Modeling Real-time Transactions in UPPAAL

Simin Cai
Milardalen Real-Time Research Centre, Milardalen University, Visteras, Sweden
simin.cai@mdh.se

Abstract

During the development of an Real-time Database Management System (RTDBMS) one needs to trade-off between data
consistency and timeliness. To achieve a systematic method for such trade-off, we must find a way to model the behaviors
and properties of real-time transactions. In this report, we experiment with the modeling of transactions and verification of
transaction properties in UPPAAL. We build a model for an exemplary transaction with the optimistic concurrency control
mechanisms, and model-check the timeliness property.

1 Introduction

Traditionally, Database Management Systems (DBMSs) focus on maintaining data consistency, by ensuring the so-called
ACID properties (Atomicity, Consistency, Isolation and Durability) during transaction execution [1]. A Real-Time Database
Management System (RTDBMS), however, may need to relax the assurance of ACID properties, since the timely response
of transactions is more important in a real-time system [2]. The RTDBMS designer must find an appropriate trade-off
between the ACID and timeliness, and select and implement the appropriate run-time transaction management mechanisms.
During the development of RTDBMS, however, there exists no systematic method to trade-off the ACID properties and the
timeliness.

In the DAGGERS project we aim at introducing a process for developing a tailored RTDBMS that guarantees timeliness
and desired data consistency for real-time systems by employing model-checking techniques during the process. As an initial
step, we need to model the transactions together with the run-time transaction management mechanisms, and verify them
against the desired ACID and timeliness properties.

In this report we explore the modeling of transaction behaviors in timed automata and verification of transaction properties
in Timed Computation Tree Logic (TCTL), both implemented by the UPPAAL tool[3]. We identify the components of a
transaction that need to be modeled, and experiment with a exemplary transaction and a concurrency control mechanism.
Finally, we discuss the next step of our work.

2 Transactions and Transactional Properties

In a database, a transaction consists of a set of logically related operations on the data and ensures (a certain level of)
data consistency. The collection of operations, including read, write and calculation on the data, is also called a work unit.
Typically, a work unit reads some data from the database, performs some calculation, and writes the result into the database.

2.1 ACID Properties

Data consistency is usually achieved by ensuring the ACID properties, i.e., atomicity, consistency, isolation and durability
[1]. Atomicity requires that a transaction either finishes all its operations completely, or does not make any changes at
all. Consistency requires that a transaction executing by itself must not violate any logical constraints. Isolation requires that
uncommitted changes of one transaction should not be seen by concurrent transactions. Durability requires that all committed
changes must be made permanent, even after system failure.



In order to verify these properties, one possible way is to model the transaction behavior and verify the conformity of
these properties when they should be met during transaction execution.

2.2 Timeliness

In a real-time system, each work unit usually has a set of real-time requirements in addition to data consistency require-
ments. More specifically, a work unit may be invoked in a particular pattern regarding to time, and are expected to complete
its work before a deadline. When a work unit is encapsulated as a transaction, the transaction also inherits these real-time
properties. A transaction may have a period (or Minimal INter-arrival Time (MINT)), and has a relative deadline. For a hard
real-time system, the timeliness of a transaction requires that the transaction must completes before its deadline.

In order to verify the timeliness, we must model the time progress in the system as each operation in the transaction takes
place.

2.3 Transaction Management Mechanisms

To ensure the desired ACID properties, a set of run-time transaction management mechanisms, such as concurrency control
and recovery, are implemented in the DBMS and will be "plugged" into the work unit in order to achieve the transactional
behavior. Therefore, extra steps are added in the transaction, before or after the work unit, or even in between the operations.

For example, to ensure atomicity, all operations, or a subset of operations, may be treated as a whole. The changes made by
these operation may not be written into the database immediately after the write operation. These changes are written into the
database as a whole, or not written into the database at all. This is achieved by different commit/abort/rollback mechanisms.
Taking a flat transaction model as an example, which assumes full ACID assurance. Full atomicity is guaranteed by embracing
the whole work unit within one begin/commit pair. The work unit starts its work after the begin command, but the actual
changes towards the database are made after the commit command. If any failure occurs before commit, no changes will be
made at all. In advanced transaction models, to support different variants of atomicity more mechanisms are adopted, for
example, partial commit, checkpoint, selective rollback, etc.

In order to ensure isolation different concurrency control mechanisms can be applied. For example, using a lock-based
concurrency control mechanism, acquiring and releasing locks are added to the transaction before or after particular opera-
tions of the work unit. Using a validation-based concurrency control, a validation phase is added before the work done by the
work unit is committed.

For durability, changes made by the work unit are written into persistent storage after transaction commit. Logging and
recovery mechanisms are often implemented to ensure durability even when failure occurs. Before transaction commit, the
operations of the work unit that change the database are written into a log. When the system is restarted from a failure, the
DBMS can recover all committed changes based on the log. These also add extra steps to the transaction.

Therefore, a transaction not only consists of the data access and manipulation operations of the work unit, which are
decided at design time of the application to perform a logic; but also operations imposed by the transaction management
mechanisms of the run-time platform (DBMS), which are intended for guarantee ACID properties.

To model the behavior of a transaction, we need to, first of all, model the basic work unit. We also need to model the
run-time mechanisms and weave them into the work unit model.

3 Model-checking Transactions in UPPAAL

In this section, we briefly describe model-checking particular transactions against the desired transaction properties in
UPPAAL [3], which is the state-of-the-art model-checker for real-time systems.

3.1 Modeling Transaction Behavior

We model transactional behavior as networks of timed automata [4] in UPPAAL. To model a real-time transaction’s
behavior we need to model three parts: the work unit, the run-time mechanisms, and the time.

In the following we use a transaction TR, guaranteeing full isolation with Optimistic Concurrency Control (OCC) [5] to
illustrate the modeling of transaction behavior in UPPAAL. We assume that the transaction reads data Dy, performs some
calculation, and writes the result back to Dy. The transaction is invoked continuously with a minimal interval, and must
complete before a relative deadline. Transaction TR is modeled as a template, as shown in Fig 1.



initiated

activated temp==ACTIVATION DELAY ™

@ begin

temp:=0

read_data_DO
= MINT @ temp<=MAx_READ_TIME
temp==MIN_READ_TIME
temp:=0, updateReadSet(0)
=0, temp:=0 )calculation
temp==MAX_CALC_TIME
temp==MIN_CALC_TIME
temp:=0

write_data_DO

() wait_for_next temp==MAX_WRITE_TIME tamp:=0
temp>=MIN_WRITE_TIME updateWriteSet(0)
@) read_phase_end
x=<=DEADLINE e tari
validate[id]

validate_phase

faillid]?
temp:=0

pass[id]?

temp:=

do_commit

temp=<=MAX_COMMIT_TIME abort

temp==MIN_COMMIT_TIME temp<=ABORT DELAY

clearReadWriteSel{), temp:= clearReadWriteSel(), temp:=0

aborted

committed x>DEADLINE

deadline_miss

Figure 1. The UPPAAL model of transaction TR, using optimistic concurrency control

3.1.1 Modeling the Work Unit

A work unit, consisting of a set of read, write and calculation operations, can be modeled as a set of states, each of which
corresponds to an operation. The edges represent the order of these operations. The work unit of TR consists of three
operations: reading Dy, calculation and writing Dg. They are modeled as states read_data_0, calculation and write_data_0,
respectively.

3.1.2 Modeling the Run-time Mechanism

The run-time mechanism may require additional operations before, after or in between work unit operations. These operations
can be modeled as individual states connected to work unit operations, or as side-effect free functions in update labels between



idle

vialidate[i]?

validated=4true vplidate_id:=i, vt:=0 [|validated==false

passpvalidate_id © vor fail[validate_id]

¢

Figure 2. The UPPAAL model of the transaction manager

operations.

According to OCC, the data involved in a transaction are written into a read set and a write set when the work unit
operations are performed. In Fig 1, functions updateReadSet() and updateWriteSet() are called in the update labels after the
corresponding work unit operations. The transaction is validated before it is allowed to commit. If a transaction fails the
validation, it will be aborted and restarted. These operations are modeled as states in In Fig 1.

A transaction manager is involved in many run-time mechanisms that provides services such as resource allocation and
validation. The transaction manager can also be modeled as a template in UPPAAL, synchronizing with transactions through
channels. In OCC, the validation is done by the transaction manager when a transaction steps into the validation phase. The
transaction manager in our example is shown in Fig 2. It receives a channel signal from a transaction, performs validation,
and replies to the transaction with a pass or fail signal.

3.1.3 Modeling the Time

Since UPPAAL internally models time using clocks, the real-time properties can be easily models as invariants or guards.
The real-time properties include the execution times of operations, the period or MINT, and the deadline of the transaction.

We assume each individual operation has a bounded execution time. Each operation has a worst-case execution time,
denoted as MAX_OPERATION_TIME, and a best-case execution time, denoted as MIN_OPERATION_TIME. In Fig 1, we
use an invariant with MAX_OPERATION_TIME to model the behavior that an operation “at most” takes such amount of
time, and a guard with MIN_OPERATION_TIME to model that an operation “at least” takes such amount of time. Similarly,
we model the behavior of sporadic invocation using the guard together with the MINT. The total execution time of the
transaction is modeled by a clock, x, which records time progress during the states transition.

3.2 Modeling and Verification of Transaction Properties

The transaction properties to be modeled and verified include both timeliness and the ACID properties. We use Timed
Computation Tree Logic (TCTL) to verify these properties, which is integrated in the UPPAAL tool [3].

3.2.1 Timeliness

In order to model the timeliness property, we create a state representing a violation of timeliness, which is reached if the
transaction misses its deadline when it completes. As shown in Fig 1, the deadline_miss state is such a state. The verification
of timeliness is then transformed into a safety check that deadline_miss should never be reached. The TCTL query for
verifying timeliness is: A[] not TRO.deadline_miss. If the verification fails, a counter-example is provided by the tool that
exposes an execution path that leads to the violation of timeliness.



3.2.2 ACID properties

Similar to timeliness, the violation of ACID properties should be modeled as states. If any of such states is reachable, the
corresponding property is violated. Modeling and verification of ACID properties are discussed further in this report, but
they will be included in the next step of our work.

4 Related Work

Several existing works have modeled particular aspects of transaction or transaction management mechanisms in UP-
PAAL. Kot [6] modeled several priority assignment policies for transactions in an RTDBMS. Al-Bataineh et. al [7] modeled
a two-phase commit protocol for real-time transactions in UPPAAL and verified the behavior of transactions using TCTL.
The closest work to ours is Kot [8], which modeled several concurrency control protocols for an RTDBMS. These works all
focus on particular protocols and show the possibility of model-checking with UPPAAL. None of them explicitly model and
verify the timeliness and ACID properties.

5 Conclusion and Future Directions

In this report we explored how to model transactions and model-checking the desired timeliness and ACID properties in
UPPAAL. We analyzed the structure of a transaction and pointed out the elements that need to be modeled. We also build an
experimental model in UPPAAL for a transaction with the OCC mechanism, and verified the transaction timeliness property.

This report only presents the initial work on modeling real-time transactions. More work needs to be done in the future.
Although we have discussed the possible way to model and verify the ACID properties, we have not done it in our exemplary
UPPAAL model. The ACID properties will be included in the next step work and will be verified together with timeliness,
in order to find conflicts between ensuring timeliness and data consistency.

In this report we only model one concurrency control mechanism, OCC. However, other concurrency control mechanisms
may be significantly different from OCC, and how to model them accurately remains unclear. In addition, other run-time
mechanisms such as logging and recovery should also be modeled. In the future we should create a library of common
run-time mechanism models, and find a method to weave these models into the work unit model dynamically.

In this report we also assume a flat transaction model, which organizes work unit operations as a sequence and requires
full ACID. In our next step we should experiment with various transaction models with various relaxation of ACID.

References
[1] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1992.

[2] J. A. Stankovic, S. H. Son, and J. Hansson, “Misconceptions about real-time databases,” Computer, vol. 32, no. 6, pp.
29-36, 1999.

[3] K. G. Larsen, P. Pettersson, and Y. Wang, “Uppaal in a nutshell,” International Journal on Software Tools for Technology
Transfer (STTT), vol. 1, no. 1, pp. 134152, 1997.

[4] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical computer science, vol. 126, no. 2, pp. 183-235, 1994.

[5] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency control,” ACM Trans. Database Syst., vol. 6,
no. 2, pp. 213-226, Jun. 1981.

[6] M. Kot, “Modeling and verification of priority assignment in real-time databases using uppaal.” in DATESO. Citeseer,
2010, pp. 147-154.

[7] O. Al-Bataineh, T. French, and T. Woodings, “Formal modeling and analysis of a distributed transaction protocol in
uppaal,” in Temporal Representation and Reasoning (TIME), 2012 19th International Symposium on. 1EEE, 2012, pp.
65-72.

[8] M. Kot, “Modeling selected real-time database concurrency control protocols in uppaal,” Innovations in Systems and
Software Engineering, vol. 5, no. 2, pp. 129-138, 20009.



