
Towards Classification of Concurrency Bugs Based

on Observable Properties

Sara Abbaspour Asadollah∗, Hans Hansson∗, Daniel Sundmark∗, Sigrid Eldh†

∗Mälardalen University, Västerås, Sweden

{sara.abbaspour, hans.hansson, daniel.sundmark}@mdh.se
†Ericsson AB, Kista, Sweden

sigrid.eldh@ericsson.com

Abstract—In software engineering, classification is a way to
find an organized structure of knowledge about objects. Classifi-
cation serves to investigate the relationship between the items to
be classified, and can be used to identify the current gaps in the
field. In many cases users are able to order and relate objects by
fitting them in a category. This paper presents initial work on a
taxonomy for classification of errors (bugs) related to concurrent
execution of application level software threads. By classifying
concurrency bugs based on their corresponding observable prop-
erties, this research aims to examine and structure the state of
the art in this field, as well as to provide practitioner support
for testing and debugging of concurrent software. We also show
how the proposed classification, and the different classes of bugs,
relates to the state of the art in the field by providing a mapping
of the classification to a number of recently published papers in
the software engineering field.

I. INTRODUCTION

Concurrent programming puts demands on software devel-

opment and testing. Concurrent software may exhibit prob-

lems, like deadlocks and race conditions, that may not occur in

sequential software. There are a variety of challenges related to

faults and errors in concurrent and multi-threaded application

[1], [2], [3]. So far, there has been some research on bugs

occurring in concurrent software (see e.g., [1], [2], [3]), but

the efforts have been partially scattered, and no common

terminology has been established. Since concurrent software

bugs are treated separately in different papers, to the best of

our knowledge this research is the first effort to provide a

bug classification as a basis for extracting and categorizing

the current knowledge in concurrent software bugs.

The purpose of the classification is to provide a common

terminology for distinguishing between different types and

classes of concurrency bugs. It will be useful in future research

to use the same name and label for a specific concept, thereby

facilitating communication among researchers and practition-

ers. Moreover, integrating and classifying concurrent software

bugs will be helpful in order to find the interaction between

separate elements and classes. The similarities and differences

become more apparent, allowing for identification of gaps in

the state of the art.

Another, more practical motivation for the classification

is for the purpose of supporting software practitioners in

finding the cause of different types of concurrency problems.

Due to repeatability issues caused by the non-determinism

inherent in most concurrent software, testing and debugging

of such software is challenging. There is no guarantee that a

repeated execution with the same input will yield the same

behavior over different runs of execution. By providing an

understanding the structure and distinguishing features of dif-

ferent concurrency bugs, a classification can provide benefits

for testers as well as designers and developers. Moreover, the

classification proposed in this paper is based on observable

static and dynamic properties of the concurrent software under

test. Thus, in case of erroneous program behavior, we seek a

way to support the deduction of the cause of this behavior

based on these observable properties.

A. Intended Practical Use of the Classification

Software testing plays an important role in the software

life cycle in order to produce high quality software with a

low maintenance cost. Considering a basic process model in

software testing like Fig. 1(a), bugs and defects are identified

during testing, and corrected during debugging. In other words,

the result of testing process will provide an indication of the

answer to the question: ”Do we have bug(s) in the software

under test?” In case indications of bugs are found, the common

phase after testing phase would be debugging, with the purpose

of identifying and removing the causes of the problems (i.e.,

the bugs).

Following debugging, regression testing is commonly done

to check if any new errors are introduced during debugging.

Fig. 1(a) summarizes this process.

The intention of this research is for it to be used to clarify

and simplify the explained process by guiding practitioners

in testing and debugging of concurrent software. As shown

in Fig. 1(b), a practitioner can check the properties of bug(s)

found and compare them with the properties given for each

class of the proposed classification. Thereby, he/she can figure

out the potential types of concurrency bugs that may have been

encountered (or at least reject some classes of bugs that could

not possibly have occurred).

Since finding the cause of bugs is essential in exploring

corrections and selecting the correct solution for fixing the

errors therefor this classification can be useful as a guide to

find real cause of errors and it can be helpful in understanding

the type of bug by offering more information.



�✁✂ ✄☎✆✝✞✄✟✄✠✡✞✄☛✝

☞✌✍✎✏ ✑✒✏✓✔✑✕✑✖✌✔✑✗✓

✘✙✚✛☛✜✄✝✂ ✠☛✜✜✆✠✞✄☛✝✢

✣✄✙✄✝✂ ✆✜✜☛✜

✤✥✦✧★★✩✪★

✫☛✟✞✬✡✜✆

✭✮✯✰✱✲✳

✴✆✙✞

✚✵✡✢✆ ✄✝

✢☛✟✞✬✡✜✆

✛✄✟✆ ✠✶✠✛✆

✷✸✹ ✺✻✼

✽✾ ✿❀❁❂❃❄

❅❆❇ ❈ s❉❊❋●❍ t❍st❉■❏ ❆■❛ ❛❍❞✉❏❏❉■❏ ❋♣❑▲❍ss

▼◆❖P◗◆❘❙◗❚ ❙❯◗❱❘❙❲❙❳❨❘❙❖❱

❩❬P❭❖◆❙❱❪ ❳❖◆◆◗❳❘❙❖❱❚

❫❴❵❴❜❝ ❡❢❢❣❢

❙

❤✐❥❦❧❧♠♥❧

♦❣qr✈✇❢❡

①✐②③♠♥❧

④⑤⑥⑦ ⑧⑨⑩❶⑤

❷❸ ❶❹❺⑦❻⑩❼⑤

❽❾❿➀ ➁➂➁❽➀

➃➄➅ ➆➇➈

➉➊ ➆➇➈➋➅➌

➍➎➏❡ ❣q ➐➑❝ ❴➒❡❜r❴q❴➓✇r❴❣❜

➔❨→❚◗ ❙❯◗❱❘❙❲❙❳❨❘❙❖❱

➔❖➣P❨◆❙❱❪ P◆❖P◗◆❘❙◗❚ ↔↕➙
➛➜➝➞➞➟➠➟➛➝➡➟➢➤

❅❞❇ ❈ s❉❊❋●❍ t❍st❉■❏ ❆■❛ ❛❍❞✉❏❏❉■❏ ❋♣❑▲❍ss ➥❉t➦ ❆❋❋●➧❉■❏ ❞✉❏ ▲●❆ss❉➨▲❆t❉❑■

➩➫➭➯ ➲➳ ➵➸➺ ➻➺➼➻➫➽➭ ➾➽➚ ➚➺➪➶➭➭➫➽➭ ➹➘➴➷➺➼➼➯

➬➮ ➱✃❐❒❮❰ÏÐ❒❰✃❐Ñ

ÒÓ ÔÕÖÖ×ØÙÚ ÛÜÝÔ Þ×ÞßØ Ö×àßÔ ÛÜß áâããâäÝÓå æâÓÛØÝçÕÛÝâÓÔè

é ê ÔÕÖÖ×ØÙ âá æâÓæÕØØßÓæÙ çÕåÔ ×ëëØßÔÔßë ÝÓ ÔâáÛä×Øß

ÛßÔÛÝÓåÚ ×Ó×ãÙÔÝÔ ×Óë ëßçÕååÝÓåÚ ç×Ôßë âÓ × ØßìÝßä âá

ØßÔß×ØæÜ ãÝÛßØ×ÛÕØß âìßØ ÛÜß ã×ÔÛ íî Ùß×ØÔï

é ê æã×ÔÔÝðæ×ÛÝâÓ ç×Ôßë âÓ âçÔßØì×çãß ÞØâÞßØÛÝßÔ âá ÛÜßÔß

æâÓæÕØØßÓæÙ çÕåÔÚ ÝÓÛßÓëßë Ûâ ÔÕÞÞâØÛ ÛßÔÛÝÓå ×Óë ëßçÕåñ

åÝÓå âá æâÓæÕØØßÓÛ ÔâáÛä×Øßï

➱➮ òóôõ❮ öÐ❒÷❰❐õ

øÜÝÔ Þ×ÞßØ ÞØâæßßëÔ çÙ ÞØßÔßÓÛÝÓå âÕØ ØßÔß×ØæÜ ×ÞÞØâ×æÜ

ÝÓ ùßæÛÝâÓ ÒÒï øÜß ×ÔÔÕÖßë ÔÙÔÛßÖ Öâëßã ×Óë ÛßØÖÝÓâãâåÙ ÝÔ

ÞØßÔßÓÛßë ÝÓ ÝÓ ùßæÛÝâÓ ÒÒÒï úâÓæÕØØßÓÛ ÔâáÛä×Øß çÕåÔ ×Øß ãÝÔÛßë

ÝÓ ùßæÛÝâÓ ÒûÚ ×Óë ùßæÛÝâÓ û ÞØßÔßÓÛÔ ÛÜß ÞØâÞâÔßë æã×ÔÔÝðñ

æ×ÛÝâÓ âá æâÓæÕØØßÓæÙ çÕåÔ ç×Ôßë âÓ âçÔßØì×çãß ÞØâÞßØÛÝßÔï ÒÓ

ùßæÛÝâÓ ûÒ äß Ö×Þ ÛÜß áâæÕÔ âá ØßæßÓÛãÙ ÞÕçãÝÔÜßë Þ×ÞßØÔ Ûâ

ÛÜß ÞØâÞâÔßë æã×ÔÔÝðæ×ÛÝâÓÚ ×Óë ðÓ×ããÙ ùßæÛÝâÓ ûÒÒ æâÓæãÕëßÔ

ÛÜß Þ×ÞßØ ×Óë ÞØâÞâÔßÔ áÕÛÕØß äâØàï

ÒÒï üýþý❈ÿ❊� êPPÿ❖❈❊�

øâ ÞØâÞâÔß × æã×ÔÔÝðæ×ÛÝâÓ ÛÜ×Û áÕãðããÔ ÛÜß âç♦ßæÛÝìß ÔÛ×Ûßë

ÝÓ ÛÜß ÝÓÛØâëÕæÛÝâÓÚ ÛÜß áâããâäÝÓå ×ÞÞØâ×æÜ ä×Ô ÕÔßëè

í✶ êÓ ß①Ü×ÕÔÛÝìß Ôß×ØæÜ áâØ Øßãßì×ÓÛ ×ØÛÝæãßÔ âÓ ÛßÔÛÝÓå ×Óë

ëßçÕååÝÓå ÛÜß Þ×Ø×ããßã ×Óë æâÓæÕØØßÓÛ ×ÞÞãÝæ×ÛÝâÓÔ ÝÓ

ÔÝÓåãß ×Óë ÖÕãÛÝæâØß Þã×ÛáâØÖÔ ÞÕçãÝÔÜßë ÝÓ ÛÜß ÞßØÝâë âá

✷îî✁ ñ ✷îí✂ ä×Ô æâÓëÕæÛßë ÝÓ ÛÜß ❲ßç âá ❑ÓâäãßëåßÚ

ùæâÞÕÔÚ ×Óë Ò■■■ ❳ÞãâØß ë×Û×ç×ÔßÔï êáÛßØ ß①æãÕÔÝâÓ âá

ÓâÓñØßãßì×ÓÛ ×ØÛÝæãßÔÚ äß ßÓëßë ÕÞ äÝÛÜ × æâØÞÕÔ âá ✷✄✷

Øßãßì×ÓÛ ×ØÛÝæãßÔï

✷✶ ÒÓáâØÖ×ÛÝâÓ Øßå×ØëÝÓå æâÓæÕØØßÓæÙ çÕåÔ ä×Ô ß①ÛØ×æÛßë

áØâÖ ß×æÜ ×ØÛÝæãß ÝÓ ÛÜß ×çâìß æâØÞÕÔï

✂✶ øÜß æâÓæÕØØßÓæÙ çÕå ÛßØÖÝÓâãâåÙ ä×Ô Ü×ØÖâÓÝ❤ßëÚ ×Óë

× æâÖÖâÓ åßÓßØ×ã ãÝÔÛ âá æâÓæÕØØßÓæÙ çÕå ÛÙÞßÔ ä×Ô

æâÖÞÝãßëï

✹✶ ❋âØ ß×æÜ çÕå ÝÓ ÛÜß ×çâìß ãÝÔÛÚ âçÔßØì×çãß ÞØâÞßØÛÝßÔ

äßØß ëßÛßØÖÝÓßëï ❇×Ôßë âÓ ÛÜßÔß âçÔßØì×çãß ÞØâÞßØÛÝßÔÚ

ÛÜß çÕåÔ äßØß âØëßØßë ×Óë × çÕå æã×ÔÔÝðæ×ÛÝâÓ ä×Ô

ßÔÛ×çãÝÔÜßëï

üßå×ØëÝÓå ãÝÖÝÛ×ÛÝâÓÔ ÝÓ ÔæâÞßÚ ÓâÛß ÛÜ×Û äß ëâ ÓâÛ æâÓÔÝëßØ

ÞßØáâØÖ×Óæß ÝÔÔÕßÔÚ ÜßÓæß ÛÜÝÔ Þ×ÞßØ ëâßÔ ÓâÛ ×ëëØßÔÔ çÕåÔ

Øßã×Ûßë Ûâ ÞßØáâØÖ×Óæßï ÒÓ ×ëëÝÛÝâÓÚ äß áâæÕÔ âÓ ×ÞÞãÝæ×ÛÝâÓ

ãßìßã çÕåÔÚ ×Óë ëâ ÓâÛ æâÓÔÝëßØ çÕåÔ Øßã×Ûßë Ûâ ÛÜß âÞßØ×ÛÝâÓ

âá ÛÜß âÞßØ×ÛÝÓå ÔÙÔÛßÖï

ÒÒÒï ☎ÿý❘✆✝✆✞❈ÿ✆ýþ

øÜß çßãâä ÔÕçÔßæÛÝâÓÔ ÞØâìÝëß ëßÛ×ÝãÔ âÓ ÛÜß ÔÙÔÛßÖ Öâëßã

×Óë ÛÜß ÛßØÖÝÓâãâåÙ ÕÔßë ÝÓ ÛÜÝÔ Þ×ÞßØï

❆➮ ❙✟Ñ❒õ✠ ▼✃✡õ÷

❲ß æâÓÔÝëßØ æâÓæÕØØßÓÛÚ Þ×Ø×ããßãÚ ×Óë ÖÕãÛÝñÛÜØß×ëßë ÞØâñ

åØ×ÖÔ ØÕÓÓÝÓå âÓ × ÔÝÓåãßñ âØ ÖÕãÛÝæâØß Þã×ÛáâØÖ äÝÛÜè

×✶ ê ðÓÝÛß ÓÕÖçßØ âá ÓâÓñú☎♥ ØßÔâÕØæßÔÚ ÞâÔÔÝçãÙ Þ×Øñ

ÛÝÛÝâÓßë ÝÓÛâ ÔßìßØ×ã ØßÔâÕØæß ÛÙÞßÔÚ ÔÕæÜ ×Ô ÖßÖâØÙÚ

ãßÔÚ ÞØÝÓÛßØÔÚ ëØÝìßÔÚ ×Óë ÔâÖß âÛÜßØ ÔÜ×Øßë ØßÔâÕØæßÔï

ç✶ ê ÔßÛ âá ÛÜØß×ëÔ ø ✭❚☛✱ ❚☞✱ ❚✸✱ ✌ ✌ ✌ ✱ ❚✍✮❀ ÒïßïÚ ÝÓëÝñ

ìÝëÕ×ã ÝÓÔÛØÕæÛÝâÓÔ ÝÓ ëÝááßØßÓÛ ÛÜØß×ëÔ æ×Ó ß①ßæÕÛß

æâÓæÕØØßÓÛãÙ âÓ ëÝááßØßÓÛ æâØßÔ âØ çß ÝÓÛßØãß×ìßë âÓ

ÛÜß Ô×Öß âÓßï

æ✶ êææßÔÔ Ûâ ØßÔâÕØæßÔ æ×Ó çß ÞØâÛßæÛßë çÙ ÔâÖß ÖßæÜñ

×ÓÝÔÖÚ äÜÝæÜ æ×Ó ßÓáâØæß ×ÛâÖÝæ ×ææßÔÔ Ûâ × ÔÜ×Øßë

ØßÔâÕØæßï

ë✶ øÜß ÔÛ×Ûß âá × ÛÜØß×ë ÝÓ ÛÜß ÔÙÔÛßÖ ÝÔ ëßðÓßë çÙ ÛÜß

æÕØØßÓÛ ×æÛÝìÝÛÙ âá ÛÜß ÛÜØß×ë ×Óë ß×æÜ ÛÜØß×ë Ö×Ù

×Û ß×æÜ ÞâÝÓÛ ÝÓ ÛÝÖß çß ÝÓ ß①×æÛãÙ âÓß âá ÛÜß ÔÛ×ÛßÔ

ÔÜâäÓ ÝÓ ❋Ýåï ✷ï

øÜß ëÝááßØßÓÛ ÛÜØß×ë ÔÛ×ÛßÔ ×Øß ëßðÓßë ×Ô ëßÔæØÝçßë çßãâäè

é ✎✏✑✒✓è øÜß ÛÜØß×ë ÝÔ ÞØßÞ×Øßë ✔Øß×ëÙ✶ Ûâ ß①ßæÕÛß äÜßÓ

åÝìßÓ ÛÜß âÞÞâØÛÕÓÝÛÙï

é ✕✖✏✗✘✙✚✛✜è øÜß ÛÜØß×ë ÝÔ æÕØØßÓÛãÙ çßÝÓå ß①ßæÕÛßëï

é ✢✣✤✗✥✏✒❡✦✑✚✙✚✛✜è øÜß ÛÜØß×ë ÝÔ ä×ÝÛÝÓå áâØ × Þ×ØÛÝæÕã×Ø

ßìßÓÛ ✔ßïåï Øßãß×Ôß âá × ãâæàÚ ÛÜß Þ×ÔÔ×åß âá ÛÝÖßÚ ×ì×Ýãñ

×çÝãÝÛÙ âá × æâÓÛßÔÛßë ØßÔâÕØæß✶ ×Óë æ×ÓÓâÛ ß①ßæÕÛß ÕÓÛÝã

ÛÜÝÔ ßìßÓÛ âææÕØÔï

é ✧✏★✩✚✛✑✙✏✒è øÜß ÛÜØß×ë Ü×Ô æâÖÞãßÛßë ÝÛÔ ß①ßæÕÛÝâÓï



�✁✂✄☎ ✆✝✁✞✟✠✡☛

☞✌✍✞✎✁✄✏

✑✂✒✠✡☛

✓✁✔✕✒✡✂✖✁✄

✗✘✙✚✛✜✢✣

✘✤✜✥✦✦✧✚✜★ ✩✪✥✫✬✧✜
✦✥✭✥✛✙✥

✮✛✘✜
✙✘✯✤✛✭

❋✰✱✲ ✷✳ ❚✴✵✶✸✹ s✺✸✺✶s

❇✻ ❇✼✽✾✿ ❀❛✼❁❂✾✿ ❊❃❃♦❃✾✿ ❛❄❅ ❀❛❆❁✼❃❡✾

■❈ ❉●❍❏❑▲ ❜▼ ♥❍❈▼▲ ❈●t❈ ❈●▼ ❈▼◆❖P♥❍❑❍◗❘ ❝❍♥❝▼◆♥P♥◗ ❉❍❙❈❯

✇t◆▼ ♣◆❍❜❑▼❖❉ P❉ ♥❍❈ ▼♥❈P◆▼❑❘ ❝❍♥❉P❉❈▼♥❈❱ ■♥ ❉❍❙❈✇t◆▼ ❈▼❉❈P♥◗❲

▲▼❜❏◗◗P♥◗ t♥▲ ❈◆❍❏❜❑▼❉●❍❍❈P♥◗❲ ▲P❙❙▼◆▼♥❈ ❈▼◆❖❉ ❑P❧▼ ❙t❏❑❈❲

▼◆◆❍◆❲ ❜❏◗❲ ❙tP❑❏◆▼❲ t♥▲ ▲▼❙▼❝❈ ▼①P❉❈ t♥▲ t◆▼ ❉❍❖▼❈P❖▼❉ ❏❉▼▲

P♥❈▼◆❝●t♥◗▼t❜❑❘❱ ❳t❏❑❈❲ ▼◆◆❍◆ t♥▲ ❙tP❑❏◆▼ t◆▼ ❈●▼ ❖❍❉❈ ❝❍❖❖❍♥

❈▼◆❖❉ ❬❨❩❱ ❭✇▼❜❍❧ ❬❪❩ ▲▼❉❝◆P❜▼❉ t ❙t❏❑❈ t❉ ❈●▼ ❝t❏❉▼ ❍❙ t

❖t❑❙❏♥❝❈P❍♥❲ t♥▲ ❫❑▲● ▼❈ t❑❱ ❬❨❩ ▲▼❞♥▼ P❈ t❉ ❈●▼ ❉❈t❈P❝ ❍◆P◗P♥

❍❙ ❈●▼ ♣◆❍❜❑▼❖ P♥ ❈●▼ ❉❍❏◆❝▼ ❝❍▲▼❱

❫◆◆❍◆ P❉ ❈❘♣P❝t❑❑❘ ▲▼❞♥▼▲ t❉ t♥ P♥❈▼◆❖▼▲Pt❈▼ P♥❙▼❝❈P❍♥ ❍❙ ❈●▼

❝❍▲▼ ❬❨❩❲ ❍◆ t❉ t ♣◆❍❜❑▼❖ ▲▼❈▼❝❈t❜❑▼ ▲❏◆P♥◗ ▼①▼❝❏❈P❍♥ ❍◆ t❈ ◆❏♥

❈P❖▼ ❈●t❈ ❝t❏❉▼❉ ❈●▼ ♣◆❍◗◆t❖ ❈❍ ♣▼◆❙❍◆❖ P♥❝❍◆◆▼❝❈❑❘ ❬❴❩❱

❵ ❙tP❑❏◆▼ ✇P❑❑ ●t♣♣▼♥ ✇●▼♥ t ❉❘❉❈▼❖ ❍◆ ❝❍❖♣❍♥▼♥❈ ❝t♥♥❍❈

♣▼◆❙❍◆❖ P❈❉ ◆▼r❏P◆▼▲ ❙❏♥❝❈P❍♥❉ t❉ ▲▼❞♥▼▲ ❜❘ ❈●▼ ❉♣▼❝P❞▼▲

◆▼r❏P◆▼❖▼♥❈❉ ❬❢❩❱ ■♥ ❍❈●▼◆ ✇❍◆▲❉❲ P❙ t♥ ▼◆◆❍◆ ♣◆❍♣t◗t❈▼❉ P♥❈❍

❍❏❈♣❏❈ t♥▲ ❜▼❝❍❖▼❉ ✈P❉P❜❑▼ ▲❏◆P♥◗ ▼①▼❝❏❈P❍♥ P❈ ●t❉ ❝t❏❉▼▲ t

❙tP❑❏◆▼ ❬❨❩❱ ■♥ ❈●P❉ ◆▼❉▼t◆❝● ✇▼ ❏❉▼ ❈●▼ ❈▼◆❖ ❣✼✽ ❈❍ ◆▼❙▼◆ ❈❍

t♥ ❍❜❉▼◆✈t❜❑▼ ❖t❑❙❏♥❝❈P❍♥ P♥ ❈●▼ ❝❍♥❝❏◆◆▼♥❈ ♣◆❍◗◆t❖ ❏♥▲▼◆

❈▼❉❈❱ ❤●P❑▼ ❈●P❉ ❖t❘ ♥❍❈ ❜▼ ▼♥❈P◆▼❑❘ P♥ ❑P♥▼ ✇P❈● ❈●▼ t❜❍✈▼

❈▼◆❖P♥❍❑❍◗❘❲ P❈ P❉ ❝❍♥❉P❉❈▼♥❈ ✇P❈● ❈●▼ ❈▼◆❖P♥❍❑❍◗❘ ❏❉▼▲ P♥

◆▼❑t❈▼▲ ✇❍◆❧ ❍♥ ❝❍♥❝❏◆◆▼♥❝❘ ❜❏◗❉❱

■✐❱ ❥❦♠q✉②②③♠④ ❭❦⑤④⑥⑦②③ ⑧✉⑨⑩

■♥ ❍◆▲▼◆ ❈❍ t✈❍P▲ ❍❖P❉❉P❍♥ ❍❙ ◆▼❑▼✈t♥❈ ❜❏◗❉❲ ✇▼ ❝❍♥▲❏❝❈▼▲

t ❑P❈▼◆t❈❏◆▼ ◆▼✈P▼✇ ❈❍ P▲▼♥❈P❙❘ ❙t❏❑❈❉❲ ▼◆◆❍◆❉ t♥▲ ❜❏◗❉ ◆▼❑▼✈t♥❈

❈❍ ♣t◆t❑❑▼❑ t♥▲ ❝❍♥❝❏◆◆▼♥❈ t♣♣❑P❝t❈P❍♥ ❈▼❉❈P♥◗ t♥▲ ▲▼❜❏◗◗P♥◗❲

❈●t❈ ●t✈▼ ❜▼▼♥ ❝❍✈▼◆▼▲ P♥ ❈▼①❈❜❍❍❧❉ t♥▲ P♥ ❈●▼ ❉❝P▼♥❈P❞❝

❑P❈▼◆t❈❏◆▼ ❍✈▼◆ ❈●▼ ❑t❉❈ ❶❷ ❘▼t◆❉❱ ❸●▼ ❝❍❖❖❍♥ ♣◆❍♣▼◆❈P▼❉ ❍❙

❜❏◗❉ ♣◆▼❉▼♥❈▼▲ ❜▼❑❍✇ t◆▼ ♣◆P❖t◆P❑❘ ▼①❈◆t❝❈▼▲ ❙◆❍❖ ◆▼❙▼◆▼♥❝▼❉

❬❶❩❲ ❬❹❩❲ ❬❺❩❲ ❬❻❩❲ ❬❶❷❩❲ ❬❶❶❩❲ ❬❶❼❩❲ ❬❶❹❩❲ ❬❶❨❩❲ ❬❶❪❩❲ ❬❶❴❩❲ ❬❶❢❩❲

❬❶❺❩❱

❸●▼ ▼①♣❑t♥t❈P❍♥ ❍❙ ▼t❝● ❝❍♥❝❏◆◆▼♥❈ ❜❏◗ ✇P❈● ❈●▼P◆

❍❜❉▼◆✈t❜❑▼ ♣◆❍♣▼◆❈P▼❉ t◆▼ ❑P❉❈▼▲ t❉ ❙❍❑❑❍✇❉❽

❵ ❾❿➀❿ ➁❿➂➃ ❍❝❝❏◆❉ ✇●▼♥ t❈ ❑▼t❉❈ ❈✇❍ ❈●◆▼t▲❉ t❝❝▼❉❉ ❈●▼

❉t❖▼ ▲t❈t t♥▲ t❈ ❑▼t❉❈ ❍♥▼ ❍❙ ❈●▼❖ ✇◆P❈▼ ❈●▼ ▲t❈t ❬❻❩❱ ■❈

❍❝❝❏◆❉ ✇●▼♥ ❝❍♥❝❏◆◆▼♥❈ ❈●◆▼t▲❉ ♣▼◆❙❍◆❖ ❝❍♥➄P❝❈P♥◗ t❝❝▼❉❉▼❉

❜❘ ❈◆❘P♥◗ ❈❍ ❏♣▲t❈▼ ❈●▼ ❉t❖▼ ❖▼❖❍◆❘ ❑❍❝t❈P❍♥ ❍◆ ❉●t◆▼▲

✈t◆Pt❜❑▼ ❬❶❩ ❬❶❷❩❱ ■❙ ❈●▼ ❖▼❖❍◆❘ t❝❝▼❉❉▼❉ ❉t❈P❉❙❘ ❈●▼ ❙❍❏◆

❙❍❑❑❍✇P♥◗ ❝❍♥▲P❈P❍♥❉❲ t ▲t❈t ◆t❝▼ ❜❏◗ ●t❉ ●t♣♣▼♥▼▲❽ ➅❶➆ ❸●▼

t❝❝▼❉❉ ✇▼◆▼ ❙◆❍❖ ▲P❙❙▼◆▼♥❈ ❈●◆▼t▲❉❲ ➅❼➆ ❵❈ ❑▼t❉❈ ❍♥▼ ❍❙ ❈●▼

t❝❝▼❉❉▼❉ ✇t❉ t ➇❃❆❂❡ t❝❝▼❉❉❲ ➅❹➆ ❸●▼ t❝❝▼❉❉▼❉ ✇▼◆▼ ❈t◆◗▼❈P♥◗

❈●▼ ❉t❖▼ ❖▼❖❍◆❘ ❑❍❝t❈P❍♥ t♥▲ ➅❨➆ ❸●▼ t❝❝▼❉❉▼❉ ✇▼◆▼ ➈➉❸

♣◆❍❈▼❝❈▼▲ ❜❘ t ❉❘♥❝●◆❍♥P➊t❈P❍♥ ❖▼❝●t♥P❉❖ ▼❱◗❱ ❑❍❝❧❱ ❸●▼◆▼ t◆▼

●❍✇▼✈▼◆ t ❙▼✇ ❉❏❜❈❑▼ ❉❏❜❝t❈▼◗❍◆P▼❉ ❍❙ ▲t❈t ◆t❝▼❉❲ t❉ ▲▼❉❝◆P❜▼▲

❜▼❑❍✇❽

➋ ➌➃➍➎➁➏ ➐➑➂➎➑➒➐➒➀➃➑➂➏ P❉ ✇●▼♥ ▲P❙❙▼◆▼♥❈ ❈●◆▼t▲❉ ●t✈▼

P♥❝❍♥❉P❉❈▼♥❈ ✈P▼✇❉ ❍❙ ❉●t◆▼▲ ✈t◆Pt❜❑▼❉ ❬❹❩❱ ■♥ ❈●P❉ ❝t❉▼ ❈●▼

◆▼❉❏❑❈❉ ❍❙ t ✇◆P❈▼ ❍♣▼◆t❈P❍♥ ❜❘ ❍♥▼ ❈●◆▼t▲ t◆▼ ♥❍❈ ◗❏t◆t♥❯

❈▼▼▲ ❈❍ ❜▼ ✈P❉P❜❑▼ ❈❍ t ◆▼t▲ ❍♣▼◆t❈P❍♥ ❜❘ t♥❍❈●▼◆ ❈●◆▼t▲❱ ■❙

❈●▼ ❖▼❖❍◆❘ t❝❝▼❉❉▼❉ ❉t❈P❉❙❘ ❈●▼ ❞✈▼ ❙❍❑❑❍✇P♥◗ ❝❍♥▲P❈P❍♥❉

❈●▼♥ t ❖▼❖❍◆❘ P♥❝❍♥❉P❉❈▼♥❝❘ ❜❏◗ ●t❉ ❍❝❝❏◆◆▼▲❽ ➅❶➆ ❸●▼

t❝❝▼❉❉ ✇▼◆▼ ❙◆❍❖ ▲P❙❙▼◆▼♥❈ ❈●◆▼t▲❉❲ ➅❼➆ ❸●▼ t❝❝▼❉❉▼❉ ✇▼◆▼

◆▼❑t❈▼▲ ❈❍ ❈●▼ ❉t❖▼ ❖▼❖❍◆❘ ❑❍❝t❈P❍♥❲ ➅❹➆ ❸●▼ t❝❝▼❉❉▼❉

✇▼◆▼ ➈➉❸ ♣◆❍❈▼❝❈▼▲ ❜❘ t ❉❘♥❝●◆❍♥P➊t❈P❍♥ ❖▼❝●t♥P❉❖ ▼❱◗❱

❑❍❝❧❲ ➅❨➆ ❸●▼◆▼ ✇▼◆▼ t❈ ❑▼t❉❈ ❈✇❍ t❝❝▼❉❉▼❉ ❍♥▼ ❍❙ ❈●▼❖

✇t❉ ✇◆P❈▼ t♥▲ ❈●▼ ❍❈●▼◆ ✇t❉ ◆▼t▲ t♥▲ ➅❪➆ ❸●▼ ◆▼t▲ t❝❝▼❉❉

●t❉ ●t♣♣▼♥▼▲ ❈❍❍ ▼t◆❑❘❱

➋ ➓➁➐➀➃➔➓➁➐➀➃ ➁❿➂➃ P❉ t ▲t❈t ❝❍◆◆❏♣❈P❍♥ ❝t❏❉▼▲ ❜❘ t❝❯

❝▼❉❉P♥◗ t ❉●t◆▼▲ ✈t◆Pt❜❑▼ ✈Pt t❈ ❑▼t❉❈ ❈✇❍ ❈●◆▼t▲❉❲ ✇●P❝●

❍♥▼ ❍❙ ❈●▼❖ ❍✈▼◆✇◆P❈▼❉ ❈●▼ ▲t❈t ❜▼❙❍◆▼ t♥❘ ◆▼t▲❉❱ ■❙ ❈●▼

❖▼❖❍◆❘ t❝❝▼❉❉▼❉ ❉t❈P❉❙❘ ❈●▼ ❞✈▼ ❙❍❑❑❍✇P♥◗ ❝❍♥▲P❈P❍♥❉

❈●▼♥ t ✇◆P❈▼❯✇◆P❈▼ ◆t❝▼ ❜❏◗ ●t❉ ❍❝❝❏◆◆▼▲❽ ➅❶➆ ❸●▼ t❝❝▼❉❉

✇▼◆▼ ❙◆❍❖ ▲P❙❙▼◆▼♥❈ ❈●◆▼t▲❉❲ ➅❼➆ ❸●▼ t❝❝▼❉❉▼❉ ✇▼◆▼ ◆▼❑t❈▼▲

❈❍ ❈●▼ ❉t❖▼ ❖▼❖❍◆❘ ❑❍❝t❈P❍♥❲ ➅❹➆ ❸●▼ t❝❝▼❉❉▼❉ ✇▼◆▼ ➈➉❸

♣◆❍❈▼❝❈▼▲ ❜❘ t ❉❘♥❝●◆❍♥P➊t❈P❍♥ ❖▼❝●t♥P❉❖ ▼❱◗❱ ❑❍❝❧❲ ➅❨➆

❸●▼◆▼ ✇▼◆▼ t❈ ❑▼t❉❈ ❈✇❍ ❤◆P❈▼ t❝❝▼❉❉▼❉ t♥▲ ➅❪➆ ❸●▼ ❤◆P❈▼

t❝❝▼❉❉▼❉ ●t✈▼ ●t♣♣▼♥▼▲ ✇P❈●❍❏❈ t♥❘ →▼t▲ P♥❯❜▼❈✇▼▼♥❱

❾➃❿➣↔➎➂↕ P❉ ➙t ❝❍♥▲P❈P❍♥ P♥ t ❉❘❉❈▼❖ ✇●▼◆▼ t ♣◆❍❝▼❉❉ ❝t♥♥❍❈

♣◆❍❝▼▼▲ ❜▼❝t❏❉▼ P❈ ♥▼▼▲❉ ❈❍ ❍❜❈tP♥ t ◆▼❉❍❏◆❝▼ ●▼❑▲ ❜❘ t♥❍❈●▼◆

♣◆❍❝▼❉❉ ❜❏❈ P❈ P❈❉▼❑❙ P❉ ●❍❑▲P♥◗ t ◆▼❉❍❏◆❝▼ ❈●t❈ ❈●▼ ❍❈●▼◆ ♣◆❍❝▼❉❉

♥▼▼▲❉➛ ❬❶❶❩❱ ■❈ ❍❝❝❏◆❉ ✇●▼♥ ❈✇❍ ❍◆ ❖❍◆▼ ❈●◆▼t▲❉ t❈❈▼❖♣❈❉ ❈❍

t❝❝▼❉❉ ❉●t◆▼▲ ◆▼❉❍❏◆❝▼❉ ●▼❑▲ ❜❘ ❍❈●▼◆ ❈●◆▼t▲❉❲ t♥▲ ♥▼P❈●▼◆ P❉

✇P❑❑P♥◗ ❈❍ ◗P✈▼ ❈●▼❖ ❏♣ ❬❶❩ ❬❺❩❱ ❸●▼ ❝❍❖❖❍♥ ♣◆❍♣▼◆❈P▼❉ ❙❍◆

❈●P❉ ❈❘♣▼ ❍❙ ❜❏◗❉ t◆▼❽ ➅❶➆ ➈❍♥▼ ❍❙ ❈●▼ ❈●◆▼t▲❉ t◆▼ t❜❑▼ ❈❍

♣◆❍❝▼▼▲ t♥▲ ♣◆❍◗◆▼❉❉❲ ➅❼➆ ❵❑❑ ❈●◆▼t▲❉ P♥✈❍❑✈▼▲ ●❍❑▲ t ❑❍❝❧❲

➅❹➆ ❵❑❑ ❈●◆▼t▲❉ P♥✈❍❑✈▼▲ t◆▼ ✇tP❈P♥◗ ❙❍◆ t ❑❍❝❧ ●▼❑▲ ❜❘ t♥❍❈●▼◆

P♥✈❍❑✈▼▲ ❈●◆▼t▲ t♥▲ ➅❨➆ ❵❈ ❑▼t❉❈ ❍♥▼ ❈●◆▼t▲ P❉ P♥ ✇tP❈P♥◗ ❙❍◆

t♥ ❏♥t❝❝▼♣❈t❜❑❘ ❑❍♥◗ ❈P❖▼❱

➜➐➝➃↔➎➂↕ P❉ ➙t ❉P❈❏t❈P❍♥ ✇●▼◆▼ t ❈●◆▼t▲ P❉ ✇tP❈P♥◗ ❙❍◆ t

◆▼❉❍❏◆❝▼ ❈●t❈ ✇P❑❑ ♥▼✈▼◆ ❜▼❝❍❖▼ t✈tP❑t❜❑▼❱ ■❈ P❉ ❉P❖P❑t◆ ❈❍

▲▼t▲❑❍❝❧ ▼①❝▼♣❈ ❈●t❈ ❈●▼ ❉❈t❈▼ ❍❙ ❈●▼ ♣◆❍❝▼❉❉ P♥✈❍❑✈▼▲ P♥ ❈●▼

❑P✈▼❑❍❝❧ ❝❍♥❉❈t♥❈❑❘ ❝●t♥◗▼❉ ✇P❈● ◆▼◗t◆▲❉ ❈❍ ▼t❝● ❍❈●▼◆❲ ♥❍♥

♣◆❍◗◆▼❉❉P♥◗➛ ❬❶❼❩❱ ❸●▼ ❝❍❖❖❍♥ ♣◆❍♣▼◆❈P▼❉ ❙❍◆ ❈●P❉ ❈❘♣▼ ❍❙

❜❏◗❉ t◆▼❽ ➅❶➆ ❵❈ ❑▼t❉❈ ❍♥▼ ❍❙ ❈●▼ ❈●◆▼t▲❉ P❉ ▼①▼❝❏❈P♥◗ ❍♥ ❍♥▼

❍❙ ❈●▼ ♣◆❍❝▼❉❉❍◆ ❝❍◆▼❉❲ ➅❼➆ ➈❍♥▼ ❍❙ ❈●▼ ❈●◆▼t▲❉ t◆▼ t❜❑▼ ❈❍



proceed and progress and (3) All threads involved have read

and written to a spinlock variable (i.e., a shared variable used

to enforce synchronization between threads).

Starvation is “a condition in which a process indefinitely

delayed because other processes are always given preference”

[13]. Starvation typically occurs when high priority threads

are monopolising the CPU resources. The common properties

for this type of bugs are: (1) At least one of the threads is

executing on one of the processor cores, (2) At least one of

the threads is in the Ready state, (3) The number of involved

threads is larger than the number of free core and (4) At least

one thread is in the ready queue for an unacceptably long time.

A Suspension-based locking or Blocking suspension oc-

curs when a calling thread waits for an unacceptably long time

in a queue to acquire a lock for accessing a shared resource

[14]. The common properties for this type of bugs are: (1) At

least one of the threads is executing on one of the processor

cores, (2) The number of requests to a specific resource is

larger than the number of available resources of that type, (3)

At least one of the threads has acquired a lock and (4) At least

one thread is in waiting for an unacceptably long time.

Order violation is defined as the violation of the desired

order between at least two memory accesses [15]. It occurs

when the expected order of interleavings does not appear [18].

If a program fails to enforce the programmer’s intended order

of execution then an order violation bug will happen [16]. If

the memory accesses satisfy the four following conditions then

an order violation bug has happened. (1) The access were from

different threads, (2) At least one of the accesses was Write,

(3) The accesses were related to the same memory location

and (4) A specific (desired) execution ordering between the

access was required.

Atomicity violation refers to the situation when the exe-

cution of two code blocks (sequences of statements) in one

thread is concurrently overlapping with the execution of one

or more code blocks of other threads in such a way that the

result is not consistent with any execution where the blocks

of the first thread are executed without being overlapping

with any other code block. Atomicity violation can be further

subcategorized into single variable atomicity violation and

multi-variable atomicity violation, where:

• Single variable atomicity violation is when there is

a sequence of concurrent memory access to a single

variable, yields different result from the state of sequen-

tial memory accesses [17]. If the memory accesses are

satisfied by the five following conditions then a single

variable atomicity violation bug has happened. (1) The

access were from different threads, (2) At least one of

the accesses was Write, (3) The accesses were related

to the same memory location, (4) An atomic execution

of statements was required and (5) The accesses targeted

only one memory location.

• Multi-variable atomicity violation occurs when multi-

ple variables are involved in an unserializable interleaving

pattern [17]. If the memory accesses are satisfied by

the four following conditions then a multi-variable atom-

icity violation bug has happened. (1) The access were

from different threads, (2) At least one of the accesses

was Write, (3) An atomic execution of statements was

required and (4) The accesses targeted more than one

memory locations.

V. A CLASSIFICATION FOR CONCURRENT SOFTWARE

BUGS

In order to propose this classification, we first gathered

the common system states and symptoms properties of bugs

based on a literature review. In the following lists, when we

refer to threads t, we are referring to the threads in the set

Tb ⊆ T , where Tb is the set of threads directly involved in the

bug. Similarly, when we refer to a shared resource r, we are

referring to a resource in the set Rb ⊆ R, where Rb is the set

of resources directly involved in the bug.

Further, our conceptual standing point is that we have iden-

tified a concurrency bug and based on observable properties

directly related to the bugs we want to uniquely classify it into

one the introduced classes.

We divide the observable properties in properties related to

the system state, and properties related to the symptoms of

the concurrent program under test. All properties used for the

classification are listed in the below subsections:

A. System State Properties

The below list collects the properties related to the system

state at the time of the bug. We refer to the thread execution

states (shown in Fig. 2) in the properties list to present the

state of threads when the bugs occur. Most of these properties

are related to operations of the operating system and they can

be observable by available data structure in operating system

kernel such as Thread Control Block (TCB) or using the

suitable method(s) in source code to observe these properties

during debugging or tracing the software code.

1) At least one thread t ∈ Tb is in the Waiting state.

2) At least one thread t ∈ Tb is in the Executing state.

3) At least one thread t ∈ Tb is in the Ready state.

4) All threads in Tb have read and written to a spinlock

variable (spinlock is “mutual execution mechanism in

which a process executes in an infinite loop waiting for

the value of lock variable to indicate availability” [13]).

5) All threads in Tb are waiting for a lock held by another

involved thread.

6) At least one thread t ∈ Tb is in the ready queue for an

unacceptably long time.

7) At least one thread t ∈ Tb is in Waiting state for an

unacceptably long time.

8) All threads in Tb are in Executing state.

B. Symptom Properties

The below list collects the properties related to the ob-

servable output at the time of the bug. Based on the bug’s

symptoms one may recognize the cause of the problem and

the nature of the bugs. The following list thus shows some of

the typical symptoms that can be used to categorize bugs.



1) No thread t ∈ Tb is able to proceed and progress.

2) The number of threads in Tb is larger than the number

of free processor cores.

3) There are incorrect or unexpected results.

4) The number of requests to a resource r is larger than

the number of available resources of that type.

5) All threads in Tb hold a lock.

6) At least one of the threads t ∈ Tb holds a lock.

7) Accesses to shared memory were made from different

threads in Tb.

8) At least one of the accesses to the shared memory was

a Write.

9) Accesses to shared memory were targeted the same

memory location.

10) Accesses to shared memory were NOT protected by a

synchronization mechanism.

11) Accesses to shared memory targeted just one memory

location.

12) Accesses to shared memory targeted more than one

memory locations.

13) There were at least two accesses to the same shared

memory location, a Write and a Read, where the Read

has happened too early.

14) There were at least two Write accesses to shared mem-

ory, and they occurred without any Read in-between.

15) There was at least one correct execution ordering be-

tween the accesses to shared memory which the program

failed to enforce.

16) An atomic execution of statements was required.

C. Combination of System State and Symptom Properties

Based on the above lists of observable properties, we have

derived a classification of concurrency bugs. The resulting

classification is shown in Table I.

As shown in the table, the first column illustrates the

observable properties while the first row displays the different

types of concurrency bugs. The mapping between bugs and ob-

servable properties should be interpreted as Bug → property .

Thus, an “X” in the column of bug B and the row of property

p would mean that if you have come across bug B, then you

would inevitably be able to observe property p. Note that the

opposite implication (i.e., property → Bug) does not hold.

Different execution scenarios cause different sub-types of

bugs. For instance, “Order violation 1” happens if threads

execute on multicore platform and there are enough free cores

for executing threads on each core, but the order of access to

shared memory between the threads is incorrect.

In “Order violation 2” the order of execution is not as same

as desired order because of reasons of a lock mechanism. The

locking patterns force at least one of the involved threads to

stay in Waiting state when the bug has happened.

Moreover, “Order violation 3” happens when the number of

involved threads is larger than the number of free cores, and

at least one thread was forced to stay in the Ready state.

“Single variable atomicity violation 1” happens when in-

volved threads execute in two separate cores but the blocks

intended to be atomic are not adequately protected. In this

case the last state of at least one involved thread was Waiting

when the bug occurred. “Single variable atomicity violation

2” happens when the number of involved threads is larger

than the number of free cores, and at least one thread is

forced to change from Waiting to Ready state. The difference

between “Multi-variable atomicity violation 1” and “Multi-

variable atomicity violation 2” is equivalent to the difference

between “Single variable atomicity violation 1” and “Single

variable atomicity violation 2”.

VI. MAPPING THE CLASSIFICATION TO THE STATE OF THE

ART

In order to evaluate how the proposed classification relates

to recent work in the field, we selected fifteen relevant papers

from the original literature review corpus of 282 articles

(retrieved as explained in Section II). For selection criteria,

we focused on papers published between 2005 to 2013 in the

IEEE Transactions on Software Engineering (TSE) journal or

the proceedings of the International Conference on Software

Engineering (ICSE). These publication venues were chosen as

they are commonly viewed as the premier publication venues

in software engineering.

We then mapped each article onto our proposed concurrency

bug classification, based on the type of bug(s) focused on. As

can be seen from the resulting Table II, most recent work has

focused on data races and atomicity violations. Also, many

papers focus both on data races and atomicity violations.

However, contributions focusing on suspension, starvation and

deadlock are sparse, and livelock bugs are not regarded as an

open issue in development of concurrent software. This may

of course be due to the fact that management of these types of

bugs are considered to a resolved issue, but the question of to

what extent the managing techniques has spread to software

engineering professionals is still open. For example, in their

recent study on real-world bugs, Lu et al. [16] found that over

30% of the sample of bugs they studied were in fact deadlock

bugs.

It should also be noted that since papers [19], [20] and

[21] did not investigate any specific bugs and their topics

was mostly related on analyzing the system testing result,

establishing a framework for achieving good performance, and

testing strategy, they are not mapped to any particular bug type

in the classification.

Additionally, by mapping the result of an empirical

study [16] with our classification we found out all concurrent

bugs that they investigated in their study is mapped to our

classification.

VII. CONCLUSION AND FUTURE WORK

In this paper we propose a bug classification for concurrent

and multithreaded applications. The classification has been de-

rived by first searching for relevant papers and extracting bug

information from them, making a list of bugs and determining

the observable properties for each bug, and then classifying



TABLE I: Concurrent software bugs properties

Property

D
ea

d
lo

ck

L
iv

el
o
ck

S
ta

rv
at

io
n

S
u
sp

en
si

o
n

Data race Order violation
Atomicity violation

Single variable Multi variable

M
em

o
ry

in
co

n
si

st
en

cy

W
ri

te
-W

ri
te

ra
ce

O
rd

er
v
io

la
ti

o
n

1

O
rd

er
v
io

la
ti

o
n

2

O
rd

er
v
io

la
ti

o
n

3

S
in

g
le

v
ar

ia
b
le

-A
V

1

S
in

g
le

v
ar

ia
b
le

-A
V

2

M
u
lt

i
v
ar

ia
b
le

-A
V

1

M
u
lt

i
v
ar

ia
b
le

-A
V

2

At least one thread t ∈ Tb is in the Waiting state X X X X X

At least one thread t ∈ Tb is the Executing state X X X X X X X X X X X

At least one thread t ∈ Tb is in the Ready state X X X X

All threads in Tb have read and written to a spinlock
variable

X

All threads in Tb are waiting for a lock held by another
involved thread

X

At least one thread t ∈ Tb is in the ready queue for an
unacceptably long time

X

At least one thread t ∈ Tb is in Waiting state for an
unacceptably long time

X X

All threads in Tb are in Executing state X X X

No thread t ∈ Tb is able to proceed and progress X X

There are incorrect or unexpected results X X X X X X X X X

The number of threads in Tb is larger than the number
of free processor cores

X X X X

Potential request to a resource is larger than the number
of available resources of that type

X

All threads in Tb hold a lock X

At least one of the threads t ∈ Tb holds a lock X X X X X X X X

Accesses to shared memory were made from different
threads in Tb

X X X X X X X X X

At least one of the memory accesses was Write X X X X X X X X X

Accesses to shared memory were targeted the same
memory location

X X X X X X X X X

The memory accesses were NOT protected by a
synchronization mechanism

X X

Accesses to shared memory targeted just one memory
location

X X

Accesses to shared memory targeted more than one
memory locations

X X

There were at least two accesses to the same shared
memory location, a Write and a Read, where the Read
has happened too early

X

There were at least two Write accesses to shared
memory, and they occurred without any Read
in-between

X

There was at least one correct execution ordering
between the memory accesses which the program failed
to enforce

X X X

An atomic execution of statements was required X X X X

these bugs in a common structure using these observable

properties.

The grouping and classification of concurrency bugs pre-

sented in this paper is structured based on properties that are

commonly observable in concurrent systems. In its design,

it is intended to serve as an aid for software developers

during debugging and testing of concurrent applications. By

using the knowledge on the connection between bug types

and observable properties, the bug classification helps users

to make appropriate decisions when they encounter problems.

The classification may also serve as a structure in which the

current body of knowledge can be arranged, thereby allowing

for identification of gaps in this knowledge.

As for future work, we intend to elaborate this classification,

adding more rigour to the definitions of the different bug types.

Further, we seek to empirically investigate the occurrence and

frequency of concurrency bugs in real-world software, as well

as what is done to prevent and remedy such bugs.

ACKNOWLEDGMENT

We acknowledge the Swedish Foundation for Strategic

Research (SSF) SYNOPSIS Project for supporting this work.

REFERENCES

[1] K. Henningsson and C. Wohlin, “Assuring fault classification agreement
- an empirical evaluation,” in 2004 International Symposium on Empir-

ical Software Engineering, 2004. ISESE ’04. Proceedings, Aug. 2004,
pp. 95–104.



TABLE II: Mapping of the classification to the state of the art

Property

D
ea

d
lo

ck

L
iv

el
o
ck

S
ta

rv
at

io
n

S
u
sp

en
si

o
n

D
at

a
ra

ce

O
rd

er
v
io

la
ti

o
n

A
to

m
ic

it
y

v
io

la
ti

o
n

Park, S. et al. [18] X X X

Araujo, W. et al. [19] - - - - - - -

Oh, J. et al. [20] - - - - - - -

Rungta, N. and Mercer, E. [21] - - - - - - -

Ball, T. et al. [22] X X X X X

Bodden, E. and Havelund, K. [23] X

Chen, F. et al. [24] X X

Hammer, C. et al. [25] X X

Lai, Z. et al. [26] X X

Lei, Y. and Carver, R.H. [27] X

Liu, P. and Zhang, C. [28] X X

Lu, S. et al. [29] X

Pankratius, V. et al. [30] X

Sheng, T. et al. [31] X

Wang, L. and Stoller, S.D. [32] X X

[2] C.-S. Park and K. Sen, “Randomized active atomicity violation detection
in concurrent programs,” in Proceedings of the 16th ACM SIGSOFT In-

ternational Symposium on Foundations of software engineering. ACM,
2008, pp. 135–145.

[3] L. L. Wu and G. E. Kaiser, “Constructing subtle concurrency bugs using
synchronization-centric second-order mutation operators,” Tech. Rep.,
2011.

[4] S. Eldh, S. Punnekkat, H. Hansson, and P. Jnsson, “Component testing is
not enough-a study of software faults in telecom middleware,” in Testing

of Software and Communicating Systems. Springer, 2007, pp. 74–89.

[5] P. Bourque, R. Fairley, and eds., “Guide to the software engineering
body of knowledge, version 3.0,” 2014.

[6] V. R. Basili and B. T. Perricone, “Software errors and complexity: an
empirical investigation,” Communications of the ACM, vol. 27, no. 1,
pp. 42–52, 1984.

[7] “Systems and software engineering vocabulary,” ISO/IEC/IEEE

24765:2010(E), pp. 1–418, Dec. 2010.

[8] D. Gove, Multicore Application Programming: For Windows, Linux, and

Oracle Solaris. Addison-Wesley Professional, 2010.

[9] N. Yoshiura and W. Wei, “Static data race detection for java programs
with dynamic class loading,” in Internet and Distributed Computing

Systems. Springer, 2014, pp. 161–173.

[10] S. Akhter and J. Roberts, Multi-core programming. Intel press
Hillsboro, 2006, vol. 33.

[11] Y. Bhatia and S. Verma, “Deadlocks in distributed systems,” Interna-

tional Journal of Research, vol. 1, no. 9, pp. 1249–1252, 2014.

[12] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: portable

shared memory parallel programming. MIT press, 2008, vol. 10.

[13] W. Stallings, Operating Systems- internals and design principles. Pren-
tice Hall Englewood Cliffs, 2012, vol. 7th.

[14] S. Lin, A. Wellings, and A. Burns, “Supporting lock-based multipro-
cessor resource sharing protocols in real-time programming languages,”
Concurrency and Computation: Practice and Experience, vol. 25, no. 16,
pp. 2227–2251, 2013.

[15] D. Jayasinghe and P. Xiong, “CORE: Visualization tool for fault
localization in concurrent programs.”

[16] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteristics,”
in ACM Sigplan Notices, vol. 43, no. 3. ACM, 2008, pp. 329–339.

[17] S. Park, R. Vuduc, and M. J. Harrold, “A unified approach for localizing
non-deadlock concurrency bugs,” in Software Testing, Verification and

Validation (ICST), 2012 IEEE Fifth International Conference on. IEEE,
2012, pp. 51–60.

[18] S. Park, R. W. Vuduc, and M. J. Harrold, “Falcon: fault localization in
concurrent programs,” in Proceedings of the 32nd ACM/IEEE Interna-

tional Conference on Software Engineering-Volume 1. ACM, 2010, pp.
245–254.

[19] W. Araujo, L. C. Briand, and Y. Labiche, “Enabling the runtime assertion
checking of concurrent contracts for the java modeling language,” in
Proceedings of the 33rd International Conference on Software Engineer-

ing, ser. ICSE ’11. New York, NY, USA: ACM, 2011, pp. 786–795.
[20] J. Oh, C. J. Hughes, G. Venkataramani, and M. Prvulovic, “LIME: A

framework for debugging load imbalance in multi-threaded execution,”
in Proceedings of the 33rd International Conference on Software En-

gineering, ser. ICSE ’11. New York, NY, USA: ACM, 2011, pp.
201–210.

[21] N. Rungta and E. Mercer, “Slicing and dicing bugs in concurrent pro-
grams,” in Proceedings of the 32Nd ACM/IEEE International Conference

on Software Engineering - Volume 2, ser. ICSE ’10. New York, NY,
USA: ACM, 2010, pp. 195–198.

[22] T. Ball, S. Burckhardt, J. de Halleux, M. Musuvathi, and S. Qadeer, “De-
constructing concurrency heisenbugs,” in 31st International Conference

on Software Engineering - Companion Volume, 2009. ICSE-Companion

2009, May 2009, pp. 403–404.
[23] E. Bodden and K. Havelund, “Aspect-oriented race detection in java,”

IEEE Transactions on Software Engineering, vol. 36, no. 4, pp. 509–527,
Jul. 2010.

[24] F. Chen, T. Serbanuta, and G. Rosu, “jPredictor,” in ACM/IEEE 30th

International Conference on Software Engineering, 2008. ICSE ’08, May
2008, pp. 221–230.

[25] C. Hammer, J. Dolby, M. Vaziri, and F. Tip, “Dynamic detection of
atomic-set-serializability violations,” in ACM/IEEE 30th International

Conference on Software Engineering, 2008. ICSE ’08, May 2008, pp.
231–240.

[26] Z. Lai, S. C. Cheung, and W. K. Chan, “Detecting atomic-set serializ-
ability violations in multithreaded programs through active randomized
testing,” in Proceedings of the 32Nd ACM/IEEE International Confer-

ence on Software Engineering - Volume 1, ser. ICSE ’10. New York,
NY, USA: ACM, 2010, pp. 235–244.

[27] Y. Lei and R. Carver, “Reachability testing of concurrent programs,”
IEEE Transactions on Software Engineering, vol. 32, no. 6, pp. 382–
403, Jun. 2006.

[28] P. Liu and C. Zhang, “Axis: Automatically fixing atomicity violations
through solving control constraints,” in Proceedings of the 34th Interna-

tional Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 299–309.

[29] S. Lu, S. Park, and Y. Zhou, “Finding atomicity-violation bugs through
unserializable interleaving testing,” IEEE Transactions on Software

Engineering, vol. 38, no. 4, pp. 844–860, Jul. 2012.
[30] V. Pankratius, F. Schmidt, and G. Garreton, “Combining functional and

imperative programming for multicore software: An empirical study
evaluating scala and java,” Jun. 2012, pp. 123–133.

[31] T. Sheng, N. Vachharajani, S. Eranian, R. Hundt, W. Chen, and
W. Zheng, “RACEZ: A lightweight and non-invasive race detection tool
for production applications,” in Proceedings of the 33rd International

Conference on Software Engineering, ser. ICSE ’11. New York, NY,
USA: ACM, 2011, pp. 401–410.

[32] L. Wang and S. Stoller, “Runtime analysis of atomicity for multithreaded
programs,” IEEE Transactions on Software Engineering, vol. 32, no. 2,
pp. 93–110, Feb. 2006.


