
Facilitating the Maintenance of Safety Cases
Omar Jaradat

Doctoral Student
Mälardalen University

Högskoleplan 1, 721 23
Västerås, Sweden

+46-21-101369

omar.jaradat@mdh.se

Iain Bate
Senior Lecturer

University of York
Deramore Lane, York

 YO10 5GH, UK
+44-1904-325572

iain.bate@cs.york.ac.uk

Sasikumar Punnekkat
Professor

Mälardalen University
Högskoleplan 1, 721 23

Västerås, Sweden
+46-21-107324

sasikumar.punnekkat@mdh.se

ABSTRACT
Developers of some safety critical systems construct a safety case

comprising both safety evidence, and a safety argument explaining

that evidence. Safety cases are costly to produce, maintain and

manage. Modularity has been introduced as a key to enable the

reusability within safety cases and thus reduces their costs. The

Industrial Avionics Working Group (IAWG) has proposed

Modular Safety Cases as a means of containing the cost of change

by dividing the safety case into a set of argument modules.

IAWG's Modular Software Safety Case (MSSC) process

facilitates handling system changes as a series of relatively small

increments rather than occasional major updates. However, the

process doesn’t provide detailed guidelines or a clear example of

how to handle the impact of these changes in the safety case. In

this paper, we apply the main steps of MSSC process to a real

safety critical system from industry. We show how the process

can be aligned to ISO 26262 obligations for decomposing safety

requirements. As part of this, we propose extensions to MSSC

process for identifying the potential consequences of a system

change (i.e., impact analysis), thus facilitating the maintenance of

a safety case.

Keywords

Safety Case, Safety Argument, Maintenance, Impact Analysis,

Change, IAWG MSSC.

1. INTRODUCTION
Constructing safety cases receives significant industrial attention

as it is required for the certification process of many safety critical

system domains. A safety case comprises both safety evidence

(e.g. safety analyses, software inspections, or functional tests) and

a safety argument explaining that evidence. Safety arguments

show how system developers use each item of evidence to support

claims, and how those claims, in turn, support broader claims

about system behaviour, hazards addressed, and, ultimately,

acceptable safety [1]. The production, management and evaluation

of safety cases are considered difficult to achieve and time

consuming. As an anecdotal example, the size of the preliminary

safety case for surveillance on airport surfaces with ADS-B [2] is

about 200 pages, and it is expected to grow as the operational

safety case is created [3].

It is worth noting that a safety case is a living document that

grows as the system grows. A safety case should be maintained as

needed whenever some aspect of the system, its operation, its

operating context, or its operational history changes.

Operational or environmental changes may invalidate a well-

founded safety argument for different reasons as follows:

1. Changing the argument structure

2. Evidence is valid only in the operational and environmental

context in which it is obtained, or to which it applies. During

or after a system change, evidence might no longer support

the developers’ claims because it could reflect old

development artefacts or old assumptions about operation or

the operating environment

3. In the updated system, existing safety claims might be

nonsense, no longer reflect operational intent, or they might

be contradicted by new data

The certification process must be repeated after applying changes

to an already certified system (i.e., re-certification). In other

words, the safety case of the certified system should show that the

system is acceptably safe to operate in its intended context after

applying the changes. In order to achieve the re-certification, a

safety argument should be maintained by determining whether the

item of evidence still supports the claims made about it, check

whether new or updated safety requirements are reflected in the

argument, and review the overall logic of the argument. The main

problem though is that the elements of the safety argument (i.e.,

safety goals, evidence, argument and the operating context) are

highly interdependent so that what can be seen as a minor change

in the argument may have a major impact to the contents and the

structure of that argument [12]. Hence, maintaining a safety

argument requires high awareness of the dependencies among its

contents and how a change to one part may invalidate other parts.

Without this vital awareness, a developer performing impact

analysis might not notice that a change has compromised system

safety. The Ariane 5 rocket which crashed forty seconds after

take-off in 1996 is a costly example of omitting affected parts of a

system due to a change. Ariane 5 inertial reference system (SRI)

tried to stuff a 64-bit number into a 16-bit space which led to a

conversion error. This part of the system was reused from an older

version of the SRI that was implemented for Ariane 4 rocket.

Seemingly, an assumption was made as since the code was

successfully used in an older version of the system then it is

suitable to be reused for the newer version [15]. Hence, system

developers focused on more complex parts of the system and no

attention was paid to the out-of-date code or to any related

assumption.

A fundamental step prior to update a safety case due to a change

is to assess the impact of this change in the safety argument. This

is referred to as safety case impact analysis. It is probably clearer

now how the continuous maintenance efforts to keep the safety

case always up-to-date add more burden on top of the discussed

difficulties above. Moreover, the cost of change has become a

major part of the cost of ownership of a system [4].

As a response to these challenges, an ambition emerged to

modularize safety cases by applying the principles of software

architecture and design to the safety case domain. The main idea

of the modularity is to align boundaries of safety case modules

with design boundaries to contain changes. Having done that, a

change to a design element should then affect the corresponding

safety case module, and not impact the entire safety argument [4].

To this end, the Industrial Avionics Working Group (IAWG)

represented by a team of highly experienced engineers, experts in

software development and safety assurance, defined the Modular

Software Safety Case (MSSC) process [5] as a means for

containing the cost of change by dividing the safety case into a set

of argument modules. The process has been refined through

experience gained from large-scale trial applications of the

prototype process, and further trials of the refined process. MSSC

process establishes component traceability mechanism between

system design elements and safety argument modules by using the

concepts of Dependency-Guarantee Relationship (DGR) and

Dependency-Guarantee Contract (DGC). The former is to

highlight, and describe, safety-related properties and behaviour of

a single design element. In other words, DGRs capture the

relationships between input and output ports for each design

element. A DGC, however, is used to match one design element’s

dependencies with another design element’s guarantees [6].

The contributions of this paper are as follows: demonstrating how

to apply the IAWG MSSC process. More specifically, apply the

process to the Fuel Level Estimation System (FLES), which is a

real safety critical system that was implemented by Scania AB ―
a major Swedish automotive industry manufacturer ― to show

(1) how the DGR and DGC concepts can be used to capture the

safety requirements of the FLES, (2) how these two concepts can

be used to build a safety case in conformance to the requisites of

ISO 26262 for certification, and (3) extending IAWG’s DGC to

improve the impact analysis process thus facilitating the

maintenance of safety cases.

This paper is composed of four further sections. In Section 2 we

present background information. In Section 3 we present the

IAWG MSSC process. In Section 4 we use the FLES to

demonstrate the application of the IAWG MSSC process. Finally,

in Section 5 we draw conclusions and identify future work.

2. BACKGROUND
This section presents background information about the safety

standard ISO 26262, the Goal Structuring Notation (GSN), safety

case maintenance and current challenges, and an approach to

maintaining safety case evidence after a system change.

2.1 The Safety Standard ISO 26262
The rationale behind the selection of this standard for this work is

that it is functional safety standard was adapted for automotive

electric/electronic systems that Scania is working to qualify for its

certification stamp. Since FLES is one of other systems in

Scania’s trucks, it is very appropriate to consider ISO 26262 for

the given example in this paper.

ISO 26262 regulates the automotive domain, more specifically,

the standard is intended to be applied to safety-related systems

that include one or more electrical and/or electronic systems and

that are installed in series production passenger cars with a

maximum gross vehicle mass up to 3500 kg [7]. In this

subsection, however, we focus only on the part of the standard

that regulates the decomposition of safety requirements. The

following parts are summarized descriptions of the safety

requirements decomposition directly from ISO 26262 guidelines:

1. Successively after identifying hazards, the standard

recommends to formulate the Safety Goals (SGs) related to

the prevention or mitigation of the hazardous events, in order

to avoid unreasonable risk. Basically, hazard analysis, risk

assessment and Automotive Safety Integrity Level (ASIL) are

used to determine the safety goals such that an unreasonable

risk is avoided. The standard defines a safety goal as a top-

level safety requirement resultant of the hazard analysis and

risk assessment. Safety goals are not expressed in terms of

technological solutions, but in terms of functional objectives.

[7]

2. Identification of safety goals leads to the functional safety

concept. The objective of the functional safety concept is to

derive the Functional Safety Requirements, from the safety

goals, and to allocate them to the preliminary architectural

elements. To comply with the safety goals, the functional

safety concept contains safety measures, including the safety

mechanisms, to be implemented in the item’s architectural

elements and specified in the functional safety requirements.

The standard defines a functional safety requirement as a

specification of implementation-independent safety behaviour,

or implementation-independent safety measure, including its

safety-related attributes. [7]

3. Finally, both the functional concept and the preliminary

architectural assumptions lead to the technical safety concept.

The first objective of this concept is to specify the Technical

Safety Requirements and their allocation to system elements

for implementation by the system design. The second

objective is to verify through analysis that the technical safety

requirements comply with the functional safety requirements.

The standard defines a technical safety requirement as a

requirement derived for implementation of associated

functional safety requirements. [7]

2.2 The Goal Structuring Notation (GSN)
A safety argument organizes and communicates a safety case,

showing how the items of safety evidence are related and

collectively demonstrate that a system is acceptably safe to

operate in a particular context. The GSN [8] provides a graphical

means of communicating (1) safety argument elements, claims

(goals), argument logic (strategies), assumptions, context,

evidence (solutions), and (2) the relationships between these

elements. The principal symbols of the notation are shown in

Figure 1 (with example instances of each concept).

A goal structure shows how goals are successively broken down

into (“solved by”) sub-goals until a point is reached where claims

can be supported by direct reference to evidence. Using the GSN,

it is also possible to clarify the argument strategies adopted (i.e.,

how the premises imply the conclusion), the rationale for the

approach (assumptions, justifications) and the context in which

goals are stated. It is worth noting that GSN has been extended to

enable modularity in a safety case (i.e., module-based

development of the safety case). Hence, modular GSN enables the

partitioning of a safety case into an interconnected set of modules.

2.3 Safety Case Maintenance and Current

Challenges
A safety case is a living document that should be maintained

whenever some aspect of the system, its operation, its operating

context, or its operational history changes. In this paper, the

process of updating the safety case after implementing a system

change is referred to as safety case maintenance.

Figure 1. Overview of Goal Structuring Notation (GSN)

Developers of safety critical systems experience difficulties in

safety case maintenance after implementing a system change. One

of the main difficulties is identifying the impacted parts in the

safety argument. The traceability between a system design and the

corresponding safety argument contents, and the dependency

among the contents of safety argument are considered two main

burdens that encounter the identification of the impacted parts in

an argument. Moreover, individual systems tend to become more

complex as they are designed and constructed, this increasing

complexity, as well as, the number of evidence items in a safety

argument can exacerbate the maintenance difficulties. Any

approach intends to manage safety argument due to system

changes should consider:

1. A means for clearly capturing the underlying rationale of the

safety argument in order to assess the impact of change on all

parts of the argument

2. A traceability mechanism between a system domain and the

safety argument to support the ability to track the changed

part from the system design down to the corresponding

affected part in the safety argument

3. Mechanisms to structure the argument so as to contain the

impact of changes

The use of the GSN approach helps to produce well-structured

arguments that clearly demonstrate the argument elements and

their interdependencies (the relationships between the argument

claims and evidence) [10]-[12]. Using GSN makes capturing the

underlying rationale of the argument easier, which will in turn,

help to scope areas affected by a particular change and thus helps

the developers to mechanically propagate the change through the

goal structure. However, GSN does not tell if the suspect elements

of the argument in question are still valid. For example, having

made a change to a model we must ask whether goals articulated

over that model are still valid. Expert judgment, therefore, is still

required in order to answer such questions. Hence, using GSN

does not directly help to maintain the argument after a change, but

it can more easily determine the questions to be asked to do so

[11].

Current standards and analysis techniques assume a top-down

development approach to system design. For component-based

systems, monolithic evidence produced via these approaches is

difficult to maintain those systems because it is hard to match a

safety argument that has a different structure than the system

design structure. However, safety is a system level property and

assuring this property requires every piece of evidence generated

for each component to be linked and compared to demonstrate

consistency [5]. One may think that the matching (i.e., optimal

level of traceability) can be achieved by designing a safety

argument structure to be similar to the system design structure,

where a clear one-to-one mapping of a system design component

to a safety argument module can be established (see Figure 2).

Figure 2. An illustration of the relationship between a system

design and its safety argument

Theoretically, a one-to-one mapping may facilitate tracking down

the components of a system design to the safety argument, but it is

impractical due to four key factors: (1) modularity of evidence,

(2) modularity of the system, (3) process demarcation (e.g., ISO

26262 items [7]), and (4) organisational structure (e.g., who is

working on what). These factors have a significant influence when

deciding upon the safety argument structure.

Enabling component and evidence traceability is very useful to

analyse the impact of change on a safety argument, and

eventually, facilitates the overall maintenance of the safety case.

This paper deals with two forms of traceability: component (i.e.

safety argument fragment to system design component) and

evidence (i.e. safety argument fragment to supporting evidence).

However, to the best of our knowledge there are no supporting

process or method that provides detailed steps of how to analyse

the impact of a change on a safety case using component or

evidence traceability. That said there are well-regarded industry-

lead initiatives that assume such methods exist. MSSC Process is

one such example.

In this paper, we use the word “traceability” to indicate two

different things. Firstly, we refer to the ability to relate safety

argument fragments to system design components as component

traceability mechanism (through a safety argument). Secondly, we

refer to the ability to relate safety argument evidence across

system’s artefacts as evidence traceability.

2.4 Maintaining Safety Case Evidence after a

System Change
In our previous work [1], we proposed a new approach to

facilitating safety case change impact analysis. In the approach,

automated analysis of information given as annotations to a safety

argument (recorded in the GSN) highlight suspect safety evidence

to bring it to engineer’s attention. We proposed annotating each

reference to a development artefact (e.g. an architecture

Goal

Context

Assumption
A Strategy

InContextOf

SolvedBy

Away Goal

 <Module Name>

Requires further

development
Justification

J

Solution

ContractAway Goal

Module Comp	X	

System	Design	 Safety	Argument	Fragment	For	A	Component	

Gn: Functional safety

requirement [n] is

fulfilled	

E1	 E2	

Sub-compX1	

	

Sub-compX1	

SCX1	
(TSR)	

	

Sub-compy1	

SCy1	

(TSR)	

Sub-compz1	

SCz1	

(TSR)	
	

Context:	
Gn: is captured

by DGCx	

DGCX		

(FSR)	

	

Sub-compY1	

	
Sub-compz1	

	

Argument	 Argument	 Argument	

E3	

specification) in a goal or context element with an artefact version

number.

We also proposed annotating each solution element with:

1. An evidence version number

2. An input manifest identifying the inputs (including version)

from which the evidence was produced

3. The lifecycle phase during which the evidence obtained (e.g.

Software Architecture Design)

4. A safety standard reference to the clause in the applicable

standard (if any) requiring the evidence (and setting out safety

integrity level requirements)

With this data, we can perform a number of automated checks to

identify items of evidence impacted by a change. For example:

1. We can determine when two different versions of the same

item of evidence are cited in the same argument

2. We can identify out-of-date evidence by searching for input

manifests m = {(a1, v1),…, (an, vn)} and artefact versions

(a, v) such that i a = ai v > vi

3. Where we know a particular artefact has changed, we can

search for input manifests containing old versions

If we had further information which inputs were used to produce

each input listed in each input manifest, each input that was used

to produce those, and so on, we could extend checks (2) and (3)

above to indirect inputs. For example, suppose that life testing is

used to establish the reliability of a component, that this

component and its reliability appear in a Failure Modes and

Effects Analysis (FMEA), and that the FMEA results are used in a

Fault Tree Analysis (FTA). With the additional information, we

could compute a closure of the FTA’s input manifest that would

include the life testing results. Other analyses may be possible.

For example, we suggest storing the safety standard reference to

facilitate analysis of impacts that change the safety integrity level

of a requirement.

3. MODULAR SOFTWARE SAFETY CASE

(MSSC) PROCESS
IAWG has proposed Modular Safety Cases as a means of

containing the cost of change by dividing the safety case into a set

of argument modules. IAWG's MSSC process facilitates handling

system changes as a series of relatively small increments rather

than occasional major updates (i.e., incremental certification).

MSSC process manages system changes by breaking down a

system into blocks. The process defines the block as an

identifiable part (or group of parts) of the Software

implementation that is chosen by the safety case architect to be

the subject of a safety case module. Blocks cover all parts of a

system design where each block may correspond to a single or

multiple software component or unit of design, but it is subject to

only one dedicated safety case module. In other words, each

system block has one-to-one relationship with a safety argument

module. [5]

The process establishes component traceability mechanism

between system blocks and safety argument modules by using the

concepts of DGR and DGC as shown in Figure 3 and 4,

respectively. The former is to highlight and describe safety-related

properties and behaviour of a system block. In other words, a

DGR captures the relationships between input and output ports for

each design block. A DGC, however, is used to match one block's

dependencies with another block's guarantees [5][9]. Creating

DGCs leads to the creation of a ‘daisy chain’ as a dependency in

one block and a guarantee offered by another, whose associated

dependencies are supported by further guarantees, and so on [9].

MSSC process is very dependent on the anticipated changes that

should be identified in the first step of the process. The anticipated

change scenarios will bring the highly likely changeable parts in

the system to developer’s attention.

Figure 3. A DGR tabular representation

Figure 4. A DGC tabular representation

These scenarios are considered by system developers so that they

can manage the containment of the impact of these changes in the

system blocks boundaries more efficiently. Having done this, the

impact of a change in one safety argument module will hopefully

not propagate into another module, but it might impose one (or

more) safety case contract update, and even if it is then the cost of

changes can be minimised.

It is very important to distinguish between a DGC and a safety

case contract. The former captures the required link between a

dependency declared in one DGR and a satisfying guarantee

provided by another. Hence, DGCs are created on the system

design level. A safety case contract, however, is used to describe

the linkage between a consumer goal in one Safety Case Module

and a provider goal in another [5]. This is formed through the new

GSN extension for modularity.

Figure 5 shows an example to describe the relationships between

system blocks, DGR, DGC, safety case contract and the safety

case architecture. It is worth noting that DGCs may be linked to

safety case contracts.

The following is a list summarises MSSC process’s steps [5]:

Step 1. Analyse the product lifecycle: it is important to predict

the potential change scenarios over the projected system

lifetime. One reason for that is because change scenarios

will help assess the potential benefits that may be

achieved through modular certification. If as a result of

the analysis there are no changes expected, then the full

benefits of modular certification may not be realised, and

it may therefore be decided not to adopt a modular

approach. [9]

Step 2. Optimise software design and safety case architecture:

since each system block is subject to safety case module.

First, we need to divide the system into blocks and form

public interfaces for the block safety case modules. All

elements of the system are split into blocks and each

corresponding block safety case module should present an

argument about the safety-related behaviour of that block.

Second, other necessary modules will be added, for

example, software safety requirements, software system

wide issues module, configuration data module, safety

case contract modules, etc. Finally, we should define

safety case integration modules — these provide the

argument about the combined behaviour of interdependent

safety case modules. [5]

Figure 5. Linking blocks using DGRs and DGCs

Step 3. Construct safety case modules: A hazard mitigation

argument should be formed and derived safety

requirements are directed to SW blocks safety case

modules. The guaranteed behaviour offered by each block

in support of these is captured, along with dependencies

on other blocks. A Block Safety Case Module is

constructed providing argument and evidence for each

Block based on the Guarantees and Dependencies. [5]

Step 4. Integrate safety case modules: the safety case modules

are integrated so that claims requiring support in one

Safety Case Module are linked to claims providing that

support in others. This step of the process results in a fully

integrated Safety Case. [5]

Step 5. Assess/Improve change impact: when a system change

is implemented, the impact on the design modules and

associated Safety Case Modules is assessed. [5]

Step 6. Reconstruct safety case modules

Step 7. Reintegrate safety case modules

Step 8. Appraise the safety case

The guidance of MSSC process [5] does not show detailed

information about how to follow some steps including the impact

analysis part. The provided example by the process abstracts the

impact analysis step and shows its results only. The main work in

this paper is not to consider all parts of MSSC process to give a

full example on how to apply them but we rather focus on the

impact analysis part and necessary prerequisite steps only.

4. ILLUSTRATIVE EXAMPLE: FUEL

LEVEL ESTIMATION SYSTEM (FLES)
In our previous work [13] [14], we used FLES as a specimen

system to illustrate the contribution of the architectural model

checking to conduct preliminary safety assessment in line with the

safety standard ISO 26262.

We used the Architecture Analysis & Design Language (AADL)

to model the system as shown in Figure 6. In our current work we

reuse the description as well as the AADL of FLES to partially

apply MSSC process. We also propose a system change scenario

and examine how the method helps to highlight the affected safety

argument elements.

4.1 FLES Description

4.1.1 FLES Technical details
FLES estimates the volume of fuel in a heavy road vehicle’s tank

and presents this information to the driver through a dashboard

mounted fuel gauge. Additionally, the system must warn the

driver when this volume falls below a predefined threshold. This

system is considered safety critical because its failure could lead

to loss of control of the vehicle. For example, if there is less fuel

remaining than the driver thinks, the vehicle might run out,

bringing it to an unexpected halt, which can be hazardous in

certain contexts. As well as bringing the vehicle to a halt, the

power steering and braking mechanisms could also fail. These

failures would compromise vehicle controllability and could also

lead to a crash.

Fuel volume is estimated using a float sensor in the fuel tank. As

the position of the float is affected by vehicle motion (negotiating

steep hills, sharp bends, or rough terrain), the system has some

challenging issues to be tackled within its design. The system

must process this signal so that at all times the gauge displays an

accurate measurement of the total volume of fuel remaining. The

sensed value is sent to the Estimator ECU. An Analogue to

Digital Converter (ADC) is used to convert and then the

SoftwareIN thread reads the sensed fuel float position from the

ADC and stores it in the real-time database RTDB. FuelEstimation

reads this sensor value and computes an estimate of the current

fuel volume in litres. When the vehicle might be moving (i.e., its

parking brake is not set), the FuelEstimation thread uses a Kalman

filter algorithm to reduce the noise introduced by vehicle motion.

This algorithm requires the recent history of fuel volume

estimates to be stored. FuelEstimation outputs a smoothed fuel

volume estimate to the RTDB. FuelLevelWarning then reads this

estimate, compares it to the low-fuel warning threshold (i.e., < 7%

of the fuel tank capacity), and writes the low-fuel warning status

to the RTDB. SoftwareOUT reads the fuel volume and low-fuel

warning status from the RTDB and sends these over the Controller

Area Network (CAN) bus to the Presenter ECU. The Presenter

ECU adjusts the actuators (i.e., fuel gauge and low-fuel lamp) on

the dashboard according to the received values.

4.1.2 FLES safety analysis
Hazard analysis and risk assessment made for FLES led to one

hazard identification: “Unannunciated lack of fuel”.

Unannunciated is interpreted as (1) fuel estimates and low-fuel

warning are not displayed at all, and (2) it is displayed incorrectly

since the estimates are not identical to the real amount of fuel in

the vehicle’s tank. The determined ASIL for the fuel level

estimation system is “C”.

The derived safety requirements to mitigate the hazard are

decomposed as recommended by ISO 26262 as follows:

Figure 6. An AADL representation of Estimator’s software

architecture

1. Safety goals: two safety goals were derived

a. SG1.0ImplAssur: Vehicle's driver shall be constantly

aware of the actual remaining fuel in the tank whenever

the engine is in operation

b. SG2.0ImplAssur: Vehicle's driver shall be warned when

the fuel level is low and the engine is in operation

2. Functional Safety Requirements (FSR):

Two functional safety requirements were identified to

satisfy SG1.0ImplAssur:

a. ConFSR1.0.1.0: A fuel gauge should promptly

annunciate the actual fuel amount in the tank whenever

the engine is in operation

b. ConFSR1.0.2.0: The fuel gauge shall not display a fuel

estimate that deviates more that 5% from the actual fuel

volume in the tank

One functional safety requirement was identified to satisfy

SG2.0ImplAssur:

c. ConFSR2.0.1.0: A fuel-low warning lamp should be

promptly turned ON when the fuel level in the tank falls

below a certain level whenever the engine is in

operation

3. Technical Safety Requirements (TSR): There is a large

set of technical safety requirements that was identified to

specify the functional safety requirements. The work of

the paper, however, considers the minimum set of

technical safety requirements that specify ConFSR1.0.1.0

and ConFSR2.0.1.0 as shown in Table 1.

Table 1. A Subset of the identified TSRs for FLES

FSR ID TSR ID Description

FSR1.0.1.0 F1010TSR1

The FuelEstimation thread

shall provide the

totalFuelLevel value

FSR1.0.1.0 F1010TSR2

The SoftwareOUT shall send

the totalFuelLevel value to

the Presenter

FSR2.0.1.0 F2010TSR1

The FuelLevelWarning

thread shall provide

lowFuelWarning value

FSR2.0.1.0 F2010TSR2

The SoftwareOUT shall send

the lowFuelWarning value to

the Presenter

4.2 Applying the IAWG MSSC Process
A list of anticipated change scenarios during FLES’s lifetime is

required. This list may help assessing the potential benefits that

may be achieved through modular certification. In this section, we

present the details of the various MSSC process steps with respect

to FLES:

4.2.1 Analyse the product lifecycle and identify

change scenarios
We assume one potential change for FLES. The Distance To

Empty feature might be added to FLES. The role of this

anticipated change is to determine the distance (Km) that a vehicle

can drive before it runs out of fuel. This new feature is dependent

on (1) the estimation of the current fuel amount in the tank (L),

and (2) the fuel consumption rate (L/Km) in the engine.

Technically, this intended feature will be added as a new thread in

the Estimator ECU. This thread should read the output of the

FuelEstimation thread, as well as, the output of the

ConsumptionRate thread that is implemented in the

EngineManager ECU. To avoid dealing with timing and memory

budgets, FLES engineers expect to remove the FuelLevelWarning

thread and move the task it contains to the FuelEstimation thread

(i.e., merge the two threads into one). Since the safety margin of

the FuelEstimation thread allows adding a new task, the timing

and memory budget for the thread will remain the same even after

the merge. On the other hand, the new DistanceCalc thread will

take the timing and memory budget, and the priority of the

removed FuelLevelWarning thread. The same arrangements will

be applied to the threads in the Presenter ECU.

4.2.2 Optimise software design and safety case

architecture (define the safety case architecture)
For the sake of simplicity, we do not define a full set of the safety

case modules, but we rather define the basic modules that are

sufficient to make the example. We focus on the Estimator in our

example by dividing it into two software blocks, namely,

FuelEstimationBK and FuelLevelWarningBk. Each of them

represents a safety case module. Additionally, we construct

Hazard Mitigation, SW Safety Requirements and SW Integration

test modules (as shown in Figure 7).

Thread System DataProcess

Data port

Data access

Event data port

RTDB

SoftwareIN SoftwareOUT

(Before change)

FuelLevelWarning

(After change)

DistanceCalc

DistanceCalcFuelEstimation

Estimator ECU

.

ConsumptionRate

Engine Manager ECU

C
A

N
 B

U
S

Dist2Emp

LowLed

Presenter ECU

Fuel_guage

AADL Key Notations:

Figure 7. FLES safety case architecture

4.2.3 Construct safety case modules, and

4.2.4 Integrate safety case modules
We merge these two steps for the sake of simplicity. We identify

the required DGRs of the FuelEstimationBK and

FuelLevelWarningBk blocks. We also construct the Hazard

Mitigation, SW Safety requirements, FuelEstimationBK,

FuelLevelWarningBk, and Software Integration test safety case

modules.

 Table 2. DGR FuelEstimationBK

Table 2 shows one DGR for the software block FuelEstimationBK

in which the block (i.e., represented as thread) guarantees that it

can provide the estimated fuel level volume in the tank

totalFuelLevel if the three dependencies are met. Table 3 shows

one DGR for the software block FuelLevelWarningBK in which

the block (i.e., represented as thread) guarantees that it can tell if

the fuel is low or not (lowFuelLevelWarning is True if the fuel is

below 7% of the tank capacity and False if the fuel is not) once

the four related dependencies are met.

In Figure 8, we construct the hazard mitigation argument.

Basically, MitigationHazard1 goal is supported by implementing

and assuring the two safety goals that were derived to mitigate it.

The safety goals are represented by the two separated away goals

SG1.0ImplAssur, and SG2.0ImplAssur. These goals also represent

the integration between Hazard Mitigation safety case module and

SW Safety Requirements (see Figure 9).

In FuelLevelWarning.BK Safety case module (see Figure 10), we

show how arguing over the dependencies supports the guarantee

that is represented by FuelLevelWarningBK.G1. The argument

module uses FuelEstimationBK.G5 as a dependency to support

the guarantee. FuelEstimationBK.G5 also relies on a set of

dependencies to be guaranteed. Figure 11 shows an argument

fragment of the SW Integration test safety case module. The

objective of the module is to argue over the integration of the

software elements within the Estimator ECU.

Table 3. DGR FuelLevelWarningBK

Dependencies — Guarantee Relationship | FuelLevelWarningBK.G1

Guarantee

Concise

Definition
Definitive Context

In
c
id

e
n

ta
l

N
o

te

Traceability

Provides the

lowFuelLevel

Warning

value

The lowFuelLevelWarning
value is sent on port

setlowFuelLevelWarning

lowFuelLevelWarning

format is defined by FLES

{Interface Specification}.

 F2010TSR1

Related Dependencies

N

Concise

Definition
Definitive Context

In
c
id

e
n

ta
l

N
o

te

T
ra

c
ea

b
il

it
y

1

totalFuelLevel is
received via port

GetEstimatedFuel

LevelValue_2.

FuelLevelSensor
format is defined by

FLES {Interface

Specification}

 F1010TSR1

2
setlowFuelLevelW
arning port is

available.
The port behaviour

is as defined in the

FLES {Interface
Description}.

 F3010TSR9

3
GetEstimatedFuel

LevelValue_2 port

is available.

 F4010TSR5

4
FuelEstimation is
correctly

configured.

Is executing and has
completed

configuration.

 F4010TSR7

Hazard
Mitigation

SW Safety
Requirements

FuelEstimationBK

FuelLevelWarningBK

SW Integration test

Dependencies — Guarantee Relationship| FuelEstimationBK.G5

Guarantee

Concise

Definition
Definitive Context

In
c
id

e
n

ta
l

N
o

te

Traceability

Provides the

totalFuelLevel

value

The totalFuelLevel value

is sent on port

SetSensorValue.

The totalFuelLevel
format is defined by

FLES {Interface

Specification}.

 F1010TSR1

Related Dependencies

N Concise Definition
Definitive

Context

In
c
id

e
n

ta
l

N
o

te

Traceability

1
FuelLevelSensor is

received via port

GetSetSensorValue.

FuelLevelSensor
format is

defined by

FLES {Interface
Specification}

 F3010TSR8

2
SetSensorValue port

is available.

The port

behaviour is as

defined in the
FLES {Interface

Description}

 F3010TSR9

3
FuelEstimation is
correctly configured.

Is executing and

has completed

configuration

 F4010TSR5

SafetyGoalsImpAssu—
All derived safety goals have
been implemented and assured

...

DecSG 2.0—
Decompose
SG 2.0 into
FSR

FSR2.0.1.0—
Decomposed
FSR2.0.1.0
has been
implemented
and is assured

FSR1.0.1.0—
Decomposed
FSR1.0.1.0
has been
implemented
and is assured

DecSG 1.0—
Decompose
SG 1.0 into
FSR

 JSGDecom—
Safety goals are implemented
and assured through functional
safety requirements

J

SGsImplAndAssur—
Argument over
derived safety goals

...

 Hazard Mitigation

SafetyGoal1.0Trace—
Safety goals 1.0 and 2.0 are
derived to mitigate Hazard 1

SafetyGoalsRep—
Ref. [Safety Goals
Report]

SG2.0ImplAssur—
Safety Goal 2.0 has been
implemented and is assured

SG1.0ImplAssur—
Safety Goal 1.0 has been
implemented and is assured

ValidFSR2.0.1.0Deco—
FSR2.0.1.0 satisfies and
assures SG2.0

ValidFSR1-2Deco—
Together, FSR1.0.1.0
and FSR1.0.2.0
satisfy and assure
SG1.0

Review2—
Review of
decomposition
of SG2.0
into FSR2.0.1.0

Review1—
Review of
decomposition
of SG1.0
into FSR1-2

DecFSR1.0.1.0—
Decompose
FSR1.0.1.0 into
TSRs

ValidTSRDecoFSR1010—
TSRs{F1010TSR2 and
F1010TSR1} satisfy and
assure FSR1.0.1.0

Review2—
Review of
DGCs

DecF1010TSR1—

Decomposed F1010TSR1
has been implemented and
is assured

 FuelEstimationBK

FuelEstimationBK.G5—

FuelEstimationBK guarantees to
provide the totalFuelLevel value

JFSRDecom—
FSRs are implemented
and assured through
TSRs

J

FSR1.0.2.0—
Decomposed
FSR1.0.2.0
has been
implemented
and is assured

FSR1.0.3.0—
Decomposed
FSR1.0.3.0
has been
implemented
and is assured

Dec F1010TSR2—
Decomposed
F1010TSR2 has been
implemented and is
assured

DecFSR2.0.1.0—
Decompose
FSR2.0.1.0 into
TSRs

ValidTSRDecoFSR2010—
TSRs{F2010TSR1 and
F2010TSR2} satisfy and
assure FSR2.0.1.0

Review2—
Review of
DGCs

DecF2010TSR1—

Decomposed F2010TSR1
has been implemented and
is assured

 FuelLevelWarningBK

FuelLevelWarningBK.G1—

FuelLevelWarningBK guarantees
to provide the totalFuelLevel value

JFSRDecom—
FSRs are implemented
and assured through
TSRs

J

DecF2010TSR2—
Decomposed
F2010TSR2 has been
implemented and is
assured

FuelLevelWarningBK.G1—

FuelLevelWarningBK guarantees
to provide the totalFuelLevel
value

FLWBK.G—
The list of guaranteed
behaviors and properties is
defined in
FuelLevelWarningBK DGRs

ApplicabilityFLWBK.G —
The assumptions and
restrictions relating to each
guarantee are defined by
TSRs Report

SArgDepnd—
Argument over
related
dependencies

 DGR Process

DependencyProcess—

An adequate dependency
identification process has
been used

 FuelEstimationBK

FuelEstimationBK.G5—

FuelEstimationBK guarantees to
provide the totalFuelLevel value

...

NotPrevented—

There are no unwanted
interactions that would
interfere with
FuelLevelWarningBK

The FuelLevelWarningBK.G1 DGR shows that in order for

FuelLevelWarningBK being able to fulfil the TSR F2010TSR1 it

requires the TSR F1010TSR1, which is guaranteed by a

different DGR (i.e., FuelEstimationBK.G5). Here lies the

importance of the DGC as it matches such dependencies. Table

4 shows a DGC that matches F2010TSR1 to F1010TSR1. MSSC

process requires performing the integration of safety case

modules by using a safety case contract module. The latter uses

a DGC to set out the matching between the DGRs of the goals

involved. However, since our work is more focused on

facilitating the impact analysis within the blocks, we do not use

safety case contracts in this example thus no goals are supported

by contracts. The integration, in our example, is done through

public and away goals.

Figure 8. Hazard mitigation safety case module of FLES

Figure 9. SW Safety Requirements safety case module

MainSafe—
FLES is adequately safe to
operate in its intended
operating context

FLES—
Fuel Level
Estimation System

FLESAdequate—
FLES failure
probability ≤ 1.5E-3

AllHazardMitigated—
System hazards are
adequately mitigated

MitigateStrat—
Argument over
hazards mitigation

HazardAnalysis—
Hazard Analysis is
adequate

HzrdRep—
List of
hazards

AllHazardIdentified—
All hazards have been
identified

HzrAnaProcAdeq—
Hazard analysis process used
to identify hazards is adequate

 Hazard Analysis Process

...

Other non-SW
aspect of the
safety case

MitiRep—

Derived
Safety
Goals

MitigationHazard1—
Hazard 1 "Unannunciated
lack of fuel" mitigation is
specified and implemented

SG1.0ImplAssur—

Safety Goal 1.0 has been
implemented and assured

 SW Safety Requirements

SafetyGoalsAdeq—
Safety goals 1.0 and 2.0

adequately mitigate hazard 1

SG2.0ImplAssur—

Safety Goal 2.0 has been
implemented and assured

 SW Safety Requirements

SG1Trace—
Safety goals 1.0 is
derived to mitigate
Hazard 1

SG2Trace—
Safety goal 2.0 is
derived to mitigate
Hazard 1

Figure 10. An argument fragment of FuelLevelWarning.BK

safety case module

4.2.5 Assess/Improve change impact
In this step, we use our approach for maintaining safety cases (in

Section 2.4) to extend IAWG’s DGC. We use the extended DGC

in the FLES example to show how the extension can help: (1)

highlighting the affected argument elements, and (2) identifying

inadequacies in the generated artefacts from the development

lifecycle of FLES.

Table 4 shows an extended DGC of FuelLevelWarning.BK The

extension is represented by the cells in grey. Moreover, figure 11

shows items of evidence (i.e., GSN solution) that support claims

about the consistency among the ports of FLES blocks. The green

elements in the figure represent the annotations described in

Section 2.4.

Now, let us consider the potential change scenario in Section 4.2.1

to illustrate how the information contained within the annotations

aids the change impact analysis in safety arguments. Merging

FuelEstimation and FuelLevelWarning into one thread will impact

the consistency of the interfaces and connections of FLES.

Suppose that an engineer making this change had updated the

artefact version annotation(s) in part of the argument that refers to

the interfaces of those threads. An automated implementation of

the described checks in Section 2.4 could highlight the need to re-

run the interface consistency check, as well as, the Estimator

internal interfaces testing. If the new version of the

implementation is version 3.3, analysis of the manifest associated

with InConChk and TstInnInt would reveal evidence based on an

older version of the implementation and tools could flag

InConChk and TstInnInt as out-of-date and suspect. Automated

analysis might also highlight goal EstimatorImpCorr because its

artefact version annotation refers to an out-of-date version of the

Estimator implementation. The goal and its supporting argument

are suspect because they might refer to parts of the

implementation that no longer exist or make claims about the

implementation that are no longer true.

Table 4. FuelLevelWarningDGC

Table 5 shows the impacted elements of the safety case with a

brief explanation for each element.

Figure 11. An argument fragment of SW Integration test

safety case module

Table 5. Results of change impact analysis

No.
Module

Name

Element

affected
Explanation

1
SW Safety

Requirements
DecF1010TSR1

The decomposition

of this requirement

has been changed

2
SW Safety

Requirements
DecF2010TSR1

The decomposition

of this requirement

has been changed

3
FuelLevelWar

ning.BK

The entire

module

Merged with

another Module

4

SW

Integration

test

EstimaInnInter

and all claims

below

Argument about the

estimation internal

interfaces is suspect

5

SW

Integration

test

InConChk
Out of date

implementation

6

SW

Integration

test

TstInnInt
Out of date

implementation

The principal difference between our work and the existing

approach proposed by the IAWG MSSC is that the MSSC

approach contains changes at the level of a safety argument

module and the corresponding system blocks. In contrast, our

EstimatorImpUnDSpec—
Estimator fulfills the software
unit design specifications

EstimatorImplCorr—
Estimator system design is
compliant with the functional and
technical safety requirements

EstimatorImoCon—
The implementation of
Estimator's interfaces is
consistent and correct

...

...

EstimaInnInter—
The implementation of
Estimator's internal
interfaces is consistent
and correct

EstimatorImpFunTech—
implementation of functional
safety and technical safety
requirements is correct

EstimatorImpRobust—
implementation of functional
safety and technical safety
requirements

EstimatorExtInter—
The implementation of
Estimator's external
interfaces is consistent
and correct

SInterfaces—
Argument over all
specified interfaces

EstimaInnInter—
The implementation of
FuelLevelWarnig
thread interfaces is
consistent and correct

EstimaInnInter—
The implementation of
FuelEstimation thread
interfaces is consistent
and correct

...

TstInnInt
Test of
internal
interfaces

InConChk

Interface
Consistency
check

Artefact
Version: v.3.2

Evidence Version: v.3.2

Input manifest: {(Inchecker,
1.5), (Code, 1.0)}

Lifecycle phase: Software dev.

Safety standard reference:
§ 8.4.2.2.4 — ASIL
"C"

Evidence Version: v.3.2

Input manifest: {(Con1,3.0),
(Code, 3.2)}

Lifecycle phase: Software dev.

Safety standard reference:
§ 8.4.2.2.4 — ASIL
"C"

ApplicabilityFLWBK.G —
The assumptions and
restrictions relating to the
guarantee are defined by

FuelLevelWarningDGC

Dependency — Guarantee Contract | FuelLevelWarningDGC
Consumer

Dependency
Integrator Provider

Guarantee

Artefact
Version

FuelLevelWarning

BK.G1

Supported
by away

goal

FuelEstimat
ionBK.G5

FuelEstimationBK.G5
V.3.2

totalFuelLevel

value is received

Is Supported

By

Provides the

totalFuelLevel value

totalFuelLevel

value is received

via

GetEstimatedFuelL

evelValue_2 port

Is Consistent

with

The totalFuelLevel

value is sent on port

SetSensorValue.

InConChk

TstInnInt

totalFuelLevel data

format is defined by

FLES {Interface

Specification

Ref.20}

Is Consistent

with

totalFuelLevel data

format is defined by

FLES {Interface

Specification Ref.20}

Supporting Evidence

No GSN

element

Evidence

Version

Input

Manifest

Lifecycle

Phase

Safety

Standard

Reference

1 InConChk

V.3.2

(Inchecker,

1.5), (Code,

1.0)

SW Dev. § 8.4.2.2.4

ASIL "C"

2 TstInnInt
V.3.2

(Con1, 3.0),

(Code, 3.2)

SW Dev. § 8.4.2.2.4

ASIL "C"

approach provides the engineer to contain the changes at a lower-

level where they feel that a tighter control over change is needed.

More specifically, our approach means that changes can be

contained within a safety argument module and within specific

system blocks. It could be argued that this could have been

handled in the existing approach by decomposing the system and

its safety argument differently, however in practice it is better not

to constrain system architects unnecessarily.

5. CONCLUSION AND FUTURE WORK
Applying changes to systems during their lifetime is inevitable

task. In safety critical systems, system changes can be

accompanied with changes to safety arguments. Maintaining those

arguments is painstaking process because of the dependencies

between their elements. The IAWG MSSC process was

introduced as a response to safety cases maintenance difficulties.

The process recommends applying changes as a series of

relatively small increments rather than occasional major ones.

However, The guidance of MSSC process does not show detailed

information about how to follow some steps including the impact

analysis part. In this paper, we applied the process to a real safety

critical system to show how system engineers can identify the

elements in a safety argument that might be impacted by a change.

We showed that by extending the proposed DGC by IAWG to

include additional information as annotations that is useful to

highlight the impacted argument elements. Moreover, we

provided starting points to maintain the affected parts of the

argument as we described the reasons why they have become

inadequate due to the change. The impact check based on the

additional information is still manual as we have not yet studied

the feasibility or value of developing a tool to automate the checks

but we leave this effort to future work.

6. ACKNOWLEDGMENTS
We acknowledge the Swedish Foundation for Strategic Research

(SSF) SYNOPSIS Project for supporting this work.

7. REFERENCES
[1] Jaradat. O, Graydon. P. J and Bate. I. (2014). “An Approach to

Maintaining Safety Case Evidence after a System Change”. In

Proceedings of the 10th European Dependable Computing

Conference.

[2] EUROCONTROL: European Organisation for the Safety of

Air Navigation, Preliminary Safety Case for Enhanced

Traffic Situational Awareness During Flight Operations,

PSC ATSA-AIRB. Available at:

www.eurocontrol.int/articles/cascade-documents, accessed:

20February 2015.

[3] Ewan, D. and Whiteside, I. (2012). "Hierarchical Safety

Cases", Technical Report NASA/TM-2012-216481, NASA

Ames Research Center

[4] Kelly, T. (2007): “Modular Certification”. Lecture Note.

Available at:

http://webhost.laas.fr/TSF/IFIPWG/Workshops&Meetings/52/

workshop/10%20Kelly.pdf, accessed: 20 February 2015.

[5] IAWG MSSC Process (2012). Modular Software Safety Case

Process Description. Available at:

https://www.amsderisc.com/wp-

content/uploads/2013/01/MSSC_201_Issue_01_PD_2012_11_

17.pdf, accessed: 20 February 2015.

[6] Kelly, T. (2006). “Using software architecture techniques to

support the modular certification of safety-critical systems”

Eleventh Australian Workshop on Safety Critical Systems and

Software, Australia.

[7] ISO 26262 (2011). Road Vehicles — Functional Safety.

International Organization for Standardization.

[8] Origin Consulting (2011). GSN Community Standard.

Available at: http://www.goalstructuringnotation.info/,

accessed 20 February 2015.

[9] Fenn. J. L, Hawkins. R. D, Williams. P, Kelly. T. P., Banner.

M. G, and Oakshott. Y. (2007). “The who, where, how, why

and when of modular and incremental certification”. In

proceedings of the 2nd IET International Conference on

System Safety, pages 135–140.

[10] Kelly. T. (1995) “Literature survey for work on evolvable

safety cases”. Department of Computer Science, University of

York.

[11] Wilson S. P, Kelly. T. P., and McDermid. J. A. (1997). “Safety

case development: Current practice, future prospects”. In

proceedings of Software Bases Systems - 12th Annual CSR

Workshop.

[12] Kelly.T and McDermid. J. (1999). ”A Systematic Approach

to Safety Case Maintenance”. In M. Felici and K. Kanoun,

editors, Computer Safety, Reliability and Security, volume

1698 of Lecture Notes in Computer Science, pages 13–26.

Springer Berlin Heidelberg.

[13] Jaradat.O, Graydon. P, and Bate. I. (2013). “The Role of

Architectural Model Checking in Conducting Preliminary

Safety Assessment”. In Proceedings of the 31st International

System Safety Conference.

[14] Jaradat.O. (2012). “Automated Architecture-Based Verification

of Safety-Critical Systems”. Master Thesis. Mälardalen

University, Sweden. Available at: www.diva-

portal.org/smash/record.jsf?pid=diva2%3A723310&dswid=51

93, accessed: 20 February 2015.

[15] Conmy, P. (2005). “Safety Analysis of Computer Resource

Management Software”. PhD Thesis. University of York.

Available at:

https://www.cs.york.ac.uk/ftpdir/reports/2006/YCST/07/YCST

-2006-07.pdf, accessed: 5 March 2015.

[16] Bate I. and Kelly. T. (2003).“Architectural Considerations

In The Certification Of Modular Systems”, In Proceedings

of SAFECOMP, pages 303–324.

http://www.goalstructuringnotation.info/

