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birgitta.lindstrom@his.se

Wasif Afzal
Mälardalen University, Sweden
wasif.afzal@mdh.se

Sten F. Andler
University of Skövde, Sweden
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Abstract—The concept of software testability has been re-
searched in several different dimensions, however the relation
of this important concept with other quality attributes is a
grey area where existing evidence is scattered. The objective
of this study is to present a state-of-the-art with respect to
issues of importance concerning software testability and an
important quality attribute: software robustness. The objective
is achieved by conducting a systematic literature review (SLR)
on the topic. Our results show that a variety of testability issues
are in focus with observability and controllability issues being
most researched. Fault tolerance, exception handling and handling
external influence are prominent robustness issues in focus.

Index Terms—Software testability; Software robustness; Sys-
tematic literature review

I. INTRODUCTION

Software testing dynamically verifies and validates that a
program or a system behaves as expected when subjected to
a finite set of test cases, usually selected from an infinite
execution domain [1]. According to Voas and Miller [2],
software testing is one of the three pieces that developers
must complete to assess reliability of software, the other two
being software testability and formal verification. Software
testability, the topic of interest in this paper, has a number of
different interpretations. While we shall provide an overview
of such interpretations shortly, it is important to differentiate
between software testing and software testability. While soft-
ware testing aims to assess the quality of software produced,
software testability is not concerned with whether the software
is producing correct or incorrect results [3]. Rather, software
testability concerns the characteristics of the software that
affect the effort needed to test the software. Put differently,
the higher the testability is, the easier it is to perform testing
activities such as designing, executing and analyzing tests.

Freedman [4] defines a program testable if it has no input-
output inconsistencies and that it has the properties of observ-
ability (of outputs) and controllability (of inputs). A different
interpretation of testability is given by Bache and Müller [5]
where testability is determined by the coverage achieved by a
test strategy such as branch coverage for control flow testing
strategies. A probabilistic view on software testability is given
by Voas and Miller [2] and Bertolino and Strigini [6], looking
at the probability that the code will fail if it is faulty.

While software testability has been investigated according
to the above interpretations, the functional correctness of the
software has been or is assumed to be the focus. Little is
known regarding what software testability issues impact non-
functional properties, how is testability estimated for such
properties and what measured impact software testability has
on them? Thus there is an ample opportunity to investigate
the relationship between software testability and different
non-functional properties. In this paper, we restrict ourselves
to investigate the relationship between software testability
and software robustness. Software robustness is an especially
important property for critical software systems and is defined
as the degree to which a system or component can func-
tion correctly in the presence of invalid inputs or stressful
environmental conditions [7]. Robustness is also considered
an element in achieving higher dependability in systems [8].
In order to provide a state-of-the-art with respect to issues
of importance concerning software testability and software
robustness, we have performed an extensive systematic litera-
ture review (SLR) according to the well-established guidelines
of Kitchenham and Charters [9]. We have categorized the
evidence in the area in terms of issues of importance for
software testability and software robustness. We then present
a descriptive synthesis of the primary studies with a specific
focus on software robustness issues.

The rest of the paper is organized as follows. Section II de-
scribes the process followed in conducting the SLR. Section III
presents a synthesis of obtained primary studies, organized
with respect to software robustness issues. Sections IV and V
present a discussion on results and conclusions respectively.

II. METHOD

A systematic literature review (SLR) is a form of secondary
study since it synthesizes evidence from already existing
primary studies. After the need for an SLR has been identified,
the most important part of an SLR is the specification of
research questions.

A. Research question

In order to capture the existing views on testability and soft-
ware robustness, we have formulated the following research



TABLE I: Count of papers before and after duplicate removal
among different publication sources.

Source Search count After duplicate
removal

Springer Link 9933 8551
IEEE Xplore 1161 748
ACM Digital Library 5683 3422
ISI Web of Science 617 578
Scopus 5103 4059
ScienceDirect 3651 1658
Wiley Online 5673 4343
Sub-total 31821 23359
Exact phrase search 786 174
Total 32607 23533

question:
RQ: What is the state-of-the-art on issues related to testa-

bility and software robustness?
In terms of PICOC (Population, Intervention, Comparison,
Outcome, Context) criteria for structuring research ques-
tions [9], our research question has no limitation with respect
to ‘comparison’ and ‘context’ but has the following elements:

• Population: software.
• Intervention: testability and robustness.
• Outcomes: Issues of importance concerning testability

and software robustness.

B. Generating a search strategy

The search strategy was agreed upon after several rounds of
trial searches using various combinations of search terms. Due
to the broad scope of our research question, we finalized four
search terms: software testability, software testable, software
untestable and software non testable. We did not include the
term robustness and its synonyms in search due to two reasons:
(1) it is difficult to find synonyms of robustness and (2) we plan
to investigate the relationship between testability and other
non-functional properties like performance as future work.
These search terms were used separately in the following
databases: Springer Link, IEEE Xplore, ACM digital library,
ISI web of science, Scopus, ScienceDirect and Wiley Online
Library. This initial search was complemented with an exact-
phrase search (in full-text/other fields) whereby the four search
terms were used with double quotation marks. The exact
phrase search was carried out in databases where this search
option was available (IEEE Xplore, ACM digital library,
Springer Link, ISI web of science and Scopus).

We did not restrict the search results based on publication
year as we wanted to be as inclusive as possible. Thus the
default settings for the start year were used for each database.

Table I shows the number of hits for each database. We
got a total of 32607 papers after the initial and exact-phrase
search. After duplicate removal based on title and abstract, we
were left with a total of 23533 papers.

C. Study selection criteria

An important step in the study selection process is to list
exclusion and inclusion criteria. We decided to exclude studies
that:

• do not relate to software engineering/computer science,
• do not relate to software testability,
• merely mention testability in a cosmetic/cursory manner,

lacking any credible research on it,
• have a focus on hardware/system testability (such as

digital circuit testability analysis),
• are book reviews,
• are not written in English language,
• are editorial papers written for special issues of different

journals,
• represent academic theses,
• are books/book chapters,
• are only discussing software testability without relating

it to software robustness.
We included all those studies that:

• address software testability and its relation to software
robustness.

The study selection was done in multiple steps:
1) First a total of 2089 papers were discarded based on

automatic removal by keywords, done by using a SQL
query. We removed papers with keywords that suggested
them not to be relevant to software testability and
falling in our exclusion criteria. Examples of such key-
words include VLSI, microchips, CMOS, circuit design,
cell array, voltage, transistor, flipflop, microprocessor,
nanometer, DRAM and SRAM.

2) The second step of the study selection involved reading
the titles and abstracts of remaining 21444 papers and
excluding papers not relevant to software testability. The
papers were distributed among authors and for each
paper we classified it as being either relevant, non-
relevant or not clear, based on the stated exclusion
criteria. Each paper was read by two authors. In case
of disagreement among the two authors, the paper was
marked as not clear. As a result of this step, we were
left with 1422 not clear and 413 relevant papers.

3) The third step of study selection involved deciding on
the not clear papers based on skimming the full-text
of each paper to see if it relates to software testability.
The skimming process for each paper was done in
several steps: (1) reading the introduction and conclusion
sections (2) searching for term testability in the full text
and (3) reading sections if found relevant for decision-
making. After the full-text skim, we were left with 807
relevant papers.

4) The fourth step of the study selection involved deciding
on which of the software testability papers relate to
software robustness. We again skimmed the full-text
of 807 papers, similar to the previous step, but now
searching for software robustness. After this full-text
skim for software robustness, we were left with 75
papers.

5) The fifth step of study selection was done to read full-
text of the 75 papers. As a result of this step, we were
left with 23 relevant papers.



6) The set of 23 relevant papers were complemented with
additional 4 papers recommended by an expert on the
subject. These papers were either not captured in our
search or were discarded during step 2 because of not
being explicit about their relation to testability. In the
end, we had a total of 27 primary studies for our SLR.
The primary studies are indicated in bold titles in the
references section.

D. Study quality assessment
We did not assess the quality of included studies using any

pre-designed quality instrument due to our quest of being
as inclusive as possible since we expected the focus on
testability and software robustness to be still in its infancy,
with less chances of finding large-scale empirical studies. Also
our research question does not aim at finding the strength
of inferences where study quality assessment is regarded as
valuable.

E. Data extraction
The purpose of data extraction is to record information ob-

tained from primary studies in a pre-designed data extraction
form. The data extraction was done by three authors. Besides
the general information about paper ID and title, the fol-
lowing specific information was gathered: testability method/
technique; robustness method/technique; testability issue in
focus; robustness issue in focus; testability metric; robustness
metric; and measured positive/negative impact of testability on
robustness.

III. DATA SYNTHESIS

Data synthesis involves combining the results of included
primary studies [9]. Due to diversity in the context of the
primary studies, a quantitative synthesis is not a possibility in
this SLR. We therefore present a descriptive (non-quantitative)
synthesis. The data extraction forms of individual primary
studies are analyzed for finding patterns of issues of impor-
tance that answer our stated RQ.

In Figure 1, we show a categorization of the software
testability issues discussed in our set of primary studies.
These issues are concerned with observability, controllability,
diagnosability, testing effort, automation and miscellaneous
issues. Below we present a brief description of these categories
along with related primary studies:

• Observability: the ability to observe output/internal states
of a component or a software under test ([6], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21]).

• Controllability: the ability to control input and execution
of a component/software under test as required for testing
([13], [14], [15], [16], [17], [19], [20], [22]).

• Diagnosability: the ease with which a fault is isolated
after the occurrence of a failure ([11], [15], [23]).

• Testing effort: the ability to reduce testing effort and to
promote ease of testing ([15], [24], [25], [26], [27]).

• Automation: the extent to which software testability as-
pects can be automated (e.g., using an automated testing
framework and built-in tests) ([15], [28], [29], [22], [30]).
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Fig. 1: A categorization of software testability issues and
associated primary studies.

• Miscellaneous issues: the issues concerning testability
and requirements traceability [31], testability transforma-
tion [32], fault-detection capability of tests [33], testabil-
ity improvement through a software process methodol-
ogy [34], [30] and verifiability [35].

It is evident from Figure 1 that more than half of the pri-
mary studies (53%) deal with observability and controllability
aspects in software testability issues impacting software ro-
bustness. In Figure 2, we show a categorization of the software
robustness issues discussed in our set of primary studies. These
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Fig. 2: A categorization of software robustness issues and
associated primary studies.

issues are concerned with fault tolerance, exception handling,
handling external influence and miscellaneous issues. Below
we present a brief description of these categories along with
related primary studies:

• Fault tolerance: the ability to avoid critical failures in the
presence of faults and errors ([6], [13], [15], [17], [20],
[21], [23], [27], [35]).

• Exception handling: the ability to handle exceptions ([10],



[14], [19], [25], [29], [32]).
• Handling external influence: the ability to handle faults

due to external events, such as contract breaches [11], ex-
ternal dependencies for components/subcomponents [16],
hostile environment [18], failure in communication
framework [28] and protocols [24], invalid input [22] and
externally infected provider classes [33].

• Miscellaneous issues: the issues concerning hazard anal-
ysis [12], introducing malfunctions [34], handling of un-
foreseen situations using a knowledge-based system [30],
handling faults due to an extended period of execu-
tion [26] and redundancy [31].

It is clear from Figure 2 that fault tolerance, exception han-
dling and handling external influence are the main robustness
issues discussed in our set of primary studies.

The following subsections summarize software testability
issues for each of the identified software robustness issues in
our set of primary studies.

A. Fault tolerance

Voas and Miller [21] argue that testability analysis can
be applied during testing to enhance fault tolerance. They
extend the earlier described propagation analysis [36] as a
way to isolate program regions that show data state errors
and thus will result in certain types of software failures. The
authors present two extended propagation analysis algorithms
that produce a set of locations generating particular type of
software failures. Such locations can then include fault tolerant
mechanisms to be placed and thus make the software more
robust.

Schütz [20] suggests that distributed real-time critical appli-
cations need high dependability which can be achieved through
some form of a fault tolerant mechanism such as redundancy
or recovery blocks. On the other hand, testability issues such as
observability can be highly challenging for such a system due
to “probe effect”. To improve observability, techniques such as
code instrumentation may introduce delay and thus affect the
outcome of a real-time execution. The author suggests three
solutions: to use dedicated hardware; integrate all monitoring
and test support with the system; use a combination of both.
To improve controllability, the main issue is reproducibility
which is difficult to achieve in a distributed system due to
nondeterminism in its hardware, software or operating system.
To solve it, the author suggests defining precisely a particular
execution scenario in terms of significant events and then
applying control over the execution to reproduce the same
scenario deterministically.

Kopetz [27] compares two different design paradigms for
real-time systems: Time-triggered (TT) and event-triggered
(ET). Such systems must be robust and fault-tolerant. This
is typically achieved by redundancy. The major difference
between TT and ET systems is the predictability in the time
domain since detailed plans for the behavior of the system in
the time domain is available for TT systems while ET systems
creates execution schedules dynamically based on the actual
demand, meaning that there are variations in the timing of

tasks. Moreover, these variations have consequences for the
timing of other tasks in different nodes. To gain confidence in
the robustness of a real-time system, it is necessary to perform
tests with rare events (e.g., a serious fault) on simulated loads
and check whether the event is handled properly within time
bounds. However, while the load patterns for a TT system is
known, it is very hard to know whether the simulated load
pattern in an ET system is representative for the load patterns
that will develop in the real application.

Metsä et al. [13] propose using code-level aspects for testing
of non-functional properties in order to not mix SUT code with
purely test-related code. The aspects were implemented using
AspectC++. The study shows that it is possible to encode
non-functional requirements using aspects, hence making non-
functional testing easier and more manageable. Robustness is
only mentioned as one-of-many non-functional properties.

Kopetz et al. [17] suggest that fault tolerance is an important
approach to ensure dependability of service in a hard real-
time system.1 Regarding testability, the authors identify three
major aspects of testability: test coverage, observability and
controllability. They further suggest a closed loop approach
for robustness testing where the output of the system is fed to
a model of the environment that dynamically computes and
returns a feedback as input to the system. This simulated
environment itself is a real-time application, which ensures
testing of unforeseen and hypothesized errors of a system in
its environment.

Alanen and Ungar [15] describe software design for testabil-
ity (DFT) practices while comparing them to hardware DFT.
They suggest that a designer can promote software testability
by focusing on DFT issues in early software development
phases. Regarding fault tolerance, they suggest redundancy
in the form of component diversity where different versions
of the component are developed in different languages or
algorithms. Besides, wrappers can be used to detect faults
related to input data. They also suggest recovery mechanisms
(such as checkpoints) to restore a system to a previous safe
state in case of failures. They also suggest using fault injection
to test fault handling mechanisms as well as rare failure
scenarios which are difficult to replicate.

According to Laprie [35], fault tolerance can be promoted
by either error processing (removing errors from the com-
putational state before failure occurrence) or fault treatment
(deactivating the faults permanently). The author mentions
computational redundancy (through multiple channels) as well
as structural redundancy as being widely used in a fault
tolerant system but with the drawback of creating agreement
problems. The author’s view on design for testability suggests
facilitating verification and further suggests using modeling
and fault injection to evaluate fault tolerant systems.

Baudry et al. [23] measures the benefit of a design by con-
tract approach on software robustness and software diagnos-
ability. Software robustness is defined as the ability to detect

1The authors define a hard real-time system as one in which the conse-
quences of a failure are potentially catastrophic, such as in a flight control
system.



internal anomalies during execution while diagnosability is
defined as the degree to which the software allows an easy
and precise location of a fault when detected. The authors
present a model for measuring global robustness of a system
that is calculated based on local robustness of components in
the system. The local robustness of a component in a system is
defined as the probability a fault in the component is detected
either by its own contracts or by the contracts it interacts with.
Practically, the local robustness is measured by calculating the
mutation score of the individual class and its test dependent
classes. The mutation score is calculated as the percentage
of mutants the class’ contracts are able to detect. A similar
analysis is done for measuring diagnosis effort (size of the
indistinguishability set2 in which the faulty statement must be
located) and global diagnosability of a system (diagnosis pre-
cision obtained with a certain proportion/quality of contracts
in the system compared to the same system with no contracts).

Bertolino and Strigini [6] argue that Voas and colleagues
define testability as the conditional probability that the pro-
gram fails [2], without taking into account undetected failures
due to an imperfect oracle and that faults can be revealed in
the absence of failures (by observing the internal state of a
program). Therefore, according to Bertolino and Strigini [6],
there are three elements in making a program testable (and
reliable): (1) reduce the probability of operational failure
given an error exists (that is to make the program more
robust3) (2) improve specification of an oracle or improve the
observability of the internal state of the program (3) improve
the input distribution used in testing so as to increase the
probability of fixing errors given a fault exists. The authors
discuss a number of ways to improve program robustness
and testability, especially highlighting software design with a
self-checking capability provided by software fault tolerance
and defensive programming. This includes techniques such
as executable assertions with exceptional handling, recovery
blocks, N-version or self-checking programming, use of robust
data structures and audit programs [6].

B. Exception Handling

According to Salva and Rabhi [14], BPEL (Business Process
Execution Language) supports fault handling activities. One
of the problems in structured BPEL activities is that such
activities are nested, including the fault-handler activities.
To understand the problem, the authors transform ABPEL
(Abstract BPEL) specification to STS (Symbolic Transition
System) which is more suitable to analyze testability criteria
such as observability and controllability. They found that in
ABPEL specifications, non-identical “catch” creates an observ-
ability problem, whereas the “fault handling” activity gather-
ing two identical “catch” activities is not controllable. They

2An indistinguishability set represents a set of statements that are indistin-
guishable from each other if they are bounded by consecutive contracts in an
execution flow.

3The authors define software robustness as the ability of the software –
accidental or intentionally designed-in – to tolerate internal errors.

propose making the “catch” activities distinct and ensuring
fault distinction in fault handlers, to promote testability.

Binder [19] describes characteristics of the implementation
as one of the six factors contributing to testability in object-
oriented systems. Within characteristics of the implementation,
Binder discusses testability of exception handling and argues
that exceptions are typically less controllable than other appli-
cation functions and may require simulation of failure modes.
Also “testable exception handling would require consistent
usage of language-supported features and a related design
strategy”. The author continues to describe a strategy for Built-
in test (BIT) capability that provides explicit separation of test
and application functionality.

Chen et al. [25] highlight the importance of exception
handling in avoiding abnormal interruption or system crashes.
They argue that programming constructs have an influence
on software quality, therefore they analyze four different
languages (C++, Ada, Smalltalk, Pascal) to inves-
tigate their impact on software quality. According to their
analysis, Ada is a better choice in terms of exception handling
and testability but it degrades execution efficiency.

Embedding built-in testing capabilities into a component
under test is emphasized as a way to improve testability in
Brito et al. [29]. According to the authors, existing devel-
opment methodologies do not emphasize testing of excep-
tional behavior of a software system. The authors continue
to describe a testable component architecture that augments
the component with test facilities (built-in tests), which are
accessed by the user through a standard interface. These
facilities include runtime verification of component contracts,
following the Design-by-Contract approach, which are used
as test oracle [29]. Using the testable component architecture
(including interface specification (tracking mechanisms) and
OCL (Object Constraint Language) contracts), contract verifi-
cation mechanisms are introduced in the intermediate code of
the component under test.

Fraser and Arcuri [32] use the EvoSuite tool to detect
failures in terms of undeclared exceptions (i.e. exercising
automated oracles) and their results show that testability
transformation4 revealed additional failures without negatively
affecting coverage. The main purpose of testability transforma-
tions done in the study is to guide the fitness function used in
automated search towards maximizing violations of undeclared
exceptions.

Briand et al. [10] present templates in AspectJ for auto-
matic instrumentation of contracts and invariants in Java. The
templates are for checking pre- and post-conditions as well as
invariants and post-conditions can be checked after a return
statement or after an exception is thrown. The AspectJ
code specifies the assertions and insertion points. Since the
instrumentation of contracts is implemented in aspects, in
separate files, the actual manipulation of the software takes
place on a byte code level.

4A testability transformation is a source-to-source program transformation
that seeks to improve the performance of a test data generation technique [37].



C. Handling external influence

Paige [18] describes the concept of “software design for
testability” with an example. The author describes a situation
where two modules, each having the algorithmic code and
robustness code (or protection/exception-handling code) are
integrated, resulting in some overlap of robustness code. This
overlap can give rise to situations where robustness code of
one module excludes data cases from the algorithmic code
of the other module. In order to solve this situation, the
author proposes two sets of building blocks for the code to
offer some visibility into program branch points. These two
blocks are algorithmic-oriented and protection-oriented. Such
modular development practice suggests inducing some degree
of robustness into the code to protect each module against
hostile environments.

In [16], the authors propose extending the contract-based
built-in-test technique to hierarchical components, i.e. an as-
sembly of components. The authors define three categories
of contracts specific to component-based software: Library
(defined at the level of object classes and interfaces), Interface
(defined to express bindings between a required interface
and a provided one) and composition (defined to express
external interfaces of component and its subcomponents).
Library and interface contracts can be made self-testable
according to authors’ contract-based built-in test framework
called STclass-Java. However composition contracts use
external dependencies for components/sub-components (a case
of integration testing) therefore STclass cannot be applied
directly unless the component hierarchy or dependencies are
extracted.

Baudry et al. [33] discuss trust in object-oriented compo-
nents using the design-by-contract approach where the specifi-
cation is systematically transformed into executable assertions
(invariant properties, pre/post conditions of methods). They
propose a testing-for-trust methodology whereby a component
is said to be trustable if the component unit test cases are effec-
tive in detecting anomalies in implementation. The robustness
of a self-testable component is defined as its ability to detect
faults due to external infected provider classes, e.g., due to
integration or evolution.

Tappenden et al. [22] argue that security vulnerabilities
exploited by malicious inputs can compromise robustness
in a modern web-based system. They propose three ways
to develop secure (and hence robust) web-based systems:
modeling of security requirements, employing a highly testable
architecture, and describing and running automated security
tests using HTTPUnit. In the proposed highly testable archi-
tecture, the authors emphasize the need to embed test layers
for each layer in the layered architecture of a web application
such as presentation, process/control, business entity and data
services layers. The authors further describe automated testing
using HTTPUnit for testing the robustness of a system. They
emphasize that automated testing needs to bypass the presenta-
tion layers and interact directly with the web application server
via HTTPUnit. The resulting test cases can then focus on

server-side input validation (such as bypassing the predefined
input selection criteria and bypassing built-in HTML length
validation), testing for unexpected state transition and SQL
injection.

Vuong et al. [24] discuss testability issues from the perspec-
tive of protocol engineering life-cycle in distributed systems.
They promote a synthesis/analysis approach where synthesis
denotes a process that specifies a design specification meeting
testability requirements and analysis denotes the process of
examining a design specification to check whether it meets
certain testability requirements. For each phase in the life-
cycle, they list a set of issues such as non-determinism with
respect to ordering and effects of events. They also discuss
what is needed from a design for testability perspective to han-
dle the issues, e.g., formal methods, models, modularization,
compatibility checking and self-stabilization. One testability
issue that authors mention for robustness has to do with
the fact that limitations affecting robustness (e.g., the size
of a message queue) are often un-specified in the model.
Another issue is that unexpected events also are un-specified
and should be handled at the implementation level according
to the semantics of the formal method used.

King et al. [28] propose a self-testing approach with two
validation strategies: Replication with Validation (RV), which
tests adaptive changes using copies of the managed resources
of the system; and Safe Adaptation with Validation (SAV),
which tests adaptive changes in-place, directly on the managed
resources of the system. Cobertura is used to instrument the
managed resources during testing to calculate line and branch
coverage. The robustness focus is on finding unexpected
inputs or events (anomaly detection), such as unsupported user
requests or the occurrence of external events such as failure in
a framework, thereby requiring self-healing. They also address
the challenges associated with validating adaptive changes to
autonomic software at runtime.

Briand et al [11] propose using executable software con-
tracts to both replace manually coded oracles and to lower
the effort of locating faults once a failure has been identified.
The contracts are defined in OCL that is included in the UML
framework and the instrumentation tool used is Jcontract.
They measure testability in general by mutation testing, i.e.
how many mutants are killed with and without contracts. The
authors also define diagnosability through Diagnosis Flow,
which measures the sequence of methods one has to investigate
from the detection of a failure to the location of the faulty
statement. The mutation score is lower than with a manually
coded oracle, but the diagnosability of the software, i.e. the
decrease in effort to locate faults after a failure has occurred,
is increased almost one order of magnitude. Indirectly this
translates into increased robustness as diagnosability improves
fault removal.

D. Miscellaneous issues

Pau [30] argues that failure detection and testing are
knowledge-intensive and experience-based tasks and thus are
suitable for a knowledge-based systems (KBS) system. KBS



can be used to handle unforeseen situations if it possesses
detailed knowledge on system functionality, general failure
modes propagation and the follow-up repair actions. Regarding
testability, KBS can be a part of a built-in test system to
identify intermittent faults, reduce false alarms and carrying
out recalibration.

Soubies et al. [34] suggest that following strict programming
rules can produce better testable software for safety critical
systems. For robustness study, they use simulation base testing
where they identify safety critical components and introduce
malfunctions targeting those components.

Vincent et al. [26] discuss Built-In-Test (BIT) techniques
for Run-Time-Testability (RTT) in component-based software
systems. They highlight difficulties in testability of COTS, as
they are typically supplied as binaries with the internal mech-
anisms being unknown and lacking standardized test facilities.
This increases the chances of residual defects that may show
up after extended periods of execution and may compromise
system robustness. BIT provides a standardized way in which
to incorporate test facilities into software components. This is
useful for detecting and localizing defects. Also it is useful
for the propagation of these error conditions to a system
component having responsibility for error handling and/or
recovery.

Bozzano et al. [12] present a methodology for design of
complex systems. The methodology is supported by a formal
framework, which is integrated with verification tools and
supports a number of formal analyses. The authors present
a modeling language in which not only the normal hardware
and software operations can be described but also properties
that are interesting from a testability perspective. It is possible
to specify faults (probabilistic), how these faults propagate,
error recovery, and failure modes. In order to enable modeling
of partial observability, the System-Level Integrated Modeling
(SLIM) language allows the designer to explicitly define a set
of observables. Hence, it is possible to perform observability
analyses on such models.

Beer and Heindl [31] focus on a formal, non-invasive
technique for requirement traceability and use of standard-
ization (UML & TTCN-3). The main issues are tracing of
requirements and formal diagrams that lead to certainty about
the consistency and completeness of test cases. They use a
generic approach to testability and robustness, where all tests
have to be performed on the original hardware, and compliance
as well as robustness testing is prescribed. Robustness is
achieved using redundancy, and the system is characterized
by dedicated hardware with triple redundancy (2-out-of-3) for
automatic fault detection.

IV. DISCUSSION & THREATS TO VALIDITY

In this study, we have gathered available evidence on
testability and software robustness. We identified and classified
issues relevant for software testability and software robustness.
Since software testability and software robustness are impacted
by a variety of factors, we observed that the authors have taken
a number of different research foci on the topic. Nevertheless,

observability and controllability are the most researched testa-
bility concerns in our primary studies while fault tolerance,
handling external influence and exception handling are the
most researched robustness concerns. Regarding the extent of
evaluation in the research area, our general impression is that a
number of studies report initial proposals and proof-of-concept
examples but lack large-scale industrial case studies.

We also observed that testability and software robustness is
a difficult and a rather less researched area. While design-
for-testability is a mature concept in hardware testing, it
has not attracted similar attention from the software testing
community. As part of our data extraction, we also gathered
evidence on testability and robustness metrics, but do not have
enough space to discuss them in detail. However, to briefly
describe the situation, although there are studies that mention
robustness or testability metrics individually, not many papers
mention them together as a single concern, i.e. testability
and software robustness. In other words, when researchers
investigate testability and software robustness, quantifying
these two qualities is not a priority. In our view this is partly
because of the current immature state of affair in this area
of research where focus has been on ideas and proposal
generation. A part of our data extraction also deals with the
stated measured impact of testability on robustness. Generally,
authors report a positive relationship between software testa-
bility and software robustness, i.e. improving one property as
a consequence of improving another. An exception to this is
given by Bertolino [38] where it is argued that an increase in
testability increases the confidence in the absence of faults but
on the other hand, it reduces the robustness of a program, if
faults do remain. We plan to separately analyze this impact of
testability on software robustness in detail as an extension to
this study.

Following the guidelines for conducting SLRs [9] helped
us address majority of validity threats to this study. We
did not assess the quality of included primary studies using
an explicitly defined instrument. We argue in favor of this
decision in Section II-D. To ensure the consistency of data
extraction, a subset of primary studies was used to extract data
for the second time. In case of a disagreement among authors
in study selection, a third person acted as an arbitrator. Lastly,
we believe that our extensive search of relevant studies has
given us a representative set of primary studies.

V. CONCLUSIONS AND FUTURE WORKS

This SLR has gathered research evidence on testability and
software robustness. A variety of testability and robustness
issues have been gathered. Observability and controllability
represent the two most researched testability issues while fault
tolerance, exception handling and handling external influence
are the most researched robustness issues. We also present
a synthesis, structured according to each of the identified
robustness issues. Several interesting research directions are
discussed, notably contract-based built-in-test mechanisms,
propagation analysis to identify code locations to include fault
tolerant mechanisms, redundancy in the form of component



diversity, simulation of failure modes to test exceptions, de-
terministic execution of significant events and timeliness of
event-handling with simulated loads in real-time systems.

There can be several interesting extensions of this work, as
hinted at in Section IV. We also plan to conduct a similar study
to understand testability and other important non-functional
qualities such as efficiency.
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