
Enhancing model-based architecture optimization
with monitored system runs

Juraj Feljan, Federico Ciccozzi, Jan Carlson and Ivica Crnković
Mälardalen Real-Time Research Centre

Mälardalen University
Västerås, Sweden

E-mail: {juraj.feljan, federico.ciccozzi, jan.carlson, ivica.crnkovic}@mdh.se

Abstract—Typically, architecture optimization searches for
good architecture candidates based on analyzing a model of the
system. Model-based analysis inherently relies on abstractions
and estimates, and as such produces approximations which are
used to compare architecture candidates. However, approxima-
tions are often not sufficient due to the difficulty of accurately
estimating certain extra-functional properties. In this paper, we
present an architecture optimization approach where the speed
of model-based optimization is combined with the accuracy of
monitored system runs. Model-based optimization is used to
quickly find a good architecture candidate, while optimization
based on monitored system runs further refines this candidate.
Using measurements assures a higher accuracy of the metrics
used for optimization compared to using performance predictions.
We demonstrate the feasibility of the approach by implementing
it in our framework for optimizing the allocation of software
tasks to the processing cores of a multicore embedded system.

I. INTRODUCTION

As software systems are becoming increasingly complex,
methods that aid in searching for good architecture candidates
with respect to quality attributes are necessary. Architecture
optimization is a problem that has generated a lot of in-
terest in the research community [1]. Typically, architecture
optimization pairs performance prediction, obtained by per-
forming analysis on a system representation in the form of a
model, with a mechanism that explores the search space by
iteratively modifying certain aspects of the architecture. This
enables assessing and comparing a large number of candidate
architectures in reasonable time. Model-based architecture
optimization is needed to efficiently handle the large number
of possible architectures, and to allow optimization in early
stages of development. However, there is always a limit to
how accurate the optimization can be when based on models
that approximate the real system.

In this paper, we present a novel architecture optimization
approach, and corresponding framework, that exploits a com-
bination of model-based predictions for optimization speed,
and measured runtime values — gathered from executing
the generated system code — for optimization accuracy. The
method allows quickly finding a good architecture candidate
by prediction-based optimization at modeling level, and then
further refining it by continuing the same optimization mech-
anism, but now based on monitored system runs. Enriching
optimization with performance measurements, rather than only
using performance predictions, increases the accuracy of the
performance metrics used for optimization, with respect to
the actual system properties. We first present our general

method for architecture optimization that combines model-
based analysis with system execution, and then demonstrate
it by implementing it in our framework for optimizing the al-
location of software tasks to the cores of a multicore embedded
system.

The paper is organized as follows. In Section II we dis-
cuss the motivation for enhancing model-based architecture
optimization with monitored system execution and outline
our proposed method. Next, in Section III we present an
instantiation of the method for embedded systems — we
describe our framework for optimizing allocations of software
tasks to the cores of a multicore embedded system. Section IV
demonstrates the feasibility of the approach — we present an
experiment performed using the framework. Section V surveys
related work, before we conclude the paper and present future
work in Section VI.

II. ENHANCING ARCHITECTURE OPTIMIZATION

Architecture design is one of the most important activities
when developing a software system, since decisions made
during architecture design have a considerable impact on the
quality attributes (extra-functional properties) of the system
(among other aspects such as the cost of development). Typ-
ically, architecture-level decisions include selecting software
and hardware components, allocating software components to
the available hardware nodes, deciding on system topology, etc.
Due to the ever increasing system complexity, software archi-
tects face today a search space where manual exploration is not
sufficient. This has made automated architecture optimization
a prominent research topic over the recent years [1]. Research
on architecture optimization has been done for various system
domains (e.g., enterprise systems, embedded systems), various
system representations (e.g., mathematical models, architecture
description languages) and extra-functional properties (e.g.,
reliability, timing), with varying dimensionality (optimizing for
a single or for multiple extra-functional properties), degrees of
freedom (e.g., component selection, allocation, scheduling) and
optimization strategies (e.g., local search, genetic algorithms).
However, in general the methods are structured in a similar
way: they use model-based analysis to predict extra-functional
properties which are used to compare architecture candidates,
and pair the analysis with an optimization strategy (search
mechanism).

Model-based analysis inherently relies on abstractions and
estimations, and thus gives approximate results. This reduced
accuracy can be problematic, in particular for applications



System model

Model-based optimization

Execution-based optimization

Final architecture 
specification

Analysis 
model

Good architecture 
candidate

Final code

Model generation Code generation

Instrumented 
code

Fig. 1: An overview of the proposed combined model-based
and execution-based architecture optimization method

with crucial performance-related extra-functional properties
that require runtime measurements in order to be sufficiently
assessed. On the other hand, due to the large search space,
optimization based purely on runtime measurements is typi-
cally too time consuming to be feasible. For these reasons, we
want to enhance optimization based on model analysis with
monitored system runs. Towards this goal, the model of the
system is used to generate the implementation, instrumented
with code for measuring the extra-functional properties of
interest. In this way, system runs can be monitored for gath-
ering performance measurements, which are in turn used for
assessing architecture candidates. By combining model-based
and execution-based optimization, performance predictions are
complemented with performance measurements, for both op-
timization speed and accuracy.

Figure 1 illustrates the combined model-based and
execution-based architecture optimization method we propose.
A system representation in the form of a system model is used
as input. From the model, by means of automatic model trans-
formations (model-to-model and/or model-to-text), an analysis
model is generated, from which the extra-functional properties
of interest can be predicted. Similarly, instrumented implemen-
tation code is also generated automatically, from which the
extra-functional properties of interest can be measured during
execution.

The method first runs an optimization cycle based on
performance predictions by model analysis (and/or simulation).
It uses the analysis model mentioned above, and modifies
it in each iteration of the optimization in order to analyze
and evaluate a particular architecture candidate. Since model
analysis is performed on an abstraction of the system, it can
typically produce performance predictions quite fast. There-
fore, model-based optimization is used to quickly asses a
large number of candidate architectures and thus rapidly find
a good candidate. Then, execution-based optimization takes
over. In each iteration, it modifies the generated code in order
to execute and evaluate a particular architecture candidate. It is
comparatively slower, but it leverages the good candidate iden-
tified by model-based optimization as its starting point, and can
thus be run for fewer iterations. In return, the extra-functional
properties that are obtained by runtime measurements are more
accurate than the model-based predictions. In other words, we
combine the speed of model-based analysis with the accuracy
of performance measurements. The final output of the method
is twofold: (i) the resulting architecture specification, and (ii)
an implementation of the system.

III. COMBINED MODEL-BASED AND EXECUTION-BASED
ARCHITECTURE OPTIMIZATION FOR EMBEDDED SYSTEMS

In this section we present an instantiation of the method
described in the previous section, for the domain of embedded
multicore systems. By extending our previous work presented
in [2] and [3], we developed a framework for optimizing
allocations of software modules (in the domain of embedded
systems called tasks) to the processing cores of the hardware
platform. The framework is built on a combination of model-
based and execution-based optimization. We first describe the
context of the work, before discussing specific details about
the framework, each in their respective subsection.

A. Context

In our work, we do architecture optimization for multicore
embedded systems. Multicore technology has emerged over the
last years as an answer to the increasing performance demands
of embedded systems. The increase in performance demands
comes from the fact that modern embedded systems include
more functionality than before (for instance, functionality
that was traditionally realized in hardware is instead being
implemented in software, like software-defined radio [4]), but
also from the fact that the included functionality is becoming
more and more advanced (e.g., vision-based driver assistance
in modern cars). While increasing the number of processing
units does indeed increase the performance capacity, it also
introduces the problem of how to allocate (deploy) the software
tasks to the processing cores of the hardware platform. For
some extra-functional properties, the allocation can have a
significant influence. An intuitive example is schedulability —
if we allocate too many tasks to the same core, the core will
become overloaded and the tasks will miss their deadlines.

In particular, we focus on soft real-time multicore embed-
ded systems, where timing is crucial for the correct behavior (a
logically correct result that is produced at the wrong time point
is equivalent to a logically incorrect result), however, a certain
number of deadline misses can be tolerated (as opposed to hard
real-time systems where the absence of deadline misses has to



Model-based opt. module

SW model

HW model

Simulation model 
generation

Candidate generation

Simulation

Candidate comparison

Performance metrics 
derivation

Stop criterion reached?

Execution-based opt. module

Candidate generation

Execution

Candidate comparison

Performance metrics 
derivation

Stop criterion reached?

Good affinity 
specification

Code generation

Initial affinity 
specifications

Y Y

N N

Final affinity 
specification

All initial aff. specs 
checked? 

YN

Fig. 2: Framework for task allocation optimization

be guaranteed). With timing having a crucial role, the extra-
functional properties in our focus are timing-related attributes
such as end-to-end response times, deadline misses and core
load. Furthermore, since we consider soft real-time, we focus
on average-case behavior (as opposed to worst-case behavior
in hard real-time systems). Since these properties depend on
the dynamic interplay between the tasks and since we are
interested in average-case behavior, model-based performance
prediction cannot easily derive the properties analytically from
task and platform parameters. Instead, they are obtained by
performing model simulation.

B. Framework for model-based and execution-based task al-
location optimization

Our framework for task allocation optimization is depicted
in Figure 2. As part of the architecture design phase, using
UML and the MARTE profile [5], the system architect defines
the software and hardware models of the system. The former
defines the software architecture of the system being built, in
terms of tasks and the connections between them, while the
latter specifies the hardware platform, including the number

of available cores and the type of scheduler for each core. In
addition to these models, the architect can also define a set of
deployment models in terms of mappings of tasks to cores, so
called initial affinity specifications, to be used as starting points
for the optimization mechanism. This is however optional, as
the framework can automatically generate the desired number
of initial affinity specifications.

In the model-driven engineering methodology, one of the
core aspects is the provision of automation in terms of model
manipulation and refinement, which is performed through so
called model transformations. A model transformation trans-
lates a source model to a target model while preserving their
well-formedness [6]. In our approach, we exploit model-to-
text transformations which translate source model artefacts
into structured text. The framework navigates the software
and hardware models designed using UML and MARTE, and
by means of automatic model-to-text transformations defined
using the Xtend language [7] generates (i) a simulation model
and (ii) instrumented system code. The former is a Java class
file that represents an executable model of the system to be
fed as input into our task simulator. The latter represents an



implementation of the system in C, instrumented with code
to extract the extra-functional properties of interest. In other
words, the former is used to obtain performance predictions,
while the latter gives performance measurements.

Having generated all the necessary artefacts, in the next
phase optimization (depicted by the two gray rounded rectan-
gles in Figure 2) is performed. The optimization mechanism
tries to minimize the end-to-end response times for particular
task chains, while keeping the overall number of deadline
misses in the system below a desired limit. Task allocation
is the supported degree of freedom, i.e., the aspect of the
system that the optimization mechanism is allowed to vary.
As task allocation is a bin-packing like problem, which is NP-
hard [8], rather than finding the optimal solution, the goal of
the framework is to find a good solution quickly. We have
therefore opted for a simple optimization strategy, namely
local search paired with a domain-specific heuristic [3]. The
optimization is repeated for each initial affinity specification,
and in order to avoid local optima, there should be a large
number of initial affinity specifications (some of which can be
provided explicitly by the system architect, while the rest can
be randomly generated, as mentioned above).

The overall structure of the two optimization modules is
the same, as can be seen in Figure 2. In each iteration, the
framework generates a new architecture candidate by making
a small modification to the best candidate found thus far,
derives relevant performance metrics for the new candidate,
and determines whether it was an improvement over the best
candidate. This continues until the stop criteria have been
met. The stop criteria can be a fixed number of optimization
iterations, a certain number of iterations that have not found
an improvement (a better allocation candidate), a given time
limit, or a combination of the latter two (for example, run
the optimization cycle for at most 10 minutes or until there
is no improvement in 10 consecutive iterations). Where the
two modules differ is how the relevant performance metrics
are derived: in the case of the model-based optimization
module we have performance predictions obtained by model
simulation, while in the case of the execution-based optimiza-
tion module we have performance measurements obtained by
executing the generated system code. These complementary
ingredients, one based on model simulation and the other based
on system execution, represent the novelty of the optimization
mechanism.

Optimization starts with the model-based module (the left
gray rounded rectangle in Figure 2). In each iteration, the
simulation model is complemented with information about
a particular affinity specification and as such represents a
particular architecture candidate. Upon having executed the
simulation model, from the data obtained by the simulation,
we derive average end-to-end response times and deadline
misses for task chains, and information about core load. These
performance metrics are used to compare different affinity
specifications against each other. As mentioned above, the best
candidate is kept, and used to generate a new candidate to be
tested in the next iteration. Since model simulation is faster
than executing the system, we use model-based optimization
to quickly converge to a good affinity specification.

Having done this, the execution-based module of the
optimization (the right gray rounded rectangle in Figure 2)

takes over, using the affinity specification identified by the
model-based optimization module as its starting point. In
each iteration, the generated code is complemented with a
particular affinity specification, representing a particular ar-
chitecture candidate. Since executing the system in order to
obtain performance measurements is slower than performing
model simulation, execution-based optimization is typically
done for fewer iterations compared to model-based optimiza-
tion. Having obtained the performance measurements in each
iteration, from these we compute the concrete performance
metrics, which are then in turn used to compare the different
affinity specifications against each other. Again, the best can-
didate is kept and used to propose a new candidate for the
next iteration. Both optimization modules can use the same
candidate comparison criteria and search heuristic, but these
could also be tailored for each optimization module. When the
cycle stops, it outputs the best candidate it was able to find.

IV. EXPERIMENT

In this section we present an experiment performed us-
ing the framework described in the previous section. The
point of the experiment is to demonstrate the feasibility of
the combined model-based and execution-based architecture
optimization approach. In particular, we aim to show that:

i a combination of model-based and execution-based op-
timization is more efficient than pure execution-based
optimization, and that

ii execution-based optimization still has room to improve the
optimization goal even after the preceding model-based
optimization got stuck.

We start by describing the experiment setup, and then present
and discuss the results.

The optimization goal in the experiment was to minimize
the average end-to-end response time for a particular task
chain. A task chain is a chain of control flow, and is defined by
a periodic task and a number of event-triggered tasks triggered
in sequence. An event-triggered task is activated when the task
preceding it finishes one instance of execution. This means that
each chain is activated with the same period as the periodic
task at the start of the chain. The end-to-end response time for
a chain is defined as the time elapsed between the point when
the periodic task at the start of the chain gets activated and the
point when the last task in the chain finishes the corresponding
execution instance.

The software and hardware models of the experiment
system are shown in Figure 3. We aimed for a representative
system that contains task chains of varying length. The chain
whose end-to-end response time was optimized is the one
consisting of the following tasks: t11 , t12 , t13 , t14 and
t15 . The execution platform had two cores, each running a
preemptive priority-based scheduler, which means that when
multiple tasks are ready for execution on a core, the one with
the highest priority executes until it is finished or until a task
with higher priority becomes ready.

The experiment consisted of two parts. In the first part,
we performed the combined model-based and execution-based
optimization, while in the second part we performed only
execution-based optimization. We executed both parts for



Fig. 3: Software and hardware models of the experiment system

roughly the same amount of time, in order to be able to com-
pare the end result. In both parts, we repeated 100 optimization
runs. All optimization runs started from a single initial affinity
specification with an equal number of tasks allocated to each
core: tasks t1 to t3 allocated to core 0, tasks t4 to t6 allocated
to core 1, tasks t7 to t9 to core 0 and so on. In the first
part of the experiment, each optimization run consisted of 300
iterations of the model-based optimization module followed
by 100 iterations of the execution-based module. The latter
continued with the best affinity specification identified by the
former. In the second part of the experiment, each optimization
run consisted of 120 iterations of the execution-based module.

As mentioned above, the numbers of iterations were chosen
so that both parts of the experiment take roughly the same
time. Each execution was roughly 30 times slower than each
simulation, meaning that 300 simulations and 100 executions
took similarly long time as 120 executions. Each simulation
was performed for 2000 simulation steps (clock ticks), while
each execution was run for 20 seconds. This was chosen in
order to:

i run the system long enough (20 hyper-periods) to capture
the average behavior, and to

ii result in a similar number of activations of the optimized
chain in the simulation and the execution.



Optimization iteration

R
es

p
o

n
se

 t
im

e

0 100 200 300 400

1
4

1
6

1
8

2
0

2
2

2
4

(a) Combined model-based and execution-based optimization

Optimization iteration

R
es

p
o

n
se

 t
im

e

0 20 40 60 80 100 120

1
4

1
6

1
8

2
0

2
2

2
4

(b) Execution-based optimization

Fig. 4: Experiment results

In all optimization runs, for both the model-based and
execution-based optimization module, for proposing the affin-
ity specification candidate to be tested in the next iteration, we
used a simple heuristic that randomly relocated one task to a
different core.

Before running the optimization, from the models defined
in UML and MARTE, the framework automatically generated:

i a simulation model in Java, to be fed as input to the model-
based optimization module, and

ii an instrumented implementation in C, to be used by the
execution-based optimization module.

In the implementation, each task is a POSIX thread with
read-execute-write semantics — it first reads input data, then
performs calculations and finally writes output data. Task
calculations are represented by running a loop that repeats a
simple addition, and they take a considerably longer time than
reading and writing data. The implementation is instrumented
with code for measuring the end-to-end response times for
chains. The executions were performed on a system with an
Intel Core 2 Duo E6700 processor [9], running the 32-bit ver-
sion of the Ubuntu 12.04 LTS operating system (kernel version
3.2.29). The operating system is patched with the PREEMPT
RT patch (version 3.2.29-rt44) [10], which turns the stock
Linux kernel into a hard real-time kernel. By reducing the
overall jitter and enabling the tasks to run at the highest levels
of priority, and in combination with a high resolution timer,
this setup reduces unwanted interference in the experiments
and increases the accuracy of the measurements.

Figure 4 shows the results of the experiment: Figure 4a
for the first part (combined model-based and execution-based
optimization) and Figure 4b for the second part of the exper-
iment (pure execution-based optimization). In the first part of

the experiment, the model-based optimization module (which
consisted of 300 optimization iterations) took 195.3 seconds on
average over the 100 optimization runs, while the execution-
based module (100 optimization iterations) took 2099.9 sec-
onds. In the second part, the execution-based module (120 opti-
mization iterations) took 2520 seconds on average. Each point
in the diagrams shows the chain end-to-end response time for
the best affinity specification found after a particular number of
optimization iterations, as an average of 100 optimization runs.
The similar duration of both parts of the experiment allows
us to compare their end results: the combined optimization
on average found an affinity specification with 13.79 as the
end-to-end response time for chain t11 – t15 , while the pure
execution-based optimization found an allocation with 15.95 as
the response time. This speaks clearly in favor of the combined
optimization, and using model-based optimization to quickly
converge to a good allocation.

Looking at Figure 4a, we can also see why the combined
optimization is better than pure model-based optimization (in
addition to the motivation discussed in Section II, regarding the
validity of the extra-functional properties and the insufficiency
of pure model-based optimization for particular applications).
In the last 10 iteration steps of the model-based optimization
module (just before step 300 in the diagram), we can see
that there is very little improvement. After step 300 the curve
again shows a slight decline, meaning that the execution-
based optimization module still has room for improving the
optimization goal, even after the model-based module made
no significant progress.

An important aspect that needs to be clarified here is the
jump in the response time value at step 300. This is not a
deterioration or a step back in the optimization. The jump
is expected when moving from the model-based optimization



module to the execution-based one. It depends on the accuracy
of the model-based performance prediction, and could in the
general case be a negative or a positive jump. This also
means that the final response time value after both optimization
modules and the response-time value after the model-based
optimization module cannot be compared based solely on their
absolute values, since one is a predicted value coming from
the simulation mechanism, while the other is a measured value,
and thus has a higher confidence.

For this particular optimization problem, where the model-
based performance prediction is done by means of simulation,
the iterations in the execution-based module took roughly
30 time longer time than those in the model-based module.
For optimizations where performance predictions can be done
analytically, without simulation, the difference would be much
bigger, meaning that the model-based module could process an
even larger portion of the search space.

V. RELATED WORK

Software architecture optimization methods are variegated
and focus on disparate aspects. Aleti et al. [1] performed a
systematic literature review to analyze the solutions provided
by the different research communities. Moreover, they provide
a taxonomy to classify the existing research in order to
establish a common reference for the many problem variants
that fall under software architecture optimization.

In several research works the idiosyncratic dependency
between software architecture and quality is highlighted, es-
pecially when it comes to the embedded domain [11], [12].
Evaluating the quality of a system in relation to particular
architectural aspects, such as a specific deployment candidate,
is a critical and sensitive task that should be dealt with already
at modeling level. Various model-driven approaches provide
ways to model specific quality attributes and push them to
the software level [13], [14]. Zhu et al. [15] present model-
driven facilities for the optimization of task allocation, signal
to message mapping, and assignment of priorities to tasks and
messages in order to meet end-to-end deadline constraints and
minimize latencies.

Specifically to deployment optimization, techniques have
been defined to automatically explore the space of deployment
options to identify the near optimal candidate. Part of these
solutions aim at only satisfying predefined constraints [16],
while others seek a near optimal deployment candidate without
violating a set of given constraints [17], [18].

Model-driven approaches provide good approximations,
but this is often not enough for embedded applications where
runtime measurements are needed in order to assess cer-
tain performance related quality attributes. Several approaches
dealing with optimization based on measurements at system
implementation level can be found in the literature, as de-
scribed in [19]. The COMPAS framework by Mos et al. [20]
is a performance monitoring approach for J2EE systems. For
performance prediction of the modeled scenarios, the approach
suggests using existing simulation techniques, which are not
part of the approach. Based on the COMPAS framework, two
further approaches have been proposed: AQUA, by Diaconescu
et al. [21], and PAD, by Parsons et al. [22].

The goal of these approaches is either to provide opti-
mization based on the modeled architecture, or to identify
performance issues in the running system and adapt the corre-
sponding code to make it able to fulfill specified constraints.
An approach which attempts at combining models and runtime
values is presented by Sailer et al. [23]. The authors present
a model-based optimization approach for the task allocation
problem in the embedded domain starting from a system
description in AUTOSAR and runtime measurements of the
related runnables in hardware traces. A genetic algorithm is
then used to create and evaluate solutions to the task allocation
problem. While leveraging runtime values for generating sim-
ulation models and optimizing allocation, the approach does
not provide any prediction-based mechanism. The uniqueness
of our approach consists in fact in providing a software archi-
tecture optimization mechanism that incrementally leverages
model-based predictions and runtime measurements gathered
at system implementation level.

Regarding measurements at system implementation level,
besides runtime monitoring, other verification techniques (e.g.,
static analysis) can be employed, even though their application
for large and complex systems may not always be practically
and economically favorable [24]. When these techniques are
applicable, conditions that may cause invalidation of the analy-
sis results at runtime may still occur. An example of this could
be the differences between the ideal execution environment
(considered for performing analysis) and the actual one which
can lead to the violation of the assumptions taken into account
when performing static analysis [25]. For this reason, the
information gathered through monitoring system execution is
useful for (i) observing the actual system’s behaviour and to
detect violations at runtime, and for (ii) making adaptation
decisions. As an example, in [26] the authors use monitoring
information for balancing timing and security properties in
embedded real-time systems. Huselius et al. [27] describe a
method for the generation of design models of embedded
real-time systems from the monitoring information gathered
at runtime. In this paper we leverage monitoring results from
which observed values for selected system properties are
computed and used to improve deployment.

VI. CONCLUSION AND FUTURE WORK

Since model-based analysis gives performance predictions
using abstractions and approximations, architecture optimiza-
tion based only on model analysis is not sufficiently precise
for all applications, and needs to be paired with performance
measurements obtained by running the system. In this paper,
we presented our approach for combined model-based and
execution-based architecture optimization. The approach relies
on model-based optimization to quickly converge to a good
architecture candidate, which is then used as the starting point
for the slower but more accurate execution-based optimization.
We implemented the approach in our framework for opti-
mizing task allocations in multicore embedded systems and
carried out an experiment that demonstrated the feasibility
of the approach. In particular, we showed that the combined
optimization can be superior to both pure execution-based
and pure model-based optimization. Regarding the former,
we demonstrated that leveraging the speed of model-based
optimization and using its result as a starting point for
execution-based optimization can save a lot of time compared



to only performing execution-based optimization. Regarding
the latter, even when model-based optimization showed no
significant improvement, there was still room for refining the
architecture candidate further by performing execution-based
optimization. Furthermore, ending the optimization mechanism
with execution-based optimization makes the extra-functional
properties used for comparing different architecture candidates
more likely to be valid in the final system. Even though the
experiment was limited in scope, it clearly demonstrates the
feasibility and value of the approach.

As future work, we plan to perform more thorough exper-
iments, including more types of systems, optimization of ad-
ditional extra-functional properties (e.g., deadline misses) and
using other optimization heuristics, such as the delay matrix
heuristic we developed for end-to-end response time optimiza-
tion [3]. This would require extending the code generation
mechanism, so that the generated instrumentation code can
extract additional performance metrics. Furthermore, an inter-
esting experiment would be to implement the idea of combined
model-based and execution-based architecture optimization in
an optimization framework in a different application domain.

A possible extension of the method is to use the generated
system code to measure certain extra-functional properties and
back-propagate them to the models through specific in-place
model-to-model transformations in a similar way to what was
proposed in [28]. This information would be shown as extra-
functional decorations of specific software model elements,
specifically tasks and task chains. Doing so, measured values
would be used instead of estimates for increasing the accuracy
of the model-based performance predictions.

ACKNOWLEDGMENTS

This work was supported by the Swedish Foundation for
Strategic Research via the Ralf 3 project and by the Knowledge
Foundation through projects SMARTCore (20140051) and
ORION (20140218).

REFERENCES

[1] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya.
Software architecture optimization methods: A systematic literature
review. IEEE Transactions on Software Engineering, 2013.

[2] J. Feljan, J. Carlson, and T. Seceleanu. Towards a model-based approach
for allocating tasks to multicore processors. In 38th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA),
pages 117–124, 2012.

[3] Juraj Feljan and Jan Carlson. Task allocation optimization for multi-
core embedded systems. In 40th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), 2014.

[4] T. Ulversoy. Software defined radio: Challenges and opportunities.
Communications Surveys & Tutorials, IEEE, 2010.

[5] The UML Profile for MARTE: Modeling and Analysis of Real-Time
and Embedded Systems. http://www.omgmarte.org/, [Accessed: 2014-
11-28].

[6] K. Czarnecki and S. Helsen. Classification of Model Transformation
Approaches. In Procs of OOPSLA, 2003.

[7] Xtend programming language. http://www.eclipse.org/xtend/
documentation.html, [Accessed: 2014-11-28].

[8] D. S. Johnson. Near-optimal bin packing algorithms. PhD thesis,
Massachusetts Institute of Technology, Dept. of Mathematics, 1973.

[9] Intel Core 2 Duo E6700 processor. http://ark.intel.com/
products/27251/Intel-Core2-Duo-Processor-E6700-4M-Cache-2
66-GHz-1066-MHz-FSB, [Accessed: 2014-12-19].

[10] PREEMPT RT patch. https://rt.wiki.kernel.org/index.php/Main Page,
[Accessed: 2014-12-19].

[11] V. S. Sharma, P. Jalote, and K. S. Trivedi. Evaluating performance
attributes of layered software architecture. In International Symposium
on Component-Based Software Engineering (CBSE), pages 66–81.
Springer, 2005.

[12] E. Bondarev, P. de With, M. Chaudron, and J. Muskens. Modelling of
input-parameter dependency for performance predictions of component-
based embedded systems. In 31st EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications (SEAA), pages 36–43.
IEEE, 2005.

[13] S. Islam, R. Lindstrom, and N. Suri. Dependability driven integration
of mixed criticality SW components. In Ninth IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC). IEEE, 2006.

[14] L. Grunske, P. Lindsay, E. Bondarev, Y. Papadopoulos, and D. Parker.
An outline of an architecture-based method for optimizing dependability
attributes of software-intensive systems. In Architecting dependable
systems IV, pages 188–209. Springer, 2007.

[15] Q. Zhu, H. Zeng, W. Zheng, M. Di Natale, and A. Sangiovanni-
Vincentelli. Optimization of task allocation and priority assignment
in hard real-time distributed systems. ACM Transactions on Embedded
Computing Systems (TECS), 11(4):85, 2012.

[16] A. Martens and H. Koziolek. Automatic, model-based software perfor-
mance improvement for component-based software designs. Electronic
Notes in Theoretical Computer Science, 253(1):77–93, 2009.

[17] N. Medvidovic and S. Malek. Software deployment architecture and
quality-of-service in pervasive environments. In International workshop
on engineering of software services for pervasive environments: in
conjunction with the 6th ESEC/FSE, pages 47–51. ACM, 2007.

[18] J. Fredriksson, K. Sandström, and M. Åkerholm. Optimizing resource
usage in component-based real-time systems. In International Sympo-
sium on Component-Based Software Engineering (CBSE), pages 49–65.
Springer, 2005.

[19] H. Koziolek. Performance evaluation of component-based software
systems: A survey. Performance Evaluation, Special Issue on Software
and Performance, 2010.

[20] A. Mos and J. Murphy. A framework for performance monitoring,
modelling and prediction of component oriented distributed systems. In
Third International Workshop on Software and Performance (WOSP).
ACM, 2002.

[21] A. Diaconescu and J. Murphy. Automating the performance man-
agement of component-based enterprise systems through the use of
redundancy. In 20th IEEE/ACM international Conference on Automated
Software Engineering (ASE). ACM, 2005.

[22] T. Parsons and J. Murphy. Detecting Performance Antipatterns in
Component Based Enterprise Systems. Journal of Object Technology,
2008.

[23] A. Sailer, S. Schmidhuber, M. Deubzer, M. Alfranseder, M. Mucha, and
J. Mottok. Optimizing the task allocation step for multi-core processors
within AUTOSAR. In International Conference on Applied Electronics
(AE), pages 1–6, Sept 2013.

[24] A. Wall, J. Kraft, J. Neander, C. Norström, and M. Lembke. Introducing
Temporal Analyzability Late in the Lifecycle of Complex Real-Time
Systems. In 9th IEEE International Conference on Embedded and Real-
Time Computing Systems and Application (RTCSA). Springer Berlin
Heidelberg, 2003.

[25] S.E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring of
real-time systems. In Real-time systems symposuim (RTSS), 1991.

[26] M. Saadatmand, A. Cicchetti, and M. Sjödin. Design of adaptive secu-
rity mechanisms for real-time embedded systems. In 4th International
conference on Engineering Secure Software and Systems (ESSoS), 2012.

[27] J. Huselius and J. Andersson. Model Synthesis for Real-Time Systems.
In Ninth European Conference on Software Maintenance and Reengi-
neering (CSMR), 2005.

[28] F. Ciccozzi, A. Cicchetti, and M. Sjödin. Round-trip support for
extra-functional property management in model-driven engineering of
embedded systems. Information & Software Technology, 55(6):1085–
1100, 2013.

http://www.omgmarte.org/
http://www.eclipse.org/xtend/documentation.html
http://www.eclipse.org/xtend/documentation.html
http://ark.intel.com/products/27251/Intel-Core2-Duo-Processor-E6700-4M-Cache-2_66-GHz-1066-MHz-FSB
http://ark.intel.com/products/27251/Intel-Core2-Duo-Processor-E6700-4M-Cache-2_66-GHz-1066-MHz-FSB
http://ark.intel.com/products/27251/Intel-Core2-Duo-Processor-E6700-4M-Cache-2_66-GHz-1066-MHz-FSB
https://rt.wiki.kernel.org/index.php/Main_Page

