
Combining Bound-T and SWEET to Analyse
Dynamic Control Flow in Machine-Code Programs

Niklas Holsti1, Jan Gustafsson2, Linus Källberg2, and Björn Lisper2

1Tidorum Ltd, Finland, niklas.holsti@tidorum.fi
niklas.holsti@tidorum.fi
2School of Innovation Design and Engineering, Mälardalen University, Sweden
{jan.gustafsson,linus.kallberg,bjorn.lisper}@mdh.se

 Abstract

The first step in the static analysis of a machine-code subprogram is to construct the control-flow graph. The
typical method is to start from the known entry-point address of the subprogram, retrieve and decode the
instruction at that point, insert it in the control-flow graph, determine the address(es) of the successor
instruction(s) from the known semantics of the instruction set, and repeat the process for the successor
instructions until all reachable instructions and control flows are discovered and entered in the control-flow
graph. This procedure is straight-forward as long as the successors of each instruction are statically defined.
However, most instruction sets allow for dynamically determined successors, usually by allowing the target
address of a branch to be set by the run-time, dynamically computed value of a register. We call such instructions
dynamic branches. To construct the control-flow graph, a static analyser must somehow discover the possible
values of the target address, in other words, it must perform a value-analysis of the program. This is problematic
for two reasons. Firstly, the value-analysis must be applied to an incomplete control-flow graph, which means
that the value-analysis will also be incomplete, and may be an under-estimate of the value-set for the complete
subprogram. Second, value-analyses typically over-estimate the value-set, which means that the set of possible
target addresses of the dynamic branch may be over-estimated, which leads to an over-estimate of the control-
flow graph. The over-estimated graph may include instructions and control flows that do not really belong to the
subprogram under analysis. This report describes how we connected two analysis tools, Bound-T from Tidorum
Ltd and SWEET from Mälardalen University, so that the powerful "abstract execution" analysis in SWEET can
be invoked from Bound-T to resolve dynamic branches that Bound-T finds in the machine-code program under
analysis. The program-representation language ALF, defined by the SWEET group, is used as an interface
language between Bound-T and SWEET. We evaluate the combined analysis on example programs, including
both synthetic and real ones, and conclude that the approach is promising but not yet a great improvement.
Bound-T contains several special-case analyses for dynamic branches, which currently perform slightly better
than SWEET's more general analyses. However, planned improvements to SWEET may result in an analysis
which is at least as powerful but more robust than the analyses in Bound-T alone.

1998 ACM Subject Classification F.3.2 [Logics and Meanings of Programs]: Semantics of Programming
Languages–Program Analysis
Key words and phrases Worst-case execution-time analysis, WCET, dynamic control flow, indexed branch

Table of Contents

 1 Introduction and Overview..3

 2 Dynamic Control Flow in Machine Code..3

2.1 Introduction to Static WCET Analysis...3
2.2 The Dynamic Branch Problem...4

2.2.1 Dynamic Branches..4
2.2.2 Switch-Case Statements..5
2.2.3 Calls Through Function Pointers..5
2.2.4 Virtual-Function Calls...6

2.3 Our New Combination...7

 3 Coupling Bound-T and SWEET..7

3.1 Overview...7
3.2 Generating the ALF Program...9

3.2.1 Program Representation within Bound-T...9
3.2.2 Basic Translation from Bound-T Internal Form to ALF...9
3.2.3 Translation of Branching Control-Flow..10
3.2.4 Translation of Calls Between Subprograms..11
3.2.5 Translation of Unresolved Dynamic Branches...11
3.2.6 Generating Output-Annotation Specifications..11
3.2.7 Generating Annotations...12

3.3 SWEET Analysis of the Incomplete ALF Program...12
3.4 Using SWEET Outputs in Bound-T...13

 4 Experimental Evaluation..14

4.1 Overview...14
4.2 A Loop Containing a Switch-Case using a Jump Table (tp_avr_21, asm)..15

4.2.1 Analysis by Bound-T Alone..16
4.2.2 Analysis by Bound-T and SWEET Combined...17

4.3 Some C Switch-Case Statements with Address Tables (tp_c_2, gcc)...17
4.3.1 Analysis by Bound-T Alone..18
4.3.2 Analysis by Bound-T and SWEET Combined...18

4.4 A Simple Switch-Table and Handler (tp_avr_6, asm)..19
4.4.1 Analysis by Bound-T Alone..19
4.4.2 Analysis by Bound-T and SWEET Combined...19

4.5 A Complex Switch-Table: Sparse Form (tp_c_2 / KuiSnd5Z, IAR)...20
4.5.1 Analysis by Bound-T Alone..20
4.5.2 Analysis by Bound-T and SWEET Combined...21

4.6 A Complex Switch-Table: Dense Form (tp_c_2 / KucDnd11Z, IAR)...23
4.6.1 Analysis by Bound-T Alone..23
4.6.2 Analysis by Bound-T and SWEET Combined...25

4.7 Complex Boolean Address Computation (tp_avr_7/8, asm)...28
4.7.1 Analysis by Bound-T Alone and Combined with SWEET...29

 5 Summary and Conclusions..32

5.1 Goals and Methods...32
5.2 Overall Success Rates...32
5.3 Why Some Analyses Failed..33
5.4 Precision of Successful Analyses...34
5.5 Is the Combination More Powerful than its Component Tools?..35
5.6 Suggestions for Improvements and Future Work...36

Document Status and Change Log...38

2

 1 Introduction and Overview
This report describes a procedure for analysing dynamic control flow in machine-code programs. The

procedure combines the low-level machine-code analyser Bound-T from Tidorum Ltd [1] with the high- or
intermediate-level data- and control-flow analyser SWEET from Mälardalen University [2], which analyses
programs represented in the ALF language [3].

The report is organized as follows. Chapter 2 presents the problems posed by dynamic control flow for static
analysis. It explains why machine-code programs have dynamic branches and how Bound-T tries to analyse or
"resolve" such branches to discover the control-flow graphs, using various analysis methods in Bound-T itself,
and why these analysis methods are limited and fail to work on some important classes of dynamic branches, in
particular those where the machine-code program intentionally uses wrap-around or overflow in its
computations. Chapter 3 then shows how we have connected Bound-T and SWEET so that the powerful analyses
in SWEET can work on dynamic branches discovered by Bound-T.

Chapter 4 evaluates the tool combination on a set of example programs. Chapter 5 summarises the report,
draws some conclusions, and sketches possible future work.

The pilot implementation described in Chapters 3 and 4 analyses machine-code programs for the Atmel AVR
8-bit processor architecture, a widely used microcontroller family [5]. The AVR can be considered a difficult
subject for dynamic branch analysis because it implements mostly 8-bit operations and does not provide general
base+index addressing. The AVR has a Harvard architecture and separate instructions for reading data from the
code memory and from the data memory. Code addresses are 16 or 22 bits wide (depending on the AVR device)
and so must be manipulated as pairs or triples of 8-bit data. Some of the 32 general 8-bit registers can be paired
and used as 16-bit registers, but the set of 16-bit operations for such register pairs is quite asymmetric and non-
orthogonal. These limitations mean that the machine code generated for various kinds of dynamic branches in
high-level languages is complex and not very idiomatic. This makes pattern-matching analysis methods
unreliable, and semantically based analyses, such as ours, should be competitive.

This work was supported by the APARTS project (Advanced Program Analysis for Real-Time Systems).
APARTS is a collaboration project (grant agreement no. 251413) funded by the European Commission’s 7th
Framework Programme under the IAPP activity (Industry-Academia Partnerships and Pathways) of the Marie
Curie Mobility Actions.

 2 Dynamic Control Flow in Machine Code

2.1 Introduction to Static WCET Analysis
Software programs in real-time systems are subject to real-time performance requirements, such as fixed periods
for cyclic control loops and deadlines for responses to sporadic inputs. To verify that such real-time requirements
are always met, it is useful (in principle even necessary) to have bounds on the worst-case execution time
(WCET) of the relevant parts of the program. Static WCET analysis is a form of static program analysis that
computes WCET bounds from the program itself, which is usually given in machine-code, executable form. The
analysis, being static, covers all execution paths and all possible input data values, and therefore delivers safe
bounds. The Bound-T tool from Tidorum Ltd [1] is such a WCET analysis tool. The SWEET tool from
Mälardalen University [2] started as such a tool, but is now focused on the value- and control-flow analysis
phases, to be described shortly, and is applied to an intermediate-level program representation [3] rather than
machine language.

Static WCET analysis is usually applied to selected architectural components of a whole program, such as
task-body subprograms or interrupt-handler subprograms. However, for simplicity we will use the term
"program" to mean the part of the program that is analysed. In practice, this "program" is usually a selected
subprogram and its callees.

Static WCET analysis of a machine-code program usually (and also in Bound-T) proceeds in several phases
as follows [4]. First, the instructions in the program are decoded and organized into some kind of control-flow
graph (CFG), or a set of such graphs, that shows the structurally possible execution paths (instruction sequences)
in the program. The nodes in these graphs are usually basic blocks of instructions and the arcs represent control-

3

flow transfers that can be either normal flow from an instruction to the next instruction in address order, or
branches in the flow caused by jump or call instructions. This first phase is called CFG reconstruction.

When the control-flow and call-graphs are available, a processor-behaviour analysis computes an upper
bound for the execution time of each graph element (node, arc). For complex processors, the actual execution
time of a graph element can depend greatly on the context (processor state) in which this element is executed,
which means that the execution time depends on the execution path leading up to this graph element as well as
on the current variable values when this graph element is executed. The processor-behaviour analysis produces a
WCET bound that covers all possible contexts.

The existence of several paths to, and contexts for, a graph element can lead to an over-estimated WCET
bound for the program, if the graph element is often executed in contexts where its real WCET is much less than
its WCET in other contexts. To avoid this imprecision, the graph can be expanded by unpeeling loops and
inlining called subprograms, which copies graph elements into separate execution paths. In the rarely used limit,
this expansion can result in a single path to each graph element and therefore a single, context-specific, WCET
for each element. In this limit, each graph element is executed at most once, in any execution of the program.

Usually, however, the graph is not expanded to such a limit, and therefore contains joining or looping paths
which means that some graph elements can be executed several times in one execution of the whole program.
The graph is then subjected to flow analysis to compute constraints (typically upper bounds) on the number of
executions (the "execution frequency") of each graph element. Flow analysis usually depends on a value
analysis that computes bounds on the values of program variables, especially variables that control program flow
and therefore determine the number of iterations of loops and the depth of recursions. Several methods exist for
computing loop and recursion bounds from value-analysis results, but they all depend on some concepts of
control-flow patterns, such as loop induction variables ("loop counters") and their steps and limits.

When the analysis has found bounds on loops and recursions, and perhaps other bounds on the execution
frequency of CFG elements, the overall WCET bound is typically computed using the Implicit Path Enumeration
Technique (IPET) as follows: the execution time is expressed as the sum of the initially unknown execution
frequency of each graph element, multiplied by the WCET bound of that element, and summing over all graph
elements. This is a linear expression of the unknown execution frequencies. Its maximum value, under the
known execution-frequency constraints, is the overall WCET bound, and can be found by an Integer Linear
Programming solver. This last step is called the WCET calculation phase.

2.2 The Dynamic Branch Problem

2.2.1 Dynamic Branches
The above division of the analysis into phases, starting with CFG reconstruction and ending with WCET
calculation, runs into difficulty when the program under analysis has dynamic branches, also known as indirect
or indexed branches. In a dynamic branch, the target address is not given statically in the branch instruction, but
is defined by the run-time, dynamically computed value held in a register or memory location. For example, the
Atmel AVR processor has an instruction called ijmp, for "indirect jump", which jumps to the instruction at the
address held in the Z register when the instruction is executed. The CFG reconstruction procedure must treat
dynamic jumps differently from normal instructions in which the successor instructions are statically determined.
Several methods for analysing dynamic branches have been described. We will summarise them based on a
classification of the nature and origin of the dynamic branch.

Dynamic branches may be created (by compilers or assembly-language programmers) for a great many
reasons, some more common than others. The common reasons are the following:

• Switch-case statements. Many compilers translate some forms of switch-case statements into code which
uses dynamic jumps. This code can take a multitude of forms. A common, simple form uses the switch
selector expression as an index to extract the address of the corresponding case from a table of such
addresses and then performs a dynamic jump to the extracted address. The table is constant and so can be
located in code space (EEPROM or flash memory).

• Calls through function pointers. A function pointer holds a dynamically determined address to a function
(to its entry point). A call through a function pointer is typically compiled into a dynamic call instruction.
However, some processors have no dynamic call instructions, so the same effect must be achieved in some

4

tricky way. For example, one can place the function pointer's value into a register and call a specific
"trampoline" function which pushes this register onto the stack and then executes a return instruction. This
return instruction transfers control to the referenced function by using the pushed address as the "return"
address.

• Virtual function calls. This is a special case of a call through a function pointer, where the function pointer
does not exist alone, but is one element of the "virtual function table" associated with the class of the object
upon which the virtual function is called. Virtual function tables are usually constant throughout the
execution, while other kinds of function pointers are often variable.

Next we briefly discuss the analysis methods that have been used for each of the above types of dynamic branch.

2.2.2 Switch-Case Statements
Dynamic branches from switch-case statements are often among the easier forms of dynamic flow to analyse.
This is because the set of possible target addresses is constant and does not depend on the history of execution
nor on assignment statements elsewhere in the program (as often happens for function pointers). The analysis
can therefore be local to the subprogram that contains the switch-case statement. The code generated for a
switch-case statement commonly has one of three forms:

1. A cascade of comparisons (if-then-elsif ... end if), in which all branches are static. This code often results
from switch-case statements with a sparse case numbering. As it lacks dynamic branches this code
structure is simple to analyse (for CFG reconstruction, at least) and is not interesting for our purposes.

2. A table that is more or less directly indexed by the switch expression's value and yields more or less
directly the address of the code which corresponds to this value. Code that uses such dense (contiguous)
tables usually results from switch-case statements with a dense case numbering and more than a few cases.
The table can take various forms. For example, an entry in the table can contain the case-code address
directly, or an offset from some fixed base point to the case-code, or it can even contain a static jump
instruction which jumps to the case-code.

3. A complex, perhaps compressed table which lists the case numbers and the corresponding case-code
addresses, but is not directly indexed by the case number, combined with a library subprogram which can
scan and interpret such tables. This kind of "switch-table" code is typically generated by C compilers for
small microcontrollers when the case numbering is sparse and the case numbers are wide (for example, 32-
bit integers on an 8-bit processor). For wide case numbers, each comparison in a cascade structure would
require several instructions. However, as microcontrollers with very small code memories are becoming
rare, this form of switch-table may also be disappearing.

In typical 32-bit RISC processors, switch-case statements using type 2 dense tables of addresses can be
implemented by a handful of instructions in a very idiomatic way. Simple pattern-matching methods can detect
such code, find the location and size of the table, and extract the possible target adresses (case-code locations)
from the table. This is safe if the table is known to be in read-only memory, as is typically the case for small
microcontrollers with limited RAM. However, in larger computers, the EEPROM code, including such address
tables, is typically copied into RAM for execution, and it can then be difficult for the analysis tool to know what
the table contains and whether the contents are really constant. Bound-T applies such pattern-matching analysis
for some target processors, but just assumes that the table is constant. However, there is a always a risk that
compilers will use different code idioms, or use the same code idiom for a table which is not constant during
execution.

To analyse switch-case code of type 2, where a complex table is interpreted by a library subprogram,
Bound-T uses partial evaluation of the interpreting subprogram [6]. However, the method assumes that Bound-T
knows the names and calling protocols of the interpreting subprograms, which are compiler-specific and can
change as the compilers evolve.

2.2.3 Calls Through Function Pointers
The value of a function pointer is usually not computed using arithmetic operations, as switch-case addresses can
be. In a "higher" level programming language such as C or Ada, the only possible function-pointer values are the

5

static constants defined by taking the address of a statically known subprogram. The program can take the
address of a function explicitly, using a primitive expression such as &foo in C or Foo'Address in Ada, or the
address can be taken implicitly if the subprogram can be called "virtually" as an inherited operation of an object
in a class hierarchy. These function-pointer values, originally static, can then be passed around the program
according to simple or complex dynamic logic, stored in simple or complex data structures, and finally used to
call the addressed subprogram. It is this dynamic, conditional copying and selection of static values which makes
the target address of the call dynamic.

Of course, a C or Ada programmer can create truly dynamic, new function-pointer values by deliberate type-
breaking, for example by casting a function pointer to an integer type, then modifying the integer value by
arithmetic operators, and casting the value back to a function pointer. However, the effect of such manipulations
is not defined by the language standards, and they are fortunately rare in real programs.

Because function pointers are not created by arithmetic operations, analysis methods based on arithmetic,
numerical, abstract domains such as intervals are rarely useful. More useful are pointer-analysis methods which
model pointer values as sets of discrete constants. Neither Bound-T nor SWEET currently provide such analyses
for function pointers. Moreover, pointer analysis generally requires a global program analysis, which Bound-T
tries to avoid (but SWEET provides). We will therefore not consider function-pointer analysis in the rest of this
report. However, function pointers are becoming more common in real-time, embedded software, partly due to
the increasing use of model-based programming tools and other code-generating frameworks. Automatic analysis
of function pointers would certainly be an attractive feature of a WCET-analysis tool.

2.2.4 Virtual-Function Calls
In object-oriented programming, operations (subprograms) originally defined for a more general type or class of
object are inherited by the more specialized, derived child classes, but can also be reimplemented (specialized,
overridden) in the child classes. Moreover, programs can use variables of unknown specific class — that is,
while such a "class-wide" variable x is statically known and declared to refer to an object of class C or a child
class of C, it is not statically known to which specific class this object belongs. If foo is an operation defined on
the statically known root class C, the program can apply foo to x, but the actual operation which is invoked
depends on the run-time actual class of the object x.

Such virtual or "dispatching" operations are usually implemented by collecting pointers to the operations of
a particular class into a table, called the virtual-function table or v-table of the class. (For this simplified
explanation, we ignore the complications of multiple inheritance and inheritable interfaces.) Each operation is
assigned its own index into the v-table. The same index is used when the operation is inherited by child classes.
Each child class has its own version of the v-table. When the child class inherits and does not override an
operation, the child's v-table points to the operation of the parent class. If the child class overrides an inherited
operation, the child's v-table points to the overriding, child-specific operation. The run-time value of a class-wide
variable x contains a reference to the v-table of the actual class of the object to which x refers. To implement a
virtual-function call, the code simply indexes this v-table with the statically known index of the virtual operation,
extracts the pointer to the actual operation, and then calls this operation.

Thus, virtual-function calls are a disciplined use of function pointers, in which the dynamic values are the v-
table pointers, while the indices assigned to operations, the v-tables, and the actual function-pointers contained in
the v-tables are static constants. A set-based, global data-pointer analysis can work for the v-table pointers.
SWEET can implement such analysis if each v-table is modelled as its own ALF "frame". Numeric analysis of
the operation indices would be overkill, because they are constant (with the possible exception of some
implementations of multiple inheritance).

Bound-T provides no general analysis of virtual-function calls. However, some compilers (specifically,
compilers from IAR Systems) embed a description of the class hierarchy and v-tables into the symbol-table
information (also known as debugging information) in the file which contains the compiled and linked program.
The compiler also provides information that shows which subprogram calls are virtual-function calls and for
such calls gives the static root-class of the object and the index of the operation. Bound-T can then look up the
operation in the v-tables of the root class and all its child classes and thus find the set of possible actual
subprograms that may be called through this virtual-function call. However, this set is usually an over-
approximation, perhaps even a crude one. An actual analysis of object classes (v-table pointers) would often
given a more accurate result.

6

At the time of writing, we have not implemented virtual-function-call analysis in our prototype combination
of Bound-T and SWEET. In the most natural implementation approach Bound-T would have to know about the
structure of class-wide objects and v-tables as used in the program under analysis, which is compiler- and target-
specific, and would then be able to translate each v-table into its own ALF frame.

2.3 Our New Combination
This work attempts to combine the strengths of the Bound-T tool and the SWEET tool [2]. SWEET was
originally aimed at WCET analysis as its full name "Swedish Execution-Time Tool" indicates. However,
SWEET is currently focused on value-analysis and control-flow analysis. SWEET analyses programs given in
the ALF language [3]. In addition to the conventional value analyses based on abstract interpretation with
various numerical domains, SWEET provides a unique feature called abstract execution [7, 8]. This is similar to
abstract interpretation in that variable values are abstracted and program instructions are similarly abstracted to
compute with abstracted values and produce abstracted results, but it differs from abstract interpretation by not
using widening for loops. Instead, loops are abstractly executed as many times as necessary until the iterations
reach an abstracted state where the loop must terminate. This makes the value-analysis more precise (all value-
sets which were bounded initially remain bounded during the abstract execution) and also provides detailed
information about control-flow in each iteration, but has the draw-back that the abstract execution may not
terminate.

When the abstract execution reaches a control-flow join, it may or may not merge the abstracted values from
the incoming paths. The merging is controlled by several command-line options and can even be completely shut
off, in which case the abstract execution in effect simulates the program, traversing all possible paths and
keeping their states separate, although with (possibly) abstracted values.

Our aim is to use abstract execution, with no merging, to compute the possible values of the target addresses
of the dynamic branches that Bound-T finds in the machine-language program under analysis.

The first step is of course to translate the target program under analysis from Bound-T's internal
representation into an ALF representation. This is mostly straight-forward, but with one major complication: if
the program has unresolved dynamic branches, Bound-T's internal representation is incomplete, which means
that the ALF program will also be incomplete. The ALF language has features which can model dynamic
branches but these assume that all targets of the branches are already present in the ALF code, which is not
(necessarily) the case here. Therefore, the analysis becomes iterative: Bound-T generates an incomplete ALF
program, SWEET analyses the program to discover possible target addresses, and then Bound-T extends the
program to include the code at these addresses, and the process is repeated until the CFG is stable.

 3 Coupling Bound-T and SWEET

3.1 Overview
This chapter explains how we coupled Bound-T and SWEET to make use of SWEET's abstract execution
analysis for resolving dynamic jumps and thus help Bound-T analyse the given machine-code program. We
explain the overall process and some of the important details.

It is important to note that Bound-T at present requires all dynamic flow of control to be resolved in a
context-independent way. In other words, when a subprogram contains a dynamic branch, the possible target
addresses must be discovered by analysis of this subprogram (and its callees) only, without analysing the higher-
level subprograms which call this subprogram. Therefore, the analysis of dynamic branches in Bound-T is
focused on branches which can be resolved using local analysis, typically switch-case structures. Bound-T
usually cannot analyse calls through function pointers because a global program analysis is usually necessary to
find the possible values of the pointers. This limitation to context-independent analysis applies also in our
current implementation of the Bound-/SWEET combination, because removing the limitation would require
significant architectural changes to Bound-T.

The limitation to context-independent analysis of dynamic branches simplifies the coupling of Bound-T and
SWEET. It means that the part of the program to be analysed is a subprogram call-graph in which unresolved
dynamic branches occur only in the root subprogram — all other (deeper) subprograms contain only static

7

branches (which may be the results of resolving dynamic branches in earlier analyses of these subprograms). The
analysis procedure consists of the following steps:

1. Bound-T exports the call-graph into an ALF program. The unresolved dynamic branches are represented as
{return} statements. The ALF program is an incomplete representation of the actual machine-code
program because the code reached through the dynamic branches may be absent. Moreover, all execution
paths through the dynamic branches are absent, even if the target code is reached also through static paths
and is therefore present in the ALF program. Bound-T also creates the other SWEET input files: the
annotation file and the output-annotation specification file. The annotation file transfers known or assumed
bounds on variable values from Bound-T to SWEET. The output-annotation specification file tells SWEET
to analyse and output the possible values of the variables which determine the target addresses of the
dynamic branches, at the point of the branch. Bound-T then invokes SWEET as a child process.

2. SWEET analyses the incomplete ALF program and generates various forms of results. For our purposes the
principal result is the output-annotation file which contains SWEET's responses to the output-annotation
specifications, that is, the possible values of the variables which determine the target addresses of the
dynamic branches.

3. Bound-T reads the output-annotation file from SWEET. If all went well, this defines, for each dynamic
branch, a small set of possible values for the variable which determines the target address of the branch.
Bound-T adds the corresponding new edges to the control-flow graph and, if these edges lead to hitherto
undiscovered instructions, fetches these new instructions from the machine-code file and continues
decoding and extending the control-flow graph until all new, statically determined parts are found. If this
reveals new dynamic branches, Bound-T repeats the whole process, iterating until the control-flow graph is
complete, or until the remaining dynamic branches cannot be resolved using any of the available analyses.

Figure 1 below illustrates this procedure and its data and control flows.

Figure 1: Overall Analysis Scheme Combining Bound-T and SWEET

8

3.2 Generating the ALF Program

3.2.1 Program Representation within Bound-T
Bound-T internally represents the program under analysis as a set of subprograms and a set of calls between
subprograms. Each subprogram is represented as a control-flow graph consisting of steps and edges. A step is the
smallest unit of execution and usually represents one machine-code instruction. An edge between steps
represents execution flow from an instruction (the source of the edge) to a successor instruction (the target of the
edge). Any number of edges can start from a step (the out-edges for that step) and end at a step (the in-edges for
that step). There is exactly one step which has no in-edges; this is the entry point of the subprogram. Steps with
no out-edges represent return points; there can be any number of return points in a subprogram.

Each step is associated with a computational effect which is a sequence of assignments which are executed
in parallel. An assignment evaluates an expression to produce a value, and then stores this value into a storage
cell. The expressions apply arithmetic and logical operators to constants and the values of storage cells. The set
of arithmetic and logical operators, and their respresentation, has been adapted to resemble the operators and
expressions in the ALF language (originally, in early versions of Bound-T, this was not the case).

A call instruction is represented by two steps: one normal step which represents the call instruction itself,
followed by a special call-step which represents the execution of the callee subprogram. The normal step
represents the effect of just the call instruction, for example the storing of a return address somewhere. The call-
step represents the effect of the callee. Bound-T has a very approximate idea of the overall effect of a
subprogram: Bound-T tries to find out which storage cells are assigned in the subprogram, but not which values
are assigned. Therefore, the effect of a call-step, in the Bound-T internal model, assigns unknown values to all
these cells. (Note, however, that Bound-T does not discover cells assigned through unresolved dynamic data
pointers, so here Bound-T is not sound.)

Each edge in a control-flow graph is associated with a logical condition which is a necessary, but perhaps
not sufficient, condition for execution to flow along this edge. The condition is a Boolean expression of the
values of storage cells and constants. The possible insufficiency of the condition is a deliberate feature to allow
approximate modelling of control-flow decisions. For example, an edge which may be taken for unspecified
(unmodelled) reasons can be given the condition "true" without implying that the edge must be taken.

An unresolved dynamic branch is modelled by a special kind of edge which has a known source step, an
unknown target step, and information showing which storage cells determine the value of the target address and
how that address is computed. Various analyses implemented in Bound-T can then provide bounds of various
kinds on the values of these storage cells, from which one or several possible target addresses may be derived.
These analyses include constant propagation, value-origin (def-use) analysis, and the so-called "arithmetic
analysis" which models computations with Presburger Arithmetic relations, as (briefly) explained in [10], and
solves them with the Omega Calculator [9]. The work we report here adds the use of SWEET to the set of
analyses with the ability to resolve dynamic branches.

3.2.2 Basic Translation from Bound-T Internal Form to ALF
The translation from the internal Bound-T program representation to ALF [3] is fairly straight-forward:

• Each subprogram is translated into an ALF {func}.

• Each step in a control-flow graph is translated to an ALF {store} statement which models the effect of the
step.

• If a step has a single out-edge, in other words, a single successor step, the ALF statement for the successor
step is placed after the ALF statement for the first (predecessor) step. In other words, ALF's sequential
execution semantics models this edge. If the successor step has other in-edges, those other in-edges are
modeled as ALF {jump} statements which are placed after the ALF statements for those other predecessor
steps.

• If a step has several out-edges, these edges are modelled by one or more ALF {switch} statements,
depending on the number of out-edges and the nature of their conditions as described in more detail below.

9

The AVR program code (that is, the code-memory image) is translated to an ALF constant-data frame which is
initialized from the memory image of the program under analysis. This gives the ALF program access to the
constant data embedded in the code. We will see that dynamic branches often depend on such constant data.

3.2.3 Translation of Branching Control-Flow
For steps with several out-edges, the translation is complicated by the non-deterministic (necessary but not
sufficient) nature of the conditions on Bound-T edges, which clashes with the exact, sequential semantics of the
ALF {switch}. Moreover, a {switch} compares an integer expression to a set of distinct constant values, one
per possible target address, while in Bound-T we have a set of Boolean conditions, one per edge, and not
necessarily mutually exclusive. The translation considers three cases as follows:

1. If the step has exactly two out-edges, and their conditions are syntactically complementary (for example,
one condition is x = 0, the other is x ≠ 0, for some storage cell x), the edges are translated to one {switch}
in which the expression is one of the conditions (a 1-bit value) and there are two targets for the values 0
(false) and 1 (true), respectively. Note that this case, with two complementary out-edges, is by far the most
common form of branch in Bound-T control-flow graphs. Note also that in this case, the conditions on the
two out-edges are exact, that is, each condition is both sufficient and necessary for the condition's edge to
be taken.

2. Otherwise, if the conditions on all the out-edges have the form expr = c, where expr is some expression,
same for all the out-edges, and c is some constant, different for each out-edge, the out-edges are translated
to one {switch} in which the expression is expr and there are as many targets as out-edges, each target
with the corresponding value of the constant c. Sets of out-edges with conditions of this form are often
generated in Bound-T when a dynamic branch is resolved (within Bound-T), so this case is not so unusual
as it may seem.

3. Otherwise, the following general translation is used. The out-edges are translated in some arbitrary order.
Each out-edge, except the last one, is translated into two {switch} statements, both with 1-bit expressions
and two targets for the values 0 and 1, respectively. The first {switch} has an "unknown" expression, one
target which skips to the translation of the next out-edge, and one target which continues to the second
{switch} for the current out-edge. This second {switch} has the out-edge condition as its expression, a
target for 0 (false) which continues to the translation of the next out-edge, and a target for 1 (true) which
branches to the translation of the current out-edge's target step. Here the first {switch} represents the
possibly insufficient nature of the edge condition by letting control flow to some other edge even if this
edge's condition is true. The second {switch} represents the necessary nature of the edge condition. The
last out-edge is translated into a single {switch} which has the edge condition as its expression and a
single target, for 1 (true), which branches to the translation of the out-edge's target step. The reason for
treating the last out-edge differently is that execution reaches this point only if none of the other out-edges
were taken, which means that this last out-edge must be taken.

An example may help to understand the general translation in the last point above. Assume that the step has three
out-edges e, f, and g, with the conditions c(e), c(f), and c(g). The ALF translation is then equivalent to the
following pseudo-code:

-- Translation of edge e:
if unknown then
 if c(e) then
 goto target(e);
 end if;
end if;
-- Translation of edge f:
if unknown then
 if c(f) then
 goto target(f);
 end if;
end if;
-- Translation of the last edge, g:

10

assert c(g);
goto target(g);

3.2.4 Translation of Calls Between Subprograms
A step representing a call instruction is translated into an ALF {store} statement in the normal way. The call-
step is translated into an ALF {call} statement. In our current implementation no ALF parameters are passed
and no ALF results are returned in the {call}; all communication between caller and callee occurs through
global ALF variables (including those representing machine registers). The proper modelling of stacks and local
variables in ALF is still under consideration, with several open questions on aliasing, different stack growth
directions, and the best way to model such things using ALF data frames.

Note that Bound-T's own analysis of which storage cells may be assigned (modified) by the callee (the effect
of the call-step) is not exported into the ALF form. Instead, we rely on SWEET to analyse such inter-procedural
data flow. This should be an improvement, because SWEET handles pointers safely, which Bound-T does not.

3.2.5 Translation of Unresolved Dynamic Branches
Each unresolved dynamic branch is translated into an ALF {return} statement or into a {jump} to a {return}.
Although this allows ALF execution to flow through the dynamic branch, it does not introduce false paths,
because such branches (currently) occur only in the root subprogram, and a return from the root subprogram
terminates the ALF execution path.

If there could be unresolved dynamic branches in deeper subprograms, and if these were translated to
returns, the corresponding execution paths in the ALF program would continue execution in the caller and would
in general be false paths. Such false paths could harm the SWEET analysis and should be avoided.

If Bound-T is ever extended to allow context-dependent analysis of dynamic branches, the translation of an
unresolved dynamic branch to ALF must use some ALF code which terminates execution at that point, for
example some kind of halt instruction, which does not now exist in ALF. There is a suggestion to use instead the
ALF equivalent of assert(false), which is a "blind" {switch} in which no target matches the expression's value.
However, this ALF construct has alternative uses with different semantics; for example, to mark an infeasible
execution path. Tidorum would therefore prefer that a true {halt} instruction be added to ALF, with the meaning
that execution (i.e. SWEET's analysis) should stop at this point, but without implying that the execution path is
infeasible or that any other sort of error has occurred. If an output-annotation specification requests some output
at the {halt} point, SWEET should produce this output.

3.2.6 Generating Output-Annotation Specifications
SWEET's abstract-execution analysis gives two kinds of results: firstly flow-facts, which show the possible
execution paths, including loop bounds and other execution frequency bounds, and secondly sets of possible
variable values at each point in the program. For this work we are interested in the variable values, and in fact
only in the values of the variables which determine the targets of dynamic branches, and only at the dynamic
branches, not elsewhere in the program.

SWEET has a feature designed for reporting such analysis results: output annotations and output-annotation
specifications. The output-annotation specifications are input to SWEET; each such annotation specifies a point
in the program and a list of variables to be reported. During the analysis, SWEET collects the (abstracted) values
of these variables, at this program point. At the end of the analysis, SWEET writes an output annotation file
which reports these (abstracted) observed values in the form of a SWEET annotation (which can, if useful, be
given as input to SWEET for another analysis).

After Bound-T has generated the ALF program to be analysed, with some unresolved dynamic branches,
Bound-T writes an output-annotation specification file which contains one such specification for each unresolved
branch in the ALF program. This specification asks for the values of the variables which determine the target
address, on entry to the ALF {return} statement which represents this branch. As will be explained below in
section 3.4, we apply this analysis only to dynamic branches in which the target address depends on only one
variable, so each output-annotation specification names only one variable. Different dynamic branches can
depend on different variables or on the same variable.

An example of an output-annotation specification, generated by Bound_T, is this one, which asks SWEET to
record and output the values of the first 16 bits of the frame named "pZ", on entry to the ALF statement labeled

11

"KuiSnd5Z_Step_54" (with zero offset) in the subprogram named "KuiSnd5Z; this statement is a {return}
which stands in place of a dynamic jump instruction:

STMT_ENTRY "KuiSnd5Z_1" "KuiSnd5Z_1_Step54" 0 "pZ" 0 16;

Section 3.4 shows the result, from SWEET, of this output-annotation specification.

3.2.7 Generating Annotations
Bound-T generates an annotation file to guide SWEET's analysis. The file contains the following kinds of
annotations:

• Annotations which constrain all variables in the ALF program to have integer values, not ALF frame
references, ALF statement-label references, or floating-point values. An ALF frame reference is a semi-
symbolic value that refers to a location within an ALF "data frame" by giving the frame identifier
(symbolic) and the offset (numeric). An ALF-statement-label reference is a similar semi-symbolic
reference to an ALF statement. In the ALF translation, Bound-T does not at present use variables holding
such references or floating-point values. Eliminating them by these annotations makes SWEET's analysis
more precise.

• Annotations on the values to be assumed for certain variables on entry to a certain subprogram, translated
from corresponding user-written assertions in the Bound-T assertion language. These annotation are used
to constrain the analysis by giving additional information, for example on the register-usage conventions in
the program under analysis.

An example of the first kind of annotation is this one, which tells SWEET to assign the "top integer" value to the
variable consisting of the first 8 bits of the data frame named "d5F", on entry to the statement labeled
"KuiSnd5Z_1_Step1" (with zero offset) in the subprogram named "KuiSnd5Z_1":

STMT_ENTRY "KuiSnd5Z_1" "KuiSnd5Z_1_Step1" 0 ASSIGN "d5F" 0 8 TOP_INT;

The "top integer" value excludes all ALF reference values. An example of the second kind of annotation is this
one, which constrains the first 8 bits of the frame "r1" to tbe zero at the same program point:

STMT_ENTRY "KuiSnd5Z_1" "KuiSnd5Z_1_Step1" 0 ASSIGN "r1" 0 8 INT 0;

This usage of the AVR register r1 is a gcc convention and is essential information for analysing AVR code
generated by gcc, but cannot be discovered from the code itself (unless the analysis includes the boot and start-
up code, where r1 is set to zero). We used such assertions in some of the examples reported in Chapter 4. It is
likely that future extensions of our prototype will incorporate more kinds of annotations, at least as translations
of other kinds of Bound-T assertion inputs.

3.3 SWEET Analysis of the Incomplete ALF Program
After generating the ALF program, the annotation file, and the output-annotation specification file, Bound-T
activates SWEET as a child process. In our current implementation, Bound-T asks SWEET to analyse the
incomplete ALF program using abstract execution with no merging. This is the most exact (least over-
approximating) analysis method in SWEET; it is equivalent to a concrete execution of the ALF program, saving
all execution states, unless the program uses some input variable which has an abstracted set of values, rather
than a single, concrete, initial value.

In our application, where SWEET analyses an ALF "program" which represents only a sub-call-graph of the
whole machine-code program, the analysed part can have such abstracted input variables, either global variables
or parameters to the root subprogram. These variables may be bounded by annotations, which are called
"assertions" in the context of Bound-T. As explained in section 3.2.7 our present implementation translates to
SWEET annotations only those variable-value assertions which are placed at the entry point of a subprogram.

In addition to the "no merge" option for the abstract execution, Bound-T also asks SWEET not to merge the
values in output annotations. Thus, each value recorded during the abstract execution is produced separately,
instead of producing an interval which contains all the recorded values. Again, this increases the precision and

12

reduces the over-estimation of the analysis, but can generate a large list of possible values if the abstract
execution over-estimates the value-set.

3.4 Using SWEET Outputs in Bound-T
When SWEET finishes the analysis of the ALF program, Bound-T reads the output annotations which SWEET
generated in response to the output-annotation specifications. An output annotation has the same form as an input
annotation (examples of which are shown in section 3.2.7) except that, with the "no merge" option, a list of
possible values and value-intervals can appear, instead of a single value or single value-interval. Thus, the set of
values reported in an output annotation, with "no merge", is a disjunction of single values and intervals, and is
not necessarily a convex (contiguous) set. This is an important feature, because the value-sets used in dynamic
branches are seldom convex.

For example, here is the output annotation that SWEET generates in response to the output-annotation
specification shown in section 3.2.6, after its analysis of the ALF program:

STMT_ENTRY "KuiSnd5Z_1" "KuiSnd5Z_1_Step54" 0 ASSIGN "pZ" 0 16 INT 574 OR INT 585 OR INT
583 OR INT 579 OR INT 578 ;

According to this output annotation, the 16-bit "pZ" frame, which Bound-T uses to model the AVR Z pointer
register, can take five values: in increasing order 574, 578, 579, 583, 585. These are indeed exactly the possible
target addresses for the dynamic jump at this statement in the AVR subprogram KuiSnd5Z. That instruction is an
AVR ijmp instruction which jumps to the address held in the Z pointer.

To illustrate the importance of the "no merge" option for SWEET's output annotations, the same analysis
without this option produces an output annotation giving the interval 574 .. 585 as the possible values of "pZ".
This interval has a total of 12 values: 7 false ones in addition to the 5 true ones.

Now consider what would happen if we would use the same procedure to analyse a dynamic branch which
depends on the values of two or more storage cells. A SWEET annotation can only constrain variables
separately; it cannot constrain combinations of variable values. In other words, the annotation domain is not
relational. The same limitation applies to output-annotation specifications and output annotations. Therefore, if a
dynamic branch depends on, say, two variables x and y, we can ask SWEET to produce the values of x as an
output annotation, and the values of y as another output annotation, and then our best estimate of the possible
target set is to take all combinations of a possible value of x and a possible value of y, even though many of these
combinations are actually infeasible and produce false targets for the branch.

For example, the AVR 16-bit Z pointer register is actually composed of two 8-bit registers r30 and r31,
which form respectively the low and high octets of Z. We can let SWEET perform the same analysis of the AVR
subprogram KuiSnd5Z as in the above examples, but now we use two output-annotation specifications to ask
separately for the values or r30 and r31, thus:

STMT_ENTRY "KuiSnd5Z_1" "KuiSnd5Z_1_Step54" 0 "r30" 0 8 || "r31" 0 8;

The resulting output annotation shows the possible values or r30 and r31 separately:

STMT_ENTRY "KuiSnd5Z_1" "KuiSnd5Z_1_Step54" 0 ASSIGN "r30" 0 8 INT 62 OR INT 66 OR INT
73 OR INT 67 OR INT 71 || "r31" 0 8 INT 2 ;

Thus, r30 has five distinct possible values: 62, 66, 67, 71, 73, while r31 has only one: 2, which was lucky
because it means that there are still only five possible combinations, which are exactly the five true branch
targets. For example, combining r30 = 62 with r31 = 2 gives the target address Z = 256· 2 + 62 = 574. However,
this good result happens only because the memory layout of the program is such that the five target address all
like in the same block of 256 locations. If, instead, the memory layout happens to be such that the five target
addresses are in different blocks, r31 would have as many different values and the combination r31:r30 would
include several spurious addresses.

In fact, the abstract execution analysis (when done without merging) is mostly relational, because a state is a
composite (tuple) of the values of all variables. The analysis only becomes non-relational if more than one
variable has an abstracted value (because all combinations of concrete values of those variables are included in
the state) or if merging is used (because the value-set of each variable is then merged and abstracted

13

independently of the simultaneous, related values of other variables). However, even if the abstract execution
analysis is fully relational, the generation of output annotations hides the relations because a separate output
annotation is generated for each variable, without considering the related values of other variables. Defining an
(output) annotation syntax and generation procedure to preserve the relations discovered during abstract
execution seems a worthwhile addition to SWEET.

 4 Experimental Evaluation

4.1 Overview
This chapter explains how we evaluated and experimented with the Bound-T/SWEET combination to understand
its abilities and limitations in resolving dynamic branches. Because the analysis of dynamic branches is quite
important for practical machine-code analysis, Tidorum has had to put some effort into it, and therefore Bound-T
contains a number of special analysis mechanisms which are aimed at this problem. On the other hand, SWEET's
abstract execution is a powerful but general-purpose analysis method. Is SWEET's general-purpose analysis as
powerful as the limited, specialized analyses in Bound-T? If not, could SWEET be improved to be competitive,
and if so, how? Are there certain kinds of dynamic branches which the intrinsic analysis in Bound-T cannot
resolve, but SWEET can? If so, can we characterize the cases that SWEET can solve better than Bound-T,
perhaps even so specifically that Bound-T could choose automatically when to use its own analyses, and when to
invoke SWEET instead? We hoped that the evaluation would answer such questions.

Most test programs for the evaluation were picked from Tidorum's test suite for Bound-T/AVR. Some test
programs were written specifically for this evaluation (and then made part of the test suite). Table 1 describes the
test programs in the order they are presented and discussed in the following subsections of this chapter.

Table 1: Evaluation Programs and Summary Analysis Results

Program Section Description Bound-T alone Bound-T & SWEET
tp_avr_21 4.2 A bottom-test loop which

contains a switch-case
statement implemented by
an indexed dynamic jump
into a table which contains
static jumps to the cases.
Two iterations of branch
resolving are necessary,
because the loop is discov-
ered in the first iteration.

Exact result, but an
assertion is needed to
constrain the switch-case
index (which is the loop
index) to non-negative
values. Problem is due to
poor modelling of signed vs.
unsigned operations and
wrap-arounds.

Exact result.

tp_c_2, gcc 4.3 A switch-case statement
implemented by loading the
jump target address from a
table in code memory.

Fails, because (1) the
arithmetic analysis cannot
model addressable mem-
ories, and (2) a specific
pattern for this "load-
address-from-table" idiom
is not implemented in the
AVR version of Bound-T.

Fails, because lack of
congruence analysis in
SWEET leads to im-
portant over-estimation
of the octet pointer into
the array, which causes
huge over-estimation of
the jump targets.

tp_avr_6 4.4 A switch-table and the
corresponding handler
subprogram. This is a
simplified, artificial switch-
table structure, from the
example in [6].

Fails, because the switch
handler in the program is an
artificial one for which no
detection is implemented in
Bound-T. In principle,
Bound-T's partial evaluation
method would work here.

Exact result.

14

Program Section Description Bound-T alone Bound-T & SWEET
tp_c_2 /
KuiSnd5Z,
IAR

4.5 A sparse C switch-case,
compiled to use the real
switch-table form and real
switch handler from IAR
Systems.

Exact result using the
partial-evaluation method,
which however requires
knowing the name of the
switch handler and some-
thing about its invocation
idiom.

Exact result for the
dynamic branch, but
the WCET is over-
estimated, being twice
as large as for the
partial evaluation
method.

tp_c_2 /
KucDnd11Z,
IAR

4.6 A dense C switch-case,
compiled to use the real
switch-table form and real
switch handler from IAR
Systems.

Exact result using the
partial-evalution method
combined with arithmetic
analysis of the indexing of
the switch table.

Fails, because of weak-
nesses in Bound-T's
ALF generator and
because SWEET's abs-
tract execution is not
relational and does not
include congruence.

tp_avr_7 4.7 An indexed jump into a
dense table of jumps, in
which the 4-bit index is
assembled from two 2-bit
pieces using "rotate"
followed by "or". Jump-table
entries are two addressing
units long.

Fails, because the carry-out
form the rotate operation is
not well modelled in the
arithmetic analysis.

Fails, because lack of
congruence analysis in
SWEET leads to im-
portant over-estimation
of the pointer into the
jump-table, which
causes huge over-esti-
mation of the jump
targets.

tp_avr_8 4.7 An indexed jump into a
dense table of jumps, in
which the 4-bit index is
assembled from two 2-bit
pieces using "shift" followed
by "or". Jump-table entries
are one addressing unit long.

Exact result, but depends
on some unsound/unsafe
assumptions in modelling
left-shift operations.

Exact result, because
the unit size of the
jump-table entries
makes congruence
analysis unnecessary.

The rest of this chapter discusses each test program and its analysis in a fair amount of detail. Impatient readers
may want to skip ahead to the summary and conclusions in chapter 5.

4.2 A Loop Containing a Switch-Case using a Jump Table (tp_avr_21, asm)
This test program, written in AVR assembly language for the purposes of this report, contains a loop which
contains a switch-case structure, which is implemented by a dynamic jump with a computed target address. The
loop has a do-while structure, that is, its termination test is at the "bottom" of the loop, after the switch-case
structure. The loop counter runs from 15 to 19, which exactly matches the numbers of the cases in the switch.

Table 2 shows the AVR code and some description of the code. The three rightmost columns mark (by
shading) the instructions discovered initially (before any resolution of the dynamic branch); in iteration 1 (in the
first resolution of the dynamic branch); and in iteration 2 (in the second and final resolution of the dynamic
branch).

This test program illustrates two general points. First, this program shows why an iterative analysis is
necessary. Before the dynamic jump is resolved, only the initialization part of the loop-counting code has been
discovered, and so the first, incomplete control-flow graph has no loop, and in particular no loop-termination test
which could set bounds on the loop counter (register r18). Moreover, the switch-case structure has no default
case, and the programmer knows that the loop counter is always in the range of the case numbers and therefore
there is no explicit check of the table index that might indicate the full range of indices for the table. Thus, before
the loop termination test is discovered, an analysis cannot place any bounds on the dynamic branch; all that can
be deduced is that the target address resulting from the initial values (on first entering the loop) is a possible
target.

15

Table 2: Test Program tp_avr_21

AVR assembly code Description
Discovered in iteration:

Init 1 2
kases: Subprogram entry point.
 ldi r18,15 Initialize loop counter (r18) to 15.
kases_loop_head: Loop head (start of loop body).
 mov r24,r18 Compute the table index (r24) as
 subi r24,15 the loop counter (r18) minus 15.
 ldi r30,lo8(pm(kases_table))
 ldi r31,hi8(pm(kases_table))

Load the base address of the jump table
into Z = r31:r30.

 ldi r25,0 Zero-extend the index into r25:r24.
 add r30,r24 Add the index to the table base address,
 adc r31,r25 producing a pointer into the table.
 ijmp Jump to that place, table[index].
kases_table: Here is the jump table.
 rjmp kases_15 Table index = 0, case = 15.
 rjmp kases_16 Table index = 1, case = 16.
 rjmp kases_17 Table index = 2, case = 17.
 rjmp kases_18 Table index = 3, case = 18.
 rjmp kases_19 Table index = 4, case = 19.
kases_19: Here are the cases (in reverse number
 <code for case 19> order, just for fun).
 rjmp kases_end
kases_18:
 <code for case 18>
 rjmp kases_end
kases_17:
 <code for case 17>
 rjmp kases_end
kases_16:
 <code for case 16>
 rjmp kases_end
kases_15:
 <code for case 15>
kases_end: End of the switch-case statement.
 inc r18 Increment the loop counter.
 cpi r18,20 Compare to end value (20).
 brlo kases_loop_head If counter < 20, repeat loop.
 ret Terminate loop and return.

Second, the fact that the table is dense (no "holes") and has elements (rjmp instructions) that are one addressing
unit in length (16 bits in the AVR code memory) means that SWEET's interval-based domain is an exact
abstraction of the possible pointers into the array. This test program was deliberately constructed to have this
property, by making the dynamic jump a jump into the table itself, where the table elements are static jump
instructions to the respective cases. While such tables of jumps do occur in real compiler-generated code, they
are much rarer than tables which contain addresses or offsets and where the dynamically branching code first
reads the address or offset from the table, as data, and then directly jumps to this address or offset, without
chaining a dynamic jump and a static jump as in this test program. In this more common form, the tabulated
addresses or offsets are usually not dense and are not precisely abstracted by intervals, as we will see in later test
programs.

4.2.1 Analysis by Bound-T Alone
When Bound-T is applied to this program, without using SWEET, the first iteration of the analysis, when no loop
is yet present in the control-flow graph, resolves the first target of the switch-case branch (to case 15) through the

16

constant-propagation analysis in Bound-T. The control-flow graph is then extended to include the first case of
the switch, the loop termination test, and the back-edge to the loop head. The loop makes more variables vary,
which makes constant propagation weaker, in fact too weak to produce any target addresses. Furthermore, the
arithmetic analysis in Bound-T, although much more powerful than constant propagation gives only an upper
bound on the target address of the dynamic branch. This happens partly because the loop termination test uses an
unsigned comparison, while the Omega Calculator [9], which Bound-T uses for the arithmetic analysis, models
only signed integers, and partly because Bound-T at present does not use the sign of the loop-counter step
(here +1) to deduce that all values of the loop counter must be larger (for a positive step) or smaller (for a
negative) step than the initial value. One reason why Bound-T does not use such reasoning is that the loop
counter might wrap around and the reasoning would then be false. Consequently, the automatic analysis in
Bound-T alone fails to resolve this dynamic branch.

While it is simple to write an assertion to constrain the loop index to non-negative values, which leads
Bound-T to the exact result, this requires some insight into how Bound-T works and why it sometimes fails. An
average user of Bound-T cannot be expected to write such an assertion. With this assertion, the second analysis
of the dynamic branch gives an set of target addresses which includes all cases. Bound-T then extends the
control-flow graph accordingly, and it is now complete.

4.2.2 Analysis by Bound-T and SWEET Combined
When Bound-T is used with SWEET (and without arithmetic analysis), the analysis proceeds in the same way as
when Bound-T does it alone: in the first iteration, SWEET finds the branch to case 15; then Bound-T extends the
control-flow graph accordingly; the second SWEET analysis finds also the other cases (16 .. 19); and Bound-T
again extends the control-flow graph, which now becomes complete.

In both cases (Bound-T alone or with SWEET) the second iteration and the following extension of the
control-flow graph introduces new execution paths to the dynamic branch. Bound-T therefore performs a third
analysis, which finds no new targets for the branch, which shows that the result is stable.

4.3 Some C Switch-Case Statements with Address Tables (tp_c_2, gcc)
This test program, written in C, has several functions with different kinds of switch-case statements, using
various types of index value, dense and sparse numberings, and increasing, decreasing, or random order of case
numbers. This is a synthetic test program so the functions do not compute anything sensible.

When compiled with gcc for the Atmel AVR, only two of these C functions use a dynamic jump: the
function KucDnd11Z, which has a switch-case statement with an index of type unsigned char, ten cases densely
numbered 0..9, and a default case; and the function KucDud11Z which is the same except that the case numbers
are in random order. Here is KucDnd11Z:

char KucDnd11Z (unsigned char index, char key)
{
 char result = '0';
 switch (index) {
 case 0: result = 'z';
 break;
 case 1: result += 1;
 case 2: if (result > 'a') result = 'b';
 break;
 case 3: return 'q';
 case 4: if (key == 'w') result = key - 1;
 case 5: result = key << 1;
 break;
 case 6: result += key;
 break;
 case 7: result -= key;
 break;
 case 8: if ((result & key) < key) result = '?';
 break;
 case 9: break;
 default:
 if (index < 77) return 'f';

17

 }
 return result;
}

The code generated by gcc for AVR first checks for the default case (index greater than 9) and otherwise (index
in 0..9) loads the address of the corresponding case statement from a constant table in code space and then jumps
to this address. Here is the main part of the AVR code:

KucDnd11Z:
 mov r30,r24 ; The parameter "index" is zero-extended from
 ldi r31,0 ; unsigned 8 bits (r24) to 16 bits (r31:r30).
 cpi r30,10 ; The parameter "index" (as 16 bits) is compared
 cpc r31,r1 ; to the constant 10 (note: r1 = 0 in gcc code).
 brcs in_range ; Branch to in_range if index in 0..9.
 <code for default case> ; Here index > 9.
 ret
in_range: ; Here index is r31:r30, and in 0..9.
 subi r30,214 ; Add the base word address of the address
 sbci r31,255 ; table (by subtracting the negative).
 add r30,r30 ; Multiply the word address by two to
 adc r31,r31 ; produce an octet address for "lpm".
 lpm r0,Z+ ; Get the low octet of the target address.
 lpm r31,Z ; Get the high octet of the target address.
 mov r30,r0 ; Put the whole address in Z = r31:r30.
 ijmp ; Jump to the target address.
 <code for the other cases, referenced from the address table>

The addresses in the table are two octets long, but the lpm (Load Program Memory) instruction requires an octet
address. The code therefore multiplies the word-address of the table element by 2 to compute the octet-address of
the element.

4.3.1 Analysis by Bound-T Alone
Bound-T fails to resolve this dynamic branch because the target address is loaded from memory, and the
arithmetic analysis with the Omega Calculator has no model for an addressable memory (or any other kind of
indexable array). All variables in the Omega model are scalar integers.

For processors with better addressing capability than the AVR, Bound-T implements some pattern matching
which detects jumps to addresses loaded from a table and generates a dedicated "boundable" object to represent
such a dynamic jump. The boundable object depends on the array index expression, not on the loaded address
value. When the arithmetic analysis finds bounds on the index (including congruence information), the resolution
method for the boundable object fetches the corresponding addresses from the executable file and adds those
edges to the control-flow graph. The address values themselves are never entered into the value analysis, only
the index values are analysed there.

Detecting such load-address-from-table patterns is cumbersome for the AVR with its weak addressing modes
and 8-bit operation width. Loading the indexed address from the table takes some seven AVR instructions,
followed by the ijmp instruction which is the dynamic jump itself. There are several possible instruction
sequences with the same effect, so any pattern detector would have to be quite flexible. However, this is certainly
an important shortcoming of Bound-T/AVR and one that should be corrected, unless the use of SWEET solves
the problem.

4.3.2 Analysis by Bound-T and SWEET Combined
ALF and SWEET are able to model addressable memories and can therefore find out the values loaded from the
address table in this program (as long as Bound-T supplies the initial values as an ALF initialization). However,
recall that the code multiplies the word address by two to get the octet address of the table entry. This has a nasty
consequence: at present, SWEET does not implement congruence analysis, and therefore this multiplication
makes SWEET overestimate the set of offsets into the address table. The true set consists of the even numbers in
the range 0..18, but SWEET uses all numbers in this range, including the odd ones. When the offset is odd, the
two-octet value (i.e. a putative but infeasible jump target) loaded from the table has the low octet of a real
address in its high octet, and the high octet of a real address in its low octet. When SWEET computes the interval

18

which comprises all these "addresses", both the real and false values, the result is a huge over-estimate (-20 224..
255 for KucDnd11Z, and -10 240..255 for KucDud11Z). Bound-T rejects these results as too loose, so the analysis
fails to resolve these dynamic jumps.

Even if SWEET could use congruences to eliminate the odd offset values, the result would still be
considerably over-estimated because SWEET would form an interval which contains all the addresses loaded
from the table. These addresses are usually separated by the addresses of the instructions generated for the
statements in each case. Thus the addresses form a sparse set rather than a contiguous interval. In other words,
although the table indices are well (even exactly) represented by an interval (with congruence), the values of the
table elements cannot be well represented by an interval, even with congruence.

Note that these over-estimates result from the appearance of an abstracted value for the case index: the
interval 0..9. If the analysis were to consider each possible index in this interval separately, as if the code
contained a loop stepping the index from 0 to 9, there would be no over-estimation (assuming that the "no
merge" option is still in use). This improvement is observed in the switch-table examples, shown in later
sections, because such loops occur naturally in the switch-table handler subprograms.

These examples suggest that SWEET could improve accuracy by enumerating abstracted states into the
equivalent single-valued concrete states, processing the single-valued states, and then (if required) merging the
results. Of course this risks combinatorial explosion, so it should be applied intelligently, perhaps only when the
user so commands.

4.4 A Simple Switch-Table and Handler (tp_avr_6, asm)
In our classification (in section 2.2.2 above) of the three types of code generated for switch-case statements,
switch-tables and their handler subprograms are the last and apparently most complex. For this evaluation, the
test program tp_avr_6 was hand-written in AVR assembly language to implement the deliberately simplified
switch-table structure and the corresponding handler subprogram which were used as the running example for
the description of Bound-T's partial-evaluation analysis method [6]. More complex, real examples of switch-
tables occur in later test programs described in sections 4.5 and 4.6.

The simplified switch-table used in tp_avr_6 is a list of entries of the form (mask octet, match octet, target
address). An entry matches the 8-bit case-number if the logical bit-wise "and" of the case-number and the mask
octet equals the match octet. The switch-table resides in AVR code memory. The switch handler is invoked by a
jump instruction with the case-number value in register r0 and a pointer to the switch-table in register Z. The
switch handler executes a loop which traverses the table and jumps to the target address of the first matching
entry. As usual in AVR code, this dynamic jump is implemented with an ijmp instruction, which jumps to the
address in the Z register.

The switch-case example in the test program has four cases numbered 4, 8, 9, 11, and a default case. The
default case is represented by the final entry in the switch-table with mask and match both zero.

4.4.1 Analysis by Bound-T Alone
The numerical analyses in Bound-T cannot resolve this dynamic jump, because the target address is loaded from
a table rather than computed numerically, and there is no specific pattern-matching analysis for this case in the
AVR version of Bound-T (as explained in section 4.3).

The dynamic jump could be resolved with the partial-evaluation method [6], but that requires detection and
special handling of the invocation of the switch handler. As this particular handler is just an artificial example
and is not used by any real compiler, we have not implemented detection of this handler in Bound-T. In
summary, Bound-T cannot now resolve this dynamic branch, but can resolve similar real cases which are
generated by real compilers. For an example, see section 4.5.

4.4.2 Analysis by Bound-T and SWEET Combined
The combination of Bound-T and SWEET can resolve the branch. The abstract execution method works in this
case with single, concrete values: the base address of the switch-table is a static constant; the indices into the
table are generated one at a time by the loop in the switch handler; and the "no merge" option to SWEET
prevents their abstraction into intervals. Therefore, there is no over-estimation, and the dynamic branch is
resolved precisely to its five cases.

19

4.5 A Complex Switch-Table: Sparse Form (tp_c_2 / KuiSnd5Z, IAR)
The Bound-T test program tp_c_2 contains several C functions with various kinds of switch-case statements. In
the function KuiSnd5Z, the switch-case statement has an index of type unsigned int, four sparsely numbered
cases, and a default case:

char KuiSnd5Z (unsigned int index)
{
 char result = '0';
 switch (index) {
 case 0:
 result = 'z';
 break;
 case 16:
 result += 1;
 case 33:
 if (result > 'a') result = 'b';
 break;
 case 95:
 return 'q';
 default:
 if (index < 77) return 'f';
 }

 return result;
}

When this function is compiled with the IAR compiler, using the compiler option -fst0, the generated code uses
the IAR compiler's switch-table format and the switch handler ?SV_SWITCH_L06. Bound-T can analyse such code
with the partial-evaluation method [6]. The IAR switch-table format and handler routine are much more complex
than the simplified example shown in [6] and tested in tp_avr_6. It is interesting to see if SWEET can analyse
this complex case.

4.5.1 Analysis by Bound-T Alone
Bound-T recognizes the jump to ?SV_SWITCH_L06 as the invocation of an IAR switch handler and begins the
partial evaluation of the handler, as described in [6]. In brief, this means that Bound-T executes the AVR code in
the switch handler, instruction by instruction, but the execution is partly concrete and partly abstract. The only
concrete data are the address to the switch-table, which is held in the Z register on entry to the handler, and all
data that are loaded from known addresses in the switch-table. The values in the switch-table are statically
known because the switch-table is located in the AVR program memory, and the contents of the program
memory are part of the file given to Bound-T, which contains the program under analysis. All other data are
abstracted to a single abstract value "unknown". This includes in particular the value of the switch index
expression.

The partial evaluation leaves a "trail", or residual program, which consists of steps and edges in the control-
flow graph, added to the graph one by one when the instructions are evaluated and control transitions are taken.

When the partial evaluation encounters a dynamic branch in the switch handler — usually an ijmp
instruction — it attempts to resolve the branch using the concrete part of the evaluation state. In the case of ijmp,
which jumps to the address held in the Z register, resolution succeeds if and only if the Z register has a concrete
value at this point in the evaluation. That is always the case in this switch handler, because the handler loads the
target address from the switch-table into Z before executing ijmp.

Because dynamic branches must be resolved in a context-independent way in Bound-, the switch handler
subprogram must be "integrated" (in-lined) into the the control-flow graph of the subprogram which contains the
switch-case statement, here KuiSnd5Z. This in fact happens naturally, because the compiler-generated code
invokes the handler by a jump instruction, not a call instruction. The handler has no use for a return address
because it exits to some address that it takes from the switch-table.

This switch handler uses a number of "helper" subprograms to perform frequent small jobs such as loading
an octet or a word of data from the switch-table. Because Bound-T models the computational effects of
subprogram calls quite imprecisely, for the partial evaluation to work these subprograms must also be integrated

20

into the caller's control-flow graph. This integration happens automatically when Bound-T is partially evaluating
the handler.

For the subprogram KuiSnd5Z, the partial evaluation of ?SV_SWITCH_L06 encounters eight ijmp statements in
this switch handler (rather, it encounters the same ijmp statement in eight different evaluation states). Four of
these resolve to the default case of the switch statement in KuiSnd5Z, and the four others to each of the four non-
default cases. The final control-flow graph of KuiSnd5Z, with the switch-case statement fully resolved, contains
221 steps (instructions) and 229 edges (control-flow transitions including sequential flow), mostly coming from
the code of the integrated switch handler ?SV_SWITCH_L06 and its helper subprograms.

Note that this partial evaluation method evaluates and includes in the control-flow graph only those parts of
the switch handler which are reachable (feasible) under the current switch-table contents. In other words, if the
value of the condition of a branch in the switch handler can be computed from the concrete part of the evaluation
state then only the selected transition (branch taken if true, not taken if false) is evaluated and included in the
control-flow graph. In this respect Bound-T's partial evaluation resembles SWEET's abstract execution which
also discards infeasible execution states.

When the partial evaluation evaluates an instruction and adds the corresponding step to the control-flow
graph, the step is labelled and identified by the evaluation state, in addition to the instruction address. Therefore,
if the same instruction is evaluated in several different contexts, it will be represented by as many steps in the
control-flow graph. This is a somewhat analogous to the way in which SWEET's abstract execution keeps its
execution states separate when the "no merge" option is used.

The partial evaluation completes when all execution paths have ended in ijmp statements, which have been
resolved. Thus, the loop in the switch handler is executed or evaluated, iteration by iteration, until it terminates.
The final control-flow graph has no loop, so it is easy for Bound-T to calculate a WCET bound: 284 cycles.

4.5.2 Analysis by Bound-T and SWEET Combined
To test the combined Bound-T + SWEET analysis on this example, Bound-T's partial-evaluation method and
arithmetic analysis were both disabled with command-line options. Also, to make this experiment as similar as
possible to the analysis that Bound-T performs alone, assertions were used to make Bound-T integrate the
"helper" routines into the control-flow graph, instead of modelling them as called subprograms. The switch
handler itself is automatically integrated because it is invoked with a jump instead of a call.

In this analysis, where Bound-T constructs the control-flow graph in the ordinary way, and not with partial
evaluation, the control-flow graph contains all the code of the switch handler, not just the part that is feasible for
the current switch-table. The resulting control-flow graph contains two ijmp instructions; the partial evaluation
found only one of them. Here, too, Bound-T decides that the other ijmp is unreachable, but here this decision
comes from constant-propagation analysis of the control-flow graph, not from partial evaluation (the two
analyses are of course very similar). The other ijmp comes into use for switch-tables with different contents as
will be explained in section 4.6.

Figure 2 shows the control-flow graph as Bound-T sees it after the dynamic branches are resolved. The
dotted edges show the infeasible paths (unreachable code); the bold solid edges show the worst-case path; the
other (thin) solid edges show other feasible paths (well, feasible as far as Bound-T can determine).

When Bound-T translates the control-flow graph to ALF, the unreachable ijmp instruction (and the other
unreachable code) is left out. SWEET's analysis of the ALF program, with its one unresolved branch, discovers
the exact set of target addresses for this branch. The final control-flow graph of KuiSnd5Z, with the switch-case
statement fully resolved, contains 167 steps, of which 29 are infeasible, and 184 edges of which 34 are
infeasible. Again, most of these steps and edges come from the code of the integrated switch handler
? SV_SWITCH_L06 and its helper subprograms. The number of steps and edges is different from their number in
Bound-T's partial evaluation analysis, because here the control-flow graph does not separate steps (instructions)
by their evaluation state, only by their machine address.

21

Summary flow-graph of KuiSnd5Z
one call from one path

KuiSnd5Z

00046A rcall -280
00023C st -Y,r27
00023E st -Y,r26
000240 st -Y,r25
000242 st -Y,r24
000244 ret
00046C mov r26,r16
00046E mov r27,r17
000470 ldi r24,48
000472 mov r16,r26
000474 mov r17,r27
000476 ldi r30,174
000478 ldi r31,0
00047A rjmp -369
00019A rcall -17
00017A rcall 91
000232 lpm
000234 adiw Z,1
000236 ret
00017C mov r21,r0
00017E rcall 89
000232 lpm
000234 adiw Z,1
000236 ret
000180 mov r20,r0
000182 rcall 87
000232 lpm
000234 adiw Z,1
000236 ret
000184 mov r1,r0
000186 bst r0,1
000188 rcall 84
000232 lpm
000234 adiw Z,1
000236 ret
00018A mov r2,r0
00018C rcall 82
000232 lpm
000234 adiw Z,1
000236 ret
00018E mov r3,r0
000190 ret
00019C sub r16,r20
00019E sbc r17,r21
0001A0 ldi r18,0
0001A2 ldi r19,0
0001A4 rjmp 5
0001B0 brcs 28

 one call

0001B2 sbrc r1,0

 eq0(C)

0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp

 eq1(C)

0001B4 rjmp 29
0001F0 brne 2

 not(eq0((r1 andw 1)))

0001B6 rcall 61
000232 lpm
000234 adiw Z,1
000236 ret
0001B8 mov r20,r0
0001BA rcall 59
000232 lpm
000234 adiw Z,1
000236 ret
0001BC add r30,r16
0001BE adc r31,r17
0001C0 cp r16,r20
0001C2 cpc r17,r0
0001C4 ldi r20,0
0001C6 cpc r18,r20
0001C8 cpc r19,r20
0001CA brcc 15

 eq0((r1 andw 1))

00047C ldi r24,122

 (pZ=574)

000484 inc r24

 (pZ=578)

000486 cpi r24,98
000488 brcs -6

 (pZ=579)

00048E ldi r16,113
000490 rjmp -9

 (pZ=583)

000492 cpi r26,77
000494 ldi r16,0
000496 cpc r27,r16
000498 brcc -14

 (pZ=585)

0001F2 brtc -9

 eq1(Z)

loop #1
0001F6 adiw Z,1
0001F8 brts 1

 eq0(Z)

 eq0(C)

0001CC brtc 8

 eq1(C)

00047E mov r16,r24

 true

 true

 eq1(C) 00048A ldi r24,98
00048C rjmp -8

 eq0(C)

000480 ldi r30,4
000482 rjmp -285
00024A ldd r27,Y+3
00024C ldd r26,Y+2
00024E ldd r25,Y+1
000250 ld r24,Y
000252 ldi r31,0
000254 in r0,63
000256 bclr I
000258 add r28,r30
00025A adc r29,r31
00025C out 63,r0
00025E ret

 true eq0(C)

00049A ldi r16,102
00049C rjmp -15

 eq1(C)

0001E2 rcall 39
000232 lpm
000234 adiw Z,1
000236 ret
0001E4 mov r2,r0
0001E6 rcall 37
000232 lpm
000234 adiw Z,1
000236 ret
0001E8 mov r3,r0

 eq0(T)

0001F4 rjmp -20

 eq1(T)

0001FA adiw Z,1

 eq0(T)

0001FC ldi r21,0
0001FE ldi r22,0
000200 ldi r23,0
000202 rcall 23
000232 lpm
000234 adiw Z,1
000236 ret
000204 mov r20,r0
000206 cpi r20,251
000208 brcs 13

 eq1(T)

0001CE lpm
0001D0 mov r16,r0
0001D2 eor r0,r0
0001D4 mov r30,r2
0001D6 mov r31,r3
0001D8 sub r30,r16
0001DA sbc r31,r0
0001DC ijmp

 eq1(T)

0001DE add r30,r16
0001E0 adc r31,r17

 eq0(T)

 true

 true

 true

 true true

 true

00020A breq -17

 eq0(C)

000224 sub r16,r20
000226 sbc r17,r21
000228 sbc r18,r22
00022A sbc r19,r23
00022C breq -30

 eq1(C)

 true

 eq1(Z)

00020C cpi r20,255
00020E breq 8

 eq0(Z)

 eq1(Z)

00022E brcs -35

 eq0(Z)

000210 cpi r20,254
000212 breq 4

 eq0(Z)

000220 rcall 8
000232 lpm
000234 adiw Z,1
000236 ret
000222 mov r20,r0

 eq1(Z)

 eq1(C)000230 rjmp -30

 eq0(C)

000214 rcall 14
000232 lpm
000234 adiw Z,1
000236 ret
000216 mov r23,r0
000218 rcall 12
000232 lpm
000234 adiw Z,1
000236 ret
00021A mov r22,r0

 eq0(Z)

00021C rcall 10
000232 lpm
000234 adiw Z,1
000236 ret
00021E mov r21,r0

 eq1(Z)

 true

 true

 true

 true

Figure 2: Control-Flow Graph of KuiSnd5Z with IAR Switch Handler

22

In this analysis with SWEET, Bound-T cannot produce a WCET bound, because it cannot find iteration bounds
on the loop in the switch handler. In the absence of partial evaluation, this loop remains as a loop in the final
control-flow graph. The problem is that this loop is not a "counted" loop but a loop terminated by a logical
condition (matching switch entry found). SWEET's abstract execution has found an iteration bound for this loop
(else SWEET would not terminate), but at present this bound is not conveyed from SWEET to Bound-T in our
prototype implementation. If we assert this loop-bound (4 iterations) for Bound-T, the resulting WCET bound is
577 cycles. This is more than twice the WCET bound of 284 cycles that Bound-T computed using its partial-
evaluation method. The likely reason is that the larger bound is calculated assuming that each loop iteration takes
the worst-case path through the loop-body, while the smaller bound is the sum of the WCETs of the actual
execution paths in each iteration. These paths are discovered by the partial evaluation method, based on the
actual contents of the switch-table, when the evaluation completely unrolls the loop into the control-flow graph.

However, this WCET over-estimation is more due to an incomplete transfer of SWEET's analysis results to
Bound-T than to a weakness in SWEET's analysis. The abstract execution in SWEET does find the actual
execution path in each iteration of the loop, but in our current prototype that information is not transferred to
Bound-T. One way to recover the smaller WCET bound from SWEET would be to define the cumulated
execution time as a program variable and let the abstract execution find bounds on this variable, as suggested in
another context [10].

4.6 A Complex Switch-Table: Dense Form (tp_c_2 / KucDnd11Z, IAR)
Among the subprograms in the test program tp_c_2 is KucDnd11Z which contains a switch-case statement using
an unsigned char index expression and having 10 cases numbered densely from 0 to 9 plus a default case.
When this function is compiled with the IAR compiler, using the compiler option -fst0, the generated code uses
the IAR compiler's switch-table format and the switch handler ?SV_SWITCH_L06, as in the case of the sparsely
numbered switch statement discussed in section 4.5. However, for the densely numbered switch-case statement
in KucDnd11Z, the switch-table contents are of course different and in fact drive the switch handler to use its
other ijmp instruction, which was not used at all for the sparse form. Indeed, the IAR switch-table format
supports also densely numbered sets of cases (perhaps as a subset of the cases in a switch-case statement which
has both sparsely and densely numbered parts), and this second ijmp instruction implements this.

For both the "sparse" and the "dense" ijmp instruction the target address is loaded from the switch-table.
However, for the "sparse" ijmp the address is loaded form a place which is concrete (known) to the partial
evaluator, and therefore the evaluator also knows the target address, while for the "dense" ijmp the place in the
table is computed using the value of the switch-case index expression, which is not concretely known to the
partial evaluator. We explain below how Bound-T handles this.

4.6.1 Analysis by Bound-T Alone
Bound-T detects the invocation of the IAR switch handler and starts its partial evaluation. If this evaluation
would do only what it does when the case-numbering is sparse, it would encounter the ijmp instruction for the
"dense" numbering with an evaluation state which does not determine the concrete value of register Z, and would
fail to resolve the jump. Some further or other analysis is therefore needed; in Bound-T, this means the arithmetic
analysis must be used. However, activating the arithmetic analysis at the ijmp instruction, to find the possible
target addresses as the possible values of the Z register, does not work, because Z is loaded before the ijmp from
some dynamically determined place in the switch-table, and the arithmetic analysis cannot model such a load. To
get around this problem Bound-T uses the same approach as for a simple dense address array: it applies the
arithmetic analysis to find the possible table indices, and then reads the corresponding possible values from the
table content (which is known, because the table is in program memory).

This is implemented as follows: during partial evaluation of a switch handler, if Bound-T encounters an
instruction which loads data from the program memory (in the AVR that is an lpm or elpm instruction), and the
concrete part of the evaluation state does not define the concrete source place (memory address) for the load,
Bound-T creates a special kind of boundable edge from the step preceding this load instruction. This boundable
edge is subjected to the arithmetic analysis, but unlike most other boundable edges the goal is not to find the
target-instruction addresses, but to find the possible values of the data address for the load. In the AVR, this is
again the value of the Z register at the load instruction. If this analysis discovers the possible load addresses,
Bound-T resolves this special boundable edge into one actual flow-graph edge for each possible load address. All

23

these edges go to the load instruction, but they have different conditions and result in different evaluation states
which contain different concrete values of the load address. In effect this "forks" the partial evaluation into as
many parallel paths, and sets the initial concrete part of the evaluation state of each path to hold the
corresponding load address. As the partial evaluation proceeds along these paths it uses these load addresses to
read the concrete data from the program memory. The loaded data later becomes the target address in the "dense"
ijmp instruction, and so the partial evaluation can resolve this ijmp.

Perhaps a concrete example is necessary to illustrate this process. Table 3 shows an outline of the code of the
IAR switch handler for the dense case-numbering.

Table 3: IAR Switch Handler Outline for Dense Case Numbering
Address (hex) AVR assembly code Description

KucDnd11Z: The root subprogram for our analysis.
... ... Unimportant code elided.
302 mov r16,r25 Sets the switch index into r16.
304 ldi r30,40 Sets Z = r31:r30 to point to the switch-table.
306 ldi r31,0
308 rjmp ?SV_SWITCH_L06 Invokes the switch handler. Bound-T starts the partial evaluation

with Z = 40 as the concrete part of the evaluation state. Note that
the switch index in r16 is abstract (not concrete).

?SV_SWITCH_L06: The switch handler.
192 ... Code (which we elide for clarity) which reads data from the

switch-table (using the GetByte subprogram, see below), notices
that this switch has dense case numbering, and computes the
address in the switch-table which contains the address of the case
to be executed. The former address is computed into the Z register
in an affine way from switch-table data (concretely known to the
partial evaluator) and the switch index (r16) which is not
concretely known.

1E2 rcall GetByte Calls a subprogram which reads an octet from the switch-table, at
address Z, returns it in r0, and increments Z. The value read is the
low octet of the case address.

1E4 mov r2,r0 Saves the value read in r2.
1E6 rcall GetByte Reads the high octet of the case address into r0 (and increments Z,

but the incremented value is not used).
1E8 mov r3,r0 This and the two following instructions collect the case address

into the Z register (r31:r30).
1EA mov r30,r2
1EC mov r31,r3
1EE ijmp Jumps to the case address in Z, leaving the switch handler.
??? ??? The first instruction of the selected case, wherever it is.

GetByte: Subprogram to read one octet from the switch-table.
232 lpm Loads the current octet (at Z) from the switch-table into register

r0.
234 adiw Z,1 Advances Z to point to the next byte.
236 ret

When Bound-T partially evaluates this code, all calls of the GetByte subprogram are automatically integrated in
the main control-flow graph. In other words, as you read the table above, you should think of the instruction
rcall GetByte as a macro call which copies the three instructions in GetByte into the control-flow graph of
KucDnd11Z.

The partial evauation finds that all loads from the switch-table use concrete addresses and yield concrete
data, up to the call of GetByte at address 1E2. At this point, the partial evaluation has one active state, located at
this instruction. In this state, the Z register contains an abstract value, which means that the lpm instruction in
GetByte at address 232 does not yield concrete data. As explained above, Bound-T therefore creates a boundable

24

edge which originates at the preceding instruction (1E2: rcall GetByte) and uses arithmetic analysis to
compute the possible values of the load address, which is the Z register.

The arithmetic analysis yields the value-set of the ten even integers between 46 and 64, inclusive. The
resolving operation of the boundable edge therefore adds ten new static edges into the control-flow graph, all
going from the instruction (1E2: rcall GetByte) to the instruction (232: lpm), but each with a different
evaluation state at the target instruction, namely a state which assigns one of 46, 48, ..., 62, 64 as the concrete
value of Z.

The partial evaluation resumes from these edges which represent ten valid but different evaluation states. In
each of these states, the value of Z for the instruction (232: lpm) is concretely known and therefore the partial
evaluation of this instruction returns a concrete value from the switch-table. Moreover, when evaluation then
reaches the next call of GetByte at address 1E6, register Z still has a concrete value, and so this GetByte can be
evaluated as usual and also returns a concrete value. All ten partial evaluation "threads" thus reach the ijmp
instruction at address 1EE with a concrete Z-value, which means that the ijmp is resolved in each thread (to a
unique target address in that thread). Overall, the ijmp instruction is resolved into ten possible target addresses.

Figure 3 on page 26 shows the completed control-flow graph of KucDnd11Z, as Bound-T constructs it
without help from SWEET. This includes the integrated code from the IAR switch handler and its helper
subprograms such as GetByte. The crucial point is the basic block which ends with the instruction shown as
"0001E2 rcall 39", which is the rcall GetByte instruction at which Z is (at first) abstract. The ten edges leaving
this basic block represent the ten threads of partial evaluation, each with its own concrete value of Z selected
from the ten possible values of Z which the arithmetic analysis discovered. The edges are labeled with their Z
values, shown as "pZ" to distinguish the 16-bit Z pointer register from the 1-bit condition flag Z.

4.6.2 Analysis by Bound-T and SWEET Combined
To test the combined Bound-T + SWEET analysis on this example, Bound-T's partial-evaluation method and
arithmetic analysis were both disabled with command-line options. Also, to make this experiment as similar as
possible to the analysis that Bound-T performs alone, assertions were used to make Bound-T integrate the
"helper" routines into the control-flow graph, instead of modelling them as called subprograms. The switch
handler itself is automatically integrated because it is invoked with a jump instead of a call. Furthermore, we
disabled Bound-T's use of constant-propagation results for detecting infeasible paths, because we wanted to
evaluate SWEET's ability to detect such paths. We left enabled the refinement of arithmetic effects by constant-
propagation, so this result of Bound-T's own analysis enters into and simplifies the ALF code given to SWEET.

(We record as an aside that if we disable Bound-T's constant-propagation analysis entirely, and so translate
the raw, unrefined AVR code into ALF, then SWEET's abstract execution of the ALF code does not converge,
and SWEET complains of running into out-of-bounds ALF memory accesses. The reason seems to be that under
these conditions SWEET does not detect that the switch-handler code for the sparse case-numbering is
unreachable, and therefore abstractly executes the loop which traverses the "sparse" switch-table, but does not
detect the termination of this loop and so runs off the defined program-memory address range. However, this
explanation is conjectural and investigation is pending; the reason could be a poor or too approximate translation
to ALF. We now continue discussing how SWEET works when constant-propagation refinements are allowed for
the computational effects of steps/instructions but not for edge conditions. Under these conditions, SWEET's
abstract execution does terminate.)

SWEET agrees with Bound-T that the ijmp instruction dedicated to the sparse case-numbering is
unreachable in this example program. SWEET also detects that the switch-table-traversing loop for the sparse
case-numbering is unreachable (at least, no loop-bound flow-facts are generated under the --flow-facts
option).

However, SWEET's abstract execution cannot find good bounds on the target address for the reachable ijmp
instruction for dense case-numbering. There are several reasons for this, all stemming from a central but
difficult sequence of instructions in the switch handler. Table 4 shows and describes this sequence.

25

26

Figure 3: Completed Control-Flow Graph of KucDnd11Z

Summary flow-graph of KucDnd11Z
totals (after ';') for one call from one path
time 206

KucDnd11Z

0002FA rcall -95
kase.c:84
00023E st -Y,r26
000240 st -Y,r25
000242 st -Y,r24
000244 ret
0002FC mov r25,r16
0002FE mov r26,r17
000300 ldi r24,48
kase.c:86
000302 mov r16,r25
kase.c:88
000304 ldi r30,40
000306 ldi r31,0
000308 rjmp -188
000192 rcall -11
00017E rcall 89
000232 lpm
000234 adiw Z,1
000236 ret
000180 mov r20,r0
000182 rcall 87
000232 lpm
000234 adiw Z,1
000236 ret
000184 mov r1,r0
000186 bst r0,1
000188 rcall 84
000232 lpm
000234 adiw Z,1
000236 ret
00018A mov r2,r0
00018C rcall 82
000232 lpm
000234 adiw Z,1
000236 ret
00018E mov r3,r0
000190 ret
000194 sub r16,r20
000196 ldi r17,0
000198 rjmp 3
0001A0 ldi r18,0
0001A2 ldi r19,0
0001A4 rjmp 5
0001B0 brcs 28
0001B2 sbrc r1,0
0001B6 rcall 61
000232 lpm
000234 adiw Z,1
000236 ret
0001B8 mov r20,r0
0001BA rcall 59
000232 lpm
000234 adiw Z,1
000236 ret
0001BC add r30,r16
0001BE adc r31,r17
0001C0 cp r16,r20
0001C2 cpc r17,r0
0001C4 ldi r20,0
0001C6 cpc r18,r20
0001C8 cpc r19,r20
0001CA brcc 15
count 1

 one call

0001CC brtc 8
0001DE add r30,r16
0001E0 adc r31,r17
0001E2 rcall 39
count 1

 eq1(C)
 1

0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp
00033C cpi r25,77
kase.c:118
00033E brcc -26
count 0

 eq0(C)
 0

000232 lpm
000234 adiw Z,1
000236 ret
0001E4 mov r2,r0
0001E6 rcall 37
000232 lpm
000234 adiw Z,1
000236 ret
0001E8 mov r3,r0
0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp
00030A ldi r24,122
kase.c:90
count 0

 (pZ=46)
 0

000232 lpm
000234 adiw Z,1
000236 ret
0001E4 mov r2,r0
0001E6 rcall 37
000232 lpm
000234 adiw Z,1
000236 ret
0001E8 mov r3,r0
0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp
000312 inc r24
kase.c:93
count 0

 (pZ=48)
 0

000232 lpm
000234 adiw Z,1
000236 ret
0001E4 mov r2,r0
0001E6 rcall 37
000232 lpm
000234 adiw Z,1
000236 ret
0001E8 mov r3,r0
0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp
count 0

 (pZ=50)
 0

000232 lpm
000234 adiw Z,1
000236 ret
0001E4 mov r2,r0
0001E6 rcall 37
000232 lpm
000234 adiw Z,1
000236 ret
0001E8 mov r3,r0
0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp
00031C ldi r16,113
kase.c:98
00031E rjmp -9
count 0

 (pZ=52)
 0

000232 lpm
000234 adiw Z,1
000236 ret
0001E4 mov r2,r0
0001E6 rcall 37
000232 lpm
000234 adiw Z,1
000236 ret
0001E8 mov r3,r0
0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp
000320 cpi r26,119
kase.c:100
count 0

 (pZ=54)
 0

000232 lpm
000234 adiw Z,1
000236 ret
0001E4 mov r2,r0
0001E6 rcall 37
000232 lpm
000234 adiw Z,1
000236 ret
0001E8 mov r3,r0
0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp
count 0

 (pZ=56)
 0

000232 lpm
000234 adiw Z,1
000236 ret
0001E4 mov r2,r0
0001E6 rcall 37
000232 lpm
000234 adiw Z,1
000236 ret
0001E8 mov r3,r0
0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp
000328 add r24,r26
kase.c:107
00032A rjmp -16
count 0

 (pZ=58)
 0

000232 lpm
000234 adiw Z,1
000236 ret
0001E4 mov r2,r0
0001E6 rcall 37
000232 lpm
000234 adiw Z,1
000236 ret
0001E8 mov r3,r0
0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp
00032C sub r24,r26
kase.c:110
00032E rjmp -18
count 0

 (pZ=60)
 0

000232 lpm
000234 adiw Z,1
000236 ret
0001E4 mov r2,r0
0001E6 rcall 37
000232 lpm
000234 adiw Z,1
000236 ret
0001E8 mov r3,r0
0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp
000330 mov r16,r26
kase.c:113
000332 and r16,r24
000334 cp r16,r26
000336 brcc -22
count 1

 (pZ=62)
 1

000232 lpm
000234 adiw Z,1
000236 ret
0001E4 mov r2,r0
0001E6 rcall 37
000232 lpm
000234 adiw Z,1
000236 ret
0001E8 mov r3,r0
0001EA mov r30,r2
0001EC mov r31,r3
0001EE ijmp
count 0

 (pZ=64)
 0

00030C mov r16,r24
kase.c:121
count 1

 eq0(C)
 0

000340 ldi r16,102
kase.c:118
000342 rjmp -27
count 0

 eq1(C)
 0

 true
 0

000314 cpi r24,98
kase.c:95
000316 brcs -6
count 0

 true
 0

 (pZ=394)
 0

00030E ldi r30,3
000310 rjmp -99
00024C ldd r26,Y+2
00024E ldd r25,Y+1
000250 ld r24,Y
000252 ldi r31,0
000254 in r0,63
000256 bclr I
000258 add r28,r30
00025A adc r29,r31
00025C out 63,r0
00025E ret
count 1

 true
 0

000322 add r26,r26
kase.c:101
kase.c:104
000324 mov r24,r26
000326 rjmp -14
count 0

 true
 0

 (pZ=401)
 0

 true
 0

 true
 0

 eq0(C)
 0

000338 ldi r24,63
kase.c:113
00033A rjmp -24
count 1

 eq1(C)
 1

 (pZ=390)
 0

 true
 1

 true
 0

 eq1(C)
 0

000318 ldi r24,98
kase.c:95
00031A rjmp -8
count 0

 eq0(C)
 0

 true
 0

 true
 1

 true
 0

Table 4: IAR Switch Handler Core for Dense Case Numbering
Address (hex) AVR assembly code Description

Here, register Z points into the switch-table, at the location
holding the code address of the first case. Registers r17:r16
contain the switch-index with the number of the first case subtrac-
ted, so r17:r16 = 0 for the first case, 1 for the second, and so on.
Registers r0:r20 (note the non-standard pairing) contain the
number of cases, which is 10 for KucDnd11Z.

1BC
1BE

add r30,r16
adc r31,r17

Start computing the place in the switch-table which contains the
case address, by adding the zero-based switch index (r17:r16) to
Z. If the switch-table entries were one octet long, this would give
the address of the entry. However, here the entries are two octets
long, so this addition is not enough; see address 1DE below.

1C0
1C2

cp r16,r20
cpc r17,r0

Compare the zero-based switch index (r17:r16) to the total
number of cases (r0:r21). The carry flag, C, shows the result.

1C4
1C6
1C8

ldi r20,0
cpc r18,r20
cpc r19,r20

Extend the comparison from 16 bits to 32 bits. For a 16-bit switch
index, as used in KucDnd11Z, this code has no significant effect,
because r18 and r19 are zero. Most likely the IAR switch handler
has other entry points for switch-case statements using 32-bit
indices, and those entry points also use this code.

1CA brcc not_in_range Branches to the default-case code if the zero-based switch index is
greater or equal to the number of cases, in other words if no case
has this index number. Here we assume that some case does
match this index, so we assume that the branch is not taken.

1CC brtc <1DE> We do not fully understand the function of this branch, but the
data in the switch-table for KucDnd11Z force it to be taken.

1DE
1E0

add r30,r16
adc r31,r17

Finish computing the place in the switch-table which contains the
case address, by again adding the zero-based switch index
(r17:r16) to Z. The switch index must be added twice because the
table entries are two octets long.

1E2 ... (see Table 3) Here, Z points into the switch-table, at the entry holding the 16-bit
code address of the selected case. As shown in Table 3, the
switch-handler code proceeds to load the address into Z (using two
calls of GetByte) and then executes ijmp.

The code shown in Table 4 poses the following problems for Bound-T and SWEET:

1. The AVR version of Bound-T identifies "chains" of 8-bit operations which implement 16-bit computations.
For example, the cp-cpc pair at address 1C2 effectively compares the 16-bit value r17:r16 to the 16-bit
value r0:r20, with the result in the final value of the carry flag C. However, this chaining currently stops at
16 bits (for no very good reason). Therefore, Bound-T does not understand that the next three instructions,
starting at address 1C4, extend the comparison to 32 bits. The carry flag, which after the first cpc shows the
result of the 16-bit comparison, is further modified by the other two cpc instructions. This means that
Bound-T is not able to "in-line" or substitute the relational expression "r17:r16 < r0:r20" into the
condition for the branch at address 1CA. Therefore, the ALF {switch} for this branch depends on the 1-bit
C flag, not on the relational expression.

2. The above shortcoming of Bound-T's analysis and ALF translation causes the first SWEET problem.
Because the {switch} modelling the branch at address 1CA uses the logical value of a 1-bit flag, instead of
a relation between variables, SWEET cannot infer restrictions on the values of the variables for the
{switch} targets. Thus, although the {switch} target corresponding to the address 1CC is reached only if
r17:r16 is in the range 0..9, SWEET can only deduce the bounds 0..255 (the same as before the {switch}).
The addition at addresses 1DE..1E0 then leads to a severe over-estimation of the possible values of Z.

3. The second SWEET problem stems from the peculiar structure of the code, where the first addition of
r17:r16 to Z occurs at addresses 1BC..1BE before the comparison of r17:r16 to 10. This means that even
if SWEET could deduce the correct bounds 0..9 for r17:r16 after the branch at 1CA, SWEET's abstract

27

execution would still over-estimate the range of Z because it would not retroactively apply these bounds to
the addition at 1BC..1BE which uses the same value of r17:r16. At that addition, SWEET's bounds on
r17:r16 are only 0..255; these are indeed the best bounds that can be inferred from the code executed
before the addition, but they lead to a severe over-estimation of the range of Z on the way to the ijmp. A
relational value-analysis, such as SWEET's polyhedral value-analysis, should be able to make this
connection between the bounds on the same value of r17:r16 at different points in the code. Unfortunately
Tidorum did not have the polyhedral analysis available in their installation of SWEET.

4. Finally, even if SWEET could infer the correct bounds 0..9 for r17:r16 at both additions of this value to Z,
and could thereby infer the correct bounds (46..64) on Z, the current lack of congruence analysis in SWEET
would lead to an over-estimation of the value-set of Z, because the fact that the total added value is an even
number would escape SWEET. When the code uses Z to load the target address for the ijmp from the
switch-table, the abstract execution would use all values (odd and even) between the lower and upper
bound on Z. This would include false target addresses with mixed-up combinations of low and high octets.
By simulating this analysis with a SWEET annotation that restricts r16 to 0..9 at the start of the
subprogram we found that SWEET would bound the target address to the interval -31232..511, which
Bound-T would reject as far too loose to be useful as the resolution of a dynamic branch.

Thus, the failure of this analysis results from defects or shortcomings both in Bound-T and in SWEET. Can these
defects be corrected? We answer point by point in the same order as above:

1. Extending Bound-T's narrow-to-wide operation-chaining to any width of values and operations is easy in
principle. However, in practice chaining should be a general, target-independent function, not (as now)
specific to the AVR version of Bound-T, in which chaining was implemented as a pilot experiment with a
view to later implementation in a general, target-independent fashion (this is also the reason why the AVR
chaining implementation stops at 16 bits). A general implementation of chaining requires a more general
concept of hierarchical or overlapping storage cells, which Tidorum has been pursuing for a considerable
time without practical result. Hope remains, however.

2. The SWEET development group at Mälardalen University has discussed implementing in SWEET itself
some kind of in-lining of {switch} conditions so that uses of condition flags are replaced, for the analysis,
by the numerical relation which defined the condition flag. This should improve analyses using linear
models, such as polyhedra, because the setting of a condition flag according to a numerical relation is not a
linear operation, even if the defining relation is linear in its variables. However, no design or implem-
entation plan exists yet.

3. As already said, a relational domain should solve this problem. However, SWEET does not currently
implement abstract execution with a relational domain, and such a combination might be quite expensive in
analysis time. Standard relational domains such as polyhedra have problems in the modelling of variables
with a bounded number of bits where the analysis should cover phenomena such as wrap-around, overflow,
underflow and alternative signed and unsigned views of variables. These phenomena can be modelled with
"bounded polyhedra" [11] but the implementation of bounded polyhedra in SWEET is not quite ready for
routine use.

4. Congruence analysis should not be hard to implement in SWEET. It was implemented in an earlier version
of SWEET which used the NIC language instead of ALF.

4.7 Complex Boolean Address Computation (tp_avr_7/8, asm)
This test program, mostly written in assembly language, tests the ability of Bound-T, assisted by SWEET, to
analyse the complex dynamic jump in a library function called ?C?COPY, originally part of the C library of the
Keil C compiler for the Intel-8051 processor. The inability of Bound-T alone to resolve this jump was probably
an important reason for a recent evaluator of Bound-T/8051 to decide against purchase.

For testing with the Bound-T and SWEET combination, the function ?C?COPY was translated into AVR
assembly language with as little logical or structural changes as possible.

28

Some explanation of why this function has a complex dynamic jump may help to motivate this example. The
Intel-8051 processor architecture has four different memory address spaces that can hold data that is accessed
through a C-language pointer variable (there also also other address spaces, not relevant to C pointers):

• the internal data memory, known as I-data, usually 256 bytes in size (8-bit address)

• the external data memory, known as X-data, typically 64 kilo-octets in size (16-bit address)

• the paged address space, known as P-data, usually a 256-octet window (8-bit address) into the X-data, with
the window base address (multiple of 256) defined by another 8-bit register (an output port)

• the code memory, which is usually read-only and 64 kilo-octets in size (16-bit address).

Note that the program must use different 8051 instructions to read/write data for each memory space; there is no
general instruction that could read/write in any space.

C compilers targeting the 8051 usually support extended source-language keywords by which a certain
variable can be specified to lie in one of these memory spaces, and a certain pointer can be specified to point into
one the spaces. However, in order to conform to the C standard the compilers also support "generic" pointers
which can point into any of the four spaces; which space is referenced is determined dynamically at run time.
The run-time representation of a generic pointer typically consists of one octet which gives the memory space
(only a 2-bit code is required, of course) and two octets which give the address (although one octet would be
enough for some spaces).

Now consider a standard C function such as memcpy(d,s,n), which copies n bytes from the area pointed to
by s to the area pointed to by d. As this is a standard function, the pointers s and d are standard or generic C
pointers, and can point to any of the four memory spaces. The function must be prepared to copy, for example,
from the code memory to the internal data memory, or from the paged address space to the external data
memory, or any other combination of memory spaces except those where d points to code memory (assuming
that code memory is read-only). Different combinations of instructions must be used for each combination of
source and destination memory space. Moreover, the loop which counts n bytes must also be different because
some spaces can make do with an 8-bit counter in a single 8-bit register, while others require a 16-bit counter
composed of two 8-bit registers.

The function ?C?COPY is the core of memcpy and contains 12 different cases corresponding to the 12
memory-space combinations with a choice of four source spaces and three destination spaces. The function
chooses the correct case for the actual s and d arguments by taking the 2 bits of memory-space code from each of
s and d and concatenating them into a 4-bit combined code which it then uses as the offset in a dynamic jump
instruction. Thus, the dynamic jump implements a dense switch with 16 cases. (Four of these cases, where d
points to code memory, are actually illegal, but that is irrelevant for us.)

Surprisingly, for the first version of this test program Bound-T/AVR was able to resolve the dynamic jump
even if Bound-T/8051 was not. The AVR instructions chosen for the bit-manipulation that computes the 0..15
offset to the jump base address happened to fit well in Bound-T's analysis. Other equally plausible choices of
instructions make Bound-T's analysis fail, as explained below in section 4.7.1.

Accordingly, we created two versions of this test program. The program tp_avr_7 is most similar to the
original 8051 function. It uses a rotate instruction instead of a left-shift, and this makes Bound-T fail. Its switch
entries are two addressing units long, which makes SWEET fail to produce an exact result (due to lack of
congruence analysis). In contrast, tp_avr_8 uses left-shift, not rotate, and so Bound-T succeeds; and this
program also has switch entries of length one addressing unit, which makes SWEET produce the exact result.

4.7.1 Analysis by Bound-T Alone and Combined with SWEET
For this test case we discuss Bound-T's analysis and SWEET's analysis together, because we look in detail into
the AVR code to be analysed and consider how Bound-T and SWEET analyse the critical instructions.

Table 5 shows the computation of the jump offset in tp_avr_7 and how Bound-T models it. The "Address"
column uses octet addresses (per gcc convention), although the AVR code-memory address unit is 16 bits. The
five significant areas that are highlighted with bold and a yellow background are discussed after the table.

29

Table 5: Computation of Memory-Space Combination Index in ?C?COPY
Address (hex) AVR assembly code Description

On entry to this function, the source-space code is in r16, with an
offset of -2 (that is, the code is (0..3) - 2, and the destination code is in
r17 with the same offset. Note that this offset causes wrap-around if
these registers are taken as unsigned 8-bit numbers. (We do not
understand why such an offset is used in the original function, but we
do the same for realism.)

9C..B0 ... Elided code that checks if the length parameter is positive and whether
the length is a multiple of 256 (which influences the copy-loop
counters).
The code for checking the memory-space codes and combining them
into the switch index follows:

B2
B4

ldi r30,2
ldi r31,4

Load some helpful constants: the memory-space code offset (2) and
the number of spaces (4).

B6
B8

mov r0,r17
add r0,r30

Remove the offset from the destination memory-space code by adding
2 to r17. The result is in r0 and should be in 0..3.

BA
BC

cp r0,r31
brcc -10

Check that the destination memory-space code is in 0..3, and
otherwise return (brcc) with an error code.

BE
C0

mov r1,r16
add r1,r30

Remove the offset from the source memory-space code in the same
way; result in r1.

C2
C4

cp r1,r31
brcc -14

Check that the source memory-space code is in 0..3, as above.

At this point, the destination memory-space code (0..3) is in r0 and the
source memory-space code (0..3) is in r1. Now we combine them into
a four-bit code (0..15):

C6
C8
CA

bclr C
rol r1
rol r1

Shift r1 two bit-places to the left, but using the "rotate through
carry flag" instruction rol r1. This instruction rotates the 9-bit
combination C:r1 left by one bit position. It is equivalent to the
instruciton adc r1,r1 (add r1 to r1 including the carry flag) and
in fact has the same encoding.

CC or r0,r1 Merge the two memory-space codes into a single 4-bit code (0..15) in
r0. This is the switch index.

CE adc r0,r0 Multiply the switch index by two, because the jump-table entries
are two addressing units (two AVR instruction words) each. The
result is the jump-table case-offset, an even number in the range
0..30.

D0 eor r1,r1 Zero-extend r0 from 8 bits to 16 bits in r1:r0.
D2
D4

ldi r30,110
ldi r31,0

Load the base address (word address 110, octet address 220 = hex DC)
of the jump-table into Z = r31:r30.

D6
D8

add r30,r0
adc r31,r1

Add the case-offset (r1:r0) to the base address (r31:r30).

DA ijmp Jump to that place in the jump-table.
Here is the jump table itself:

DC rjmp CCOPY00 Case 0 (source and destination space-code both 0).
DE nop A spacer inserted to make the jump-table entries two addressing units

long as in the Intel-8051.
C0 rjmp CCOPY01 Case 1 (source space 0, destination space 1).
C2 nop Spacer as above.
... ... And so on, until:
118 rjmp CCOPY33 Case 15 (source and destination space code both 3).
... ... The copying code itself (CCOPY00 .. CCOPY33) is elided.

The significant, highlighted areas of the code are the following:
• The dynamic branch is the ijmp instruction at address DA. The analysis aims to discover the set of possible

values of the Z register at this point.

30

• The two comparison instructions (cp) at addresses BA and C2 and their following conditional branches
(brcc) tell the analysis that the memory-space codes are in the range 0..3. Both Bound-T and SWEET
deduce this range, but for Bound-T this deduction is fragile because it makes unsound assumptions
regarding signed and unsigned views of the values in storage cells.

• The three instructions starting at address C6 shift the two bits of destination-space code two positions left
in preparation for combining them with the source-space code. This is the part where Bound-T can either
fail or succeed depending on the specific instructions chosen.

• The Intel-8051 processor has no shift instructions, only rotate instructions. The original ?C?CASE
function uses the 8051 "rotate left" instruction here, which with these operand values works as a left-
shift because the high bit (bit 7) of these 8-bit values is zero. Bound-T/8051 originally modelled the
result of "rotate left" as unknown because "rotate" is not in general a linear arithmetic operation. This
made Bound-T/8051 fail to resolve the dynamic branch.

• For the AVR version of ?C?CASE in tp_avr_7 we use the closest corresponding AVR instruction,
rol r1, which rotates leftwards the 9-bit combination of the carry flag C and register r1, C:r1. It is easy
to see that this instruction is equivalent to adding r1 to itself with carry (adc r1,r1) and these
instructions have the same encoding in AVR machine code. Bound-T uses its model for addition, which
makes the new value of the carry flag unknown, because Bound-T does not in general model overflow.
Bound-T's model is accurate for the first rol r1 instruction at address C8: the preceding instruction
bclr C zeroes the carry bit so Bound-T's model reduces to a doubling of the value of r1, which is
equivalent (in the absence of overflow) to a left shift by one position. However, this doesn't work for the
second rol r1 instruction at address CA, because the input value of the carry flag for this instruction
is the out-carry from the first rol r1, which Bound-T models as unknown, and so the value of r1 after
this second rol r1 is also unknown to Bound-T, causing Bound-T to fail to resolve the dynamic jump.

• In the variant test program tp_avr_8 we changed the rol r1 instructions into the AVR left-shift
instructions lsl r1, which Bound-T models as a doubling of the value of r1 with no input from the
carry flag. In effect this assumes that the original value of r1 is between 0 and 63. This assumption is
unsafe in general but true for this particular case. Bound-T's arithmetic analysis is then accurate and
resolves the dynamic branch precisely.

• The instruction at address CE (add r0,r0) takes the index into the jump table (in r0) and doubles it,
because each entry in the jump table (which starts at address DC) consists of an rjmp instruction followed
by a nop instruction and is thus two addressing units long. The offset, in addressing units, to the jump for
index value i is thus 2i. The superfluous nop instructions are used in tp_avr_7 to mimic the original jump
table in the 8051 code, where the jump instructions themselves are two addressing units long. Because
SWEET currently does not use the congruence domain, its model of r0 after this doubling includes odd
values, and this over-estimate prevents the resolution of the dynamic branch. In the variant test program
tp_avr_8 the nop instructions are removed, and then SWEET's analysis resolves the branch.

In summary, Bound-T fails on tp_avr_7 because its model of possible overflow from an addition is too
approximate (carry-out is unknown), while SWEET fails because it currently lacks congruence modelling.

For the variant test program tp_avr_8, Bound-T succeeds because its model of possible overflow in a left-
shift operation is unsafely optimistic, while SWEET succeeds because the test program is adjusted to make
congruence modelling unnecessary.

As an aside, this discussion shows that Bound-T's assumptions regarding overflow are not applied
consistently when the model is translated into Presburger formulae for the arithmetic analysis. For example,
Bound-T assumes that "left shift" does not overflow (not even into the sign bit), but assumes that addition can
overflow into the carry bit. These conflicting assumptions were added to Bound-T over time, as ad-hoc patches
to make this or that example program analysable. This situation is obviously undesirable.

As an example of this ad-hoc approach, the current version of Bound-T/8051 is able to resolve the dynamic
branch in the original Intel-8051?C?COPY function, because the model of the 8051 "rotate left" instruction has
been changed so that the output value is modelled by the conditional expression "if (input value) in 0 .. 64 then
2*(input value) else unknown". Such conditional expressions can be precise models of the instructions, and can
be translated into disjunctive Presburger formulae for the arithmetic analysis. However, experiments show that if

31

this is done for all instructions then the Omega Calculator cannot solve the resulting Presburger formulae with
reasonable resources, probably because they contain too many disjunctions. Moreover, for processors with wider
words, for example 32-bit processors, the constants in the conditional expressions are large (on the order of two
raised to the number of bits in a word), and there is reason to believe that the solution cost of Presburger
formulae scales with the magnitude of the constants. Therefore, the general use of conditional expressions to
model non-linear instructions is infeasible for Bound-T's current arithmetic analysis.

A possible approach may be to first make a value-analysis using abstract interpretation (not abstract
execution) and the interval domain. In SWEET, the interval domain safely models overflows and wrap-arounds,
and the abstract interpretation always terminates, through widening. The resulting interval bounds could perhaps
then be used to show at which points in the program overflows or wrap-arounds might occur. With this
information, it might be possible to make a safe and sound translation to Presburger formulae in which the
expensive conditional expressions are used only where necessary, that is, only for the instructions where the
interval-based analysis shows possible overflow. Unfortunately, when the program contains loops with non-
obvious iteration bounds, ordinary widening tends to produce unbounded intervals, which means that overflows
are not excluded. The widening used in the bounded polyhedral analysis [11] always generates bounded
intervals, but these intervals can have large bounds (on the order of 2 raised to the number of bits in a word),
which again bodes ill for the Presburger analysis.

 5 Summary and Conclusions

5.1 Goals and Methods
To summarise this report, we have coupled two program-analysis tools, Bound-T and SWEET, so that Bound-T
can use SWEET's analyses to supplement or replace Bound-T's own analyses. The coupling is based on a
translation, implemented in Bound-T, of Bound-T's internal program model into the ALF language, which is the
input language for SWEET. Our prototype extends the version of Bound-T which analyses machine-code
programs for the Atmel AVR architecture. The prototype can also be seen as a front-end for SWEET through
which SWEET can analyse AVR machine-code programs.

We hoped that the combined Bound-T and SWEET tool would better be able to analyse and resolve dynamic
branches in machine code, because this is a critical problem that any practical analysis of machine-code
programs must solve precisely and mostly automatically, in order to construct a control-flow graph of the
program. All other analyses need the control-flow graph, which had better be valid and exact (not significantly
over-estimated).

5.2 Overall Success Rates
We evaluated the Bound-T - SWEET combination on seven example programs or, rather, seven kinds of dynamic
branches either extracted from various real programs or constructed to resemble dynamic branches in real
programs. The examples concentrate on "switch-case" constructs because dynamic branches from switch-case
constructs can be analysed locally. The other sources of dynamic branches — function pointers and virtual
functions — were not considered because their resolution demands a global analysis which Bound-T does not
provide at present. The example programs demonstrate several kinds of switch-case code constructs, with dense
or sparse numbering, and implemented by several types of code, including direct indexing of a table of jumps,
direct indexing of a table of target addresses, and various forms of tables encoding the case numbers and their
code addresses.

Table 6 cross-tabulates the overall results of the evaluation by showing the number of example programs for
which Bound-T alone, or Bound-T in combination with SWEET, failed or succeeded to resolve the dynamic
branch. Note that we tested the combination with some or all of Bound-T's own analyses disabled, and this
explains how the "combination" in some cases fails although Bound-T alone succeeds (with all its analyses
enabled). All failures manifested as so loose bounds on the target address that Bound-T decided to consider the
analysis failed, instead of adding thousands or tens of thousands of apparently possible but mostly false targets
and edges to the control-flow graph.

32

Table 6: Results by Number of Failures and Successes for Each Tool Configuration

Bound-T alone

Successful Failed Total

Bound-T combined
with SWEET

Successful 3 1 4

Failed 1 2 3

Total 4 3

Overall, both tool configurations (Bound-T alone, and Bound-T combined with SWEET) were equally
successful, scoring four successful analyses and three failures. However, the total number of example programs
is not very large, and some of these programs were deliberately constructed or tweaked to make one or the other
tool configuration succeed or fail. Therefore, this success/failure proportion is not very predictive of practical
performance. The apparent success rate (four out of seven) is really too small for a practical tool, at least for a
commercial tool. However, one can hope that serious tool users would be able to control their coding style to
ensure that a higher proportion of switch-case statements can be analysed.

Of more interest is understanding the reasons for the successes and failures. We discuss this below.

5.3 Why Some Analyses Failed
First, please note that when we talk of failures of SWEET in this section, we mean failures of the combination of
Bound-T and SWEET. Some of the failures may be due to defects in Bound-T's internal program model or
defects in the translation of this model to ALF for SWEET to analyse.

The main cause of failures for SWEET (that is, the Bound-T and SWEET combination) is the current lack of
congruence analysis. Why is this so critical for these example programs? The entries in tables of jump addresses
or jumps are often more than one addressing unit in length, which means that the code multiplies the table index
by the entry length in order to compute the offset to the indexed entry. The lack of congruence analysis means
that SWEET assumes that the offset can take any value in the interval covered by this product, a considerable
over-estimate which leads to a horrible over-estimate in the values of the entries that may be read from the table,
because the analysis includes "misaligned" reads. For the AVR, with octet addressing and 16-bit addresses, the
problem is already quite bad, but it will be worse on the wider but still octet-addressed processors such as a 32-
bit ARM where a typical table entry is four or more addressing units long.

The lack of congruence information is the direct reason for two of SWEET's failures and a contributing
factor in the third failure. Thus, adding congruence to SWEET would bring its success rate up to 6 out of 7
programs.

The third SWEET failure, described in section 4.6.2, has a more fundamental cause: the non-relational
nature of SWEET's abstract execution. This example program computes the final switch offset from the given
index in three stages: the first stage computes an intermediate result from the index; the second stage compares
the index to the index-bounds of the switch-case statement and branches to the default code if the index is out of
bounds; the third stage, which is executed only if the index is within bounds, completes the case selection using
both the index and the intermediate result computed in the first stage. When stage 1 is abstractly executed, there
are no bounds on the index and therefore the intermediate result is also unbounded. When stage 2 is abstractly
executed, it provides bounds on the index for stage 3, but these bounds are not applied "retro-actively" to stage 1.
The intermediate result from stage 1 remains unbounded and, therefore, so is the result of stage 3.

In contrast, the Presburger-arithmetic analysis in Bound-T maintains the relationship between the value of
the index and the value of the intermediate result, which is established in stage 1. When stage 2 provides bounds
on the index, the analysis propagates these bounds through this relationship to produce bounds on the
intermediate result. Therefore, stage 3 has bounded inputs and produces a bounded result.

The main cause for Bound-T's failures (from the viewpoint of Bound-T's analysis principles) is that it lacks
special analyses or detectors for the specific forms of dynamic branches, switch tables, and switch-table handlers
used in some of these example programs. For example, if Bound-T had a detector for the switch-table format
used in tp_avr_6, its partial-evaluation analysis would succeed. If this form of switch-table were to be generated
by a commonly used cross-compiler for the AVR, it would be worth-while to add such a detector to Bound-T,
just as Tidorum has implemented detectors for the switch-tables and handlers used by the IAR compilers.

33

If such detectors were added to Bound-T/AVR, two failures would become successes, making Bound-T's
success rate 6 out of 7 programs.

A secondary cause of Bound-T's failures, which also contributes to failures of the Bound-T and SWEET
combination, is the unsystematic and unsafe modelling of signedness and overflow/wrap-around in Bound-T. For
some example programs, Bound-T's unsafe assumptions are not strong enough; for example, the analysis of the
program tp_avr_21 in section 4.2 needs supporting assertions that constrain some variables to be non-negative
(that is, unsigned). In other cases, such as in the programs tp_avr_7 and tp_avr_8 discussed in section 4.7, the
assumptions are either too weak, or strong enough, depending on which instruction the program happens to use,
from a set of functionally equivalent instructions.

With just a little bit of exaggeration we can say that SWEET fails because its general analysis is not general
enough: it does not analyse congruences and is not relational. Conversely, Bound-T fails because its specific,
specialized analyses were not specifically specialized for the kind of dynamic branches appearing in some of
these example programs.

Clearly, there is more potential in further generalizing SWEET's analysis, but that may also be more
difficult, at least if a relational analysis is desired. Extending Bound-T's set of specialized analyses is
theoretically trivial but may be practically useful in the short term. A somewhat non-trivial direction for Bound-T
would be to develop more general patterns of switch-case code, patterns which would be flexible enough to
match the code-idioms generated by various cross-compilers for various target processors. This would be
particularly useful for code that picks addresses or offsets from tables in memory. Such tables cannot be modeled
directly in the Presburger analysis because that analysis cannot model memories or arrays.

5.4 Precision of Successful Analyses
For all analyses of these example programs, when the bounds on the dynamic branch were so tight that the
analysis was considered successful, the bounds were in fact precise and the precisely correct set of target
addresses was found.

When we compare the WCET bounds in the three cases where both analyses succeeded, we find that they
compute the same WCET bound in two cases, but in the third case the WCET bound from the Bound-T and
SWEET combination is over twice as large as the WCET bound from Bound-T alone. Table 7 shows the
numbers; the WCET bounds are given in units of AVR processor cycles.

Table 7: Comparison of WCET Bounds

Program Section Description

WCET Bound

Bound-T
alone

Bound-T
& SWEET

tp_avr_21 4.2 A bottom-test loop which contains a switch-case statement
implemented by an indexed dynamic jump into a table
which contains static jumps to the cases.

129 129

tp_c_2 /
KuiSnd5Z, IAR

4.5 A sparse C switch-case, compiled to use the real switch-
table form and real switch handler from IAR Systems. 284 577

tp_avr_8 4.7 An indexed jump into a dense table of jumps, in which the
4-bit index is assembled from two 2-bit pieces using
"shift" followed by "or". Jump-table entries are one
addressing unit long.

40 40

This WCET over-estimation is explained by the different treatment of the loop in this test program. The loop is
in the IAR switch-table handler. The loop traverses the switch-table from start to end, looking for the case that
matches the given index number, and branching (dynamically) to that case statement if it finds a match. Bound-T
uses its partial-evaluation analysis on the switch-handler subprogram, which in effect expands the loop into non-
looping code which looks at each entry in the switch-table and conditionally branches to the corresponding case-
statement code. Some of the case statements are "heavier" (take more time to execute) than others, which means
that the worst-case path is not necessarily the one that picks the last entry in the switch-table. The partial
evaluation produces a non-looping control-flow graph which shows exactly how many iterations of the loop (that

34

is, how many expanded repetitions of the loop body) lead to each case statement: one iteration leads to the first
case, two iterations to the second case, and so on. Therefore, when Bound-T calculates the WCET bound from
this control-flow graph, the heaviest case statement is combined with the true number of loop iterations for this
case, not with the total number of iterations.

In contrast, although SWEET's abstract-execution analysis also "executes" each iteration of the loop in
sequence (and, with the "no merge" option, without using abstracted value-approximations for switch-table
entries), the output visible to Bound-T is only the list of targets (case-statement addresses) of the dynamic
branch, which follows the exit from the loop. The loop remains in the control-flow graph and is not expanded
into separate iterations. The relationship between the number of loop iterations actually executed, and the target
address actually used in the dynamic branch, is lost. Therefore, when Bound-T calculates the WCET bound, it
must combine the largest possible number of loop iterations with the heaviest of the case statements.

This kind of over-estimation, where the worst-case bounds of two parts of the program are added to make a
worst-case bound for the whole program, although the worst cases for the parts cannot occur together in the same
execution, is typical and common in WCET analysis. That Bound-T's partial-evaluation analysis avoids it is of
course good, but it merely reflects the method's exhaustive path exploration and explicit representation of all
(local) paths in the control-flow graph, which would be an infeasibly expensive method to use more globally. For
other kinds of inter-related control-flow, Bound-T alone can produce WCET over-estimates comparable to the
over-estimate from the Bound-T and SWEET combination for tp_c_2.

One way to remove this WCET over-estimation in the Bound-T and SWEET combination is to let SWEET,
and not Bound-T, compute the WCET bound using the "execution time as a program variable" method [10]. This
would require two SWEET abstract-execution analyses: once on the incomplete control-flow graph, to discover
the possible targets of the dynamic branch, and a second time on the complete control-flow graph, to compute
the WCET bound. But the analysis of the dynamic branches must usually be confirmed by an analysis of the
completed control-flow graph anyway, to verify that no new targets appear, so this second, confirming analysis
could be used to compute also the WCET bound.

5.5 Is the Combination More Powerful than its Component Tools?
In our evaluation, the combination of Bound-T and SWEET succeeded in one case where Bound-T alone failed,
so the combination is more powerful than Bound-T alone.

The increase in power would have been much greater if the combination had been implemented before
Bound-T was extended with the partial-evaluation method [6]. This method is much more similar to SWEET's
abstract execution than are the other analyses in Bound-T and its analysis-abilities overlap with those of abstract
execution. However, the partial-evaluation method requires significant target-specific and perhaps cross-
compiler-specific implementation effort, while the abstract execution in SWEET is target-independent. On the
other hand, implementing ALF export in Bound-T also requires some target-specific effort, because the
modelling of registers and memories currently has several target-specific aspects.

Bound-T's partial-evaluation method works with a numerical domain that has just two levels: a value is
either exactly known (a single concrete value), or completely unknown. In contrast, SWEET's abstract execution
has the additional capability of working with abstracted sets of values (intervals) and of merging the abstracted
values at control-flow joins. However, this brings with it the risk of over-estimating value-sets and target-address
sets, because additional approximations (over-estimates) occur in merging (which we prevent with the "no
merge" option) and also when some operations are applied to abstracted values (which we cannot prevent now,
but see the suggested "atomizing procedure" in section 5.6).

Another difference between the methods is that the partial-evaluation method provides a residual flow-graph
which shows the exact instruction sequence leading to each case. All loops and branches in the switch-table
handler are executed, and the actual instruction sequence taken is recorded in the flow-graph, up to each
resolution of the dynamic branch. This makes the calculation of the WCET bound more precise. SWEET's
abstract execution, as we use it, provides only the target addresses, but not the execution paths nor the execution
time to reach each target address. This can make the WCET bound less precise, as we saw in section 5.4. The
abstract execution could certainly record more information in its states, such as the number of the iteration of the
table-scanning loop on which each target address occurs. This could be seen as making the abstract execution
more "relational" in style. Some such information could already be extracted from SWEET by activating the
tracing output, but extending the basic abstract-execution method to a relational view seems a better approach.

35

5.6 Suggestions for Improvements and Future Work
We conclude this report by listing some possible improvements and areas for future work.

Our study in section 5.3 of the reasons for failed analyses shows that some relatively minor improvements
and extensions to Bound-T and SWEET could immediately and significantly increase analysis power: SWEET
should implement congruence analysis, and Bound-T should extend the modelling of operation chaining beyond
the current 8-bit-to-16-bits level.

The over-approximation inherent in some of SWEET's abstract operations, when applied to abstracted
values, could perhaps be reduced or eliminated by locally splitting abstracted operand values (intervals) into
their atomic (singe value) components, applying the operation to each single concrete value, giving the exact
single concrete result, and then again collecting all these results into an abstracted result value (an interval). Such
an "atomizing" step could be inserted selectively for operations which might need it, depending also on the
"size" of the abstracted operands (to avoid computing billions of separate cases). It seems fairly simple to
implement atomizing in abstract execution: the single state represented by the abstracted operand values is
divided into a set of single-value states, these are passed through the operation, and the set of single-valued
results is merged into an abstracted result.

A similar atomizing method could make Bound-T's partial evaluation method more generally useful. For
example, if a dynamic branch in a subprogram can be shown to depend only on an 8-bit parameter, Bound-T
could partially evaluate the subprogram for each possible parameter value, for a total of 256 evaluations, and in
this way collect all the possible target addresses, without detecting target-specific or compiler-specific idioms for
switch-case code.

In the longer term, Bound-T should improve its modelling of signedness, overflows, and wrap-arounds. The
present ad-hoc and unsafe models contaminate the exported ALF form of the program and weaken SWEET's part
of the analysis.

Considering other directions of extension, we could use SWEET's abstract-execution method for other parts
of WCET analysis, for example to find loop iteration bounds and other flow-facts. Conversely, loop-bounds
found by Bound-T could be used to constrain SWEET's analysis (if SWEET would be extended to support the
required annotations).

In the APARTS project, we originally planned to apply a new relational and bit-precise numerical domain to
the problem of dynamic branches. The bit-precise nature of the analysis was expected to model signedness and
wrap-around effects. The new domain developed in APARTS, bounded polyhedra [11] is relational and models
wrap-around, but unfortunately it does not model congruences. As seen in our example programs, congruences
are very important for precise modelling of dynamic branches when the branch code uses some form of array or
table with elements that are larger than one addressing unit. It may be possible to combine the bounded-
polyhedra domain with a congruence domain into a product domain. This is one possible subject for future work,
to be undertaken when the implementation of bounded polyhedra in SWEET is robust and automatic enough to
be practically useful.

Here is a more speculative idea. The SWEET group has been working on a novel form of WCET or control-
flow analysis which uses a relational value-analysis to set bounds on the number of executions of each part of the
control-flow graph [12, 13]. The idea is that if we assume or know that the program terminates, then no part of
the control-flow graph can be executed more often than the total number of possible variable-value states at that
point in the program. This number is called the census of the variable values. The census computation can be
limited to the variables which influence the flow of control. While the census number can be used directly in a
WCET computation, it could perhaps also be used to help an analysis tool decide if it is worth-while and
practical to atomize the abstracted values at this point in the program, in order to improve the precision of the
value-analysis. Bound-T could perhaps also use the census number to decide whether to apply its partial-
evaluation method case by case, in an atomized manner, as suggested above.

To conclude, Tidorum judges that the combination of Bound-T with SWEET works well enough to become a
standard feature of Bound-T, assuming that SWEET is extended to implement congruence analysis. Thus, future
work will include moving the current prototype combination into the main-line of Bound-T development.

36

 References

1 Tidorum Ltd., "Bound-T time and stack analyser". http://www.bound-t.com/.

2 SWEET (SWEdish Execution Time tool). http://www.mrtc.mdh.se/projects/wcet/sweet/index.html.

3 J. Gustafsson, A. Ermedahl, B. Lisper, C. Sandberg and L. Källberg, "ALF – A Language for WCET Flow
Analysis". In N. Holsti (ed.), Proceedings of the 9th International Workshop on Worst-Case Execution Time
Analysis (WCET09), June 2009.
http://www.es.mdh.se/publications/1420-ALF____A_Language_for_WCET_Flow_Analysis.

4 R. Wilhelm et al., "The Worst-Case Execution Time Problem - Overview of Methods and Survey of Tools".
ACM Transactions on Embedded Computing Systems, Volume 7, Issue 3 (April 2008), pp.-36:1-36:53.

5 The Atmel AVR. http://en.wikipedia.org/wiki/Atmel_AVR.

6 N. Holsti, "Analysing Switch-Case Tables by Partial Evaluation". 7th International Workshop on Worst-
Case Execution Time Analysis (WCET'2007), Pisa, Italy, July 3, 2007.
http://www.bound-t.com/reports/wcet2007/abstract.html.

7 J. Gustafsson, A. Ermedahl, C. Sandberg and B. Lisper, "Automatic Derivation of Loop Bounds and
Infeasible Paths for WCET Analysis using Abstract Execution".
In Proc. 27th IEEE Real-Time Systems Symposium (RTSS'06) (Dec. 2006).

8 J. Gustafsson, A. Ermedahl and B. Lisper, "Towards a Flow Analysis for Embedded System C Programs".
Tenth IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS 2005),
Sedona, Arizona, USA, February 2 - 4, 2005.

9 W. Pugh et al., "The Omega Project: Frameworks and Algorithms for the Analysis and Transformation of
Scientific Programs". http://www.cs.umd.edu/projects/omega.

10 N. Holsti, "Computing Time as a Program Variable: A Way Around Infeasible Paths". 8th International
Workshop on Worst-Case Execution Time Analysis (WCET'2008), Prague, Czech Republic, July 1, 2008.
http://www.bound-t.com/reports/wcet2008/abstract.html.

11 S. Bygde, B. Lisper, N. Holsti, "Fully Bounded Polyhedral Analysis of Integers with Wrapping".
International Workshop on Numerical and Symbolic Abstract Domains (NSAD11), September 2011.

12 S. Bygde, A. Ermedahl and Björn Lisper, "An Efficient Algorithm for Parametric WCET Calculation".
Journal of Systems Architecture vol. 57, pp. 614-624, May 2011.

13 S. Bygde: "Parametric WCET Analysis". Mälardalen University, School of Innovation, Design and
Engineering, 2013. Mälardalen University Press Dissertations No. 138. ISBN 978-91-7485-109-0, ISSN
1651-4238. http://www.es.mdh.se/publications/3020-Parametric_WCET_Analysis.

37

Document Status and Change Log

Version Date Changes/status

Draft 1 2014-01-23 First draft, for review and discussion among authors.

Issue 1 2014-02-28 Incorporates results of review and discussion among authors.

38

