor networks.
The architectures described in this paper are technical ones, but it
is important to also recognize the relation to business
architectures, as discussed in [18]. With the open principles of
FES, it becomes relevant to study the software ecosystems that
result around a product and around federation services. Some
initial results around this have been identified [4], and it is clear
that the success of the approach is closely related to the possibility

of finding appropriate business models, leading to additional
concerns that the architecture must support.

A question that is often raised is whether there is a need for
standardization to make the FES approach work. Standardization
would be beneficial, but is utopic since it requires a certain
maturity of the application domain and usually takes years if not
decades to accomplish. FES is targeted at domains that have not
reached this stage, and where innovation is moving very fast.
Therefore the focus has instead been on providing flexibility and
variability in order to cater for new circumstances. The plug-in
mechanism gives access to a potentially much broader interface to
an ES than would a traditional signal based communication
interface.

In the design of the FES architecture, steps have been taken to
allow dependable systems. However, dependability can never be
assured by this level of architecture alone, but always depends
also on characteristics of the application. Further work is needed,
again based on empirical evidence from concrete examples, to
investigate if even better support for building dependable services,
and for ensuring dependability in the individual products, can be
provided in the architecture. This includes issues like resolving
conflicts between plug-ins and services.

Related to dependability is also the possibility to build automatic
control functionality in the services, such as the traffic light speed
control sketched above. Due to the distributed, net centric nature
of FES, parts of the functionality of a service will be central and
parts in the plug-ins of different products. This means that some
communication will inherently be subject to unpredictable delays,
and also the execution of plug-ins will be time-variant, since it
depends on what other plug-ins share the computational resources.
These are all fundamental threats to building control functions,
especially if there are dependability requirements, which is often
the case. Most likely, support for dealing with this will be needed.
One approach could be to add explicit time stamps on signals, in
order to allow recipients to compensate for delays in
communication and computation. Also, signals may come from
sources whose trustworthiness is not known, and therefore,
concepts for describing the quality of signals may be needed. This
could be combined with supervision by the federation of the
quality produced by different participants, in order to detect, and
possibly isolate, products which are not behaving correctly. A
strength of the FES architecture is that it gives the designer many
options for allocating functionality between the products and
central servers, and this can be used to deal with some of the
timing issues, by allocating control loops close to the sensors and
actuators inside the products instead of centrally, which would
increase the use of communication with unpredictable latencies.

6 RELATED WORK
Although the engineering of SoS is a fairly new area, that still
lacks systematic methods and proven solutions, some previous
work exists with relation to the results presented in this paper. To
start with, there are different definitions of types of SoS. In [14],
three different types are included, namely “directed SoS” which
are centrally managed with a common purpose; “collaborative
SoS” which also have a common purpose but lacks central
coordination; and “virtual SoS”, which lacks both these. In [10],
the type “acknowledged SoS” is added, which is similar to
directed ones, but still retain their own individual objectives as
well and stress the cooperative nature of the constellation. The
FES concept can in principle encompass all these four types, and
it is a matter of how the services are defined. As [10] points out,

acknowledged SoS are probably the most common variant, and
this is likely to apply to FES as well.

The same reference also discusses principles for SoS, and among
these are “using an architecture based on open systems and loose
coupling”, which is exactly the principle followed for FES.
Meilich [15] also discusses principles for SoS, with a focus on net
centric environments and thus highly applicable for FES,
concluding that flexibility, composability, and extensibility are
important concerns. In his words, “capabilities that can be
assembled or composed on-the-fly will be how effectiveness will
be measured”, and this is taken care of by the plug-in mechanism
in the FES product architecture. In [21], a number of research
challenges for SoS architecture is listed, and several of them are
factors that also went into the design of FES, such as resilience
(which encompasses dependability), flexibility, agility, and
modularity.

One of the underlying thoughts in the FES architecture was to
come up with concepts that can scale and evolve without
increasing the complexity of the framework itself, and this need
was earlier observed also in [20]. They point out that standardized
interfaces are beneficial for the evolvability of SoS, but at the
same time recognize that this is not so realistic. In FES, the
approach has been to device a stable mechanism for plug-in
development, giving flexibility in the interfaces and providing a
kind of interface layer, in the terminology of the reference. Other
thoughts on the elements of SoS architecture are provided in [6],
who proposes a network based solution with design-by-contract
interfaces between the parts. FES uses a similar, but possibly
more flexible, approach through component-based software. The
authors also identify the need for control functions in the SoS, and
present a case study from the defense domain.

In [6], the concrete architecture for a SoS satellite system is
elaborated, but it appears to be primarily an example of a
“directed SoS”, and does not give more general principles that
could support an SoS reference architecture.

In comparison to the above examples, the FES approach presented
in this paper is a general framework that can encompass many of
the concepts previously presented. It also addresses many of the
concerns identified by others through a light-weight and highly
flexible approach with moderate assumptions about coordination
and control of the SoS. The current work is fairly unique in that it
aims at creating a reference architecture for a wide class of SoS.
Many others are either speculating on SoS in general on a high
level of abstraction, or working with a singular system example.
We are systematically analyzing the properties of certain general
mechanisms, and validating them through concrete
implementation.

7 CONCLUSIONS
In this paper, an approached to systems of systems called
federated embedded systems has been described. As described in
the two research questions that has directed the work, the focus
has been on the architecture of the products participating in the
SoS, and on the architecture of the management functionality
needed to operate a FES. The description of these architectures is
on the level of a reference architecture, and to be able to validate
them, an experimental platform from the automotive domain has
been developed.

7.1 Future work
The development of the FES concept is still at an initial state. We
believe that many of the important parts have been identified, but

they need to be more detailed in order to reach the ultimate goal,
which is to create and validate a stable reference architecture for
FES. The sound approach to reaching this goal is to gain more
experience from actually building FES, and use empirical
evidence from this to extend the architecture descriptions. In
particular, two kinds of cases will be used. First, more example
applications will be implemented as federation services, and this
will primarily be done using the experimental platform described
above. From this, common patterns in federation architectures can
be inferred, in particular for the federation management functions.
Secondly, the product architecture will be validated through case
studies at partner companies, to check that the architectural
solutions presented here can match a wide variety of product
architectures.

An especially important area of future work is on assurances, and
an overarching concern for all SoS is how to build reliable
systems out of unreliable components. Better methods are needed
to discover and handle conflicts between plug-ins, and to assess
that timing behavior meets the requirements. In particular, it
would be valuable to find ways of analyzing these effects on the
trusted server, prior to installation of plug-ins. Since the trusted
server keeps a record of what plug-ins are installed on a particular
product, it has the needed information to analyze the
consequences of adding one more plug-in. For instance, it could
assess if there is sufficient memory and processing power
available, but also check for conflicts with the other plug-ins.

8 ACKNOWLEDGMENTS
This research was funded by VINNOVA, the Swedish Agency for
Innovation Systems (Grants No. 2012-02004 and 2012-03782),
and was also supported in different ways by a large number of
Swedish companies.

9 REFERENCES
[1] AUTOSAR. www.autosar.org.

[2] Avizienis, A. et al. 2004. Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing. 1, 1 (Jan. 2004), 11–33.

[3] Axelsson, J. et al. 2014. MOPED  : A Mobile Open Platform
for Experimental Design of Cyber-Physical Systems.
Euromicro SEAA (2014).

[4] Axelsson, J. et al. 2014. Characteristics of software
ecosystems for Federated Embedded Systems: A case study.
Information and Software Technology. (Apr. 2014).

[5] Broy, M. and Schmidt, A. 2014. Challenges in Engineering
Cyber-Physical Systems. Computer. 47, 2 (2014), 70–72.

[6] Butterfield, M.L. et al. 2008. A system-of-systems
engineering GEOSS: Architectural approach. IEEE Systems
Journal. 2, 3 (2008), 321–332.

[7] Caffall, D.S. and Michael, J.B. 2005. Architectural
framework for a system-of-systems. 2005 IEEE International
Conference on Systems, Man and Cybernetics. 2, (2005).

[8] Crnkovic, G.D. 2010. Constructive Research and Info-
computational Knowledge Generation. Model-Based
Reasoning in Science and Technology. L. Magnani et al., eds.
359–380.

[9] Crnkovic, I. and Larsson, M. 2002. Building Reliable
Component-Based Software Systems. Artech House, Inc.

[10] Department of Defense. Systems Engineering Guide for
Systems of Systems, v. 1.0, 2008.

[11] Hevner, A.R. et al. 2004. Design Science in Information
Systems Research. MIS Quarterly. 28, 1 (2004), 75–105.

[12] ISO/IEC/IEEE Std. 42010. Systems and software
engineering — Architecture description, 2011.

[13] Kobetski, A. and Axelsson, J. 2012. Federated robust
embedded systems: Concepts and challenges. SICS
Technical Report T2012:05.

[14] Maier, M.W. 1998. Architecting principles for systems-of-
systems. Systems Engineering. 1, 4 (1998), 267–284.

[15] Meilich, A. 2006. System of systems (SoS) engineering
architecture challenges in a net centric environment. 2006
IEEE/SMC International Conference on System of Systems
Engineering. (2006).

[16] Ni, Z. et al. 2014. Design and Implementation of a Dynamic
Component Model for Federated AUTOSAR Systems.
Design Automation Conference (2014).

[17] Ommering, R. van et al. 2000. The Koala Component Model
for Consumer Electronics Software. Computer. 33, 3 (2000),
78–85.

[18] Papatheocharous, E. et al. 2013. Issues and challenges in
ecosystems for federated embedded systems. Proceedings of
the First International Workshop on Software Engineering
for Systems-of-Systems - SESoS ’13 (New York, New York,
USA, Jul. 2013), 21–24.

[19] SAE Std. J2735. Dedicated Short Range Communications
(DSRC) Message Set Dictionary, 2009.

[20] Selberg, S.A. and Austin, M.A. 2008. Toward an
evolutionary system of systems architecture. 18th Annual
International Symposium of the International Council on
Systems Engineering, INCOSE 2008 (2008), 2394–2407.

[21] Valerdi, R. et al. 2008. A research agenda for systems of
systems architecting. International Journal of System of
Systems Engineering.

