
Mälardalen University Press Licentiate Theses
No. 203

FACILITATING REUSE OF SAFETY CASE
ARTEFACTS USING SAFETY CONTRACTS

Irfan Šljivo

2015

School of Innovation, Design and Engineering

Copyright © Irfan Šljivo, 2015
ISBN 978-91-7485-213-4
ISSN 1651-9256
Printed by Arkitektkopia, Västerås, Sweden

Populärvetenskaplig
sammanfattning

Säkerhetskritiska system är system som kan orsaka skada på egendom, miljö
eller till och med mänskligt liv om de inte fungerar som de ska. Sådana system
behöver vanligtvis följa en branschspecifik säkerhetsstandard som ofta innefat-
tar en säkerhetsbevisning i form av argument för systemets funktionssäkerhet
med tillhörande bevis att systemet säkert kan användas i avsedda samman-
hang. Att utveckla säkerhetskritiska system så att de följer säkerhetsstandar-
der är en tidsödande och kostsam process. För att reducera kostnad och tid
är återanvändning önskvärd. Ofta är säkerhetsbevisningen mer kostsam än
utvecklingen av själva systemet. Därför behöver återanvändning av säkra kom-
ponenter i systemet kompletteras med återanvändning av delar av säkerhets-
bevisningen.

Det svåra med att återanvända säkerhetsbevisning ligger i att säkerhet är
en egenskap hos själva systemet som inte enkelt kan härledas från de ingående
delarna. Det finns dessutom inte något systematiskt sätt att återanvända de-
lar av en säkerhetsbevisning. Genom åren har många olyckor rapporterats
vara en direkt konsekvens av osystematisk återanvändning. Till exempel så
kraschlandade en Ariane 5 raket på grund av en mjukvarukomponent som
återanvändes från den tidigare Ariane 4 versionen. Trots att Ariane 4 hade
fullt fungerade och funktionssäker mjukvara så orsakade mjukvaran ett fel när
den återanvänds i det nya systemet, vilket resulterade i kraschen som innebar
miljardförluster.

I denna avhandling presenterar vi en form av säkerhetskontrakt som kan
användas för att underlätta systematisk återanvändning av komponenter i säker-
hetskritiska system. Ett säkerhetskontrakt för en komponent består av ett an-
tagande och en garanti, sådant att komponenten erbjuder garantin givet att an-

i

ii

tagandet uppfylls av den omgivning som komponenten används i. I avhan-
dlingen undersöker vi följande i detalj: hur sådana kontrakt kan specificeras,
hur de kan härledas, och på vilket sätt de kan användas för återanvändning i
säkerhetsbevisning. Först kategoriserar vi kontrakten som antingen “starka”
eller “svaga”, för att kunna fånga upp varianter av beteenden som återanvänd-
bara komponenter kan påvisa i olika system. Sedan presenterar vi metoder
för att härleda säkerhetskontrakt från felanalyser. Felanalys är en etablerad
teknik för att identifiera risker i säkerhetskritiska system. Slutligen utvecklar
vi metoder för att med hjälp av säkerhetskontrakt kunna återanvända delar av
säkerhetsbevisning. Eftersom säkerhetsstandarder vanligen inte stöder system-
atisk återanvändning så definierar vi en process för utveckling och systema-
tisk återanvändning av säkerhetskontrakt. Vi använder ett verkligt fall för att
demonstrera hur våra metoder kan användas i enlighet med denna process.

Abstract

Safety-critical systems usually need to comply with a domain-specific safety
standard, which often require a safety case in form of an explained argument
supported by evidence to show that the system is acceptably safe to operate
in a given context. Developing such systems to comply with a safety standard
is a time-consuming and costly process. Reuse within development of such
systems has a potential to reduce the cost and time needed to develop both the
system and the accompanying safety case. Efficient reuse of safety-relevant
components that constitute the system requires the reuse of the accompanying
safety case artefacts, including the safety argument and the supporting evi-
dence. The difficulties with reuse of the such artefacts within safety-critical
systems lie mainly in the nature of safety being a system property, together
with the lack of support for systematic reuse of such artefacts.

In this thesis we focus on developing a notion of safety contracts that can
be used to facilitate systematic reuse of safety-relevant components and their
accompanying artefacts. More specifically, we explore the following issues: in
which way such contracts should be specified, how they can be derived, and in
which way they can be utilised for reuse of safety artefacts. First, we charac-
terise the contracts as either “strong” or “weak” to facilitate capturing different
behaviours reusable components can exhibit in different contexts. Then, we
present methods for deriving safety contracts from failure analyses. As the ba-
sis of the safety-critical systems development lies in the failure analyses and
identifying which malfunctions could lead to accidents, the basis for specify-
ing the safety contracts lies in capturing information identified by such failure
analyses. Finally, we provide methods for generating safety case artefacts from
safety contracts. Moreover, we define a safety contracts development process
as guidance for systematic reuse based on the safety contracts. We use a real-
world case to demonstrate the proposed process and methods.

iii

To my family

Acknowledgments

First and foremost, I would like to express my immense gratitude to my su-
pervisory team Hans Hansson, Jan Carlson and Barbara Gallina without whom
this thesis would not be possible. Thank you for your invaluable guidance and
endless patience you shared with me selflessly throughout these years.

I would like to thank to all those that have influenced my decision to pursue
PhD studies and those that have made it possible, especially Hans Hansson and
Sasikumar Punnekkat for accepting me as a PhD student. Special thanks goes
to Damir Isović, Aida Čaušević, Adnan Čaušević and Zikrija Avdagić for their
support of my decision to pursue PhD studies at Mlardalen University.

My deepest gratitude goes to my co-authors as well as the members of
SYNOPSIS1 research project for all the positive influence they had on my re-
search. I am extremely grateful to Hans Hansson, Jan Carlson, Barbara Gal-
lina, Patrick Graydon and Iain Bate for all the useful discussions and the vast
knowledge they have shared with me. I would also like to thank Iain Bate,
Patrick Graydon, Stefano Puri and Omar Jaradat as my co-authors outside of
my supervisory team. A big thank you goes to other SYNOPSIS members es-
pecially Henrik Thane, Björn Lisper, Thomas Nolte, Kristina Lundqvist, Kaj
Hänninen, Guillermo Rodriguez-Navas, Hüseyin Aysan, Husni Khanfar and
Mahnaz Malekzadeh (Anita).

During my studies I have taken a number of courses. I wish to express
my appreciation to all the lecturers and professors from whom I have learned
how to be a better researcher. Many thanks to Ivica Crnković, Gordana Dodig-
Crnković, Damir Isović, Jan Gustafsson, Iain Bate, Hans Hansson, Kristina
Lundqvist, Cristina Seceleanu, Moris Behnam, Thomas Nolte, Emma Nehren-
heim and Harold Lawson. A special thanks goes to the web team Malin R.,
Hüseyin, Leo and Predrag for making departmental duties fun. I would also

1http://www.es.mdh.se/SYNOPSIS/

vii

viii

like to thank the IDT administration staff for their support with practical is-
sues. Many thanks to Carola, Susanne, Sofia, Malin(s), Ingrid, Anna, and the
others.

Next, I wish to express my gratitude to all the great people I have met at
our department with whom I have shared many joyful moments during our
coffee, dessert and lunch breaks, sports activities, barbecues, conference and
leisure trips, and all the other fun activities we did throughout the past years. A
special thanks goes to my office room mates Omar, Gabriel, Husni and Anita
for without them the light in our office would be rarely on.

Last but not least, I would like to thank my family, especially my par-
ents Ajkuna and Kemal, my brother Faruk and his family, and my aunt Razija.
Thank you for your endless love, inspiration and support you have given me.

The work in this thesis has been supported by the Swedish Foundation for
Strategic Research (SSF) via project SYNOPSIS as well as EU and Vinnova via
the Artemis JTI project SafeCer.

Irfan Šljivo
May, 2015

Västerås, Sweden

List of publications

Papers included in the licentiate thesis2

Paper A Strong and Weak Contract Formalism for Thrid-Party Component
Reuse, Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans Hansson. In
Proceedings of the 3rd International Workshop on Software Certification
(WoSoCer), IEEE, November 2013.

Paper B Generation of Safety Case Argument-Fragments from Safety Con-
tracts, Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans Hansson. In
Proceedings of the 33rd International Conference on Computer Safety,
Reliability, and Security (SafeComp), Springer-Verlag, September 2014.

Paper C A Method to Generate Reusable Safety Case Fragments from Com-
positional Safety Analysis, Irfan Šljivo, Barbara Gallina, Jan Carlson,
Hans Hansson, Stefano Puri. In Proceedings of the 14th International
Conference on Software Reuse (ICSR 2015), Springer-Verlag, January
2015.

Paper D Deriving Safety Contracts to Support Architecture Design of Safety
Critical Systems, Irfan Šljivo, Omar Jaradat, Iain Bate, Patrick Graydon.
In Proceedings of the 16th IEEE International Symposium on High As-
surance Systems Engineering (HASE 2015), IEEE, January 2015.

Paper E Using Safety Contracts to Guide the Integration of Reusable Safety
Elements within ISO 26262, Irfan Šljivo, Barbara Gallina, Jan Carl-
son, Hans Hansson. Technical Report, ISSN 1404-3041, ISRN MDH-
MRTC-300/2015-1-SE, Mälardalen Real-Time Research Centre, Mälar-
dalen University, March 2015.

2The included articles have been reformatted to comply with the licentiate thesis layout.

ix

x

Additional papers, not included in the licentiate
thesis

1. Towards a Safety-oriented Process Line for Enabling Reuse in Safety
Critical Systems Development and Certification, Barbara Gallina, Irfan
Šljivo, Omar Jaradat. In Proceedings of the 35th Annual Software En-
gineering Workshop (ISOLA workshop) (SEW 2012), IEEE, October
2012.

2. Fostering Reuse within Safety-critical Component-based Systems through
Fine-grained Contracts, Irfan Šljivo, Jan Carlson, Barbara Gallina, Hans
Hansson. In Proceedings of the 1st International Workshop on Criti-
cal Software Component Reusability and Certification across Domains
(ICSR workshop) (CSC2013), June 2013.

3. Facilitating Reuse of Certification Artefacts Using Safety Contracts, Ir-
fan Šljivo. In Proceedings of the Doctoral Symposium at the 14th Inter-
national Conference on Software Reuse (ICSR 2015), January 2015.

Contents

I Thesis 1

1 Introduction and Outline 3
1.1 Outline . 7

2 Research Description 13
2.1 Research Methodology . 13
2.2 Problem Statement and Research Goals 15

3 Background 19
3.1 Safety-Critical Systems . 19

3.1.1 Safety Standards . 20
3.1.2 Safety Case Representation 25
3.1.3 Fault Tree Analysis 28

3.2 Reuse Technologies . 31
3.2.1 Component-based Software Engineering 32
3.2.2 Product-line Engineering 33
3.2.3 Generative Reuse . 34

3.3 Contracts . 34
3.3.1 Assumption/Guarantee Contract Theory 36

4 Thesis Contributions 39
4.1 Strong and Weak Contract Formalism 39
4.2 Methods for Derivation of Safety Contracts from Failure Anal-

yses . 42
4.3 A Method for Reuse of Safety Case Argument-fragments and

Supporting Evidence . 42
4.4 Safety Contracts Development Process 43

xi

xii Contents

5 Related Work 45
5.1 Contract-based Approaches for Safety-Critical Systems 45
5.2 Safety Case Artefacts Reuse 47

6 Conclusions and future work 51
6.1 Research Questions Revisited 51

6.1.1 Research Question 1 52
6.1.2 Research Question 2 53
6.1.3 Research Question 3 53

6.2 Future Research Directions 55
6.2.1 Strong and weak contracts formalism optimisation . . 55
6.2.2 Safety contracts language and patterns catalogue . . . 55
6.2.3 Safety case management 56
6.2.4 Further safety case artefacts generation 56
6.2.5 Further tool support 56

Bibliography 57

II Included Papers 67

7 Paper A:
Strong and Weak Contract Formalism for Thrid-Party Component
Reuse 69
7.1 Introduction . 71
7.2 Background . 72

7.2.1 Off-The-Shelf Items 72
7.2.2 Safety Standards and Reuse 73
7.2.3 Fine-grained Contracts 74
7.2.4 Motivating Example 74

7.3 Fine-grained contracts further development 76
7.3.1 Contract relations and operations 77

7.4 Case Study . 78
7.4.1 Usage of the strong and weak contracts 79
7.4.2 Discussion on benefits of the extended formalism . . . 83

7.5 Related Work . 83
7.6 Conclusion and Future Work 84
Bibliography . 85

Contents xiii

8 Paper B:
Generation of Safety Case Argument-Fragments from Safety Con-
tracts 89
8.1 Introduction . 91
8.2 Background . 93

8.2.1 Illustrative Example: The Fuel Level Estimation System 93
8.2.2 Strong and Weak Contracts 94
8.2.3 Goal Structuring Notation 95

8.3 Composable Arguments Generation 96
8.3.1 Rationale of the approach 96
8.3.2 Component meta-model 98
8.3.3 Conceptual mapping of the component meta-model to

GSN . 98
8.3.4 Overview of the architecture of the resulting argument-

fragment . 100
8.3.5 Rules for generation of component argument-fragments 102

8.4 Argument-fragment for FLES 104
8.4.1 The safety contracts 104
8.4.2 The resulting argument-fragment for the Estimator com-

ponent . 105
8.5 Discussion . 106
8.6 Related Work . 107
8.7 Conclusion and Future Work 108
Bibliography . 108

9 Paper C:
A Method to Generate Reusable Safety Case Fragments from Com-
positional Safety Analysis 111
9.1 Introduction . 113
9.2 Background . 115

9.2.1 COTS-based safety-critical architectures 115
9.2.2 CHESS-FLA within the CHESS toolset 117
9.2.3 Safety cases and safety case modelling 118

9.3 FLAR2SAF . 119
9.3.1 Rationale . 119
9.3.2 Contractual interpretation of FPTC rules 121
9.3.3 Argument-fragment generation 122

9.4 Application Example . 124
9.4.1 Wheel Braking System (WBS) 124

xiv Contents

9.4.2 FPTC analysis . 126
9.4.3 The translated contracts 126
9.4.4 The resulting argument-fragment 127

9.5 Related Work . 128
9.6 Conclusion and Future Work 129
Bibliography . 130

10 Paper D:
Deriving Safety Contracts to Support Architecture Design of Safety
Critical Systems 135
10.1 Introduction . 137
10.2 Background and Motivation 139

10.2.1 Related Work . 139
10.2.2 Overview of the Computer Assisted Braking System . 141

10.3 Overall Development Approach 142
10.4 Definition of Safety Contracts 143

10.4.1 Causal Analysis and Contracts for WBS 144
10.4.2 Causal Analysis and Contracts on WBS with Safety

Kernels . 147
10.4.3 Contract Derivation and Completeness Checking Meth-

ods . 149
10.5 Safety Argument . 151

10.5.1 Overview of Goal Structuring Notation 151
10.5.2 Wheel Braking System Safety Argument 152

10.6 Summary and Conclusions 154
Bibliography . 155

11 Paper E:
Using Safety Contracts to Guide the Integration of Reusable Safety
Elements within ISO 26262 159
11.1 Introduction . 161
11.2 Background . 163

11.2.1 ISO 26262 . 163
11.2.2 Safety Contracts . 165
11.2.3 Overview of Goal Structuring Notation 166

11.3 ISO 26262 Safety Process Supported by Safety Contracts De-
velopment Process . 167
11.3.1 Safety Contracts Development Process 167
11.3.2 SEooC Development with Safety Contracts 170

Contents xv

11.4 Real-world Case . 171
11.4.1 SEooC definition and development 171
11.4.2 SEooC Integration 175
11.4.3 Generated Safety Arguments 176

11.5 Discussion . 177
11.6 Related Work . 178
11.7 Conclusion and Future Work 179
Bibliography . 180

I

Thesis

1

Chapter 1

Introduction and Outline

Safety-critical systems are those systems whose malfunctioning can result in
harm or loss of human life, or damage to property or the environment [1]. A
trend in safety-critical systems is that new functionalities are added mainly
through software, which explains why a modern car has from 70 to 100 em-
bedded computers on board, with overall software that scales up to 100 million
lines of code1. To ensure that these safety-critical software-intensive systems
achieve sufficient levels of safety, most of such systems must comply with
a set of domain-specific safety standards. In this thesis we refer to the pro-
cess of achieving compliance with a particular standard as certification process.
The cost of achieving certification is estimated at 25-75% of the development
costs [2], with the cost of producing the verification artefacts for highly critical
applications reaching up to 1000 USD per code line [3].

In most cases, safety standards require a safety case to assure that any un-
reasonable residual risks due to the malfunctioning of the system and its ele-
ments have been avoided. A safety case is presented in the form of an explained
and structured argument supported by evidence to clearly communicate that
the system is acceptably safe to operate in a given context [4]. While the safety
case includes all the artefacts (e.g., results of failure analyses or verification
evidence) produced during the compliance process to assure that the system
is acceptably safe, the safety argument represents means to connect the safety
claims (e.g., that the system is acceptably safe to operate in a given context)
with the safety case artefacts that provide supporting evidence (Figure 1.1).

More and more safety standards are offering support for reuse to reduce the

1see http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code

3

4 Chapter 1. Introduction and Outline

Claim

Subclaim1 Subclaim2

Evidence

Reference

1

Evidence

Reference

2

Evidence

Reference

3

Sub...Subclaim1 Sub...Subclaim3Sub...Subclaim2

Evidence

Reference

4

Safety Objectives/Requirements

Evidence
(Lifecycle Artefacts)

...
SubSubclaim1 SubSubclaim2 SubSubclaim3

Sa
fe

ty
 A

rg
u

m
en

t
Safety C

ase

Figure 1.1: The role of safety argumentation within a safety case

production costs and time needed to achieve certification. For example, in the
latest versions of both airborne (DO178-C) and automotive (ISO 26262) indus-
try standards, techniques for reuse are explicitly supported through the notions
of Reusable Software Components (RSC) within airborne [5], and Safety Ele-
ments out of Context (SEooC) within automotive industry [6]. Whether reuse is
planned (systematic) or “ad hoc” (non-systematic) has significant influence on
the safety of the system within which reuse is performed [7], hence safety stan-
dards typically take in consideration whether the safety element being reused
is developed for reuse or not. For example, the SEooC concept within the ISO
26262 safety standard is used for elements that are developed for reuse and
according to the standard, while for the other elements that are not necessar-
ily developed for reuse nor according to ISO 26262, specific requirements for
their qualification are defined. The planned reuse assumes that the elements
being reused have been developed with reuse in mind, which usually results
in higher development costs of the reusable element itself, but the return of
investment can be achieved if the element is reused often enough [8]. Non-

5

systematic reuse usually does not incur additional development costs, but in
return the level of reuse is minimal since reuse is done individually by reusing
information in an “ad hoc” manner. Reuse within safety-critical systems comes
in many different flavours. For example, we distinguish between the following
reuse scenarios:

• Reuse of safety elements between system versions

• Reuse within a family of products (e.g., a product line)

• Cross-domain reuse (e.g., reuse of safety elements across the automotive
and airborne domains where different safety standards apply)

Efficient reuse of safety-relevant components in either of these scenarios re-
quires the reuse of the accompanying safety case artefacts, including the safety
argument and the supporting evidence. The difficulty of achieving reuse of
the safety case artefacts increases as the complexity of the scenarios increases
(e.g., unlike in the first scenario, the cross-domain reuse scenario requires con-
sidering the compliance of the safety element and the accompanying artefacts
with respect to the different domain-specific standards).

While safety standards provide requirements on what should be subject
to reuse, guidance on performing systematic reuse of safety elements in the
different reuse scenarios are not included in the standards, nor is there much
guidance in the literature. This lack of support for systematic reuse of safety
elements comes from the skepticism of the safety community in integrating
and reusing elements developed without the real knowledge of the context in
which the element will be used. This skepticism stems from the fact that safety
is a system property, hence traditional failure analyses such as Fault Tree Anal-
ysis, as well as other safety case artefacts such as safety case arguments, are
typically made at the system-level. Moreover, non-systematic reuse of safety
artefacts has shown to be dangerous [7], hence there is a need to bridge the
gap between the need of safety-critical industries for reuse and the skepticism
of the safety community by establishing approaches for systematic reuse of
safety elements.

Different approaches can be used to facilitate systematic software reuse.
For example, Component-based Software Engineering (CBSE) is the most
commonly used approach to achieve reuse within the airborne industry [9]. Ac-
cording to CBSE, software is developed by composing pre-existing or newly
developed components, i.e., independent units of software, with a well-defined
interface capturing communication and dependencies towards the rest of the

6 Chapter 1. Introduction and Outline

system [10]. As a part of CBSE approaches for safety-critical systems, contract-
based approaches have received significant attention for some time already [11,
12, 13, 14]. A contract for a component is defined as an assumption/guarantee
pair, where the component offers guarantees about its behaviour provided that
the assumptions on its environment hold. A behaviour in this context is a
sequence of values of a variable/property of the component and the environ-
ment. While similar CBSE approaches have been successfully used to support
reuse of software components, they lack support for reuse of the accompanying
safety artefacts.

Systematic reuse of safety case artefacts can be achieved by generating
artefacts for a specific system from specifications written in a domain spec-
ification language, often referred to as generative reuse [15]. For example,
a safety-relevant component developed out-of-context together with a safety
argument is reused in a particular system. Since such argument could con-
tain information that might be irrelevant for the particular system in which the
component is reused, system-specific information should be captured in spec-
ifications so that system-specific safety argument could be generated for the
particular system. In our work we focus on developing the notion of safety
contracts that can capture such information and that can be used as a basis for
an approach to systematic reuse of safety element and the accompanying safety
artefacts.

In this thesis we address the following three issues:

• in which way such safety contracts should be specified,

• how they can be derived, and

• in which way they can be utilised for reuse of safety case artefacts.

First, we define safety contracts as a specific type of contracts that deal specif-
ically with component behaviours that are considered safety relevant. More-
over, we characterise such contracts as either strong or weak to support spec-
ification of behaviours that reusable components exhibit in different systems
in which such components could be used. More specifically, strong contracts
capture behaviours that should hold in all systems in which the component can
be used, while the weak contracts capture system-specific behaviours that are
required to hold only in systems that satisfy both all the strong contracts and
the corresponding weak assumptions.

Next, we investigate methods for deriving safety contracts from failure
analyses. Just as hazard analysis is the basis for safety engineering at the sys-
tem level, derivation of contracts and identification of the corresponding as-

1.1 Outline 7

sumptions plays a similar role at the component level [16]. As the basis for the
safety contract derivation we use failure analyses recommended by the safety
standards, e.g., Fault Tree Analysis (FTA) and Failure Mode, Effects and Criti-
cality Analysis (FMECA). Moreover, we use results of Failure Propagation and
Transformation Calculus (FPTC) analysis for contract derivation as it enables
automation of failure analyses such as FTA and FMECA.

Finally, we provide methods for generative reuse of the safety case arte-
facts by utilising the safety contracts. More specifically, since safety contracts
deal with some of the information used in the safety arguments (e.g., failure
behaviour), we use the safety contracts to semi-automatically generate system-
specific safety case argument-fragments. Moreover, we define a safety con-
tracts development process to define the role of safety contracts in the system
lifecycle. We align the proposed process with the ISO 26262 safety process as
a way to fill the gap between reuse and integration of safety elements in the
ISO 26262 safety standard. We use a real-world automotive product-line sce-
nario for demonstration of the process. We utilise safety contracts during the
development of a safety element that is developed out-of-context and reused
together with its accompanying safety artefacts within two construction equip-
ment products that belong to the same product-line.

In this thesis we mainly address the two reuse scenarios where reuse is
performed either during the evolution of a single system or within a family of
products. We do not fully tackle the cross-domain reuse scenario in the thesis as
this scenario requires consideration of compliance of a system and its accom-
panying artefacts according to the different domain-specific safety standards.
Although the approach proposed in this thesis is applicable for cross-domain
reuse, it needs to be extended to consider multiple standard compliance to fully
support cross-domain reuse scenario.

1.1 Outline

This thesis is organised in two parts. The first part summarises the research
as follows: In Chapter 2 we describe our research methodology and the thesis
research goals. We introduce some basic concepts used throughout the thesis
in Chapter 3. In Chapter 4 we present the concrete thesis contributions in
more detail. In Chapter 5 we present related work, and finally, we bring the
conclusions and future work in Chapter 6.

The second part of the thesis consists of a collection of papers. We now
present a brief overview of the included papers.

8 Chapter 1. Introduction and Outline

Paper A (Chapter 7). Strong and Weak Contract Formalism for Thrid-Party
Component Reuse, Irfan Sljivo, Barbara Gallina, Jan Carlson, Hans Hansson.

Abstract. Our aim is to contribute to bridging the gap between the justi-
fied need from industry to reuse third-party components and skepticism of the
safety community in integrating and reusing components developed without
real knowledge of the system context. We have developed a notion of safety
contract that will help to capture safety-related information for supporting the
reuse of software components in and across safety-critical systems. In this pa-
per we present our extension of the contract formalism for specifying strong
and weak assumption/guarantee contracts for out-of-context reusable compo-
nents. We elaborate on notion of satisfaction, including refinement, dominance
and composition check. To show the usage and the expressiveness of our ex-
tended formalism, we specify strong and weak safety contracts related to a
wheel braking system.

Status: Published in Proceedings of the 3rd International Workshop on Soft-
ware Certification (WoSoCer), IEEE, November 2013

My contribution: I was the main contributor of the work under supervision of
the coauthors. My contributions include extension of the contract formalism
for specifying strong and weak assumption/guarantee contracts and the case
study performed on an airplane wheel-braking system example.

Paper B (Chapter 8). Generation of Safety Case Argument-Fragments from
Safety Contracts, Irfan Sljivo, Barbara Gallina, Jan Carlson, Hans Hansson.

Abstract. Composable safety certification envisions reuse of safety case
argument-fragments together with safety-relevant components in order to re-
duce the cost and time needed to achieve certification. The argument-fragments
could cover safety aspects relevant for different contexts in which the compo-
nent can be used. Creating argument-fragments for the out-of-context com-
ponents is time-consuming and currently no satisfying approach exists to facil-
itate their automatic generation. In this paper we propose an approach based on
(semi-)automatic generation of argument-fragments from assumption/guarantee
safety contracts. We use the contracts to capture the safety claims related to
the component, including supporting evidence. We provide an overview of the
argument-fragment architecture and rules for automatic generation, including

1.1 Outline 9

their application in an illustrative example. The proposed approach enables
safety engineers to focus on increasing the confidence in the knowledge about
the system, rather than documenting a safety case.

Status: Published in Proceedings of the 33rd International Conference on Com-
puter Safety, Reliability, and Security (SafeComp), Springer-Verlag, Septem-
ber 2014

My contribution: I was the main contributor of the work under supervision of
the coauthors. My contributions include extension of the component and safety
contract meta-model, an architecture of the argument-fragment to be generated,
rules for generation of the argument-fragments and an application of the pro-
posed method on a fuel-level estimation system.

Paper C (Chapter 9). A Method to Generate Reusable Safety Case Frag-
ments from Compositional Safety Analysis, Irfan Sljivo, Barbara Gallina, Jan
Carlson, Hans Hansson, Stefano Puri.

Abstract. Safety-critical systems usually need to be accompanied by an
explained and well-founded body of evidence to show that the system is ac-
ceptably safe. While reuse within such systems covers mainly code, reusing
accompanying safety artefacts is limited due to a wide range of context depen-
dencies that need to be satisfied for safety evidence to be valid in a different
context. Currently the most commonly used approaches that facilitate reuse
lack support for reuse of safety artefacts. To facilitate reuse of safety artefacts
we provide a method to generate reusable safety case argument-fragments that
include supporting evidence related to safety analysis. The generation is per-
formed from safety contracts that capture safety-relevant behaviour of compo-
nents within assumption/guarantee pairs backed up by the supporting evidence.
We illustrate our approach on an airplane wheel braking system example.

Status: Published in Proceedings of the 14th International Conference on Soft-
ware Reuse (ICSR 2015), Springer-Verlag, January 2015

My contribution: I was the main contributor of the work under supervision
of B. Gallina, J. Carlson and H. Hansson. My contributions include deriva-
tion/translation of safety contracts from the results of the FPTC failure logic
analysis, an extension of the method for generation of argument-fragments to
provide better support for reuse of evidence and an application of the approach

10 Chapter 1. Introduction and Outline

on an airplane wheel-braking system example. The contributions of Stefano
Puri include support for both modelling of the software architecture of the ex-
ample and performing FPTC analysis in CHESS-toolset.

Paper D (Chapter 10). Deriving Safety Contracts to Support Architecture De-
sign of Safety Critical Systems, Irfan Sljivo, Omar Jaradat, Iain Bate, Patrick
Graydon.

Abstract. The use of contracts to enhance the maintainability of safety-
critical systems has received a significant amount of research effort in recent
years. However some key issues have been identified: the difficulty in dealing
with the wide range of properties of systems and deriving contracts to capture
those properties; and the challenge of dealing with the inevitable incomplete-
ness of the contracts. In this paper, we explore how the derivation of contracts
can be performed based on the results of failure analysis. We use the concept
of safety kernels to alleviate the issues. Firstly the safety kernel means that
the properties of the system that we may wish to manage can be dealt with at
a more abstract level, reducing the challenges of representation and complete-
ness of the “safety” contracts. Secondly the set of safety contracts is reduced
so it is possible to reason about their satisfaction in a more rigorous manner.

Status: Published in Proceedings of the 16th IEEE International Symposium
on High Assurance Systems Engineering (HASE 2015), IEEE, January 2015

My contribution: The first three authors were the main drivers of the work. My
contributions include a method for derivation of safety contracts from Fault
Tree Analysis and a method for completeness check of the contracts with re-
spect to the fault trees. The contributions of Omar Jaradat include building of
the safety case argument before and after introducing a change to the system,
as well as capturing the connection between the derived safety contracts and
goals in the safety case arguments to facilitate traceability mechanism between
the system and its safety case.

Paper E (Chapter 11). Using Safety Contracts to Guide the Integration of
Reusable Safety Elements within ISO 26262, Irfan Sljivo, Barbara Gallina, Jan
Carlson, Hans Hansson.

Abstract. Safety-critical systems usually need to be compliant with a domain-
specific safety standard, which in turn requires an explained and well-founded

1.1 Outline 11

body of evidence to show that the system is acceptably safe. To reduce the cost
and time needed to achieve the standard compliance, reuse of safety elements is
not sufficient without the reuse of the accompanying evidence. The difficulties
with reuse of safety elements within safety-critical systems lie mainly in the
nature of safety being a system property and the lack of support for systematic
reuse of safety elements and their accompanying artefacts. While safety stan-
dards provide requirements and recommendations on what should be subject
to reuse, guidelines on how to perform reuse are typically lacking.
We have developed a concept of strong and weak safety contracts that can be
used to facilitate systematic reuse of safety elements and their accompanying
artefacts. In this report we define a safety contracts development process and
provide guidelines to bridge the gap between reuse and integration of reusable
safety elements in the ISO 26262 safety standard. We use a real-world case for
demonstration of the process, in which a safety element is developed out-of-
context and reused together with its accompanying safety artefacts within two
products of a construction equipment product-line.

Status: Technical report, ISSN 1404-3041 ISRN MDH-MRTC-300/2015-1-
SE, Mälardalen Real-Time Research Centre, Mälardalen University, Sweden,
March 2015

My contribution: I was the main contributor of the work under supervision
of the coauthors. My contributions include the safety contracts development
process and its application on a real-world case.

Chapter 2

Research Description

In this chapter we first describe the used research methodology and then present
the research goal of the thesis, together with the corresponding research ques-
tions that have guided the work towards the specified goal.

2.1 Research Methodology

The goal of the research conducted in this thesis is to construct new meth-
ods, techniques and theoretical foundations based on the existing knowledge,
in order to contribute to solving real-world problems. Such research, where
solutions are designed and developed rather than discovered, is referred to as
constructive research [17]. The nature of constructive research is in problem
solving of real-world problems by providing solutions in form of new con-
structions that have both theoretical and practical contributions [18]. While
the results of such research have both practical and theoretical relevance, the
emphasis is placed on the theoretical relevance of the newly created construct.

The generic cycle of research within computing can be described in four
high-level steps [19]. Figure 2.1 presents an overview of our adaptation of
the four research steps. We first formulate the problem based on the current
state-of-practice and state-of-the-art. After that we identify the gap in a current
knowledge and propose a theoretical solution to bridge the gap. Next, we im-
plement a practical solution based on the new theoretical constructs. Finally,
we evaluate the implemented solution against the initially formulated problem.

Since the constructive research process [18] deals with both theoretical and

13

14 Chapter 2. Research Description

A.	 Problem	 Formula.on	
•  What	 do	 we	 want	 to	

achieve?	
•  Is	 the	 problem	 relevant	 both	

prac6cally	 and	 theore6cally?	
•  What	 is	 the	 current	 state	 of	

prac6ce	 and	 state	 of	 the	 art?	
	
	

B.	 Propose	 a	 Solu.on	
•  What	 exis6ng	 knowledge	 can	

we	 use	 to	 solve	 the	 problem?	
•  Which	 is	 the	 gap	 in	 the	 current	

knowledge?	
•  How	 can	 we	 bridge	 the	 gap?	
•  Which	 is	 the	 theore6cal	

solu6on?	

C.	 Implement	 the	 Solu.on	
•  How	 can	 we	 construct	 a	

prac6cal	 solu6on	 from	 the	
theore6cal	 construct?	

	

D.	 Evalua.on	
•  Does	 the	 newly	 developed	

construct	 solve	 the	 problem?	
•  Is	 the	 proposed	 solu6on	

be?er	 than	 other	 solu6ons	 (if	
any)?	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

Figure 2.1: The cycle of the research process

practical problems, our research methodology consists of two nested instances
of the generic research cycle, one cycle for the theoretical and one for the prac-
tical/engineering problem (Figure 2.2). The constructive research process starts
with identifying a practically relevant real-world problem which at the same
time has potential for theoretical contribution. The constructive work does not
start until sufficient understanding of the research problem and the domain is
obtained. The process of construction itself is where the main knowledge pro-
duction usually happens [17]. In the second step the real-world problem is
simplified and transferred into the research domain where we identify means
for collecting data and establishing grounds for the constructive work. The
second step starts the research/theoretical cycle where the research problem is
refined into research questions. The next step includes the constructive work
where a concrete research product is constructed as a solution to the research
problem. In the subsequent steps of the research cycle, the proposed solution is
implemented and evaluated against the research problem. Upon completion of
the theoretical work, which is usually performed in several iterations for each
of the research subgoals/questions, the practical cycle of the process continues
to integrate the solutions to the research problem into a practical solution for

2.2 Problem Statement and Research Goals 15

Real-
world

problem

Research
problem

Propose a
solution

Implement
the

solution

Evaluate
the

solution

Propose an
integrated

solution

Implement
the

integrated
solution

Evaluate
the

integrated
solution

Publish
papers

Practical/
Industrial domain

Theoretical/
Academic domain

Iterated for each research question

State-of-
practice

State-of-
the-art

Refined
research
question

Figure 2.2: Overview of our research methodology

the real-world problem. In the next step the practical solution is implemented
and finally, the practical solution is evaluated against the real-world problem.

Software engineering research often relies on case study methodology for
both exploratory and evaluation purposes. Case study is an empirical method
for investigating a contemporary phenomenon in its real-world context [20].
Exploratory case studies are usually conducted prior to the constructive work to
gain deeper understanding of the research problem and the domain [17]. Upon
development of new constructs, case studies can be used to evaluate a newly
developed method or technique in its real-world setting. In some iterations of
our research cycle we use case studies to evaluate the newly proposed methods.

2.2 Problem Statement and Research Goals
As mentioned in Section 1, safety-critical systems industries have problem
with high production costs and the time needed to achieve safety certifica-
tion for software-intensive systems. One way of addressing this issue is by
enabling reuse of not only software components, but also the accompanying
certification-relevant artefacts. The overall goal of the thesis is:

to facilitate systematic reuse of certification-relevant artefacts, i.e., safety case
argument-fragments and the supporting evidence, related to the software com-
ponents being reused.

The certification-relevant artefacts include safety argument-fragments and
the supporting evidence used in those arguments to increase confidence in
safety-relevant properties captured by the safety contracts, as mentioned in
Section 1. Just as the components need to be designed for reuse, so do the

16 Chapter 2. Research Description

contracts as well. To achieve the overall goal we first establish a contract for-
malism to define how contracts should be specified to provide support for struc-
tured reuse of the captured safety-relevant properties.

Research question 1
How should safety contracts for software components be specified in order

to facilitate systematic reuse of certification-relevant artefacts?

Safety-critical systems are characterised by a wide-range of properties on
which the guaranteed safety behaviour of components depends, hence it is chal-
lenging to derive contracts with a sufficiently complete set of assumptions on
the environment under which the contract guarantees hold. While many works
deal with contract formalisms and how the contracts should look like, the issue
of their derivation has not been sufficiently addressed. Just as failure analysis
is the basis for safety engineering at system level, derivation of safety contracts
and the corresponding contract assumption is the basis for safety engineering
at component level. In our research we investigate how different failure analy-
sis can be used to derive the safety contracts.

Research question 2
How can valid component safety contracts be derived from the results of

different types of failure analyses to support systematic reuse of certification-
relevant artefacts?

Safety is defined as an emergent property of a system, which means that we
can only identify what is safety relevant for a particular system once we per-
form hazard analysis in the context of that system. Since reusable components
are usually developed out-of-context of the system they are being reused in, it
is difficult to reuse safety-relevant information with such components since we
cannot know out-of-context what is safety-relevant for a particular system. In
such cases, we can only speculate on what can be safety-relevant and include
the information that can be potentially safety-relevant for the systems in which
the component can be used. Since we use safety contracts to capture some of
this information and specify the corresponding system dependencies in form
of assumptions, we can use the contracts to identify the information relevant
for a particular context. While the safety contracts capture some of this infor-
mation (e.g., failure behaviour) in a more rigorous manner, the corresponding
safety arguments present this information in a comprehensible way. The fact
that both the safety argument about a component and the component safety

2.2 Problem Statement and Research Goals 17

contracts deal with the same information makes the contracts an important aid
in facilitating reuse of the argument-fragments and the supporting evidence.
Moreover, as mentioned in Section 1, standards typically lack support for sys-
tematic reuse, which means that guidelines should be provided on how to use
the safety contracts to perform reuse of the certification-relevant artefacts.

Research question 3
How can the component safety contracts be used to facilitate systematic

reuse of the argument-fragments and supporting evidence?

Research questions on achieving better component interface descriptions in
form of context-dependent specifications as well as reuse of safety case arte-
facts have been discussed in earlier research. To our knowledge, the originality
of our research questions lays in combining the contractual specification of the
component interfaces with reuse of safety case artefacts. More specifically, we
focus on the context-dependent contractual specifications for reusable safety-
relevant components and their derivation from failure analyses. We use such
specifications to achieve generative reuse of safety case artefacts.

Chapter 3

Background

In this chapter we present an overview of safety-critical systems and their de-
velopment. More specifically, we provide safety terminology, a classical sys-
tem engineering safety process and a brief overview of safety standards. More-
over we provide essential information regarding representation of safety cases
and Fault Tree Analysis, followed by a brief overview of reuse technologies
used within safety-critical systems, in particular component-based software en-
gineering, product line engineering and generative reuse. Finally, we provide
an introduction to the notion of contracts and detail a contract theory that can
be utilised for verification within safety-critical systems development, but also
as means to support independent development and reuse within such systems.

3.1 Safety-Critical Systems

Safety is usually defined as “freedom from unacceptable risk” [21], where
risk is a “combination of the probability of occurrence of harm and the sever-
ity of that harm” [21]. Since it is not practically feasible or possible to achieve
absolutely safe or risk-free systems, acceptable levels of risk need to be estab-
lished. Since risk itself is not accurately measurable, risk assessment is used
to estimate levels of risk in order to “avoid paralysis resulting from waiting for
definitive data, we assume we have greater knowledge than scientists actually
possess and make decisions based on those assumptions” [22].

When dealing with risk, we distinguish between tolerable and residual
risks. Tolerable risk is defined as “risk which is accepted in a given con-

19

20 Chapter 3. Background

text based on the current values of society” [21]. While the residual risk is
defined as “risk remaining after protective measures have been taken” [21].
The protective measures are implemented by safety functions used to achieve
or maintain a safe state in case a hazard occurs, i.e., to eliminate the hazards or
to reduce the risk associated with the hazards to tolerable levels. A hazard is
sometimes defined as a “potential source of harm” [21], but this definition is too
generic, as almost any system state can be potential source of harm. Instead,
a more concrete definition of a hazard is proposed, which defines a hazard
as “a system state or set of conditions that, together with a set of worst-case
environmental conditions, will lead to an accident” [23].

As can be noted, the definition of a hazard does not relate the hazard di-
rectly with a failure. In contrast to a hazard, a failure is defined as “termi-
nation of the ability of a functional unit to provide a required function” [21].
Hence there is a clear distinction between hazards and failures, since failures
can occur without causing a hazard, and hazards can occur without any failures
contributing to them. This is the crucial difference between safety and reliabil-
ity [24], while safety deals with hazards, reliability deals with failures and is
defined as “continuity of correct service” [25].

A system is composed of a set of interacting functional units used to imple-
ment system services. The service delivered by the system is a set of external
states of the system as perceived by its user [25]. A service failure is caused
by an error, which is an external state of the service that deviates from the set
of correct external states of the service [25]. A cause of an error is called a
fault. A fault is an event that manifest itself in form of an error [25]. Presence
of an error in a system does not necessarily mean that the system will exhibit
a failure. For example, a functional unit can be erroneous, but as long as that
error is not part of the external state of the system, the system service will
not exhibit a failure. In fact, there can be many errors in a system without it
causing a failure, e.g., internal error checking can stop errors from propagating
outside of the boundaries of the system. A failure occurs only if an effect of
the error becomes observable outside of the boundaries of the system. An error
that results in a failure can manifest itself in different ways. The way in which
a functional unit could fail is called a failure mode [25].

3.1.1 Safety Standards

Safety-critical systems usually need to follow a set of specific rules and regu-
lations that are mandated to assure that the residual risk has been reduced to
acceptable levels. The rules and regulations, as well as the definition of the

3.1 Safety-Critical Systems 21

acceptable levels of residual risk usually differ from one safety-critical domain
to another. For example, the acceptable residual risks for a car and a plane
crashing are not the same, hence the acceptable levels of residual risk differ be-
tween for instance avionic, automotive, railways and nuclear industries. This
lead to differences in the rules and regulations to which systems within dif-
ferent industries need to be developed. These differences have resulted in a
set of a domain-specific safety standard that provide recommendations and re-
quirements on how safety-critical systems within specific domains should be
developed.

Although the standards differ from each other, they share a common basis
in the systems safety engineering process which is used to reduce or eliminate
residual risk to acceptable levels by identifying and eliminating or controlling
hazards. Such a process suggests that instead of safety being built into the sys-
tem after system development, safety should rather be designed into the system
from the beginning [26]. A system is defined as “a combination, with defined
boundaries, of elements that are used together in a defined operating environ-
ment to perform a given task or achieve a specific purpose. The elements may
include personnel, procedures, materials, tools, equipment, facilities, services
and/or software as appropriate.” [1]. Safety is considered a system property,
as it can only be established in the context of a particular system. The safety
process usually starts with understanding the system and its context.

The basis for safety engineering at the system level is hazard analysis and
risk assessment [27], which usually follows after gaining sufficient knowledge
of the system and its context. In this step, hazards are identified and associated
with a level of risk. The acceptable levels of risk are usually established either
based on a scale provided by the standard or by applying known risk acceptance
principles such as As Low As Reasonable Practicable (ALARP). According to
this principle, a risk is ALARP “when it has been demonstrated that the cost of
any further risk reduction, where the cost includes the loss of defence capability
as well as financial or other resource costs, is grossly disproportionate to the
benefit obtained from that risk reduction” [1].

The next step focuses on developing means for reducing or eliminating the
risks associated with the hazards by specifying safety requirements and devel-
oping the corresponding safety functions. A safety requirement is defined as
“a requirement that, once met, contributes to the safety of the system or the
evidence of the safety of the system” [1], while a requirement is defined as
an identifiable element of a function specification that can be validated and
against which an implementation can be verified [28].

A safety case is usually required in order to demonstrate that the system is

22 Chapter 3. Background

acceptably safe to operate in a given context. The safety case is composed of
three main elements: safety requirements, safety argument and evidence [4].
The role of the safety argument is to clearly communicate the relationship be-
tween the requirements and the supporting evidence. The verification and val-
idation activities are performed in order to collect the evidence that the system
is acceptably safe in the given context. Validation is defined as “the deter-
mination that the requirements for a product are sufficiently correct and com-
plete” [28], while verification is defined as “the evaluation of an implementa-
tion of requirements to determine that they have been met” [28].

Upon development of the system and successful assurance that it is ac-
ceptably safe, the safety process usually continues during the system operation
with periodic audits and performance monitoring to ensure that the system is
and remains acceptably safe.

Although conceptually there exists a common high-level systems safety
engineering process, there are still different ways in which this process can be
detailed and executed. The safety standards provide more detailed guidance
for applying such a process in their particular domains. In the reminder of the
section we briefly summarise some of the standards referred to in this thesis.

Concept

Overall Scope Definition

Hazard and Risk Analysis

Overall Safety
Requirements

Overall Safety
Requirements Allocations

E/E/PE System Safety
Requirements Specification

E/E/PE System Design
Requirements Specification

E/E/PE System Design &
Development

E/E/PE System Integration

E/E/PE System Safety
Validation

E/E/PE System
Safety Validation

Planning E/E/PE System Installation,
Commissioning, Operation
& Maintenance Procedures

Overall Installation and
Commissioning

Overall Safety Validation

Overall Operation,
Maintenance and Repair

Decommissioning or
Disposal

Overall Planning Other Risk Reduction
Measures

Specification and
Realisation

Overall Installation
and Commissioning

Planning

Overall Safety
Validation
Planning

Overall Operation
and Maintenance

Planning

E/E/PE System Safety Lifecycle

Overall Modification and
Retrofit

Figure 3.1: Overall Safety Lifecycle [29]

3.1 Safety-Critical Systems 23

Generic Standard: IEC 61508

IEC 61508 is a generic standard for achieving safety of electrical/electronic/
programmable electronic systems [29]. IEC 61508 is published by the Interna-
tional Electrotechnical Commission (IEC) as a successor of its draft standard
IEC 1508. The standard recognises that safety cannot be addressed retrospec-
tively and that there is no absolute safety. Moreover the standard does not only
address the technical aspects but it also includes activities such as planning and
documentation as well as the assessment of all activities. This means that the
standard does not only deal with system development but it encompasses the
entire lifecycle of a system, from development, through maintenance to decom-
missioning. IEC 61508 is composed in such a way that it can either be applied
directly or it can be further tailored for a specific domain. An overall safety
lifecycle as indicated by this standard is shown in Figure 3.1. The presented
lifecycle does not explicitly include verification activities, but they are required
after each phase of the system development.

Railways Industry Standards: CENELEC EN 5012x

This group of standards for the railways industry represents the European Rail-
ways Standards required by law, and is composed of EN 50126 [30], EN
50128 [31] and EN 50129 [32]. These standards have been derived from the
generic IEC 61508 standard. EN 50126 addresses the system issues and fo-
cuses on the specification and demonstration of reliability, availability, main-
tainability and safety (RAMS). EN 50128 provides guidelines and recommen-
dations for which methods need to be used in order to provide software that
meets the safety integrity demands placed upon it. EN 50129 addresses the
approval process for individual systems and provides guidelines for demon-
strating the safety of electronic systems and constructing the safety case for
signalling railway application. EN 50129 explicitly requires a safety case to be
provided and even defines its content.

Automotive Industry Standard: ISO 26262

Electronic and electrical systems (E/E) are more and more used to implement
critical functions within road vehicles. In case of their malfunctioning be-
haviour many participants in traffic could be exposed to safety risk. The au-
tomotive industry safety standard ISO 26262 [33] has been developed as a
guidance for how to provide assurance that any unreasonable residual risks

24 Chapter 3. Background

due to the malfunctioning of the E/E systems have been avoided. The stan-
dard is derived from the generic IEC 61508 standard and is composed of ten
parts where the last part of the standard is dedicated to guidance on applying
the standard. ISO 26262 provides requirements and recommendation on which
activities should be performed as well as which work products should be pro-
vided for each of the activities covered by the standard. Moreover, it explicitly
requires a safety case to be provided by progressively compiling it from the
generated work products. The guidelines provided with the standard recom-
mend provision of a safety argument within the safety case as a way to connect
the generated work products with the safety claims about the system.

Civil Airspace Standards: DO 178(B/C), ARP 4754(A) and ARP 4761

The US Radio Technical Commission for Aeronautics (RTCA) and the Eu-
ropean Organisation for Civil Aviation Equipment (EUROCAE) decided to
develop a common set of guidelines for the development and documentation
of software practices that would support the development of software-based
airborne systems and equipment. The joint document was published as ED-
12/DO-178 “Software Considerations in Airborne Systems and Equipment Cer-
tification” in 1982, followed by two revisions, revision A in 1985 and the sec-
ond revision B in 1992 [34]. While RTCA publishes the document as DO-
178(A/B), EUROCAE publishes the document as ED-12(A/B).

DO-178B addressed only the software practices and it requires an associ-
ated document for addressing the system-level activities. ED-79/ARP-4754 [28]
“Certification Considerations for Highly-Integrated or Complex Aircraft Sys-
tem” was published in 1995 by SAE (Society of Automotive Engineers) and
EUROCAE to address the total life cycle of systems that implement the aircraft-
level functions. Since neither of the documents addressed the safety assess-
ment methodologies, EUROCAE/SAE published a document ED-135/ARP-
4761 [35] “Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment” specifically to address the
methodologies for safety assessment processes.

The successor of DO 178B was made available in 2012. The document
was published jointly by RTCA/EUROCAE as ED-12C/DO-178C [36] “Soft-
ware Considerations in Airborne Systems and Equipment Certification” and is
intended to replace the DO 178B standard. The new revision includes technol-
ogy/method specific guidance with respect to model-based development and
verification, object-oriented technologies, and formal methods. The revision A
of the standard ARP 4754 related to the system-level activities was published

3.1 Safety-Critical Systems 25

in 2010 with updates and extensions to the guidelines for the processes used to
develop civil aircraft systems.

3.1.2 Safety Case Representation
As mentioned in Chapter 1, a safety case is composed of all the work products
produced during the development of a safety-critical system, which includes
a safety argument that connects the safety requirements and the evidence sup-
porting and justifying those requirements. While the safety case represents the
true reasoning as to why the system is acceptably safe, the safety argument is a
representation of that reasoning aimed at communicating the actual reasoning
as faithfully and clearly as possible [37]. Assurance case is a more generic term
for cases where an argument is used to connect the requirements with the sup-
porting evidence. An assurance case is defined as “a collection of auditable
claims, arguments, and evidence created to support the contention that a de-
fined system/service will satisfy the particular requirements.” [38]. A claim is
defined as “a proposition being asserted by the author or utterer that is a true
or false statement” [38], while an argument is defined as a body of informa-
tion presented with the intention to establish one or more claims through the
presentation of related supporting claims, evidence, and contextual informa-
tion [38].

The argument can be represented in different ways ranging from free text
to more formal notations. The argument captures the rationale behind the pro-
duced artefacts and can take different form in different industries. It is referred
to as a safety analyses report or safety case document/report where the out-
comes of the safety process are summarised in natural language, while some
use tabular structures to capture the rationale in structured form, others have
started using graphical notations as they facilitate a more clear communication
of the rationale and support hierarchical structuring of the rationale.

Free text has been the most typically used way of communicating the safety
arguments within safety cases. While the free text might be more appropriate to
use for simple cases, its limitations when used for more complex cases result in
unclear and poorly structured natural language, which results in an ambiguous
and unclear argument [4]. To overcome some of the limitations of creating
safety arguments in free text, different approaches have been developed based
on techniques such as tabular structures and graphical argumentation notations.

Tabular structures can be used to structure the safety arguments by repre-
senting the claims, argument and the evidence in different columns [1]. While
the claim represents the overall objective of the argument (e.g., implementa-

26 Chapter 3. Background

tion is fault-free), the argument column represents a brief description of the
type of the argument used (e.g., formal proof). The evidence column contains
references to evidence or assumptions in form of assertions (e.g., proof tool
is correct) that supports the stated argument description. The difficulty with
tabular approaches is that they do not offer sufficient support for hierarchical
structuring of the arguments, when used for complex arguments “clarity and
the flow of the argument can be lost” [4].

To overcome the limitations of earlier approaches, graphical argumentation
notations have been proposed to facilitate communicating a clear and structured
argument. Currently there are two main approaches to representing the safety
arguments graphically: Goal Structuring Notation (GSN) [4]; and Claims, Ar-
guments and Evidence (CAE) [39]. Both approaches use similar elements for
structuring the argument. In order to contribute to standardisation of the ar-
guing techniques, a Structured Assurance Case Metamodel (SACM) [38] cap-
turing the argument elements is introduced by the Object Management Group
(OMG). The goal of the introduced metamodel is to allow for interchange of
the structured arguments between different projects and tools by providing a
standardised format for encoding safety arguments. We use GSN in our work
to represent the safety arguments. In the reminder of the section we provide
basic information about GSN.

Goal Structuring Notation

The Goal Structuring Notation (GSN) [40] is a graphical argumentation nota-
tion that can be used to record and present the main elements of any argument.
The principal elements of GSN are shown in Figure 3.2. The main purpose of
GSN is to show how goals (claims about the system), are broken down into
subgoals and supported by solutions (the gathered evidence used to back up
the claims). The rationale for decomposing the goals into subgoals is repre-
sented by strategies, while the clarification of the goals (their scope and do-
main) is done in the context elements. Justifications as to why a certain goal
or strategy is considered appropriate or acceptable to use is done in the jus-
tification element. Validity of all the aspects that a certain goal or strategy
depends on is not always argued over in the argument. Those aspects whose
validity is not established in the argument but just assumed, are captured within
the assumption element in form of assumed statements that should be checked
outside of the argument. The argument elements can be connected with one of
the two relationships: supportedBy and inContextOf. The supportedBy rela-
tionship is used to connect goals and strategies with other subgoals, strategies

3.1 Safety-Critical Systems 27

Goal ID
Goal statement (e.g.,

system is acceptably safe)

Solution ID
Solution

statement

Context ID
Context statement (e.g., acceptably
safe in this context means no single

points of failure)

inContextOf

supportedBy

Away Goal
Goal statement supported

by the referred module

Module reference

Strategy ID
Strategy statement (e.g., argument

over all identified hazards)

Strategy ID
Strategy statement (e.g., argument

over all identified hazards)

Assumption ID
Assumption statement
(e,g., subsystems are

independent) A

Justification ID
Justification statement (e,g.,
this approach addresses all

failure mechanisms) J

Choice

Undeveloped Element
(Requires further support)

Uninstantiated Element
(Abstract entity that
needs to be replaced)

Optionality

Multiplicity

n

Undeveloped
and

Uninstantiated
Element

Figure 3.2: Overview of the GSN elements

and solutions, while the inContextOf relationship is used to connect the goals
and strategies with supporting elements such as contexts, justifications and as-
sumptions.

Since some arguments are developed using similar rationale in form of
goals and strategies for decomposing those goals, reusable argument patterns
are created by generalising the details of a specific argument. The main func-
tionality of GSN has been extended to support representation of patterns of
reusable reasoning [41]. To represent such argument patterns, GSN has been
extended to support structural and entity abstraction [40]. The bottom row in
Figure 3.2 presents some of the GSN extension elements. For structural ab-
straction the supportedBy relationship is extended by introducing multiplicity
and optionality relationships. The multiplicity relationship indicates zero to
many relationship between two elements, where n represents the cardinality of
the connection. The optionality relationship indicates a zero or one cardinality
connection between two elements.

To support entity abstraction, basic elements can be combined with unin-
stantiated and/or undeveloped elements. An uninstantiated element repre-
sents an abstract entity that is supposed to be replaced by a concrete element in
the future. An undeveloped entity represents a concrete element that was not
fully developed (e.g., not all subgoals are defined) and requires further devel-
opment. The combination of the two indicates an entity that both needs to be
replaced by a concrete element and needs to be further developed.

As one of the means to support modular extension to GSN, away goals
are introduced to prevent repetition of parts of arguments across the different
modules in which the argument can be partitioned [40]. Instead of further
developing a certain goal, if that goal is already developed in another part of

28 Chapter 3. Background

G1
Press is acceptably safe to

operate within Whatford Plant

C1
Press specification

C2
Press operation

C3
Whatford Plant

S2
Argument of compliance with
all applicable safety standards

and regulations

S2
Argument of compliance with
all applicable safety standards

and regulations

C5
All applicable safety

standards and regulations

C4
All identified

operating hazards

G2
Hazard of ’Operator Hands
Trapped by Press Plunger’

sufficiently mitigated

G3
Hazard of ’Operator Upper

Body trapped by Press
Plunger’ sufficiently mitigated

G6
Press compliant with UK

enactment of EU
Machinery Directive

G5
Press compliant with UK HSE
Provision and Use of Work

Equipment Regulations

G7
PES element of press design

compliant with IEC1508

Sn1
FTA

analysis

Sn2
Formal

verification

Sn4
Audit report

Sn3
SIL3

certificate

Sn5
Compliance

sheet

A1
All credible hazards
have been identified

A S1
Argument by addressing all
identified operating hazards

S1
Argument by addressing all
identified operating hazards

G4
Hazard of ’Operator Hands

Caught in Press Drive Machniery’
sufficiently mitigated

Figure 3.3: An argument example represented using GSN (adapted from [40])

the argument, an away goal can be used to point to the original element where
the goal has been developed.

An example of the application of the core GSN is shown in Figure 3.3.
The example presents a safety argument via GSN for a hypothetical factory
that contains a metal press. The press has a single operator who inserts metal
sheets, the machine presses the sheets to make car body parts and then the
operator removes the parts from the press. The top-level goal G1 argues that
the press is acceptably safe to operate in the particular factory. The goal G1
is clarified with three context elements to explain different terms used in the
goal statement. The goal is developed using two distinct strategies S1 and S2.
While the S1 strategy further decomposes the goal to argue over each iden-
tified hazard, the S2 strategy addresses compliance with different applicable
standards. The assumption A1 assumes that all credible hazards have been
identified, which means that this statement will not be addressed in the argu-
ment. The strategies are further decomposed into corresponding subgoals that
are then supported by different evidence in form of solutions. The goal G4 is
left undeveloped.

3.1.3 Fault Tree Analysis
Fault Tree Analysis (FTA) is one of the most commonly used techniques for
preliminary system safety assessment where the design is examined to estab-
lish whether it achieves the allocated safety requirements. Moreover, FTA is

3.1 Safety-Critical Systems 29

Intermediate
Event

Basic
Event

Undeveloped
Event

House
Event

Conditional
Event

AND-Gate OR-Gate
Priority

AND-Gate
Transfer IN and

OUT symbols
Inhibit
Gate

IN OUT

in

out

...

Figure 3.4: Main elements of the FTA graphical notation

often used to derive safety requirements [42]. FTA is a deductive failure anal-
ysis technique which focuses a single undesired event and methodologically
determines the causes of that event [35]. It is a “top-down” approach used to
construct a graphical representation of a model for an undesired event at the top
of a hierarchical structure. The model represents a combination of basic events
(modelled as leaves in the tree structure) that can lead to the top-level event.
The analysis of the model can be done either qualitatively – by calculating cut
sets, i.e., sets of basic events whose simultaneous occurrence will result in the
top event, or qualitatively – where each basic event in the structure is assigned
with a probability that is used to calculate the probability of the top-level event.

The main symbols of FTA are shown in Figure 3.4. The main symbols can
be categorised as either logic gates or events, with an exception for the transfer
symbols. The FTA terminology does not distinguish between faults, errors and
failures, but all of those are represented as events in the tree. The logic gate
symbols are used to connect different branches of the tree. Although there
are several variations and extensions of the FTA graphical notation, we only
describe the following fundamental symbols [35, 43]:

• Intermediate Event: An event that occurs because of one or more an-
tecedent causes through logic gates

• Basic Event: A basic initiating event requiring no further development

• Undeveloped Event: An event which is not further developed either
because it is of insufficient consequence or because information is un-
available

• House Event: An event which is external to the system under analysis,
it will or will not happen (probability of occurrence 1 or 0)

30 Chapter 3. Background

Reactor explosion

Concetration of SO2
too high in reactor

Pressure in reactor
too high

Concentration
SO2 high in reactant

stream

Relief valve
PR2 fails to

open

Pressure in
reactant stream 1

too high

No flow
through outlet

stream

Temperature of
reactor too high

A

Mass flow rate
SO2 high

Figure 3.5: An example of a fault tree for a Chemical Processing System [44]

• Conditional Event: Specific conditions or restrictions that apply to any
logic gate (used primarily with Priority AND-Gate and Inhibit Gate)

• AND-Gate: Output event occurs if all of the input events occur

• OR-Gate: Output event occurs if at least one of the input events occur

• Priority AND-Gate: Output event occurs if all of the input events occur
in a specific sequence (the sequence is represented by a Conditioning
Event drawn to the right of the gate)

• Inhibit Gate: Output event occurs if the (single) input event occurs in
the presence of an enabling condition (the enabling condition is repre-
sented by a Conditioning Event drawn to the right of the gate)

• Transfer In: Indicates that the tree is developed further at the occurrence
of the corresponding Transfer Out (e.g., on another page)

• Transfer Out: Indicates that this portion of the three must be attached
at the corresponding Transfer In

An example of a fault tree is shown in Figure 3.5. The fault tree is used
for analysing a Chemical Processing System [44] where the top-level event is
reactor explosion that can be caused by either of the three related intermediate
events. The pressure in reactor too high event can occur only if all three events
related to it occur. While Relief valve PR2 fails to open is a basic event, the

3.2 Reuse Technologies 31

other leaf intermediate events are not developed further in this example. The
event temperature of reactor too high has a transfer-in symbol indicating that
it is further developed elsewhere in the original document.

3.2 Reuse Technologies
Software reuse has been practiced since the first program was written. The
paradigm for basing software development on reusable components dates back
to the 1960s and Mcllroy’s work [45]. Software reuse is defined as “the use of
existing software or software knowledge to construct new software” [15]. Its
main purpose is to improve both the quality of software and the productivity
in creating the software. Artefacts subject to reuse can be either the software
itself or knowledge related to the software. Such artefacts are referred to as
reusable assets. Reusability is defined as “a property of a software asset that
indicates its probability of reuse” [15].

As the programs got larger and more complex, means for systematic ap-
proaches to reuse had to be developed. The approaches to reuse are built on the
following assumptions [46]:

• All experience can be reused;

• Reuse typically requires some modifications of objects being reused;

• Analysis is necessary to determine when, and if, reuse is appropriate.

• Reuse must be integrated into the specific software development;

The first assumption relates to the limitation of the traditional code-based
software reuse and emphasises that all knowledge related to the code, includ-
ing documents, processes, and all other software-related experiences should be
subject to reuse together with the code. The second assumption relates to the
fact that reuse “as is” is not likely. The reuse approaches need to consider that
the reusable asset is likely to be modified once reused. The third assumption
deals with identifying when is reuse appropriate and when does it pay off to
reuse an asset. Some experiences indicate that in order to profit from reuse
the software package needs to be reused at least three times [47]. The forth
assumption implies that in order to achieve reuse, the reusable assets should be
developed with reuse in mind, i.e., reuse methods and practices should be inte-
grated in the software development process. We now briefly summarise some
of the major reuse approaches evolved over years based on these assumptions.

32 Chapter 3. Background

3.2.1 Component-based Software Engineering

Building upon the reuse assumptions, the component-based development (CBD)
approach emerged. The main idea of CBD is quick assembly of software sys-
tems from components already developed and prepared for integration. Despite
many advantages [48], there are some limitations to the approach that have af-
fected both customers and suppliers, who expected much more from CBD [49].
To address the limitations, a systematic approach to CBD that focuses on the
component aspect of software development has been established as a new sub
discipline of software engineering in form of Component-based Software En-
gineering (CBSE). The main goals of CBSE are to support the development
of systems as composition of components, the development of reusable com-
ponents, and to ease system maintenance and upgrades by simple component
customisation and replacement [49]. CBSE inherently supports most of the
reuse assumptions, although the assumption related to the analysis is not fully
addressed within component-based technologies but is usually built into the
development process model.

The central notion of CBSE is a component. Although many definitions of
a component exist, the most widely used states that a component is “a unit
of composition with contractually specified interfaces and explicit context de-
pendencies only. A software component can be deployed independently and is
subject to composition by third party” [10]. Comparing the notion of a compo-
nent to modules within modular approaches, where a module is considered as a
set of classes or a package, a module “does not come with persistent immutable
resources, beyond what was hardwired in the code” [50]. The components can
be categorised as composite or atomic. An atomic component is “a module
plus a set of resources” [50], while a composite component, or just a compo-
nent, is a set of simultaneously deployed atomic components [50].

The most important element of a component is its interface. A compo-
nent can implement a set of interfaces, which define the components access
points. Each interface can consist of a set of operations used to provide ser-
vices to other components. In contrast to interfaces, the implementation of the
component must be encapsulated in the component and not reachable from the
environment. For a component to be composable only based on its interface
specification, such interface should be specified in a contractual manner. Be-
sides the provided interfaces of a component, which specify the operations
the component implements, to achieve the contractual nature of interfaces, re-
quired interfaces are defined to capture the operations the component needs
in order to function correctly [50].

3.2 Reuse Technologies 33

3.2.2 Product-line Engineering

Domain engineering also referred to as product line engineering or product
family engineering, is an approach to systematic reuse built upon the reuse
assumptions. It inherently supports all the reuse assumptions. It focuses on
reuse of all domain knowledge, and is built to handle reuse of large adaptable
components that are tailored for different products. Product lines do not appear
accidentally, but they are planned as a consequence of a strategic decision of an
organisation based on pay off analysis. Once an organisation decides to use the
product line approach, their development process must integrate the product
line engineering aspects. A product-line is defined as “a top-down, planed,
proactive approach to achieve reuse of software within a family (or population)
of products” [49]. This type of organised and planned approach to reuse is used
within organisations that have product families that can be defined as“a set of
products with many commonalities and few differences” [49].

A software product line is defined as “a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a common
set of core assets in a prescribed way” [51]. A feature is “a logical unit of be-
haviour that is specified by a set of functional and quality requirements” [52].
Features can be categorised as mandatory, optional or variable [53]. Manda-
tory features can be defined as “core capabilities embodying the main domain
characteristics at the problem level”. Optional features indicate “secondary
properties of the domain” [53] representing capabilities which are not neces-
sary in some domains. Variant features represent “alternative ways to config-
ure a mandatory or an optional feature” [53].

The basis of the software product line approach lies in the software archi-
tectural design in form of “a common architecture for a set of related prod-
ucts or systems developed by an organisation” [52]. Rather than satisfying
requirements of a single system, a software product line architecture needs to
satisfy requirements of the entire product family. The key process needed for
the systematic design of the architecture is Domain Engineering [8]. Domain
engineering starts with domain analysis which includes a systematic analysis
of commonalities and variabilities across the product family. A commonality
is a common product features across the product family, while a variability
refers to behaviour of a reusable component that can be changed [8]. There
are different variability mechanisms that can accommodate the change, e.g.,
inheritance, parametrisation of the component, and extension. The identifica-
tion of the commonalities and variabilities leads to the definition of variation

34 Chapter 3. Background

points. A variation point identifies one or more locations at which a variation
will occur in a product of the product family. The domain analysis is followed
by an application engineering process for product derivation.

3.2.3 Generative Reuse

Another approach to systematic reuse that is tightly coupled with domain engi-
neering is generative reuse. Unlike in CBSE, where reuse is based on generic
components that are usually small in size, domain engineering approaches aim
at achieving reuse of the domain specific components, which are generally
larger in size. In general, reuse of the small generic components provides less
reuse pay off than the reuse of the larger domain specific components [54].
Hence, generative reuse has the highest potential pay off, but it is the most dif-
ficult to achieve since the more components are domain specific the more they
will suffer from reuse failure modes. Typical reuse failure modes [54] are: un-
acceptable performance of the reused component; lack of features or function-
alities that would be difficult or impossible to add; and the reused component
has incompatible interfaces or data structures with the target application.

While reuse can be achieved at different abstraction levels, the generative
reuse is done at the specification level by means of application generators. We
define generative reuse as encoding of the domain knowledge into a domain
specific application generator that generates new systems from specifications
written for the new systems in a domain specific specification language [15].

3.3 Contracts
Highlighting the contractual nature of interfaces in software engineering gained
popularity with the Design by Contract technique developed for Object-Oriented
Programming (OOP) by Meyer [55]. The notion of classes is fundamental in
OOP where classes are defined as implementations of abstract data types. De-
sign by Contracts presents classes as more than just a set of attributes and rou-
tines by including the semantic properties in form of assertions, to capture the
true nature of the implementation. Assertions are boolean expressions that rep-
resent the semantic properties of classes and represent the basis for establishing
the correctness and robustness of software [56], with correctness of software
defined as “the ability of software products to perform their exact tasks, as
defined by their specification” [56], and robustness defined as “the ability of
software systems to react appropriately to abnormal conditions” [56].

3.3 Contracts 35

Assertions are used in the fundamental notions of Design by Contracts:
preconditions (requirements under which routines are applicable), postcon-
ditions (properties guaranteed on routine exit) and class invariants (proper-
ties that characterise the class instance over their lifetime). The precondition-
postcondition pair for a routine describes a contract between a class and its
clients (other classes that use the routine of the class). While the precondition
binds the client (the caller of the routine), the postcondition binds the class (the
supplier of a service through the routine).

The basis for Design by Contract are assertions that have been established
within the works on program correctness by Floyd [57] and Hoare [58]. The
Floyd-Hoare logic for proving partial correctness of sequential programs is
represented by a formula in Hoare’s logic P{S}Q, denoting that if assertion P
is true before the initiation of the program S, the assertion Q will be true upon
the termination of the program S. Moreover, the Design by Contracts notion
of class invariants comes from Hoare’s work on data types invariants [59], and
their application to program design by Jones [60]. Furthermore, profound in-
fluence on the Design by Contract technique and the object oriented interface
design was by Parnas and his work on information hiding [61, 62], and Dijkstra
with his work that coined the phrase “separation of concerns” [63].

The pre- and postcondition contracts for sequential programs were ex-
tended to support concurrent programs by using rely/guarantee rules [64]. While
the rely conditions make assumptions about any interference on the shared vari-
ables by the environment (during routine execution), the guarantee rules state
the obligations of the routine regarding the shared variables.

To achieve the benefits of using the contracts in the context of CBSE, com-
ponents should be enriched with the notion of contracts. This should allow
the usage of third-party components in mission-critical systems. Beugnard et
al. [65] propose a contract hierarchy that distinguishes between four levels of
contracts. The first level are the basic contracts that represent the common in-
terface notion, while the second level are the behaviour contracts in terms of
pre- and postconditions in a sequential context. The third level are the syn-
chronisation contracts that address the concurrent program execution aspects.
The fourth level are the quality-of-service contracts cover the non-functional
aspects of components (also commonly referred to as extra-functional prop-
erties or quality attributes). Non-functional properties are particularly impor-
tant in embedded systems such as real-time systems and systems used within
safety-critical domains, where properties such as timing, end-to-end deadlines,
communication bandwidth or power consumption, play an important role.

The ultimate goal of attaching contracts to components is to support com-

36 Chapter 3. Background

position of systems through contract-based design which should contribute to
system attributes such as correctness, robustness and reusability. While con-
tracts for components can be established for different aspects (both functional
and non-functional), combining contracts for different components and com-
bining contracts for different aspects (viewpoints) attached to the same com-
ponent requires different composition operators. This lead to development of a
multiple viewpoint contract meta-theory [14] that provides mathematical foun-
dations for contract-based model for embedded systems design. The theory is
built upon the notion of the heterogeneous rich components (HRC) that encom-
pass all the viewpoints necessary for electronic/electrical systems design. More
specifically, it assumes a layered design space for electronic components (e.g.,
functional/software layer, ECU/hardware abstraction layer, and hardware-level
layer) [14]. In the reminder of the section we provide the basic notions of the
assumption/guarantee contract theory [11, 13, 14, 66].

3.3.1 Assumption/Guarantee Contract Theory
The component model of the assumption/guarantee contract theory is based on
a set V of variables, where each variable represents the relevant information
about a component (e.g., input and output ports) as a function of time. A com-
ponent in such a model is described by an assertion P which can be modelled
as a set of behaviours over the set V , more precisely the set of behaviours that
satisfy the assertion. A behaviour (also referred to as a trace or a run) over
the set V is a (finite or infinite) sequence of values assigned to each variable
from the set V . Unlike assertions in form of preconditions and postconditions
in program analysis which constrain the state space of a program at a particular
point, assertions here are properties of entire behaviours.

A contract C is a pair C=(A, G) of assertions, called the assumptions (A),
and the guarantees (G). All components E (representing the set of possible
runs/traces of the component) that satisfy the assertion A, i.e., E ⊆ A, con-
stitute the set of legal environments for the contract C. All components I that
satisfy the assertion G provided that the assumptions A hold, i.e., A ∩ I ⊆ G,
constitute the set of all components implementing the contract C [14].

To simplify the definition of operators and relations, a contract C=(A, G)
can be expressed in canonical (also referred to as normal or saturated) form
by replacing the G with G ∪ A, (where A denotes the complement of A). The
contract C and its version expressed in the canonical form are equivalent, i.e.,
they have the same implementations and environments [14].

For two contracts in canonical form, C=(A, G) and C ′=(A′, G′), the con-

3.3 Contracts 37

tract C ′ refines the contract C, i.e., C ′ � C, if and only if A ⊆ A′ and
G′ ⊆ G [14]. For the contracts C and C ′ that are not in canonical form, a more
thorough definition of refinement is established [11]. Both refinement defini-
tions imply weakening of the assumptions and strengthening of the guarantees.

Conjunction of two contract C1=(A1, G1) and C2=(A2, G2) with the same
sets of variables amounts to: C1 ∩ C2=(A1 ∪ A2, G1 ∩ G2). Which results
in a contract that assumes all properties from both contracts and guarantees
that satisfy both G1 and G2 assertions. This operation is used to compute the
overall contract for a component from the component contracts associated with
multiple viewpoints [14].

Composition of two contract C1=(A1, G1) and C2=(A2, G2) that are in
canonical form and have the same sets of variables, results in a contract with
assumptions A=(A1∩A2)∪¬(G1∩G2) and guarantees G=G1∩G2 [14]. The
resulting contract is in canonical form as well. While like for the conjunction
operation, the resulting contract must satisfy the guarantees of both contracts,
composing the assumptions is slightly different for the composition operation.
Since composition is used on contracts that belong to different components,
they are a part of each others legal environments and may already satisfy some
assumptions of each other. More specifically, G1 may satisfy some assump-
tions stated in A2 and wise versa, hence guarantees of the two contracts under
composition can contribute to relaxing the assumptions of the other contract
under composition.

Chapter 4

Thesis Contributions

In this thesis we present a model for the formulation of the safety contracts and
the related contract formalism, as well as means to use the safety contracts to
facilitate systematic reuse of certification-relevant artefacts. We organise the
contributions of the thesis in four parts. First, we adapt and extend the current
contract formalisms [12, 14, 67] with the notions of strong and weak contracts
to provide better support for reuse of certification-relevant data related to the
contracts. Secondly, we present a method to derive the strong and weak safety
contracts from the results of failure analyses. Then, we provide an approach
to semi-automatically generate reusable safety case argument-fragments from
safety contracts and in that way provide support for reuse of both the argument-
fragments and supporting evidence. And finally, we propose a safety contracts
development process to guide the reuse and integration of reusable safety el-
ements by using safety contracts. In this section we briefly summarise these
contributions.

4.1 Strong and Weak Contract Formalism

This contribution addresses the first research question: “How should safety
contracts for software components be specified in order to facilitate system-
atic reuse of certification-relevant artefacts?”. The contract theory presented
in Section 3.3 was used to build an assumption/guarantee contracts framework
to include distinction between strong and weak assumptions and guarantees by
extending the notion of a contract [68]. The extended contract is defined as

39

40 Chapter 4. Thesis Contributions

a tuple C=(A, B; G, H) consisting of the strong (A) and the weak (B) as-
sumptions, and the strong (G) and the weak (H) guarantees. The idea with the
extended contracts is that besides the strong assumptions that must be satisfied
and the strong guarantees that are always offered, additional assumptions may
be captured within the weak assumptions such that the weak guarantees are
only offered when the weak guarantees are satisfied.

We present our extension of the contract framework to include specifica-
tion of distinct strong and weak contracts and the related reasoning. Typically,
behaviours of software components can be captured in assumption/guarantee
contracts in such way that the component guarantees its behaviour if the stated
assumptions on its environment are met. The distinction between strong and
weak contracts allows for specification of properties that should hold in all sys-
tems of intended use of the component (strong contracts), and properties that
can hold in a subset of the systems of intended usage (weak contracts). For
a component to be used in a particular system, the strong assumptions of the
component must be satisfied, and in return all strong guarantees are offered as
a behaviour this component exhibits in all systems in which it can be used. The
weak contracts describe behaviours that are achieved only in certain systems
in which the component can be used. This distinction allows for identification
of relevant behaviours for particular systems. For example, strong contracts
can be used to prevent misuse of configuration parameters of the component
by imposing parameters scope and guaranteeing behaviour achieved by setting
the correct parameter value, while the weak contracts could be used to describe
distinct component behaviours achieved by the different parameter values.

We denote strong contracts as 〈A,G〉 where A represents the strong as-
sumptions and G the corresponding strong guarantees. The weak contracts are
denoted as 〈B,H〉 where B represents the weak assumptions and the corre-
sponding weak guarantees are denoted with H . A component C can be asso-
ciated with a number of strong and weak contracts. For a component C to be
used in a particular environment E all the strong assumptions of the related
strong contracts of C should be satisfied by the environment E. We refer to
such an environment as a correct environment of C. To ensure consistency
between the strong and weak contracts, the weak contracts can only describe
behaviours of the component C for a subset of the set of the correct environ-
ments. We say that a strong contract 〈A,G〉 holds if A∧A⇒ G is true, while
the corresponding weak contract 〈B,H〉 holds if A ∧ A ⇒ G ∧ B ∧ B ⇒ H
is true.

The strong and weak contracts can be translated into traditional assump-
tion/guarantee contracts. If all the traditional contracts of a component are

4.1 Strong and Weak Contract Formalism 41

considered as strong contracts, then the weak contracts have to be specified as
implications (B ⇒ H) within the guarantees of the traditional contract in order
to avoid inconsistencies within the assumptions (e.g., two contracts that must
be satisfied assuming different values for the same property). For example, the
strong contracts of a component C are describing behaviours that hold for all
products of a product-line, while the weak contracts are used to describe certain
behaviours that hold only in a subset of the product variants of a product-line.
Two of such weak contracts could be:

〈B1: productType=X; H1: accuracy is a〉
and

〈B2: productType=Y; H2: accuracy is b〉

The 〈B1, H1〉 and 〈B2, H2〉 contracts guarantee the different accuracies a and
b of the component in two different product types X and Y. The translation of
these contracts into a traditional contract would result in the following contract:

〈At: -; Gt: (productType=X implies accuracy is a) and
(productType=Y implies accuracy is b) 〉

The contract checking in this case would not tell us which is the actual accu-
racy, only that the set of implications is guaranteed.

On the other hand, if all the traditional contracts of a component are con-
sidered as weak contracts, then in order to ensure that the strong assumptions
are always satisfied they would have to be included in every contract of the
component. For example, if we consider the following contract on the timing
behaviour of a component:

〈At1: Compiler=x and Platform=y and compilerConfiguration=z;
Gt1: delay between operation1 and operation2 is less than XY 〉

we can’t talk about the satisfaction of the timing contract unless the functional
contracts of the component are satisfied, hence we would need to include the
assumptions related to the functional contracts in each of the timing contracts.
This would result in much more complex contracts, which would contradict
the idea of dividing the contracts into viewpoints.

This contribution is discussed in detail in Paper A. Furthermore, the appli-
cation of the strong and weak contracts on a real-world case is presented in
Paper E.

42 Chapter 4. Thesis Contributions

4.2 Methods for Derivation of Safety Contracts from
Failure Analyses

This contribution addresses the second research question: “How can valid
component safety contracts be derived from the results of different types of fail-
ure analyses to support systematic reuse of certification-relevant artefacts?”.
We present methods for deriving safety contracts from failure logic analyses
such as Failure Propagation and Transformation Calculus (FPTC) and Fault
Tree Analysis (FTA). Just as hazard analysis is the basis for safety engineering
at the system level, derivation of contracts and identification of related assump-
tions plays a similar role at component level [16]. We use well-established fail-
ure logic analyses recommended by safety standards as the basis for contract
derivation and assumptions identification. For example, FPTC [69] analysis
allows for calculation of system level behaviour from the behaviour of the in-
dividual components established in isolation. The input/output behaviour of a
component in isolation can be specified in FPTC rules. Once the component
is instantiated in a context of a specific system, the system-level behaviour can
be calculated. As this behaviour describes when it is safe to combine differ-
ent components in the same system with respect to specific failure modes, it is
worth capturing this behaviour in safety contracts. Such safety contracts de-
scribe two types of behaviours: (1) mitigation behaviour (e.g., if a component
is designed to mitigate certain failures then the corresponding safety contracts
should guarantee such mitigation behaviour), and (2) behaviours that lead to
certain failures (e.g., if a component is not designed to mitigate certain failures
then the corresponding safety contract capturing such behaviours establishes
under which assumptions could such failure be avoided).

This contribution is discussed in detail in Papers C and D. While Paper C
covers the derivation of safety contracts from FPTC analysis, Paper D focuses
on the relationship between the safety contracts and FTA. Furthermore, the
application of the contract derivation from the FPTC analysis on a real-world
case is presented in Paper E.

4.3 A Method for Reuse of Safety Case Argument-
fragments and Supporting Evidence

This contribution addresses the third research question: “How can the com-
ponent safety contracts be used to facilitate systematic reuse of the argument-

4.4 Safety Contracts Development Process 43

fragments and supporting evidence?”. We present a method for generation of
reusable safety case argument-fragments from compositional safety analysis
that allows for calculating the system-level behaviour from the behaviour of
individual components (e.g., FPTC analysis). We first focus on the generation
of context-specific safety case argument-fragments from safety contracts for
components developed out-of-context. To generate an argument from safety
contracts we define a set of specific aspects that should be covered in such an
argument. For example, such argument needs to argue that the contracts are
sufficiently complete, consistent and sufficient to address the corresponding
safety requirements. Moreover, the argument should demonstrate that all the
strong and relevant weak contract assumptions are satisfied. To support the
generation of argument-fragments from safety contracts, we specify a compo-
nent meta-model that focuses on an out-of-context setting and captures rela-
tionships between the safety contracts, safety requirements and the supporting
evidence. Each safety requirement is addressed by at least one safety contract
(either strong or weak), and each safety contract can be associated with the
supporting evidence (including a supporting argument on e.g., tool qualifica-
tion of the tool used to generate the evidence or personnel qualification of the
engineers using the tool). To generate an argument-fragment, we first provide
conceptual mapping of the argumentation notation elements with the compo-
nent meta-model elements.

Once the contracts have been derived for a component developed out-of-
context, the contracts are further supported by evidence such as failure analyses
reports and additional V&V evidence. When the component is instantiated in a
particular system, artefacts relevant for achieving safety goals of the particular
system are identified through satisfied contracts and used in generation of the
context-specific argument-fragment.

This contribution is discussed in detail in Papers B and C. Furthermore, the
application of the contribution on a real-world case is presented in Paper E.

4.4 Safety Contracts Development Process

This contribution addresses the third research question: “How can the com-
ponent safety contracts be used to facilitate systematic reuse of the argument-
fragments and supporting evidence?”. We present a safety contracts develop-
ment process and align it with the safety process recommended by the automo-
tive ISO 26262 safety standard to provide guidelines on how to use the safety
contracts to facilitate systematic reuse of Safety Elements out of Context. We

44 Chapter 4. Thesis Contributions

propose to divide the safety contracts development process in three phases: pre-
liminary safety contracts, safety contracts production, and safety contracts util-
isation and maintenance. During the first phase the strong and weak contracts
are established, their assumptions are enriched with operational/environmental
constraints, and each safety requirement allocated on a component is matched
with at least one safety contract. Since not all information can be known at the
stage of requirement specification that comes before the product development,
some properties can only be established by speculation. For example, accuracy
of the algorithm to be developed cannot be known before developing it, but
only a speculative value can be established as a goal to be achieved. Hence this
phase is called preliminary phase, since the contracts might need to be updated
once the actual information is known.

The safety contracts production phase follows after the production of the
component when the contracts from the preliminary safety contracts phase are
actualised with implementation-specific properties. Moreover, in this phase the
contracts are implemented with the component and supported by verification
evidence gathered after the production of the component.

During the utilisation and maintenance phase, contracts should be checked
to ensure that all the strong and the relevant weak contract assumptions are
satisfied. In case the check fails, either the contracts should be reassessed, the
corresponding component changed or the system adapted to achieve satisfac-
tion of all the relevant contract assumptions. Once we have established that all
the relevant contract assumptions have been satisfied, we utilise the contracts
by applying the method for reuse of safety case argument-fragments and the
supporting evidence.

This contribution and the application of the proposed process on a real-
world case are presented in Paper E.

Chapter 5

Related Work

In this chapter, we relate the thesis contributions to similar relevant approaches.
We provide a brief overview of, and comparison to, other contract-based ap-
proaches for safety-critical systems and approaches that aim at facilitating
reuse of safety case artefacts.

5.1 Contract-based Approaches for Safety-Critical
Systems

A range of formal contract-based approaches that focus on developing con-
tract theories for assumption/guarantee contracts can be found in recent related
work. The fundamental notions of such theories are presented in Section 3.3.
Several approaches have been developed on top of the contract theories with
focus on facilitating verification of the contracts for safety-critical systems.
Damm et al. [67] demonstrate how contract-based component specification for
different aspects of a component can be expressed using Requirement Specifi-
cation Language (RSL). Moreover, the authors present how virtual integration
testing of a composite component can be performed based on the contract-
based specification of its sub-components. The approach proposed by Damm
et al. categorises contract assumptions as either strong or weak to emphasise
the methodological difference in the usage of different assumptions. In con-
trast, we focus on developing the notion of contracts for reusable components
by categorising contracts as either strong or weak to clearly distinguish be-
tween assertions that must be satisfied whenever the component is used and

45

46 Chapter 5. Related Work

those that can be satisfied only in certain contexts.
In the approach by Gomez-Martinez et al. [70], the safety contracts are

transformed in a series of steps into a formal model in terms of Generalised
Stochastic Petri Nets to verify that the safety contacts have been satisfied.
While in the work by Dragomir et al. [71], an extension to UML/SysML is
proposed by providing language elements needed to model the contracts and
their relations, with the purpose to facilitate compositional verification by us-
ing assume/guarantee contracts. These works build upon the traditional as-
sumption/guarantee contracts and focus on compositional verification without
considering out-of-context component development. In contrast, we aim at fa-
cilitating reuse of safety-relevant components and the accompanying artefacts
by using strong and weak safety contracts.

Building upon the theoretical approaches, an approach by Söderberg and
Johansson [72] to using safety contracts as safety requirements emerged. The
assumptions and guarantees of the proposed safety contracts are composed of
safety constraints such that each constraint is associated with a safety integrity
level, just as a safety requirement. Another work by Westman et al. [73] fo-
cuses on structuring safety requirements by using assumption/guarantee con-
tracts. This work relaxes the constraints of the underlying contract theory in
order to capture the safety requirements allocated to a component in the guar-
antees of the corresponding component safety contracts. The assumptions of
such a contract represent requirements on the environments of the component.
In contrast to these works, we emphasise that there should be difference be-
tween the safety requirements and the content of the safety contracts if we
want to use contracts to facilitate reuse. While a safety requirement describes
behaviours a system requires from a component, the corresponding component
contract guarantee that addresses the requirement should capture the actual be-
haviour of the component to which the safety requirement is allocated.

In another work by Battram et al. [74], a method for modular safety assur-
ance based on assumption/guarantee contracts is presented. This work makes
the distinction between interface and component contracts such that interface
contracts are established between a component and its neighbouring compo-
nents, while the component contracts are made between a component and its
operating context. The work aims at easing the design of cyber-physical sys-
tems by using contracts to capture the requirements allocated to the component.
The interface contracts can be useful for capturing the relationship between
guarantees and assumptions of the neighbouring components in context of a
particular system, but such contracts could not be captured out-of-context.

Adapting the classical contracts as defined by Meyer in the context of

5.2 Safety Case Artefacts Reuse 47

Object-Oriented (OO) programming to fit component oriented programming
requires lifting the contracts from the method level to the level of a compo-
nent. Reussner and Schmidt [75] propose to align preconditions with the re-
quired interfaces and postconditions with provided interfaces. Moreover, since
such contracts are not sufficient to represent quality attributes of components
(such as reliability or performance), parametrised contracts are introduced as
generalisations of the classical contracts by Reussner [76]. In our work we
further extend the classical notion of contracts to provide fine-grained speci-
fication of safety-relevant properties for components developed out-of-context
based on the trace-based contract theory.

Using the OO contracts for safety analysis can be done by defining a spe-
cial type of safety contracts for OO systems to capture derived safety require-
ments (DSRs) by Hawkins [77]. Such contracts do not any more specify the
expected behaviour as the classical OO contracts, but only the behaviour which
is required to ensure that the corresponding object does not contribute to a par-
ticular hazardous software failure mode. Hawkins proposes to incorporate the
behaviours specified by the DSRs into the design through the safety contracts
to ensure that the software will not exhibit the identified unsafe behaviour once
the design is implemented. In contrast, since we focus on components devel-
oped out-of-context we define safety contracts as those that capture behaviours
deemed relevant from the perspective of hazard analysis. Moreover, to facil-
itate reuse we capture the actual behaviour of the components in the safety
contracts, rather than the behaviour specified by the DSRs.

Except for partial support in work by Damm et al. [67] through introduction
of strong and weak assumptions, these works do not provide support for captur-
ing safety-relevant information for reusable components. Unlike in our work,
none of these works actually focuses on how the contracts should be specified
and used to support systematic reuse of software components together with the
accompanying safety case artefacts. To the best of our knowledge the contri-
bution of our work is in this respect novel and unique.

5.2 Safety Case Artefacts Reuse

There has been many works on modularising representation of safety cases
in form of safety arguments and automating generation of the corresponding
safety case artefacts in order to reduce the cost and time needed to compile
a safety case. Fenn et al. [78] present an approach to incremental certifica-
tion that uses “informal” contracts for generation of modular safety case argu-

48 Chapter 5. Related Work

ments. The approach uses Dependency-Guarantee Relationships (DGRs) that
correspond to assumption/guarantee contracts. An argument for a module is
derived by using all the DGRs of the module and their dependencies to other
modules. In contrast, we base our work on a contract theory that does not limit
the properties that can be captured within assumptions and guarantees to only
two modules addressed by the DGRs.

One of the ways to reduce the cost and time needed to compile a safety
case is by automatising generation of the safety case arguments. The works
by Armengaud [79] and Basir et al. [80] focus on automating the compilation
of the safety case arguments from pre-existing work products. Denney and
Pai [81] focus on automating the assembly of safety cases based on the applica-
tion of formal reasoning to software. The assembly combines manually created
higher-level argument-fragments with an automatically generated lower-level
argument-fragments derived from formal verification of the implementation
against a mathematical specification. The work uses the AutCert tool for for-
mal verification where the provided specification represent formalised software
requirements. In contrast, we automate the generation of safety-case arguments
from safety contracts that encode the domain knowledge, which in turn does
not require re-generating argument after every change. Moreover, by capturing
the assumptions that need to hold for information from a work-product to be
guaranteed, we can highlight if the work-product needs to be revisited after a
change to the system is introduced that violates the underlying assumption.

A work by Prokhorova [82] relies on formal modelling techniques sup-
ported by the Event-B formal framework. The work proposes a methodology
for formalising the system safety requirements in Event-B and deriving a cor-
responding safety case argument from the Event-B specification. The work
classifies safety requirements by the way they can be represented in Event-B
and proposes a set of classification-based argument patterns to be used for gen-
erating specific arguments for each of the requirements classes. In contrast,
we build upon contract-based specification that allows for capturing additional
information besides the formalised requirements, which allows us to support
generation of context-specific argument-fragments for reusable components.

Hawkins et al. [83] propose a model-based approach for standardising the
representation of the assurance cases by generating it from automatically ex-
tracted information from the system design, analysis and development models.
The proposed approach aims at ensuring the consistency in generation of the
assurance case from the variety of sources from which the assurance case in-
formation needs to be extracted. In contrast, we use safety contracts and the
related constructs to capture the assurance case information and its dependen-

5.2 Safety Case Artefacts Reuse 49

cies to the artefacts from which this information is extracted, which provides
the basis for reusing information gathered during the development of safety
components ouf-of-context.

Habli [84] proposes a model-based assurance approach for facilitating reuse
of safety assets within a product-line. Just as the product-line reference archi-
tecture is the base for deriving product architectures, the product-line safety
case can play the same role for deriving an argument to why the particular
product is acceptably safe to operate in the particular environment. The pro-
posed approach for the product-line safety case development extends the ar-
gumentation notation to include product-line elements to handle variabilities
within the argument. By capturing the variabilities and the underlying context
assumptions, the approach can be used to reuse safety assets together with the
used product-line assets. In contrast, instead of focusing on product-line engi-
neering to achieve reuse of safety assets, we use contract-based specification
to encode the safety reasoning and promote reuse of safety assets outside of a
a family of products.

Certain safety-critical industries develop families of products that share
certain product features, where the products must be developed according to
different processes mandated by different safety standards, which in turn result
in a family of safety cases to address each product of the family and the corre-
sponding process. Gallina proposes to use a 3D product line for such scenarios
to achieve reuse of all three aspects, the product, the process and the safety
case [85]. The proposed approach combines a safety-critical product line – to
promote reuse of the product features, a safety-oriented process line – which
enables reuse of the process parts common between different processes man-
dated by different safety standards, and a safety case line – to promote reuse
of the safety case artefacts generated from the corresponding process activi-
ties. In contrast, we do not focus on facilitating reuse only within a family of
products, but aim at supporting reuse of out-of-context components that are not
necessarily developed with a particular system in mind.

While these approaches offer a way to speed up the creation of a safety
argument and reuse some of the safety case artefacts, they do not focus on
reusable components developed out-of-context. Once such components are
reused in a particular context, only artefacts relevant for that particular context
should be reused and the corresponding argument generated. We use contracts
to capture the context-specific dependencies of the component behaviours and
in that way identify behaviours and the related artefacts that are relevant for
the particular context in which the component is reused. To the best of our
knowledge the contribution of our work is in this respect novel and unique.

Chapter 6

Conclusions and future work

In this chapter we first summarise and provide concluding remarks related to
the research questions and thesis contributions, and then we present the future
research directions.

6.1 Research Questions Revisited
The goal of our research is to facilitate reuse of safety-relevant software com-
ponents and their accompanying safety case artefacts. As means for achieving
our goal we focused on component assumption/guarantee contracts designed to
support independent development of components and compositional verifica-
tion. We specified three research questions (presented in detail in Section 2.2):

• Research question 1: “How should safety contracts for software compo-
nents be specified in order to facilitate systematic reuse of certification-
relevant artefacts?”

• Research question 2: “How can valid component safety contracts be
derived from the results of different types of failure analyses to support
systematic reuse of certification-relevant artefacts?”’

• Research question 3: “How can the component safety contracts be used
to facilitate systematic reuse of the argument-fragments and supporting
evidence?”

To offer answers to the specified research questions, we have presented a
set of research contributions (detailed in Chapter 4):

51

52 Chapter 6. Conclusions and future work

• Thesis contribution 1: “Strong and Weak Contract Formalism”

• Thesis contribution 2: “Methods for Derivation of Safety Contracts
from Failure Analyses”’

• Thesis contribution 3: “A Method for Reuse of Safety Case Argument-
fragments and Supporting Evidence”

• Thesis contribution 4: “Safety Contracts Development Process”

Table 6.1 presents the mapping between the research questions and the possible
answers we offered in form of the thesis contributions. In the reminder of this
section we briefly summarise and provide concluding remarks for each of the
research questions by reflecting on the corresponding thesis contributions.

Table 6.1: Mapping between the research questions and the thesis contributions
Questions Answers
Research question 1 Thesis contribution 1
Research question 2 Thesis contribution 2
Research question 3 Thesis contributions 3 and 4

6.1.1 Research Question 1

Assumption/guarantee component contracts have been developed to support
system design by focusing on capturing behaviour of the components in the
particular system. The corresponding assumption/guarantee contract formal-
ism was developed to support reuse through component selection, e.g., by cap-
turing contracts for a component to be developed based on the behaviours of its
environment, and then using such a contract to retrieve a component that satis-
fies that contract from a component library. The difficulty is that reusable com-
ponents are usually developed in a configurable manner to support customising
their behaviour to a specific system. The contracts need to be specified such
that they provide better support for capturing such behaviours.

To support capturing the out-of-context behaviour exhibited by reusable
components, we present a strong and weak contract formalism that allows for
capturing component behaviours that are required to hold in all systems in
which the component can be used (strong contracts), and system-specific be-
haviours exhibited only in a subset of the systems in which the component can

6.1 Research Questions Revisited 53

be used (weak contracts). By categorising contracts as strong or weak, we com-
plement the original assumption/guarantee contract formalism by extending
it to support development of reusable components developed out-of-context,
where very little or no information is known about the contexts of the com-
ponent. Strong and weak contracts for such reusable components represent a
connection between the reusable components and the certification-relevant ev-
idence produced to support the behaviour captured within the contracts. This
connection provides the basis for supporting systematic reuse of certification-
relevant artefacts.

6.1.2 Research Question 2
Safety contracts are a type of contracts that capture component behaviours
deemed relevant from the perspective of hazard analysis. Just as the hazard
analysis is basis for safety engineering on the system level, safety contract
derivation and assumption identification plays similar role on the component
level. To derive the safety contracts we show that failure logic analyses can be
used to identify information that should be captured in the contracts. More-
over, we provide methods that can be used to derive contracts from failure
logic analyses such as FTA and Failure Propagation and Transformation Cal-
culus (FPTC). We use such well-established failure analyses to provide a clear
methodology on how to derive safety contracts. The safety contracts provide a
rich platform for specifying the failure behaviour, which allows for fully util-
ising and improving possibilities of automated generation of different failure
analyses, such as FMEA and FTA.

6.1.3 Research Question 3
We propose a method for automatised argument-fragment generation from
safety contracts and a safety contracts development process to provide guid-
ance on how safety contracts can be used to facilitate systematic reuse of the
argument-fragments and supporting evidence. In the reminder of this section
we briefly summarise the two aspects of our answer to this research question.

Safety Case Argument-Fragment Generation

Since the safety contracts derived from failure logic analyses capture some of
the crucial information for construction of a product-based safety argument,
such contracts can be used for automating the generation of the core of the

54 Chapter 6. Conclusions and future work

product-based safety argument. Such argument should contain only informa-
tion relevant for the specific system for which it is produced. We use safety
contracts to semi-automatically generate such system-specific safety argument-
fragments. To enable the generation of the safety argument-fragments from the
safety contracts, we define a component meta-model that specifies a rich com-
ponent composed of the safety contracts, the allocated safety requirements and
the supporting evidence. Each allocated safety requirement should be sup-
ported by at least one safety contracts, which in turn should be supported by
evidence. Then, we map the elements of the component meta-model with the
elements of the argumentation notation, and provide transformation rules that
generate an argument-fragment from the safety contracts and the related infor-
mation. We specify the architecture of the argument based on safety contracts
to show that the component is compatible with the particular system, that the
relevant contracts have been satisfied and that they are consistent and suffi-
ciently complete.

Safety Contracts Development Process

To use the safety contracts for reuse of safety case artefacts clear guidelines
are needed to indicate how the contracts should be used within a typical safety
process. We define a set of contract-specific activities in form of a safety con-
tracts development process to provide such guidelines. Moreover, since the
safety standards typically lack support for reuse, we align the proposed pro-
cess with the automotive ISO 26262 safety standard to show how the safety
contracts development process can be used to complement an existing safety
process. We propose that the safety contracts development process is divided
into three phases: preliminary phase where initial strong and weak contracts
are captured and matched with safety requirements (done before the devel-
opment of the product, hence such contracts may contain speculative/targeted
behaviour); production phase where contracts are actualised with implemen-
tation specific-behaviours and supported by evidence (done during/after the
production of the product); and utilisation and maintenance phase where the
components are integrated with assistance of the contract verification, and then
used for the generation of the corresponding safety argument-fragments (this
phase is done in the context of a particular system). By providing such a pro-
cess we were able to use it to demonstrate the usage of the safety contracts
and the proposed methods on a real-world case example of a safety element
out-of-context.

6.2 Future Research Directions 55

6.2 Future Research Directions
We have identified several research directions we would like to explore in more
depth in the future:

• Strong and weak contract formalism optimisation

• Safety contracts language and patterns catalogue

• Safety case management

• Further safety case artefacts generation

• Further tool support

In the reminder of the section we briefly summarise each of the above future
work directions.

6.2.1 Strong and weak contracts formalism optimisation
Currently we have only provided an extension of the existing contract formal-
ism. This research direction needs to provide a complete formal foundations
to our strong and weak contract formalism to optimise the performance to
its dedicated use for handling behaviours exhibited by reusable components.
Moreover, since we deem that capturing all possible assumptions required for
a contract guarantee to hold is not always achievable, or not always desirable
to achieve (e.g., it can be too expensive, time consuming, or not required),
there is a need for establishing new techniques to analyse the safety contract
completeness and consistency.

6.2.2 Safety contracts language and patterns catalogue
When deriving and specifying the safety contracts, there are patterns emerging
for what the contracts contain, which assumptions are needed in certain cases
and which guarantees should be combined with certain assumptions. This re-
search direction focuses on either extending an existing (e.g., Othello Specifi-
cation Language [86]) or providing a new contract pattern-based specification
language to provide a catalogue of such assumption/guarantee contract pat-
terns dedicated to capturing safety-relevant behaviour. Furthermore, methods
for automatic identification of the assumptions (e.g., [87]) need to be extended
to support identification of the distinct strong and weak assumptions.

56 Chapter 6. Conclusions and future work

6.2.3 Safety case management
Managing complexity of a safety case is becoming an issue. The safety argu-
ments for even smaller systems can contain hundreds of goals, depending on
the depth covered in the argument. While automating its generation reduces ef-
forts and costs needed to achieve it, a big problem remains on assessing such an
argument, since a safety assessor is required to examine it to determine whether
the system is sufficiently safe or not. The aim of this research direction is to
develop the contract formalism and the corresponding tools to a sufficient de-
gree so that certain goals can be argued over implicitly, by providing sufficient
confidence that they are achieved through the formalism.

Besides managing the complexity, the safety case change management is
an important issue as well. The aim of this research direction is to develop
techniques to perform change impact analysis on the safety case by using the
safety contracts. Such techniques should allow for identifying which goals and
their supporting evidence are affected by change and should be revisited.

6.2.4 Further safety case artefacts generation
In our research we have focused on using the safety contracts for generation
of the safety-case argument-fragments. But the safety contracts can be used to
generate other types of safety case artefacts, such as those possible to generate
through FPTC analysis. This research direction focuses on developing tech-
niques for generation of different failure analyses reports that can be used to
present the information captured by the safety contracts in a more comprehen-
sible manner for safety engineers to assess and further reason about the failure
behaviour of the system. Moreover, this research direction includes work on
developing additional techniques for analysing the safety contracts and utilis-
ing them to support optimisation of the architecture design of safety-critical
systems.

6.2.5 Further tool support
Currently, we have only partial support for the strong and weak contract for-
malism within the CHESS-toolset1. This research direction focuses on further
collaborations on extending the CHESS-toolset as well as some commercial
tools to support the strong and weak contract formalism and the methods for
generation and reuse of the safety case artefacts.

1http://www.chess-project.org/page/download

Bibliography

[1] UK Ministry of Defence (MoD). Defence Standard 00-56 (Part 1)/4,
Safety Management Requirements for Defence Systems. Issue 4, UK Min-
istry of Defence, 2007.

[2] N. R. Storey. Safety Critical Computer Systems. Addison-Wesley,
Boston, MA, USA, 1996.

[3] R. Bloomfield, J. Cazin, D. Craigen, N. Juristo, E. Kesseler, et al. Val-
idation, Verification and Certification of Embedded Systems. Technical
report, NATO, 2005.

[4] T. Kelly. Arguing Safety — A Systematic Approach to Managing Safety
Cases. PhD thesis, University of York, York, UK, 1998.

[5] AC 20-148. Reusable Software Components. Federal Aviation Adminis-
tration (FAA), 2004.

[6] ISO 26262-10. Road vehicles — Functional safety — Part 10: Guideline
on ISO 26262. International Organization for Standardization, 2011.

[7] B. Meyer. The Next Software Breakthrough. IEEE Computer, 30(7):113–
114, 1997.

[8] I. Jacobson, M. L. Griss, and P. Jonsson. Software Reuse. Architecture,
Process and Organization for Business Success. Addison Wesley Long-
man, 1997.

[9] J. Varnell-Sarjeant, A. A. Andrews, and A. Stefik. Comparing Reuse
Strategies: An Empirical Evaluation of Developer Views. In 8th Interna-
tional Workshop on Quality Oriented Reuse of Software. IEEE Computer
Society, 2014.

57

58 Bibliography

[10] C. A. Szyperski. Component Software - Beyond Object-oriented Pro-
gramming. Addison-Wesley, 1998.

[11] S. S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Ny-
man, and A. Wasowski. Moving from Specifications to Contracts in
Component-based Design. In 15th international conference on Fun-
damental Approaches to Software Engineering, FASE’12, pages 43–58,
Berlin, Heidelberg, 2012. Springer.

[12] A. Cimatti and S. Tonetta. A Property-Based Proof System for Contract-
Based Design. In 38th Euromicro Conference on Software Engineer-
ing and Advanced Applications, pages 21–28. IEEE Computer Society,
September 2012.

[13] I. Ben-Hafaiedh, S. Graf, and S. Quinton. Reasoning About Safety and
Progress Using Contracts. In 12th International Conference on Formal
Engineering Methods and Software Engineering, ICFEM’10, pages 436–
451, Berlin, Heidelberg, 2010. Springer.

[14] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis. Multiple Viewpoint Contract-Based Specification and De-
sign. In Formal Methods for Components and Objects, volume 5382 of
Lecture Notes in Computer Science, pages 200–225. Springer, 2007.

[15] W. B. Frakes and K. Kang. Software Reuse Research: Status and Future.
IEEE Transactions on Software Engineering, 31(7):529–536, 2005.

[16] J. Rushby. Composing safe systems. In 8th International Symposium on
Formal Aspects of Component Software. Springer, September 2012.

[17] G. Dodig-Crnkovic. Constructive Research and Info-Computational
Knowledge Generation. In Model-Based Reasoning In Science And Tech-
nology – Abduction, Logic, and Computational Discovery (Studies in
Computational Intelligence), pages 359–380. Springer, November 2010.

[18] K. Lukka. The Constructive Research Approach. In Case Study Research
in Logistics, volume 1, pages 83–101. Turku School of Economics and
Business Administration, 2003.

[19] H. J. Holz, A. Applin, B. Haberman, D. Joyce, H. Purchase, and C. Reed.
Research Methods in Computing: What are they, and how should we
teach them? ACM Special Interest Group on Computer Science Educa-
tion (SIGCSE) Bulletin, 38(4):96–114, 2006.

Bibliography 59

[20] P. Runeson and M. Höst. Guidelines for Conducting and Reporting Case
Study Research in Software Engineering. Empirical Software Engineer-
ing, 14(2):131–164, 2009.

[21] CENELEC. IEC 61508: Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-Related Systems.
Part 4: Definitions and abbreviations. UK Ministry of Defence, 2007.

[22] W. D. Ruckelshaus. Risk, Science and Democracy. Issues in Science and
Technology, 1(3):19–38, 1985.

[23] N. G. Leveson. Engineering a Safer World: Systems Thinking Applied to
Safety. MIT Press, 2011.

[24] C. O. Miller. A Comparison of Military and Civil Aviation System Safety.
In Air Line Pilots Association Symposium, December 1983.

[25] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic Concepts
and Taxonomy of Dependable and Secure Computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, 2004.

[26] N. G. Leveson. Software Safety: What, Why and How”. ACM Computing
Surveys, 18(2):125–163, June 1986.

[27] N. G. Leveson. Safeware: System Safety and Computers. Addison-
Wesley, Reading, Mass., 1995.

[28] Society of Automotive Engineers (SAE) and European Organisation for
Civil Aviation Equipment (EUROCAE). ED79/ARP-4754: Certification
Considerations for Highly-integrated or Complex Aircraft Systems. Soci-
ety of Automotive Engineers, 1996.

[29] CENELEC. IEC 61508: Functional Safety of Electri-
cal/Electronic/Programmable Electronic Safety-Related Systems.
Parts 1-7. International Electrotechnical Comission, 2010.

[30] CENELEC. EN 50126: Railway Applications The specification and
Demonstration of Reliability, Availability, Maintainability and Safety
(RAMS). European Committee for Electrotechnical Standardisation, Rue
de Stassart 35, B - 1050 Brussels, 2007.

60 Bibliography

[31] CENELEC. EN 50128: Railway Applications Communications, Sig-
nalling and Processing Systems Software for Railway Control and Pro-
tection Systems. European Committee for Electrotechnical Standardisa-
tion, Rue de Stassart 35, B - 1050 Brussels, 2001.

[32] CENELEC. EN 50129: Railway applications Communications, Sig-
nalling and Processing Systems Safety Related Electronic Systems for
Signalling. European Committee for Electrotechnical Standardisation,
Rue de Stassart 35, B - 1050 Brussels, 2001.

[33] International Organization for Standardization (ISO). ISO 26262: Road
vehicles — Functional safety. ISO, 2011.

[34] European Organisation for Civil Aviation Equipment (EUROCAE) and
Radio Technical Commission for Aeronautics (RTCA). ED-12/DO-
178B: Software Considerations in Airborne Systems and Equipment Cer-
tification. EUROCAE ED-12B and RTCA DO-178B, 1992.

[35] Society of Automotive Engineers (SAE) and European Organisation for
Civil Aviation Equipment (EUROCAE). ED-135/ARP-4761: Guidelines
and Methods for Conducting the Safety Assessment Process on Civil Air-
borne Systems and Equipment. Society of Automotive Engineers, 1996.

[36] European Organisation for Civil Aviation Equipment (EUROCAE) and
Radio Technical Commission for Aeronautics (RTCA). ED-12C/DO-
178C: Software Considerations in Airborne Systems and Equipment Cer-
tification. EUROCAE ED-12C and RTCA DO-178C, 2011.

[37] I. Habli and T. Kelly. Safety Case Depictions vs. Safety Cases — Would
the Real Safety Case Please Stand Up? In 2nd Institution of Engineering
and Technology International Conference on System Safety, pages 245–
248. IET, 2007.

[38] Object Management Group (OMG). SACM: Structured Assurance
Case Metamodel. Technical report, Version 1.0, OMG, 2013.
http://www.omg.org/spec/SACM.

[39] ASCAD: The Adelard Safety Case Development Manual. Adelard, 1998.
http://www.adelard.com/services/SafetyCaseStructuring/index.html.

[40] GSN Community Standard Version 1. Technical report, Origin Consult-
ing (York) Limited, November 2011.

Bibliography 61

[41] T. Kelly and J. McDermid. Safety Case Construction and Reuse Using
Patterns. In 16th International Conference on Computer Safety, Reliabil-
ity, and Security, pages 55–69. Springer, 1997.

[42] K. Hansen, A. Ravn, and V. Stavridou. From Safety Analysis to Software
Requirements. IEEE Transactions on Software Engineering, 24(7):573–
584, 1998.

[43] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault Tree
Handbook. Technical report, Springfield, January 1981.

[44] H. E. Lambert. Fault Trees for Decision Making in Systems Analysis.
PhD thesis, Lawrence Livermore Laboratories, University of California,
1975.

[45] M. D. Mcllroy. Mass Produced Software Components. In 1st Interna-
tional Conference on Software Engineering, pages 88–98. NATO Science
Committee, 1968.

[46] V. R. Basili and H. D. Rombach. Support for Comprehensive Reuse. IET
Software Engineering Journal, 6(5):303–316, September 1991.

[47] G. Caldiera and V. R. Basili. Identifying and Qualifying Reusable Com-
ponents”. IEEE Computer, 24(2):61–70, February 1991.

[48] A. W. Brown. Large-scale, component-based development, volume 1.
Prentice Hall PTR Englewood Cliffs, 2000.

[49] I. Crnkovic and M. Larsson. Building Reliable Component-Based Soft-
ware Systems. Artech House, Inc., Norwood, MA, USA, 2002.

[50] C. A. Szyperski. Component Software and the Way Ahead. Foundations
of Component-Based Systems, pages 1–20, 2000.

[51] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[52] J. Bosch. Design and Use of Software Architectures: Adopting and Evolv-
ing a Product-line Approach. Pearson Education, 2000.

[53] M. L. Griss, J. Favaro, and M. d’Alessandro. Integrating Feature Model-
ing with the RSEB. In 5th International Conference on Software Reuse,
pages 76–85. IEEE, 1998.

62 Bibliography

[54] T. J. Biggerstaff. A Perspective of Generative Reuse. Annals of Software
Engineering, 5(1):169–226, 1998.

[55] B. Meyer. Applying ‘Design by Contract’. IEEE Computer, 25(10):40–
51, October 1992.

[56] B. Meyer. Object-Oriented Software Construction, Second Edition.
The Object-Oriented Series. Prentice Hall, Englewood Cliffs (NJ), USA,
1997.

[57] R. W. Floyd. Assigning Meanings to Programs. In American Mathemat-
ical Society Symposia in Applied Mathematics, volume 19, pages 19–31,
1967.

[58] C.A.R. Hoare. An Axiomatic Basis for Computer Programming. CACM:
Communications of the ACM, 12(10):576–580, October 1969.

[59] C.A.R. Hoare. Proof of Correctness of Data Representations. Acta Infor-
matica, 1:271–281, 1972.

[60] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall
International,, Hemel Hempstead (U.K.), 1980.

[61] D. L. Parnas. On the Criteria to be Used in Decomposing Systems into
Modules. CACM: Communications of the ACM, 5(12):1053–1058, De-
cember 1972.

[62] D. L. Parnas. A Technique for Software Module Specification with Exam-
ples. CACM: Communications of the ACM, 15(5):330–336, May 1972.

[63] E. W. Dijkstra. A Discipline of Programming, volume 1. Prentice Hall
International, Englewood Cliffs, N.J., USA, 1976.

[64] C. B. Jones. Specification and Design of (Parallel) Programs. In IFIP
Congress, pages 321–332, 1983.

[65] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making Com-
ponents Contract Aware. IEEE Computer, 32(7):38–45, 1999.

[66] S. Graf and S. Quinton. Contracts for BIP: Hierarchical Interaction Mod-
els for Compositional Verification. In 27th IFIP WG 6.1 International
Conference on Formal Techniques for Networked and Distributed Sys-
tems, FORTE ’07, pages 1–18, Berlin, Heidelberg, 2007. Springer.

Bibliography 63

[67] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using
Contract-based Component Specifications for Virtual Integration Testing
and Architecture Design. In Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pages 1–6. IEEE, 2011.

[68] A. Benveniste, J.-B. Raclet, B. Caillaud, D. Nickovic, R. Passerone,
A. Sangiovanni-Vincentelli, T. Henzinger, and K. G. Larsen. Contracts
for the Design of Embedded Systems, Part II: Theory. Submitted for pub-
lication, 2012.

[69] M. Wallace. Modular Architectural Representation and Analysis of Fault
Propagation and Transformation. In International Workshop on Formal
Foundations of Embedded Software and Component-based Software Ar-
chitectures. Elsevier, 2005.

[70] E. Gómez-Martınez, R. J. Rodrıguez, L. E. Elorza, M. I. Rezabal, and
C. B. Earle. Model-based Verification of Safety Contracts. In 1st In-
ternational Workshop on Safety and Formal Methods, volume 8938 of
Lecture Notes in Computer Science, pages 101–115. Springer, 2014.

[71] I. Dragomir, I. Ober, and C. Percebois. Integrating Verifiable As-
sume/Guarantee Contracts in UML/SysML. In 6th International Work-
shop on Model Based Architecting and Construction of Embedded Sys-
tems, volume 1084 of CEUR Workshop Proceedings. CEUR-WS.org,
2013.

[72] A. Söderberg and R. Johansson. Safety Contract Based Design of Soft-
ware Components. In 3rd International Workshop on Software Certifica-
tion, International Symposium on Software Reliability Engineering Work-
shops (ISSREW). IEEE Computer Society, November 2013.

[73] J. Westman, M. Nyberg, and M. Törngren. Structuring Safety Require-
ments in ISO 26262 Using Contract Theory. In 32nd International Con-
ference on Computer Safety, Reliability, and Security, volume 8153 of
Lecture Notes in Computer Science, pages 166–177. Springer, September
2013.

[74] P. Battram, B. Kaiser, and R. Weber. A Modular Safety Assurance
Method considering Multi-Aspect Contracts during Cyber Physical Sys-
tem Design. In 1st International Workshop on Requirements Engineering
for Self-Adaptive and Cyber-Physical Systems, 2015.

64 Bibliography

[75] R. H. Reussner and H. W. Schmidt. Using Parameterised Contracts to
Predict Properties of Component Based Software Architectures. In Work-
shop On Component-Based Software Engineering (in association with
9th IEEE Conference and Workshops on Engineering of Computer-Based
Systems), Lund, Sweden, 2002, 2002.

[76] R. H. Reussner. The Use of Parameterised Contracts for Architecting
Systems with Software Components. In 6th International Workshop on
Component-Oriented Programming (WCOP’01), June 2001.

[77] R. Hawkins. Using Safety Contracts in the Development of Safety Critical
Object-Oriented Systems. PhD thesis, University of York, York, UK,
2006.

[78] J. L. Fenn, R. Hawkins, P. J. Williams, T. Kelly, M. G. Banner, and
Y. Oakshott. The Who, Where, How, Why and When of Modular and
Incremental Certification. In 2nd Institution of Engineering and Tech-
nology International Conference on System Safety, pages 135–140. IET,
2007.

[79] E. Armengaud. Automated Safety Case Compilation for Product-based
Argumentation. In Embedded Real Time Software and Systems, February
2014.

[80] N. Basir, E. Denney, and B. Fischer. Building Heterogeneous Safety
Cases for Automatically Generated Code. In Infotech@ Aerospace Con-
ference. The American Institute of Aeronautics and Astronautics (AIAA),
2011.

[81] E. Denney and G. J. Pai. Automating the Assembly of Aviation Safety
Cases. IEEE Transactions on Reliability, 63(4), 2014.

[82] Y. Prokhorova, L. Laibinis, and E. Troubitsyna. Facilitating Construction
of Safety Cases from Formal Models in Event-B. Information & Software
Technology, 60, 2015.

[83] R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. P. Kelly. Weaving
an Assurance Case from Design: A Model-Based Approach. In 16th
International Symposium on High Assurance Systems Engineering, pages
110–117. IEEE, January 2015.

[84] I. Habli. Model-Based Assurance of Safety-Critical Product Lines. PhD
thesis, University of York, York, UK, September 2009.

[85] B. Gallina. Towards Enabling Reuse in the Context of Safety-critical
Product Lines. In 5th International Workshop on Product LinE Ap-
proaches in Software Engineering. IEEE, May 2015.

[86] A. Cimatti, M. Dorigatti, and S. Tonetta. OCRA: A Tool for Checking the
Refinement of Temporal Contracts. In 28th International Conference on
Automated Software Engineering (ASE), pages 702–705. IEEE, Novem-
ber 2013.

[87] M. G. Bobaru, C. S. Pasareanu, and D. Giannakopoulou. Automated
Assume-Guarantee Reasoning by Abstraction Refinement. In 20th Inter-
national Conference, Computer Aided Verification (CAV), volume 5123
of Lecture Notes in Computer Science, pages 135–148. Springer, July
2008.

II

Included Papers

67

Chapter 7

Paper A:
Strong and Weak Contract
Formalism for Thrid-Party
Component Reuse

Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans Hansson.
In Proceedings of the 3rd International Workshop on Software Certification
(WoSoCer), IEEE, November 2013

69

Abstract

Our aim is to contribute to bridging the gap between the justified need from
industry to reuse third-party components and skepticism of the safety commu-
nity in integrating and reusing components developed without real knowledge
of the system context. We have developed a notion of safety contract that will
help to capture safety-related information for supporting the reuse of software
components in and across safety-critical systems.

In this paper we present our extension of the contract formalism for specify-
ing strong and weak assumption/guarantee contracts for out-of-context reusable
components. We elaborate on notion of satisfaction, including refinement,
dominance and composition check. To show the usage and the expressive-
ness of our extended formalism, we specify strong and weak safety contracts
related to a wheel braking system.

7.1 Introduction 71

7.1 Introduction

More and more standards for certification of safety-critical systems are offering
support for reuse of third-party components in order to reduce time-to-market
and production costs. An example is represented by the introduction of the con-
cept Safety Element out of Context (SEooC) within the automotive ISO26262
standard [1]. Although this opportunity to reduce time-to-market and produc-
tion costs seems attractive, reuse of third-party components is challenged by
various complications [2] and can easily incur additional costs. One of the
major problems for the safety-related systems is that the context in which the
reusable out-of-context component is going to be used is unknown. On the
one hand, if we include too much information about the context in the reusable
component than it will be more difficult to reuse it in a different context.

Component reuse within standards is present through the use of commercial
off-the-shelf (COTS) and modified off-the-shelf (MOTS) items. The drawback
of the off-the-shelf items is usually that they lack the development process
evidence required for certification by the domain-specific safety standards [3].
The basic idea behind SEooC is to bridge that gap by allowing the developer
to first assume the safety-related requirements applicable to a component, and
then to develop it to satisfy those requirements. Contract-based approaches
emerge as one of the means to capture safety requirements and enable reuse
and composition within safety-critical systems [4, 5, 6, 7, 8, 9]. A contract
is a set of assumptions and guarantees where guarantees are provided by the
component if assumptions are met by the component’s environment.

In our work, we are looking into means for capturing as much as possible
of safety-related information for reuse, but still to keep the component more
flexible, i.e., reusable. We provide a further developed formalism for safety
contracts with strong and weak reasoning that enables capturing information
that need to hold for all contexts, i.e., that are out-of-context, and information
that are more context-specific.

To improve reuse possibilities of software components by using contracts,
just as components need to be designed for reuse, so do contracts as well.
For these purposes it is beneficial to provide more expressive means of cap-
turing information for reuse. In our previous work [10], we have introduced
fine-grained contract extension with strong and weak contracts reasoning. The
strong contracts must always hold in order for components to be reused (in
any context), while the weak contracts just offer additional information about
a context in which the component can operate. For example, information such
as timing are highly context-specific and should be specified separately from

72 Paper A

the conditions that are needed for the component to operate.
In this paper we use a wheel braking system as an example of a safety-

critical system to show how fine-grained contract reasoning can be used to
capture timing and safety information. The system is originally used within
ARP4761 airborne systems recommended practice [11] to demonstrate the
safety process required for the airspace domain.

The main contribution of this work is extension and adaptation of contract
semantics to handle strong and weak contracts. We associate each component
with a set of strong and weak contracts and define conjunction of strong and
weak contracts. The format of the contract in conjuncted form is based on our
previous work [10], where a contract consists of strong assumptions, strong
guarantees and multiple weak assumption/guarantee pairs. In this work, we
define notions of satisfaction, refinement and dominance for contracts in the
conjuncted format. Further more, we show the usage of the fine-grained con-
tracts on the wheel braking system.

Comparing to related work, we are focusing more on capturing contracts
for out-of-context components where very little, or no information at all is
known about the context in which the component is supposed to operate. We
are putting emphasis on the contents of out-of-context contracts and the sepa-
ration of mandatory and alternative/optional properties.

The rest of the paper is organized as follows: In Section 7.2 we briefly
present key notions we build upon and provide essential information on the
wheel braking system. We extend and adapt the fine-grained contract formal-
ism in Section 7.3. In Section 7.4 we use our extended formalism to specify
contracts related to the wheel braking system. Related work is presented in
Section 7.5 and conclusions and future work in Section 7.6.

7.2 Background
In this section we briefly provide some background information on off-the-
shelf items for safety-critical systems, support for reuse from safety standards,
and assumption/guarantee contracts. Finally, we also provide essential infor-
mation related to the wheel braking system.

7.2.1 Off-The-Shelf Items

Off-the-shelf (OTS) solutions offer reduced time-to-market and increased af-
fordability, and are expected to support services with multiple safety-criticality

7.2 Background 73

levels [12]. There are many types of OTS items including commercial OTS,
modified OTS, Software of Unknown Pedigree (SOUP) etc. While ones are de-
veloped according to standards - COTS and MOTS, the others are not - SOUP.
On the other hand, some are to be used ”as is” without changes - COTS, and
some can be modified and changed - MOTS.

The use of OTS items within safety-critical systems has been debated for
years [3], since most of the safety-critical systems need to be certified by a
domain-specific safety standard that requires some kind of evidence about the
safety of the system, that usually doesn’t come with OTS items. As all the
other reusable components, OTS items as well suffer from the three basic is-
sues in the creation and use of reusable components illustrated by the well-
known ”3C’s Model” [13]: Concept, Content and Context. The third issue
is the most problematic for the safety community when it comes to reusable
components. The problem of context is usually addressed by the concept of
separation of concerns, where different aspects of a component are kept as in-
dependent as possible to maximize the reuse potential of the component. Due
to the system-wide nature of the safety-related properties it is impossible to
completely separate concerns in the context of safety-related systems.

7.2.2 Safety Standards and Reuse
Safety standard authorities have been making an effort to bridge the gap be-
tween the separation of concerns and the system-wide nature of safety prop-
erties. As mentioned in the introduction, an example is represented by the
introduction of the concept Safety Element out of Context (SEooC) within the
automotive ISO26262 standard. A SEooC is a safety-related element which is
not developed for a specific item, but is developed based on ”assumptions on
an intended functionality, use and context” [1].

Within avionics domain, regulated by DO178B(C) safety standard, the
regulatory agency introduced the concept of Reusable Software Component
(RSC) [14]. The concept allows developers of RSC to satisfy only a part of
requirements mandated by the safety standard, while the integrator of the de-
veloped RSC is expected to complete the safety standard objectives.

Besides the above-mentioned problem with separation of concerns, an-
other problem that occurs is the criticality of the components developed out-of-
context. Safety Integrity Level (SIL) represents a measurement for quantifying
risk reduction. Different safety standards have different SIL categorizations
that range from events that have no risk involved to events that may result in
harm to human life and can be classified as hazardous and catastrophic. The

74 Paper A

components not only need to be developed according to a safety standards,
but they usually must be developed at a specific SIL. Within the automotive
industry standards, this problem is addressed by ASIL decomposition, where
ASIL is in fact Automotive SIL. ASIL decomposition allows a developer to
use a component with a lower SIL by attaching a safety function with the same
lower SIL and showing that the two are independent. The avionics industry
defines five SILs and refers to them as Design Assurance Level (DAL). DALs
are categorized from catastrophic failure conditions denoted with DAL A to
failure conditions that have no effect on safety denoted with DAL E.

7.2.3 Fine-grained Contracts

Traditional assumption/guarantee contract is a pair of assertions C = 〈A,G〉
where a component makes assumptions A on its environment and if those as-
sumptions are met it offers guarantees G in return. Contract semantics are
defined in terms of environments and implementations. It is said that an en-
vironment satisfies a contract C = 〈A,G〉 if it provides all of the contract
assumptions A. An implementation satisfies a contract C if provided the as-
sumptions A it satisfies the guarantees G.

As we mentioned in our previous work [10], moving properties captured in-
context to out-of-context reusable component is a difficult work because many
implicit and hidden assumptions need to be identified about the specific con-
text, for the property to hold out-of-context. That is why we extended the tradi-
tional contract-based formalism to allow for distinguishing between properties
that are context-specific and properties that must hold for all contexts by adapt-
ing strong and weak contract reasoning. The extended contract format consists
of strong assumptions and guarantees and multiple weak assumption/guarantee
pairs. While the strong assumptions and guarantees must be satisfied always
in order for component to be used, the weak pairs offer additional informa-
tion in some specific contexts where besides the strong assumptions, the weak
assumptions are to be met as well.

7.2.4 Motivating Example

In this subsection we provide essential information related to the wheel brak-
ing system that we use to show the usage and expressiveness of our extended
formalism. This information is based on [11] and is taken from two previous
works [8] and [7].

7.2 Background 75

Figure 7.1: Wheel Braking System - High Level View

The example describes a Wheel Braking System (WBS) within an aircraft
that takes two input brake pedal signals and outputs the brake signal that is
applied on the wheel. The high level architecture is shown in Figure 7.1.

The system is composed of two subsystems: Brake System Control Unit
(BSCU) and Hydraulics. The brake pedal signals are forwarded to BSCU,
which generates braking commands and sends them to Hydraulics subsystem
that executes the braking commands. If the BSCU, which makes the normal
operation mode, fails then Hydraulics uses an alternate or emergency mode to
perform the braking.

The WBS is designed so that it addresses requirement that loss of all wheel
braking is less probable than 1.0E-7 per flight hour (”loss of all wheel braking”
failure condition is classified as hazardous). In order to address the availabil-
ity and integrity requirements imposed on BSCU, BSCU is designed with two
redundant dual channel systems: subBSCU1 and subBSCU2, shown in Figure
7.2. Each of these subsystems consists of Monitor and Command components.
Monitor and Command take the same pedal position inputs, and both calculate
the command value. The two values are compared within the Monitor compo-
nent and the result of the comparison is forwarded as true or false through Valid
signal. The SelectSwitch component forwards the results from subBSCU1 by
default. If subBSCU1 reports that fault occurred through Valid signal, then
SelectSwitch component forwards the results from subBSCU2 subsystem.

In this work we use contracts to capture safety and timing properties of
the system. The timing requirement on the system is that its execution is no

76 Paper A

Figure 7.2: SubBSCUi

more than 10ms. We will detail more about what is needed to be assumed
for this requirement to be guaranteed in the Section 7.4. The addressed safety
requirement is that no single failure within the BSCU shall lead to ”inadvertent
braking due to BSCU”.

7.3 Fine-grained contracts further development
In this section we extend the theoretical foundations of the fine-grained con-
tracts presented in [10] and define contract relations and operations.

Contract-based approaches usually assume that a number of contracts in
the form of assumption/guarantee pairs is attached to a component. The dif-
ferent contracts can be associated with different aspects or viewpoints of the
system. We distinguish between properties that must hold in all contexts and
properties that are context-specific by categorizing the contracts associated to
components into strong and weak contracts. Strong contracts 〈A,G〉 are com-
posed of strong assumptions (A) and strong guarantees (G), and weak contracts
〈B,H〉 of weak assumptions (B) and weak guarantees (H). While strong as-
sumptions must hold in order for a component to be used in any context, weak
assumptions and guarantees just provide additional information for particular
contexts. The weak contracts ensure that in particular contexts satisfying the
strong (A) and the weak assumptions (B), the component offers the weak guar-
antees (H).

For the purpose of defining operations and relations on the component con-
tract we need to conjunct the weak and strong contracts to form a single com-
ponent contract. For the conjuncted contract C we use the format presented

7.3 Fine-grained contracts further development 77

in [10]:
〈A,G, {〈B1, H1〉, . . . , 〈Bn, Hn〉}〉

where A and G are above-mentioned strong assumptions and guarantees, and
{〈Bn, Hn〉} represent a set of weak assumption/guarantee pairs i.e., weak con-
tracts. Since all strong assumptions define a single set of environments (EC)
in which the component can operate, we conjunct all strong assumptions into
a single strong assumption (A) and all strong guarantees into a single strong
guarantee (G). Each weak contract is valid in only a subset (En) of that single
set of environments defined by strong assumptions, i.e., En ⊆ EC . Hence we
don’t conjunct weak contracts that are valid in different subsets but represent
them in the contract as multiple weak assumption/guarantee pairs.

7.3.1 Contract relations and operations
For a contract C in the conjuncted form we say that an environment E is satis-
fying the contract if it satisfies the strong assumptions (A) i.e. if E ∈ EC . We
refer to environments that satisfy the contract as correct environments. The set
EC is the set of all correct environments of contract C.

Any environment E ∈ EC can satisfy some weak assumptions and be in-
compatible with others. The more weak assumptions there are satisfied by the
environment E the more information about the component behaviour described
by the weak contracts can be reused in this context.

The rich component concept we are assuming encompasses both imple-
mentation and contracts. We say that a component implementation I satisfies
a contract C = 〈A,G{〈Bn, Hn〉}〉 under two conditions: (1) implementation
I satisfies the strong guarantees G in all correct environments of C, and (2) for
all weak pairs within C, in all environments E ∈ EC satisfying weak assump-
tions Bn, the implementation I satisfies corresponding weak guarantees Hn.
An implementation I that satisfies the contract C is called a correct implemen-
tation of the contract C.

We assume a hierarchical component structure where a component can be
primitive, i.e., atomic, or composite, i.e., consisting of subcomponents. By
composing subcomponents we must ensure that resulting component imple-
mentation and contract holds. We check composition consistency of a compos-
ite component and its subcomponents with contracts in conjuncted form by (1)
checking that the strong assumptions that are not satisfied by the interconnected
subcomponents are assumed by the strong assumptions of the composite, and
(2) checking that the composite contract follows from the subcomponent con-
tracts.

78 Paper A

For two traditional assumption/guarantee contracts C1 and C2 we get a
composition contract by (1) composing assumptions that are not satisfied by
the interconnected components, and (2) intersection of the guarantees. We
compose two contracts in conjuncted form by (1) composition of the strong
pairs, and (2) composition of the weak pairs such that there exists at least one
environment satisfying the resulting weak pair within the set of all correct en-
vironments of the resulting contract, i.e., the intersection of the set of envi-
ronments satisfying strong assumptions and the set of environments satisfying
weak pair is not empty.

Relations of dominance and refinement are essential for checking compo-
sition and decomposition of contracts. We adapt the notion of dominance and
refinement from [4] and [7] by including the weak and strong contract reason-
ing. Refinement coincides with weakening of assumptions and strengthening
the guarantees within traditional assumption/guarantee contracts. While re-
finement of contracts in traditional form can be applied to strong and weak
contracts individually, we say that refinement holds for two contracts C and
C1 in conjuncted form where C1 refines C by (1) checking that the strong as-
sumption/guarantee pair 〈A1, G1〉 of C1 refines strong assumption/guarantee
pair 〈A,G〉 of C, and (2) that for each weak pair 〈B,H〉 within C such that B
is related to C1 there is at least one strong or weak contract within C1 such that
it refines or implies 〈B,H〉.

We say that composite component contract C dominates subcomponent
contracts C1 and C2 if: (1) composition of any correct implementations of C1

and C2 forms a correct implementation of C, (2) for every subcomponent con-
tract C ′ we say that correct implementations of other subcomponent contracts
and a correct environment of the composite contract constitute a correct envi-
ronment for the subcomponent contract C ′. This means that for every weak
assumption/guarantee pair 〈B,H〉within C such that B is related to a subcom-
ponent Cn there is at least one strong or weak contract within Cn that implies
or refines it. With our updated correct environment and implementation no-
tions, conditions for checking dominance stay the same as in [4] and [7].

7.4 Case Study

In this section we show the usage and expressiveness of the extended contract
formalism using the strong and weak contracts on the wheel braking system
described in Section 7.2.4. We show that specifying contracts to provide bet-
ter support for reuse requires additional constructs for contract specification

7.4 Case Study 79

A: Pedal1==Pedal2
G: -

{〈B1: Platform==x and Compiler==y;
H1: Delay between (Change(Pedal1,Pedal2), Change(Brake Line)) ≤ 10ms〉;}

Figure 7.3: WBS contract

and that the proposed contract formalism is more expressive for capturing this
information.

In this example we use contracts to capture safety and timing analysis of
WBS. We use contract language based on patern-based Requirement Specifi-
cation Language as used in [8] and Othello System Specification from [7]. For
specifying timing properties we use Change({P}) for the event of change of
the ports {P}, and Delay between(p1, p2) to specify delay between the two
changes p1 and p2.

As mentioned in our previous work [10], capturing timing information for
reuse purposes requires additional constructs in identifying a set of assumption
required for the reused timing information to be valid. In our work, we specify
timing properties for reusable components within weak contracts i.e., weak as-
sumption/guarantee pairs, because the timing information may be reused only
if all of the assumptions related to timing are met, otherwise we can not reuse
the behaviour of the component as described by the corresponding guarantees.
Specifying timing information within weak contracts allows us to describe the
timing behaviour of the component in different alternative contexts, e.g., timing
properties of a component for different compilers or different compiler config-
urations. We present all contracts for this example in the conjuncted form.

7.4.1 Usage of the strong and weak contracts
The WBS component is composed of BSCU and Hydraulics subcomponents
as shown in Figure 7.1, Section 7.2.4. The WBS component contract in Fig-
ure 7.3 describes a set of environments in which the system component can
work by imposing the constraint that the two input pedals must be the same,
otherwise all the mechanisms and redundancy within the WBS make no sense.
As an additional information describing the component for certain correct en-
vironments, we make timing contract within weak assumption/guarantee pair
by stating that for this particular platform, compiler and compiler configuration
the component terminates within 10ms. This does not mean that the component

80 Paper A

A: Pedal1==Pedal2
G: -

{〈B1: (SubBSCU1.Valid or SubBSCU2.Valid);
H1: BSCU.Valid 〉;
〈B2: Platform==x and Compiler==y;
H2: Delay between (Change(Pedal1,Pedal2), Change(CMD AS,AS)) ≤ 5ms〉;}

Figure 7.4: BSCU contract

A: BSCU.Valid;
G:-

{〈B1: Platform==x and Compiler==y
H1: Delay between (Change(Valid), Change(Brake Line)) ≤ 5ms〉;}

Figure 7.5: Hydraulics contract

shouldn’t be used in an environment that doesn’t satisfy those weak assump-
tions, but just that the timing behaviour of the component in that environment
is known.

Figures 7.4 and 7.5 show BSCU and Hydraulics component contracts. While
BSCU contract states that it requires the input pedals to be equal for the com-
ponent to be able to operate, the Hydraulics contract requires only that the cor-
rect Valid signal from BSCU is received. We can see that composition of the
subcomponents is correct since WBS takes Pedal1==Pedal2 assumption from
the BSCU subcomponent contract, since it cannot be satisfied by the intercon-
nected components, while BSCU.Valid assumption from Hydraulics contract is
satisfied by the interconnected BSCU component.

The timing contracts in Figures 7.3, 7.4 and 7.5 are defined for the same
environment described by the assumed platform, compiler and compiler con-
figuration. In order for the decomposition to be correct, the dominance should
hold. The first condition for dominance specifies that correct implementations
of BSCU and Hydraulics contracts form a correct implementation of WBS con-
tract, which ensures that the timing contract of the composite is implied by the
timing contracts of the subcomponents. Based on the refinement relation de-
fined in Section 7.3.1, this way we imply that both related components BSCU
and Hydraulics of WBS timing contract must either have a contract that refines
or implies it. Refinement between the WBS contract and the subcomponent

7.4 Case Study 81

A: Pedal1==Pedal2
G: -

{〈B1: no fault in Monitor;
H1: SubBSCUi.Valid 〉;
〈B2: (Monitor developed to DAL A);
H2: SubBSCUi.Valid with high confidence〉;
〈B3: Platform==x and Compiler==y;
H3: Delay between (Change(Pedal1,Pedal2), Change(Valid,CMD AS,AS)) ≤
4ms〉;}

Figure 7.6: SubBSCUi contract

A: Pedal1==Pedal2
G:Monitor developed according to DAL A;

{〈B1: Platform==x and Compiler==y;
H1: Delay between (Change(Pedal1,Pedal2), Change(Valid)) ≤ 2ms〉;}

Figure 7.7: SubBSCUi.Monitor contract

contracts holds since the strong pair is refined by the subcomponent contract
strong pairs and the timing pair is refined and implied by the timing pairs of
the subcomponents contracts.

In the previous works done on this system by [8] and [7], the safety require-
ment that ”no single failure within BSCU shall cause inadvertent braking” is
specified as ”No Double Fault” variable meaning that always at least three out
of four components within BSCU (two Monitors and two Commands) work
correctly. This assumption is a direct representation of the requirement that
no single failure shall cause BSCU to fail, by imposing too strict requirement

A: Pedal1==Pedal2
G: Command developed according to DAL B;

{〈B1: Platform==x and Compiler==y;
H1: Delay between (Change(Pedal1,Pedal2), Change(CMD AS,AS)) ≤ 1ms〉;}

Figure 7.8: SubBSCUi.Command contract

82 Paper A

A: -
G: always terminates;

{〈B1: (Platform==x and Compiler==y) AND Valid1==TRUE;
H1: Delay between (Change(CMD AS1,AS1), Change(CMD AS,AS)) ≤
0,25ms〉;}
〈B2: (Platform==x and Compiler==y) AND Valid1== FALSE;
H2: Delay between (Change(CMD AS1,AS1), Change(CMD AS,AS)) ≤ 1ms〉;}

Figure 7.9: SubBSCUi.SelectSwitch contract

on the system. The BSCU can handle if more than one component of the four
within BSCU fails, so for example if both Command components fail, the Mon-
itors can still report the error and provide correct Valid signal. Another issue
with the way safety contracts have been captured is separation of concerns. By
using the ”No Double Fault” variable on WBS level, authors are not respecting
the encapsulation of SubBSCUi level by making assumptions about its internal
structure on higher levels.

Our specification of the above-mentioned safety requirement can be seen
through Figures 7.4, 7.6, 7.7 and7.8. We assume that no external fault is prop-
agated through the pedal signals and that faults in this context refer to internal
faults. In that case we can guarantee that the correct Valid signal will be pro-
vided by the BSCU if either of its subcomponents SubBSCU1 or SubBSCU2
provide the correct Valid signal, as assumed in BSCU contract in Figure 7.4.
For the reasoning to hold, the subcomponents SubBSCU1 and SubBSCU2 guar-
antee the Valid signal only when the corresponding Monitor subcomponent is
fault-free, Figures 7.6 and 7.7. To be able to guarantee Valid signal with a cer-
tain confidence, we capture the required DAL of Monitor within a weak pair.
This way by respecting the separation of concerns and making assumptions
only on assumed externally visible properties of interconnected components
and subcomponents, we allow for extra flexibility of the system, hence better
reuse possibilities.

On the primitive components level, that are not composed of subcompo-
nents, we sometimes must make guarantees that are based on the external ev-
idence i.e., guarantees that do not follow from assumptions. For example, for
components Monitor and Command we make a statement/guarantee about the
component that says that the component is developed according to a specific
DAL. This information is essential when it comes to completing the safety
contract structure. Some components can be considered reliable, such as Se-

7.5 Related Work 83

lectSwitch, where we specified that it always terminates as its strong guarantee
in Figure 7.9. The timing contract of SelectSwitch component specifies its
behaviour for two alternative situations in which the component has different
timing behaviour. It performs much faster when it just forwards the values by
default from SubBSCU1 (Valid1 == TRUE), than when it must switch to the
redundant component SubBSCU2 (Valid1 == FALSE).

7.4.2 Discussion on benefits of the extended formalism

Developing a new or moving an existing component to an out-of-context set-
ting implies capturing increased number of assumptions and guarantees that
are used to describe the behaviour of the component in different contexts, as
we can see on the timing contracts examples from Section 7.4.1. Accordingly,
the introduction of the additional constructs with the extended formalism of-
fers us with possibility to specify conditions that are out-of-context i.e., that
must be satisfied by any environment in order for component to operate or of-
fer any kind of reuse in that environment (strong assumptions). Then, within
all of those environments in which the component can operate and offer reuse,
we have the possibility to specify conditions using weak contracts that describe
behaviour of the component in some of the correct environments. For example,
we use weak contracts i.e., weak assumption/guarantee pairs, to specify timing
behaviour in different environments, or safety behaviour under different fail-
ure conditions, but all of these information can only be reused after the strong
assumptions are met by the environment in which we use the component. As
can be seen through contract examples in Section 7.4.1, this way of captur-
ing context-specific information allows for extra flexibility of the system that
enhances reuse possibilities.

7.5 Related Work
Contract-based design has been a research topic of many works in the recent
years [6, 8, 4, 7, 9, 5]. These works are largely based on developing a theo-
retical foundation for contract-based framework and creating verification tech-
niques for contract-based design. These works mainly focus on an Original
Equipment Manufacturer (OEM)-supplier relationship. Through the examples
provided in [8, 7, 5] and the formalisms [6, 4, 9, 5] we could notice the lack of
focus on specifying contracts for out-of-context components that are planned
to be instantiated or used in different contexts. When an OEM is developing a

84 Paper A

component for a supplier, OEM usually has some requirements and demands
about the component it needs to develop, which means that the context in which
the component is supposed to operate is not completely unknown and many
assumptions can be omitted since they are implied. When we want to actu-
ally move an in-context component to an out-of-context setting, or develop an
out-of-context component, the number of properties that need to be captured
increases and a more expressive way of capturing them is needed.

Comparing to the related work, in this paper we build on our previous
work [10] and further extend the contract-based formalism [4] and [7] to pro-
vide more expressiveness for specifying contracts for out-of-context compo-
nents. We additionally use an example that was used by [8] and [7] to show
the usage of the strong and weak contracts for specifying out-of-context com-
ponent contracts.

7.6 Conclusion and Future Work

We have presented our extended contract formalism for specifying strong and
weak contracts to support reuse of safety-related information within safety-
critical systems. We specify strong and weak contracts for components that are
developed or moved to out-of-context setting, where very little or no informa-
tion is known about the contexts of the component. We distinguish between
properties that must hold for all contexts and properties that are more context-
specific and are specified as additional or optional properties. The introduced
additional constructs provide us with the possibility to capture context-specific
information within contracts but still retain system flexibility that is needed to
offer better reuse possibilities. Moreover, we define relations of satisfaction
for implementations and environments in terms of strong and weak contracts,
as well as relations of refinement and dominance between contracts. Finally,
we use a wheel braking system as an example of a safety-critical system to
demonstrate the usage and expressiveness of the extended formalism.

In our future work we plan to extend one of the existing contract languages
such as Requirement Specification Language or Othello System Specification
to support the presented extended formalism with strong and weak contracts.
Further on, we see possibilities to establish a closer relation between the con-
tracts in the presented form and safety argumentation used within the certifica-
tion process of safety-critical systems.

7.6 Conclusion and Future Work 85

Acknowledgements
This work is supported by the Swedish Foundation for Strategic Research
(SSF) project SYNOPSIS and the EUs Artemis-funded SafeCer project.

Bibliography

Bibliography

[1] ISO 26262-10. Road vehicles — Functional safety — Part 10: Guideline
on ISO 26262. International Organization for Standardization, 2011.

[2] O. Kath, R. Schreiner, and J. Favaro. Safety, Security, and Software
Reuse: A Model-Based Approach. In Proceedings of the 4th Interna-
tional Workshop on Software Reuse and Safety, RESAFE ’09, Washing-
ton, D.C., US, September 2009.

[3] F. Redmill. The COTS Debate in Perspective. In Proceedings of the 20th
International Conference on Computer Safety, Reliability and Security,
SAFECOMP ’01, pages 119–129, London, UK, 2001. Springer-Verlag.

[4] S. S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Ny-
man, and A. Wasowski. Moving from Specifications to Contracts in
Component-based Design. In Proceedings of the 15th international con-
ference on Fundamental Approaches to Software Engineering, FASE’12,
pages 43–58, Berlin, Heidelberg, 2012. Springer-Verlag.

[5] I. Ben-Hafaiedh, S. Graf, and S. Quinton. Reasoning About Safety
and Progress Using Contracts. In Proceedings of the 12th international
conference on Formal engineering methods and software engineering,
ICFEM’10, pages 436–451, Berlin, Heidelberg, 2010. Springer-Verlag.

[6] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis. Multiple Viewpoint Contract-Based Specification and De-
sign. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, FMCO, volume 5382 of Lecture Notes in
Computer Science, pages 200–225. Springer, 2007.

[7] A. Cimatti and S. Tonetta. A Property-Based Proof System for Contract-
Based Design. In Vittorio Cortellessa, Henry Muccini, and Onur

86

Demirörs, editors, 38th Euromicro Conference on Software Engineer-
ing and Advanced Applications, pages 21–28. IEEE Computer Society,
September 2012.

[8] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using
Contract-based Component Specifications for Virtual Integration Testing
and Architecture Design. In Design, Automation & Test in Europe Con-
ference & Exhibition, pages 1–6. IEEE, 2011.

[9] S. Graf and S. Quinton. Contracts for BIP: Hierarchical Interaction Mod-
els for Compositional Verification. In Proceedings of the 27th IFIP WG
6.1 international conference on Formal Techniques for Networked and
Distributed Systems, FORTE ’07, pages 1–18, Berlin, Heidelberg, 2007.
Springer-Verlag.

[10] I. Sljivo, J. Carlson, B. Gallina, and H. Hansson. Fostering Reuse
within Safety-critical Component-based Systems through Fine-grained
Contracts. In International Workshop on Critical Software Component
Reusability and Certification across Domains, June 2013.

[11] Society of Automotive Engineers (SAE) and European Organisation for
Civil Aviation Equipment (EUROCAE). ED-135/ARP-4761: Guidelines
and Methods for Conducting the Safety Assessment Process on Civil Air-
borne Systems and Equipment. SAE, 1996.

[12] E. Kesseler. Assessing COTS Software in a Certifiable Safety-critical
Domain. Information Systems Journal, 18(3):299–324, 2008.

[13] L. Latour, T. Wheeler, and W. B. Frakes. Descriptive and predictive as-
pects of the 3Cs model: SETA1 working group summary. In Proceedings
of the first international symposium on Environments and tools for Ada,
SETA1, pages 9–17, New York, NY, USA, 1991. ACM.

[14] AC 20-148. Reusable Software Components. FAA, 2004.

Chapter 8

Paper B:
Generation of Safety Case
Argument-Fragments from
Safety Contracts

Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans Hansson.
In Proceedings of the 33rd International Conference on Computer Safety, Re-
liability, and Security (SafeComp), Springer-Verlag, September 2014

89

Abstract

Composable safety certification envisions reuse of safety case argument frag-
ments together with safety-relevant components in order to reduce the cost
and time needed to achieve certification. The argument-fragments could cover
safety aspects relevant for different contexts in which the component can be
used. Creating argument-fragments for the out-of-context components is time-
consuming and currently no satisfying approach exists to facilitate their au-
tomatic generation. In this paper we propose an approach based on (semi-
)automatic generation of argument-fragments from assumption/guarantee safety
contracts. We use the contracts to capture the safety claims related to the
component, including supporting evidence. We provide an overview of the
argument-fragment architecture and rules for automatic generation, including
their application in an illustrative example. The proposed approach enables
safety engineers to focus on increasing the confidence in the knowledge about
the system, rather than documenting a safety case.

8.1 Introduction 91

8.1 Introduction

The cost for achieving certification is estimated at 25-75% of the development
costs [1]. As a part of certification, a safety case in form of a structured argu-
ment is often required to show that the system is acceptably safe to operate. To
reduce cost and time-to-market, more and more safety standards are offering
support for reuse within safety cases. Safety Element out of Context (SEooC)
is an example of a concept for reuse proposed by the automotive ISO 26262
standard [2]. Building on such reusable elements, an approach to composable
certification has been proposed [3]. The approach aims at achieving incremen-
tal certification by composing reusable argument-fragments related to safety
elements, whose behaviour is specified through safety contracts. We define
argument-fragments as parts of the system safety argument that argue about
safety aspects relevant for the individual components.

In our previous work [4] we developed a safety contract formalism to fa-
cilitate reuse of components developed out-of-context. The safety contracts
capture safety-relevant behaviours of the components in assumption/guarantee
pairs. The semantics of such a pair is that if the assumption holds then the
guarantee will also hold. The assumption/guarantee pairs are characterised as
being either strong or weak. The strong contract assumptions are required to
be satisfied in all contexts in which the component is used, hence the strong
guarantees are offered in every context in which the component can be used.
On the other hand, the weak contract guarantees are only offered in the con-
texts in which the component can be used and that satisfy the corresponding
weak assumptions.

The strong and weak contracts allow us to distinguish between proper-
ties that hold for all contexts and those that are context-specific. Since ev-
ery context has specific safety requirements, argument-fragments for out-of-
context components may partially cover safety aspects relevant for several con-
texts. Creating argument-fragments for components developed out-of-context
is a time-consuming activity. (Semi-)automatic generation of such argument-
fragments from safety contracts would speed up the activity and allow for gen-
eration of context-specific argument-fragments. Moreover, the safety engineers
would have the possibility to focus on increasing the confidence in the knowl-
edge about the system, rather then on clerical tasks such as documenting a
safety case [5].

Currently, no satisfying approach exists that facilitates generation of argu-
ment-fragments for out-of-context components. The main contribution of this
paper is that we propose such an approach, capable to (semi)automatically gen-

92 Paper B

erate argument-fragments from safety contracts and related safety requirements
and evidence. As the basis for our approach we developed a meta-model that
captures relationships between the safety contracts, safety requirements and
evidence. To support the generation of argument-fragments from the safety
contracts we provide conceptual mapping between the meta-model and argu-
mentation notation elements. To perform the generation we provide the result-
ing argument-fragment architecture and a set of rules to generate the argument-
fragments.

We demonstrate our approach on a Fuel Level Estimation System (FLES)
and its variants that are used within Scania’s trucks and busses. We focus on
a single component of FLES that estimates the fuel level in the tank. This
component represents a good candidate to be developed as SEooC as it is used
with slight variations in many different variants. We use the safety contracts
not only to capture the knowledge we have about the behaviour of the com-
ponent, but also the evidence supporting the guaranteed behaviour. Moreover,
by connecting in-context safety requirements with the weak safety contracts
that address the requirements, we enable only those safety properties of the
component relevant for the particular context to be used when developing the
argument-fragment. This allows us to support more efficient creation of the
argument-fragments as well as generation of context-specific arguments that
contain information relevant for the context in which the component is used.

Compared to existing works, we focus on generation of argument-fragments
for components developed and prepared for safety certification independently
of the system in which they will be used. Approaches to generating safety case
arguments [6, 7] usually extract the necessary information to build an argument
from artefacts provided to satisfy some process, e.g., mandated by a safety
standard. In our approach we utilise the safety contracts to capture the nec-
essary information about a component from artefacts obtained out-of-context
and show how argument-fragments can be generated for such components.

The structure of the paper is as follows: In Section 8.2 we present back-
ground information. In Section 8.3 we present the rationale behind our ap-
proach and how the generation of argument-fragments can be performed. In
Section 8.4 we illustrate the approach for the Fuel Level Estimation System,
and in Section 8.5 we provide a discussion of our approach. We present the
related work in Section 8.6, and conclusions and future work in Section 8.7.

8.2 Background 93

8.2 Background

In this section we introduce FLES that we use to illustrate our approach. We
also provide some brief information on safety contracts based on our previous
work; and Goal Structuring Notation, the argumentation notation we use for
documenting safety case argument-fragments.

8.2.1 Illustrative Example: The Fuel Level Estimation Sys-
tem

In this subsection, based on [8], we provide brief but essential information
related to FLES and the hazard analysis performed on it. We limit our atten-
tion to some bits of information that we use in illustrating the generation of
argument-fragments.

FLES is based on a real estimation system used in Scania trucks with liquid
fuel. The component-based architecture of FLES is shown in Fig. 8.1. The Es-
timator component estimates the volume of fuel in a vehicle’s tank based on the
sensor data obtained from the Fuel Tank and the Engine Management System
(EMS). The received sensor values go through a series of transformations and
filtering to handle any fluctuations in the sensed fuel level value. The estimated
value is converted into percentage, passed to the Presenter and presented to the
driver of the vehicle through the Fuel Gauge mounted on the dashboard. Due
to dependencies of the transformations to the physical properties of sensors and
its environment (e.g., size of the tank), these parameters are made configurable
to make Estimator usable in different variants of the system.

The hazard analysis performed on the system reveals that if the fuel level
displayed on the fuel gauge is higher than the actual fuel level in the tank
then the vehicle could run out of fuel without the driver noticing, which would
cause a sudden engine stop. If this happens while driving on e.g., a highway,
the consequences could be catastrophic. Although there are other hazards in
the system, this is the only hazard we use in illustrating our approach.

5	

fuelLevelSensor	

fuelRate	

totalFuelLevel	 Es2mator	 Presenter	 Fuel	 Gauge	 Fuel	 Tank	

Engine	 Management	
System	

Figure 8.1: Fuel Level Estimation System

94 Paper B

The safety analysis, as recommended by ISO 26262, starts by identify-
ing at least one Safety Goal (SG) for each hazard, then for every safety goal,
corresponding Functional Safety Requirements (FSRs) are derived and finally,
Technical Safety Requirements (TSRs) are derived from the FSRs. We con-
sider the following SGl and derived FSR:

• SG1: FLES shall not show higher fuel level on the fuel gauge than the
actual fuel in the vehicle’s tank;

• FSR1: Estimator shall not provide value of the estimated fuel level that
deviates more than -5% from the actual fuel-level in the tank.

Additionally, the engine status signal provided by EMS should not be older
than 0.3 seconds. An older value could result in a too high deviation from the
actual fuel consumption that may cause deviation in the estimated fuel level
value.

8.2.2 Strong and Weak Contracts
Our extension of the traditional contract-based formalism with strong and weak
contracts allows for distinguishing between properties that are context-specific
and properties that must hold for all contexts [9].

A traditional assumption/guarantee contract C = 〈A,G〉 is composed of
assumptions A and guarantees G, where a component offers the guarantees G
if its assumptions A on its environment are satisfied [10]. As an illustrative
and simplified example based on the system we presented in Section 8.2.1, we
specify a contract for Estimator with assumptions that if both the fuel level and
fuel rate are provided with sufficient accuracy, Estimator guarantees that the
total estimated fuel level it provides will be with certain accuracy.

Strong contracts 〈A,G〉 are composed of strong assumptions (A) and strong
guarantees (G), and weak contracts 〈B,H〉 of weak assumptions (B) and weak
guarantees (H) [4]. While strong assumptions must hold in order for a compo-
nent to be used in any context, weak assumptions and guarantees just provide
additional information for particular contexts. We say that a component, de-
scribed by a set of safety contracts, is compatible with a certain context if all
of its strong assumptions are satisfied by the environment. The weak contracts
ensure that in all compatible contexts where the weak assumptions (B) are
satisfied, the component offers the weak guarantees (H). For example, strong
contracts could assume input type, range, or minimum amount of stack re-
quired and guarantee similar properties. On the other hand, weak contracts as-
sume configurable parameters such as tank or sensor parameters in FLES and

8.2 Background 95

guarantee different behaviour of the component dependant on those parameters
such as different accuracy of the output or specific timing behaviour.

8.2.3 Goal Structuring Notation
In this paper, we use Goal Structuring Notation (GSN) [11] for expressing
safety case argument-fragments. GSN is a graphical argumentation notation
that can be used to specify elements of any argument. Some of the basic el-
ements of GSN are illustrated in Fig. 8.2 and their semantics is given in the
following list:

• Goal: a claim or a sub-claim that should be supported by the underlying
argument. It can be broken down to several sub-goals (sub-claims).

• Strategy: describes a method used to develop a goal into additional sub-
goals.

• Context: represents the domain/scope of the element it is connected to.

• Solution: describes the evidence that the connected goal has been achieved.

• Undeveloped element: states that the element to which the symbol is
attached requires further development.

• InContextOf : used to connect context with goals.

• SupportedBy: used to show relationship of inference between goals in
the argument, or to show that certain evidence is supporting a goal.

• Away goal: used to specify a module in which the goal is further devel-
oped.

For the sake of clarity it must be noted that the context element can be
used to simply enrich or clarify the statements of the elements it is connected
to. Besides the basic symbols, we additionally use a notational extension that
supports abstract argument patterns [11]. More specifically, to denote a vari-
able we use the curly brackets within statements; to denote generalised n-ary
relationships between GSN elements we use the supportedBy relationship with
a solid circle; to denote a choice, either 1-of-n or m-of-n selection, we use a
solid diamond, which can be paired, using a simple connector line, with an
Obligation element represented by an octagon symbol, stating condition for
the choice selection.

96 Paper B

{Solution id}
<statement>

{Strategy id}
<statement>

{Goal id}
<statement>

{Context id}
<statement>

Requires further
development

InContextOf SolvedBy

Away Goal
<statement>

 <Module reference>

Figure 8.2: Basic elements of the Goal Structuring Notation

8.3 Composable Arguments Generation
The aim of this section is twofold: (1) to explain the rationale underlying our
approach to (semi)automatic generation of argument-fragments, and (2) to ex-
plain how the generation can be performed. The latter is done by

• providing a component meta-model, developed to capture the relation-
ships between the safety contracts, safety requirements and evidence in
an out-of-context setting, and being sufficient to provide us with the in-
formation required for argument-fragment generation,

• presenting a conceptual mapping of the meta-model elements to a subset
of the basic GSN elements to provide better understanding of the transi-
tion from the meta-model to the argument-fragment,

• presenting an overview of the argument-fragment architecture, and by

• providing a set of rules for the argumentation-fragment generation.

8.3.1 Rationale of the approach

In our work we focus on safety-relevant components developed and prepared
for safety certification independently of the system in which they will be used.
To develop such components, the engineer must assume some safety require-
ments that might be required when the component is used in a context. To
prepare components for certification, safety engineers need to capture safety-
relevant properties of the component that show how the safety requirements
allocated to the component are met. To do that, we use our notion of strong
and weak contracts.

It is worth to point out that the safety requirements and the safety contracts
we use are closely related, but not the same. The safety contracts contain in-
formation about the actual behaviour of the component. On the other hand, the
safety requirements contain information about what a particular context/system

8.3 Composable Arguments Generation 97

requires from the component. While the safety requirements vary between con-
texts, the safety contracts should be correct regardless of the context. This is
important to enable reuse of out-of-context components. As an illustration,
consider FLES example requirement “Estimator shall send a valid value in to-
talFuelLevel within 2 seconds from when the Electronic Control Unit starts”.
This is a requirement on Estimator in this particular context and should not
be specified within the Estimator’s safety contract in that form. In the safety
contract we should rather specify the actual time Estimator needs to send the
totalFuelLevel. This makes the contracts independent of the context in which
out-of-context component can be used, which allows us to use the knowledge
captured within the contracts for all contexts in which the contracts are sat-
isfied. The strong contracts denote properties that must be argued about in
argument-fragments for every context, while the weak contracts will be argued
about only if associated with a safety requirement within a particular context.

In order to guarantee the actual behaviour of the component, as specified in
the safety contracts, we need to provide evidence about confidence in the con-
tract. We categorise the evidence that supports the confidence in the contracts
in terms of completeness, correctness and consistency, as follows: (1) com-
pleteness refers to whether contracts have captured all the needed properties of
the component and the environment, (2) correctness refers to whether the con-
tracts are correct with respect to associated requirements and (3) consistency
refers to whether the contracts are not contradicting each other.

When using an out-of-context component in a particular context, a set of
actual safety requirements (e.g., FSR or TSR) is allocated to the component.
One of the roles of an argument-fragment is to show that these requirements
are met. As safety contracts can be used to address different types of require-
ments, we are developing our approach without focusing on a particular class
of requirements.

The (semi)automatic generation of argument-fragments from the safety
contracts enables us to reduce the effort safety engineers need to dedicate for
creating a set of argument-fragments. These fragments could be created for
several contexts in which the component could be used. By speeding up both
the integrator’s and the developer’s activities related to documenting a safety
case, we enable them to focus on activities related to their knowledge about the
system, by capturing this knowledge in the safety contracts.

98 Paper B

8.3.2 Component meta-model

Our component meta-model in Fig. 8.3 is presented as an UML class diagram.
This diagram captures the relationships between the assumed requirements,
safety contracts and evidence, as described in Section 8.3.1. Our meta-model
is based on the SafeCer component meta-model [12], which we have adapted,
focusing only on its out-of-context part. Instead of associating argument-
fragments (that may contain information not relevant for a specific context)
with a component, we associate evidence and safety requirements directly with
contracts to facilitate generation of context-specific argument-fragments.

-id

Safety Contract
-id

-value

Property

Strong Safety Contract

Weak Safety Contract

0...* Strong Assumption (A)

0...*

Strong Guarantee (G)

-id

-title

-evidenceType

-confidence

Evidence

Component

1...*
0...*

1...*

0...*
1...*

1...*
Weak Guarantee (H)

Weak Assumption (B)

1...*

+consistency
+completeness
+correctness

«enumeration»
Evidence Type

-id

Assumed Safety Requirement

1...*

dependentOn

satisfiedBy

supportedBy

0...*

Figure 8.3: Component and safety contract meta-model

The meta-model specifies a component that is composed of safety con-
tracts, evidence and the assumed safety requirements. Each assumed safety
requirement is satisfied by at least one safety contract, and each safety contract
can have supporting evidence. Additionally, we assume that there is at least
one evidence provided with the component supporting the consistency of the
contracts. The safety contract elements in the meta-model are covering both
the strong and weak safety contracts explained in Section 8.2.2. It should be
noted that, based on the SafeCer component meta-model, the components can
be composite i.e., a set of interconnected subcomponents, and can represent a
(sub)system.

8.3.3 Conceptual mapping of the component meta-model to
GSN

As mentioned in Section 8.2.3, GSN is used for documenting safety cases by
expressing arguments and supporting evidence to show that the safety claims
are satisfied. At the same time, as described in Section 8.3.2, our component

8.3 Composable Arguments Generation 99

Table 8.1: Conceptual mapping between the meta-model and GSN elements
The component meta-model elements GSN-elements
Properties representing guarantee(s)
Assumed safety requirement(s)

Goals

Evidence Solutions
Properties representing assumption(s) Contexts

meta-model captures the component safety claims in the safety contracts, sup-
ported by the associated evidence, with the goal to argue the satisfaction of the
safety requirements. The conceptual mapping between the meta-model and
GSN is depicted in Table 8.1.

In order to build an argument structure from the safety contracts, we need
to map the meta-model elements to the GSN elements. Our aim is to, based on
our meta-model, develop an argument-fragment that addresses the following:

1. Compatibility of a component with a context: to show satisfaction of
strong contracts of the component by the context, as described in Section
8.2.2. Besides satisfaction, confidence in contracts needs to be addressed
using associated evidence.

2. Satisfaction of safety requirements: to show that a safety requirement is
satisfied we need to argue both, that weak contracts related to the safety
requirement are satisfied, and that the set of the related contracts is suf-
ficient to show that the requirement is satisfied.

3. Confidence in contracts: showing only that a contract is satisfied by a
context is not enough. Evidence about confidence in the contract should
be provided also. We provide evidence about confidence in contracts
in terms of completeness, correctness and consistency as described in
Section 8.3.1.

The satisfaction of a contract, as described in Section 8.2.2, means that the con-
tract guarantees are offered. Consequently, properties representing the safety
contract guarantees in the meta-model as well as the assumed safety require-
ments correspond to goals in GSN. Furthermore, we use evidence from the
meta-model related to consistency, correctness and completeness as solutions
within GSN. To clarify the context of our goals, we make context statements
providing properties representing the assumptions of the safety contracts.

100 Paper B

8.3.4 Overview of the architecture of the resulting argument-
fragment

Given the meta-model in Section 8.3.2, we propose to generate the resulting
argument-fragment based on the mapping provided in Section 8.3.3.

In the argumentation-fragment generation we will follow a pattern that for
a component, say x, with a top-level goal, say G1, in a series of successive
steps will generate the corresponding argumentation fragment. We start by
decomposing the goal G1 into three sub-goals, as shown in Fig. 8.4. We first
argue satisfaction of all the strong contracts of x in the goal G2. Then, we
provide evidence for the consistency of all the contracts associated with x in
the goal G4 and finally, we argue over satisfaction of the requirements by the
related contracts in the goal G3. We now further develop the goal G3 and leave
the goals G2 and G4 undeveloped, as they will be explored later.

G3
Allocated safety requirements are met

by the related weak contracts of {x}

G1
{x} satisfies the allocated safety requirements

G4
Contracts of {x} are consistent

G2
Strong contracts of {x} are satisfied

with sufficient confidence

G3.k
Safety requirement {k} is satisfied by the

related weak contracts of {x}

G3.k.1
Every contract supporting safety requirement

{k} is satisfied with sufficient confidence
G3.k.2

The set of contracts is correct with
respect to safety requirement {k}

G3.k.1.n
Contract {x}{n} is satisfied with

sufficient confidence

C3.k.1.n
All assumed properties from {x}{n}

1...K

1...N
Away Goal
Contract {x}{n} is satisfied
with sufficient confidence

{x}{n}

O1
If {x}{n} developed

elsewhere Away Goal,
else G3.k.1.n

S1
Argument by satisfaction of all

allocated safety requirements on {x}

S2
Argument by satisfaction with sufficient

confidence of all related weak contracts of {x}

Figure 8.4: Safety requirements satisfaction goal sub-structure

We further develop the goal G3 by applying the strategy S1 to argue over
satisfaction of all safety requirement allocated to component x. For every
safety requirement k ∈ [1,K] where K is the number of allocated require-
ments, a goal G3.k is created, stating satisfaction of the requirement by the
related contracts. We further break down the G3.k goal into two sub-goals: (1)
G3.k.1 arguing over satisfaction of every supporting contract of the require-
ment k, and (2) G3.k.2 providing associated evidence that the related safety
contracts supporting the safety requirement k are correct with respect to the
requirement. We first focus on the G3.k.1 goal, and leave the G3.k.2 goal

8.3 Composable Arguments Generation 101

undeveloped, as it will be explored together with other parts of the argument
referring to evidence.

When arguing over satisfaction with sufficient confidence of a set of con-
tracts, we use the same strategy whether we argue over all the strong contracts
(G2) or the weak contracts that support the safety requirements. To further
develop the G3.k.1 goal, we apply the strategy S2 to argue over satisfaction
with sufficient confidence over every related contract and reach the choice rep-
resented by obligation O1. If a goal has been developed elsewhere to support
a contract n we create an away goal, otherwise we create a goal G3.k.1.n for
every contract n arguing over its satisfaction, where n ∈ [1, N], with N being
the number of related contracts to the requirement k. In order to further clarify
the goal G3.k.1.n we provide assumed properties of the contract n as a goal
context.

G3.k.1.n
Contract {x}{n} is satisfied with sufficient confidence

G3.k.1.n.2
Contract {x}{n} is sufficiently complete

G3.k.1.n.1
Every contract supporting assumed properties of the
contract {x}{n} is satisfied with sufficient confidence

G6.z
{Evidence:title} supports completeness of
the contract with {Evidence:confidence}

S1.z
{Evidence:id}

G5.m
Contract {y}{m} supports the
assumption {Property:value}

C3.k.1.n
All assumed properties from {x}{n}

1...M 1...Z

S3
Argument by satisfaction with sufficient confidence

of all contracts supporting assumed properties

S4
Describe all the attached evidence
related to completeness of {x}{n}

Figure 8.5: Contract satisfaction with confidence goal sub-structure

As shown in Fig. 8.5, to argue that a safety contract n is satisfied with suf-
ficient confidence we break down the goal G3.k.1.n into two sub-goals: (1)
G3.k.1.n.1 arguing over satisfaction of every safety contract m that supports
the assumed properties of the contract n, where m ∈ [1,M] and M is the
number of contracts supporting the contract n, and (2) G3.k.1.n.2 providing
attached evidence about the completeness of contract n. We further develop
the goal G3.k.1.n.1 by applying the strategy S3 to argue over satisfaction of
every supporting contract m and create a sub-goal G5.m arguing that the cor-
responding assumed property of the contract n is satisfied by the supporting
contract m. To develop the goal G5.m we apply the same strategy as for the
goal G3.k.1.

For developing the three arguments that present the attached evidence re-

102 Paper B

lated to completeness, correctness and consistency, represented by the goals
G3.k.1.n.2, G3.k.2 and G4, we develop the argument inspired by the ”Speci-
fication Argument Pattern” [13]. Unlike in that work, we define the three types
of evidence differently, as described in Section 8.3.1. The goal G3.k.1.n.2 is
developed by applying a strategy S4 to argue over every attached evidence of
the specific type. For every evidence a goal is created claiming with what level
of confidence does this goal support the completeness/consistency/correctness
and the evidence reference is provided as the solution to the goal.

8.3.5 Rules for generation of component argument-fragments

Given the argument structure in Section 8.3.4 and the component meta-model
we can define a sequence of transformation rules that facilitate (semi)automatic
generation of argument-fragments. Our goal is not only to transfer all the infor-
mation provided by the safety contracts into the argument-fragment, but also
to point out the goals that need further development and thus alert safety man-
agers. For this we use undeveloped goals within the argument-fragments. We
provide the rules similarly as in [6]. We create an argument-fragment for a
component x by using the following rules:

R1. Create the top-level goal G1: ”{x} satisfies the allocated safety require-
ments”. Develop the goal G1 further by creating three sub-goals:

(a) G2: ”Strong contracts of {x} are satisfied with sufficient confi-
dence”.

(b) G3: ”Allocated safety requirements are met by the related weak
contracts of {x}”.

(c) G4: ”Contracts of {x} are consistent”.

R2. Further develop the goal G3 and for every allocated safety requirement
k create a goal G3.k ”Safety requirement {k} is satisfied by the related
weak contracts of {x}” and develop this goal further by creating two
sub-goals:

(a) G3.k.1: ”Every contract supporting safety requirement {k} is sat-
isfied with sufficient confidence”.

(b) G3.k.2: ”The set of contracts is correct with respect to safety re-
quirement {k}”.

8.3 Composable Arguments Generation 103

R3. Further develop the goal G3.k.1 by developing an argument for every
safety contract n of the component x, associated with the safety require-
ment k. If the contract satisfaction module is developed elsewhere in the
argument provide an away goal, otherwise create a sub-goal G3.k.1.n
”Contract {x}{n} is satisfied with sufficient confidence” and provide
properties representing the assumptions of the contract {n} as the goal
context C3.k.1.n. Further develop the sub-goal:

(a) G3.k.1.n.1: ”Every contract supporting assumed properties of the
contract {x}{n} is satisfied with sufficient confidence”. For every
contract m supporting the assumed property p of the contract n cre-
ate a sub-goal G5.m: ”Contract {y}{m} supports the assumption
{p} ”, where m is specified for a component in environment of x,
say y.

(b) G3.k.1.n.2: ”Contract {x}{n} is sufficiently complete”.

R4. The goal G5.m is developed further in the same way as G3.k.1 and the
goal G2 is developed further in the same way as the goal G3.k.1.n.

R5. Goals G3.k.1.n.2, G3.k.2 and G4 are developed further in the same way
for the list of attached evidence of the corresponding type, respectively,
completeness, correctness and consistency. For every evidence z from
the corresponding list of evidence type:

(a) Create a goal G6.z: ”{Evidence : title} supports {EvidenceType}
of the contract with {Evidence : confidence}”.

(b) Attach a solution S1.z to the goal G6.z with Evidence : id as
reference.

R6. If no evidence of a particular type is provided, an undeveloped goal is
used to indicate that the goal should be further developed.

It should be noted that, based on Rule R4, we can generate argument-
fragments for a composite component by iterating through hierarchical struc-
ture. Applying the rules to an out-of-context component will generate an in-
complete argument-fragment since not all relevant claims can be captured out-
of-context. Such claims are left undeveloped, e.g., correctness of contracts with
respect to a safety requirement. Hence further development of the argument-
fragment is required to address all the undeveloped claims.

104 Paper B

Table 8.2: Safety contracts for the Estimator component
A1: fuelLevelSensor within [0,5] AND fuelRate within [-1,3212]
G1: totalFuelLevel within [−1, 100]
EA1,G1: Sw architecture design specification, Sw architecture verification report
B1: (fuelLevelSensor within correct range AND fuelLevelSensor does not deviate
more than 10% from the actual fuel level value AND fuelLevelSensorParameter=10)
OR
(fuelRate within [0,3212] AND fuelRate does not deviate more than 1% from the
actual engine consumption value AND Tank size within [230-1000])
H1: totalFuelLevel does not deviate more than -1% from the actual fuel level value
EB1,H1: Simulation of the Estimator component under assumed conditions

8.4 Argument-fragment for FLES

In this section we provide safety contracts for the Estimator and EMS com-
ponents of FLES, as well as show the generation of an argument-fragment for
Estimator.

8.4.1 The safety contracts

The strong and weak contracts for Estimator addressing the requirement FSR1
of FLES are shown in Table 8.2. The strong contract assumes the allowed
ranges of inputs and guarantees the possible outputs of the component. The
evidence supporting the completeness of strong contract 〈A1, G1〉 includes the
software architecture design specification and the corresponding verification
report.

As described in Section 8.2.1, the quality of the totalFuelLevel output of
the Estimator component is dependent on relevant parameters and the quality
of inputs. The weak contract 〈B1, H1〉 of Estimator guarantees that the de-
viation of the totalFuelLevel from the actual fuel level is less than or equal to
-1% if assumptions on either fuelLevelSensor and parameters related to it, or
fuelRate and parameters related to it, are satisfied. The corresponding evidence
is obtained by simulation of Estimator under the assumed conditions, and the
simulation report is attached as evidence supporting the contract completeness.

The EMS component safety contracts related to the Estimator component
are provided in Table 8.3. The EMS strong contract is similar to the one for
the Estimator component, ensuring the input and output port ranges. The weak
contract 〈B2, H2〉 guarantees that the deviation of the estimated fuel consump-

8.4 Argument-fragment for FLES 105

Table 8.3: Safety contracts for the EMS component
A2: engineStatus within [a,b]
G2: fuelRate within [-1,3212]
EA2,G2: Sw architecture design specification, Sw architecture verification report
B2: Engine parameters=20 AND engineStatus delay under 0.3 seconds
H2: fuelRate does not deviate more than 0.4% from the actual fuel consumption
EB2,H2: Simulation of the fuel consumption estimation under assumed conditions

tion does not exceed 0.4% of the actual fuel consumption under the assumed
engine parameters and freshness of the information obtained from the engine.
A simulation of the EMS component’s behaviour under the stated conditions is
attached as an evidence to support contract completeness.

G3.1.1
Every contract supporting safety
requirement 1 is satisfied with

sufficient confidence

G3.1
Safety requirement 1 is satisfied by the

related weak contracts of Estimator G3.1.2
The set of contracts is
correct with respect to
safety requirement 1

G3.1.1.1
Contract Estimator1 is satisfied with

sufficient confidence

G3.1.1.1.2
Contract Estimator1 is
sufficiently complete

G3.1.1.1.1
Every contract supporting assumed properties of the

contract Estimator1 is satisfied with sufficient confidence

G6.1
”Simulation of the Estimator component under
assumed conditions” supports completeness of

the contract with {confidence}

S1.1
EB1,H1

G5.1
Contract EMS2 supports the assumption
“fuelRate does not deviate more than 1%

from the actual engine consumption value”

C3.1.1.1 (fuelLevelSensor within correct range
AND fuelLevelSensor does not deviate more than 10% from the
actual fuel level value AND fuelLevelSensorParameter=10) OR
(fuelRate within correct range AND fuelRate does not deviate
more than 1% from the actual engine consumption value AND

Tank size within [230-1000])

Away Goal
Contract EMS2 is satisfied
with sufficient confidence

 EMS2

S2 Argument by satisfaction with
sufficient confidence of all related

weak contracts of Estimator

S3
Argument by satisfaction with sufficient confidence of

all contracts supporting assumed properties

S4
Describe all the attached evidence

related to completeness of Estimator1

Figure 8.6: A part of the resulting argument-fragment

8.4.2 The resulting argument-fragment for the Estimator com-
ponent

In Fig. 8.6 we provide a part of the argument-fragment for FSR1 of FLES,
allocated to the Estimator component and associated with the Estimator con-
tract 〈B1, H1〉 denoted as Estimator1 within the argument. By using the
rules from Section 8.3.5, we generate an argument-fragment from the provided

106 Paper B

safety contracts to argue over satisfaction of FSR1 by showing that the re-
quirement is satisfied by the related Estimator1 contract. The argument for
satisfaction of Estimator1 contract is developed to show the associated evi-
dence supporting its completeness, and point to the away goals supporting its
assumed properties. Due to space limitations we show only an away goal sup-
porting Estimator1 assumed property related to the fuelRate deviation and
supported by the EMS 〈B2, H2〉 contract, denoted as EMS2 within the argu-
ment. The generated argument-fragment contains some properties that could
be captured in an out-of-context setting and should be further developed to
cover all relevant properties not captured within the contracts.

8.5 Discussion

As seen in the example in Section 8.4 we are able to generate a partial argument-
fragment based on the component meta-model in Section 8.3.2. We support the
confidence in contract completeness by associating the supporting evidence
with the contracts. At the same time, by making the contracts related to the
actual behaviour of the component and not to particular safety requirements,
we are able to use the contracts to address different context-specific safety re-
quirements.

The presented approach allows us to use the safety claims captured for
an out-of-context component to develop context-specific argument-fragments.
The resulting argument-fragment for a particular context should not include
information relevant for all contexts, but only the information relevant for the
particular context. By automating the generation of argument-fragments from
safety contracts we speed up the creation of such argument-fragments for dif-
ferent contexts. The argument presented in Section 8.4 does not present all
the aspects an argument should cover, such as failure modes or process-based
arguments, but it provides an illustration of how the contracts can be used to
generate argument-fragments. Contracts can be used to capture different safety
aspects of components, e.g., failure behaviour. The resulting argument quality
depends on the quality and variety (e.g., in terms of aspects) of the provided
contracts.

The amount of work that still needs to be performed for a specific sys-
tem depends on the abstraction level at which we allocate the safety require-
ments to components that have their safety contracts specified. If we connect
the requirements with the contracts at higher levels of abstraction, based on
the compositional nature of our approach a more complete argument-fragment

8.6 Related Work 107

could be generated. According to ISO 26262, SEooC cannot be an item, i.e., a
system implementing a complete functionality, but it can be a subsystem or a
subcomponent of an item. Hence we focused on lower level components and
how to reduce efforts needed to generate their argument-fragments.

The problem of automation and reuse of safety analyses and safety rea-
soning within the safety cases is a sensitive issue, especially since safety is a
system property and needs to be reasoned about for the particular system. As
mentioned in [5], the goal of automation is not to replace human reasoning, but
to focus it on areas where they are best used. Similarly, in this work we are not
aiming at eliminating human reasoning from the process of safety reasoning
and argumentation, but to support it by providing automation of more clerical
tasks.

8.6 Related Work

Generating safety case arguments to increase efficiency of safety certification
has been a topic of many recent works. While some consider different no-
tions of assumption/guarantee contracts for that purpose [14, 15] others directly
build upon safety requirements [6, 7].

Assume/guarantee contracts are used in [14] to capture the vertical depen-
dencies between a software application and a hardware platform that enables
automatic generation of application specific arguments. The work presents a
model-based language for specifying demanded and guaranteed requirements
between the applications and platforms. The language allows for capturing
restricted set of properties, whereas the contract formalism we base our work
on is more expressive and offers support for easier out-of-context to in-context
reuse of components. Also, [14] does not provide means for generating argu-
ments from the captured contracts.

An approach where “informal” contracts are used for safety-case genera-
tion is proposed in [15]. The approach uses Dependency-Guarantee Relation-
ships (DGRs) that correspond to our contracts. It derives an argument for a
module by using all the DGRs of the module to build an argument relying
on dependencies from other modules. In contrast to this approach, we take
in consideration different types of evidence that need to be provided with the
safety contracts and components, including compatibility of a component with
a particular context.

A method for automated generation of safety case arguments based on an
automatic extraction of information from existing work-products is presented

108 Paper B

in [7]. The generated argumentation consists of summaries of different work-
products created within a project. Similarly, a methodology for safety case
assembly from artefacts required to satisfy some process objectives is presented
in [6]. The work provides a set of transformation rules from captured safety
requirements to safety case arguments. While these methods are useful for
generating a safety case argument from a set of safety requirements that are
related to existing work-products, they do not as we do consider reuse of out-
of-context components developed and prepared for certification.

8.7 Conclusion and Future Work
In this paper we have presented an approach for generating safety case argument-
fragments from safety contracts for out-of-context components developed and
prepared for safety certification independently of the system in which they will
be used. The approach allows us to speed up the creation of context-specific
argument-fragments. More specifically, we have presented an overview of the
argument-fragment architecture and provided a set of rules for generating the
argument-fragments from the safety contracts, including illustrating the appli-
cation of the rules with an example. We can conclude that safety contracts
provide a good basis for generating argument-fragments and in that way allow
safety engineers to focus more on capturing the knowledge about the system
rather than spending time on documenting a safety case.

In our future work, we plan to refine our component meta-model, e.g., to
provide support for different classes of requirements. Consequently, this refine-
ment entails co-evolution of the generation rules. We also plan to implement
the provided rules within an existing tool that supports a contract formalism,
e.g., the CHESS-toolset [16]. To show the scalability of our approach we aim
at using it for more complex case studies, e.g., for a larger number of safety re-
quirements. Further more, we plan to explore how our approach could be used
to reduce some of the common argument fallacies [17] related to the structure
of arguments. Moreover, it is worthwhile investigating usage of our approach
for safety case maintenance and change management.

Acknowledgements
Thanks to Iain Bate for useful discussions and comments. This work is sup-
ported by the Swedish Foundation for Strategic Research (SSF) via project
SYNOPSIS as well as EU and Vinnova via the Artemis JTI project SafeCer.

Bibliography

[1] N. R. Storey. Safety Critical Computer Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1996.

[2] ISO 26262-10. Road vehicles — Functional safety — Part 10: Guideline
on ISO 26262. International Organization for Standardization, 2011.

[3] I. Bate, H. Hansson, and S. Punnekkat. Better, Faster, Cheaper, and Safer
Too - Is This Really Possible? In 17th International Conference on
Emerging Technologies for Factory Automation. IEEE, September 2012.

[4] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Strong and weak con-
tract formalism for third-party component reuse. In International Work-
shop on Software Certification. IEEE Computer Society, November 2013.

[5] J. Rushby. Logic and Epistemology in Safety Cases. In Proceedings of
the 32nd International Conference on Computer Safety, Reliability, and
Security, volume 8153 of LNCS, pages 1–7. Springer-Verlag, September
2013.

[6] E. Denney and G. J. Pai. A lightweight methodology for safety case
assembly. In Proceedings of the 31st International Conference on Com-
puter Safety, Reliability and Security, volume 7612 of LNCS, pages 1–12.
Springer-Verlag, September 2012.

[7] E. Armengaud. Automated Safety Case Compilation for Product-based
Argumentation. In Embedded Real Time Software and Systems, February
2014.

[8] R. Dardar. Building a Safety Case in Compliance with ISO 26262 for Fuel
Level Estimation and Display System. Master’s thesis, Mälardalen Uni-

109

versity, School of Innovation, Design and Engineering,, Västerås, Swe-
den, 2013.

[9] I. Sljivo, J. Carlson, B. Gallina, and H. Hansson. Fostering Reuse
within Safety-critical Component-based Systems through Fine-grained
Contracts. In International Workshop on Critical Software Component
Reusability and Certification across Domains, June 2013.

[10] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis. Multiple Viewpoint Contract-Based Specification and De-
sign. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, FMCO, volume 5382 of Lecture Notes in
Computer Science, pages 200–225. Springer, 2007.

[11] GSN Community Standard Version 1. Technical report, Origin Consult-
ing (York) Limited, November 2011.

[12] J. Carlson et al. ”Generic component meta-mode, Version 1.0” SafeCer,
Deliverable D132, November 2013.

[13] I. Bate and P. Conmy. Assuring Safety for Component Based Software
Engineering. In 15th International Symposium on High Assurance Sys-
tems Engineering, pages 121–128. IEEE, January 2014.

[14] B. Zimmer, S. Bürklen, M. Knoop, J. Höfflinger, and M. Trapp. Vertical
Safety Interfaces – Improving the Efficiency of Modular Certification. In
Computer Safety, Reliability, and Security, pages 29–42. Springer, 2011.

[15] J. L. Fenn, R. Hawkins, P. J. Williams, T. Kelly, M. G. Banner, and
Y. Oakshott. The Who, Where, How, Why and When of Modular and
Incremental Certification. In 2nd Institution of Engineering and Tech-
nology International Conference on System Safety, pages 135–140. IET,
2007.

[16] CHESS-toolset, http://www.chess-project.org/page/
download.

[17] W. S. Greenwell, J. Knight, C. M. Holloway, and J. J. Pease. A Taxonomy
of Fallacies in System Safety Arguments. In 24th International System
Safety Conference, 2006.

http://www.chess-project.org/page/download
http://www.chess-project.org/page/download

Chapter 9

Paper C:
A Method to Generate
Reusable Safety Case
Fragments from
Compositional Safety
Analysis

Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans Hansson, Stefano Puri.
In Proceedings of the 14th International Conference on Software Reuse (ICSR
2015), Springer-Verlag, January 2015

111

Abstract

Safety-critical systems usually need to be accompanied by an explained and
well-founded body of evidence to show that the system is acceptably safe.
While reuse within such systems covers mainly code, reusing accompanying
safety artefacts is limited due to a wide range of context dependencies that need
to be satisfied for safety evidence to be valid in a different context. Currently
the most commonly used approaches that facilitate reuse lack support for reuse
of safety artefacts.

To facilitate reuse of safety artefacts we provide a method to generate
reusable safety case argument-fragments that include supporting evidence re-
lated to safety analysis. The generation is performed from safety contracts that
capture safety-relevant behaviour of components within assumption/guarantee
pairs backed up by the supporting evidence. We illustrate our approach by
applying it to an airplane wheel braking system example.

9.1 Introduction 113

9.1 Introduction

A recent study within the US Aerospace Industry shows that reuse is more
present when developing embedded systems than non-embedded systems [1].
The study reports that code is reused most of the time, followed by require-
ments and architectures in significantly smaller scale than code. Aerospace
industry, as most other safety-critical industries, needs to follow a domain spe-
cific safety standard that requires additional artefacts to be provided alongside
the code to show that the code is acceptably safe to operate in a given context.
The costs of producing the verification artefacts are estimated at more than 100
USD per code line, while for highly critical applications the costs can reach up
to 1000 USD [2]. In most cases, as part of the certification efforts an additional
time-consuming and expensive task of providing a safety case is required. A
safety case is documented in form of an explained and well-founded structured
argument to clearly communicate that the system is acceptably safe to operate
in a given context [3].

Most safety standards are starting to acknowledge the need for reuse, hence
the latest versions of both aerospace (DO178-C) and automotive (ISO 26262)
industry standards explicitly support techniques for reuse, e.g., the notion of
Safety Element out of Context (SEooC) within automotive [4] and Reusable
Software Components (RSC) within aerospace industry [5]. This allows for
easier integration of reusable components, such as Commercial of the shelf
(COTS), but it also means that some safety artefacts of the reused components
should be reused as well if we are to fully benefit from the reuse and safely in-
tegrate the reused component into the new system. The difficulty that hinders
reuse is that safety is a system property. This means that hazard analysis and
risk assessment used to analyse what can go wrong at system level, as required
by the standards, can only be performed in a context of the specific system.
To overcome this difficulty compositional approaches are needed. CHESS-
FLA [6] is a plugin within the CHESS toolset [7] that supports execution of
Failure Logic Analysis (FLA) such as Fault Propagation and Transformation
Calculus (FPTC). FPTC allows us to calculate system level behaviour given
the behaviour of the individual components established in isolation. Such com-
positional failure analyses enable reuse of safety artefacts within safety-critical
systems.

Component-based Development (CBD) is the most commonly used ap-
proach to achieve reuse within embedded systems of the aerospace industry [1].
While CBD is successfully used to support reuse of software components, it
lacks means to support reuse of additional artefacts, alongside the software

114 Paper C

components, in form of argument-fragments and supporting evidence. As a
part of an overall system safety argument, argument-fragments for software
components present safety reasoning used to develop a particular component
and its safety-relevant behaviour, e.g., failure behaviour.

In our previous work we developed the notion of safety contracts related to
software components to promote reuse of the components together with their
certification data and we have proposed a (semi)automatic method to gen-
erate argument-fragments for the software components from their associated
safety contracts [8]. In this work we propose a method called FLAR2SAF that
uses failure logic analysis results (FLAR) to generate safety case argument-
fragments (SAF). More specifically, we derive safety contracts for a component
from FLAR. Then, we adapt our method for generation of argument-fragments
to provide better support for reuse of the argument-fragments and the evidence
they contain.

In particular, the input/output behaviour of a component developed out-of-
context can be specified by FPTC rules. For example, in case of omission fail-
ure on the input I1 of the component, the component can have a safety mecha-
nism to still provide the output O1 but with additional delay. In that case FPTC
rule describing such behaviour can be specified as: I1.omission → O1.late.
We can use these behaviours obtained by FPTC analysis to derive safety con-
tracts that can be further supported by evidence and used to form clear and
comprehensive argument-fragments. For example, if the late failure on the
output of the component can cause a hazardous event, then the corresponding
argument-fragment should argue that the late failure is sufficiently handled in
the context of the particular system and attach supporting evidence for that
claim. For generating argument-fragments associated to the failure behaviour
of the components we use an established argument pattern [9].

The main contribution of this paper is a method for the design and prepa-
ration for certification of reusable COTS-based safety-critical architectures.
More specifically, we provide a conceptual mapping of FPTC rules to safety
contracts. Moreover, we extend the argument-fragment generation method to
generate reusable argument-fragments based on an existing argumentation pat-
tern.

The rest of the paper is organised as follows: In Section 9.2 we provide
background information. In Section 9.3 we present the rationale behind our
approach and methods to derive safety contracts from FPTC analysis and gen-
erate corresponding argument-fragments. In Section 9.4 we illustrate our ap-
proach by applying it to a wheel-braking system. We present the related work
in Section 9.5, and conclusions and future work in Section 9.6.

9.2 Background 115

9.2 Background
In this section we briefly provide some background information on COTS-
based safety-critical architectures and safety contracts. Furthermore, we recall
essential information concerning the CHESS-FLA plugin within the CHESS
toolset. Finally, we provide brief information on safety cases and safety case
modelling.

9.2.1 COTS-based safety-critical architectures

In the context of safety critical systems, COTS-driven development is becom-
ing more and more appealing. The typical V model that constitutes the ref-
erence model for various safety standards is being combined with the typical
component-based development. As Fig.9.1 depicts, the top-down and bottom-
up approach meet in the gray zone. Initially a top-down approach is carried
out. The typical safety process starts with hazards identification which is con-
ducted by analysing (brainstorming on) failure propagation, based on an initial
description of the system and its possible functional architecture. If a failure
at system level may lead to intolerable hazards, safety requirements are formu-
lated, decomposed onto the architectural components, and mitigation means
have to be designed. Safety requirements are assigned with Safety Integrity
Levels (SILs) as a measure of quantifying risk reduction. Iteratively and incre-
mentally the system architecture is changed until a satisfying result is achieved
(i.e. no intolerable behaviour at system level). More specifically, once the
safety requirements are decomposed onto components (hardware/software),
COTS (developed via a bottom-up approach) can be selected to meet those
requirements. If the selected components do not fully meet the requirements,
some adaptations can be introduced.

Safety Requirements

System Design System Integration

Sw/Hw Safety
Requirements

Sw/Hw Unit
Design Sw/Hw Unit

Implementation

Sw/Hw Unit
Integration and Test

Sw/Hw Safety Req.
Verification

COTS Select Adapt Test

System Test
…

Figure 9.1: Safety-critical system development/COTS-driven development

116 Paper C

-id

Safety Contract
-id

-value

Property

Strong Safety Contract

Weak Safety Contract

0...* Strong Assumption (A)

0...*

Strong Guarantee (G)

-id

-title

-evidenceType

-confidence

Evidence

Component

1...*
0...*

1...*

0...*
1...*

1...*
Weak Guarantee (H)

Weak Assumption (B)

1...*

+consistency
+completeness
+correctness

«enumeration»
Evidence Type

-id

Assumed Safety Requirement

1...*

dependentOn

satisfiedBy

supportedBy

0...*

Figure 9.2: Component and safety contract meta-model [8]

To ease the selection of components, contracts play a crucial role. In
our previous work, we have proposed a contract-based formalism with strong
〈A,G〉 and weak 〈B,H〉 contracts to distinguish between context-specific prop-
erties and those that must hold for all contexts [10]. A traditional component
contract C = 〈A,G〉 is composed of assumptions (A) on the environment of
the component and guarantees (G) that are offered by the component if the
assumptions are met. The strong contract assumptions (A) are required to be
satisfied in all contexts in which the component is used, hence the correspond-
ing strong guarantees (G) are offered in all contexts in which the component
can be used. For example, a strong assumption could be minimum amount
of memory a component requires to operate. The weak contract guarantees
(H) are offered only in those contexts where besides the strong assumptions,
the corresponding weak assumptions (B) are satisfied as well. This makes the
weak contracts context specific, e.g., a timing behaviour of a component on a
specific platform is captured by a weak contract.

We denote a contract capturing safety-relevant behaviour as a safety con-
tract. In [8] we introduced a component meta-model (Fig. 9.2) that connects
safety contracts with supporting evidence, which provides a base for evidence
artefact reuse together with the contracts. The component meta-model spec-
ifies a component in an out-of-context setting composed of safety-contracts,
evidence and the assumed safety requirements. Each safety requirement is sat-
isfied by at least one safety contract, and each contract can be supported by
one or more evidence. For example, if we assume that late output failure of the
component can be hazardous, then we define an assumed safety requirement
that specifies that late failure should be appropriately handled. This require-
ment is addressed by a contract that captures in its assumptions the identified
properties that need to hold for the component to guarantee that the late fail-

9.2 Background 117

ure is appropriately handled. The evidence that supports the contract includes
contract consistency report and analyses results used to derive the contract.

9.2.2 CHESS-FLA within the CHESS toolset
CHESS-FLA [6] is a plugin within the CHESS toolset [7] that includes two
FLA techniques: (1) FPTC [11] - a compositional technique to qualitatively
assess the dependability of component-based systems, and (2) FI4FA [12] -
FPTC extension that allows for analysis of mitigation behaviour. In this paper
we limit our attention to FPTC that allows users to calculate the behaviour at
system-level, based on the specification of the behaviour of individual com-
ponents. In the CHESS toolset components can be modelled as component
types or component implementations. Component types are more abstract and
can be realised by system-specific component implementations. Component
implementations inherit all behaviours of the corresponding component type.

The behaviour of the individual components is established by studying the
components in isolation. This behaviour is expressed by a set of logical ex-
pressions (FPTC rules) that relate output failures (occurring on output ports)
to combinations of input failures (occurring on input ports). These behaviours
can be classified as: (1) a source (e.g., a component generates a failure due to
internal faults), (2) a sink (e.g., a component is capable to detect and correct a
failure received on the input), (3) propagational (e.g., a component propagates
a failure it received on the input), and (4) transformational (e.g., a component
generates a different type of failure from the input failure). Input failures are
assumed to be propagated or transformed deterministically, i.e., for a combina-
tion of failures on the input, there can be only one combination of failures on
the output.

The syntax supported in CHESS-FLA to specify the FPTC rules is shown in
Fig. 9.3. An example of a compliant expression that demonstrates the transfor-
mational behaviour of a component is “R1.late → P1.valueCoarse”, which

behaviour = expression + expression = LHS ’→’ RHS
LHS = portname’.’ bL | portname ’.’ bL (’,’ portname ’.’ bL) +
RHS = portname’.’ bR | portname ’.’ bR (’,’ portname ’.’ bR) +
failure = ’early’ | ’late’ | ’commission’ | ’omission’ | ’valueSubtle’ | ’valueCoarse’
bL = ’wildcard’ | bR
bR = ’noFailure’ | failure

Figure 9.3: FPTC syntax supported in CHESS-FLA

118 Paper C

AbsHSFMLate
Hazardous Software Failure Mode {HSFM}
of type Late absent in contributory software
functionality (CSF)

CauseLateHaz
Known causes of Late

Hazardous Failure Mode

AbsLateSecondary
The known causes of secondary failures of
other components are acceptably handled

AbsLatePrimary
The component (CSF)
successfully handles the
primary failures

Failure
Analysis

AbsLateControl
CSF is not scheduled too late (the claims
addresses the items with control over CSF)

Goal

Strategy

Context

J
Justification

Solution

Undeveloped
Goal

SupportedBy

InContextOf

ArgFailureMech
Argument over failure

mechanisms

AllCauses
Identified failure mechanisms describe all
known causes of Late hazardous Failure

Mode J

Figure 9.4: Hazardous Software Failure Mode absence pattern for type late
failure

should be read as follows: if the component receives on its port R1 a late fail-
ure, it generates on its output port P1 a coarse (i.e. clearly detectable) value
failure (a failure that manifests itself as a failure mode by exceeding the al-
lowed range).

9.2.3 Safety cases and safety case modelling

A Safety case in form of an explained (argued about) and well-founded (ev-
idence based) structured argument is often required to show that the system
is acceptably safe to operate in a given context [3]. Goal Structuring Nota-
tion (GSN) is a graphical argumentation notation for documenting the safety
case [13]. GSN can be used to represent the individual elements of any safety
argument and the relationships between these elements. The argument usually
starts with a top-level claim/goal stating absence of a failure, as in Fig. 9.4
the argument starts with a goal that has AbsHSFMLate identifier. The goals
can be further decomposed to sub-goals with supportedBy relations denoting
inference between goals or connecting supporting evidence with a goal. The
decomposition can be described using strategy elements e.g., ArgFailureMech
in Fig. 9.4. To define the scope and context of a goal or provide its rationale,
elements such as context and justification are attached to a goal with inCon-
textOf relations. For example, context CauseLateHaz is used to clarify the
AbsHSFMLate goal by providing the list of known causes of the late failure
mode. The undeveloped element symbol indicates elements that need further
development. For more details on GSN see [13].

GSN was initially used to communicate a specific argument for a particu-
lar system. Since similar rationale exists behind specific argument-fragments

9.3 FLAR2SAF 119

in different contexts, argument patterns of reusable reasoning are defined by
generalising the specific details of a specific argument [13]. In this work we
use the argument pattern for Handling of Software Failure Modes (HSFM) [9],
a portion of which is shown in Fig. 9.4, to structure the generated argument-
fragments related to late timing failure modes. To build an argument, HSFM
pattern requires information about known causes of the failure mode and fail-
ure mechanisms that address those causes. Moreover, the failure mechanisms
can be classified into three categories: (1) Primary failures within Contributory
Software Functionality (CSF) that can cause the failure; (2) Secondary failures
relating to other components within the system on which CSF is dependent;
and (3) Failures caused by items controlling CSF e.g., in case of late hazardous
failure mode the controlling item is the scheduling policy.

9.3 FLAR2SAF
In this section we present FLAR2SAF, a method to generate reusable safety
case argument-fragments. We first provide the rationale of the approach in
Section 9.3.1. We provide a method to translate FPTC rules into safety con-
tracts in Section 9.3.2, and we adapt and extend the method for semi-automatic
generation of argument-fragments from safety contracts in Section 9.3.3.

9.3.1 Rationale

In our work we use safety contracts to facilitate reuse of safety-relevant soft-
ware components. The method for semi-automatic generation of argument-
fragments from safety contracts, mentioned in Section 9.2.1, can be used to
support the reuse of certification-relevant artefacts from previously specified
contracts. Just as evidence needs to be provided with a reusable component
to increase confidence in the component itself, similarly in some cases the
trustworthiness of the evidence should be backed up as well [14]. To reuse
evidence-related artefacts together with the argument fragments, additional in-
formation about the rationale linking the artefacts and the safety contracts they
support should be provided. Furthermore, the issue of trustworthiness of such
evidence needs to be addressed. For example, we might need to describe the
competence of the engineers that performed a particular analysis or even qual-
ification of the analysis tool.

To capture the additional information related to evidence we enrich the
component meta-model presented in Section 9.2.1. We enrich the connection

120 Paper C

between a contract and evidence by adding optional descriptive attribute cap-
turing the rationale for how the particular evidence, or set of evidence, supports
the goal. This information is used to provide additional clarification on the
connection between the evidence and the claims made by the contract. Clarifi-
cation of confidence in the evidence itself can be made in two different ways:
either by directly including or referencing supporting information in the con-
text of the evidence (e.g., competence of person performing the failure anal-
ysis can be found in document x); or to point to an already developed goal,
called an away goal [13], presenting the supporting information (we could
have a repository of generic argument-fragments related to staff competence
and tool-qualification [15]). In the presented component meta-model we ap-
pend attributes to the evidence to capture supporting information related to the
evidence, including a set of references to the supporting away goals.

FLAR2SAF based on FPTC analysis can be performed by the following
steps:

• Model the component architecture in CHESS-FLA;

• Specify failure behaviour of a component in isolation using FPTC rules;

• Translate the FPTC rules into corresponding safety contracts and attach
FPTC analysis results as initial evidence;

• Support the contracts with additional V&V evidence and enrich the con-
tract assumptions accordingly;

• Upon component selection, depicted in Fig. 9.1 in Section 9.2.1:

– Perform FPTC analysis and calculate system-level failure behaviour;

– Translate the results of FPTC analysis to system-level safety con-
tracts;

– Support and enrich the contracts with additional V&V evidence;

• Use the approach to semi-automatically generate an argument-fragment
based on the argument pattern presented in Section 9.2.3.

The generated argument-fragment is tailored for the specific system so that
only contracts satisfied in the particular system are used to form the argument,
and accordingly only evidence associated to such contracts is reused to support
confidence in the contracts. Particular evidence can only be reused if all the
captured assumptions within the associated contract are met by the system.

9.3 FLAR2SAF 121

C
C2 C1

C1.R1: I1.late,I2.late -> O1.late;
C1.R2: I1.coarse,I2.coarse -> O1.coarse;
C2.R1: I1.late -> O1.noFailure;
C2.R2: I1.coarse -> O1.late;
C.R1: I1.late,I2.late -> O1.noFailure;
C.R2: I1.coarse,I2.coarse -> O1.late;

I1
I2 I2

I1
I1 O1 O1 O1

Figure 9.5: Composite component example with FPTC rules

9.3.2 Contractual interpretation of FPTC rules
In this section we focus on the step of translating the FPTC rules to safety
contracts. We use the simple example in Fig. 9.5 to explain the translation
process and provide a set of steps that can be used to perform the translation

In Fig. 9.5 we have FPTC rules specified for a composite component C
and its subcomponents C1 and C2. When both inputs I1 and I2 exhibit late
or coarse failure, component C1 acts as a propagator and outputs late/coarse
failure on O1 output. Component C2 acts as a sink in case of a late failure
and transforms it to no failure (e.g., a watchdog timer expires and triggers a
satisfactory response), while it transforms coarse to late failure (e.g., due to
additional filtering).

Safety contracts for these components can be made based on the FPTC
rules. When translating the rules into contracts we consider two types of rules
with respect to each failure mode: rules that describe when a failure happens
(e.g., C1.R1) and rules that describe behaviours that mitigate a failure (e.g.,
C2.R1). We translate the first type of rules by guaranteeing with the contract
that the failure described by the rule will not happen, under assumptions that
the behaviour that causes the failure does not happen. The contract 〈B,H〉C1

for component C1, shown in Table 9.1, guarantees that O1 will not be late
if both inputs I1 and I2 never fail at the same time with late failure. This
type of contracts is specified as weak since, unlike for strong contracts, their
satisfaction in every context should not be mandatory. For example, in some
contexts late timing failure is not hazardous, hence it is not required to be
ensured.

We translate the second type of rules differently as they do not identify
causes of failures, but they specify behaviours that help mitigate failures in
certain cases. Since these contracts specify safety behaviour of components
that should be satisfied in every context, without imposing assumptions on the
environment, we denote these contracts as strong contracts. The corresponding
contracts state in which cases the component guarantees that it will not exhibit
any failures. We do this by guaranteeing the rule that describes this behaviour,

122 Paper C

Table 9.1: Contracts for components C1 and C
BC1: (not (I1.late and I2.late));
HC1: not O1.late;
AC−1: -;
GC−1: I1.late, I2.late→ noFailure;
BC−2: (not (I1.coarse and I2.coarse));
HC−2: not O1.late;

as shown in Table 9.1 for the 〈A,G〉C−1 contract for component C.
As shown on an example of translating FPTC rules from the example in

Fig. 9.5 to contracts in Table 9.1, the translation can be performed in the fol-
lowing way for each failure:

• Identify FPTC rules that are directly related to the failure mode (either
describing when it happens or describing behaviour that prevents it);

• For the rules describing when the failure mode happens:

– Add the negation of the combination of the input failures to the
contract assumptions. Connect with other assumptions with AND
operator;

– Use the absence of the failure mode as the contract guarantee;

• For the rules that describe behaviours that prevent the failure mode:

– Use the rule within the contract guarantee to state that the compo-
nent guarantees the behaviour described by the rule;

The abstract behaviour specified within the FPTC rules can be further re-
fined so that more concrete behaviours of the component are described. For
example, a refined contract related to timing failures would include concrete
timing behaviour of the component in a particular context and additional as-
sumptions related to the timing properties of the concrete system should be
made.

9.3.3 Argument-fragment generation
As mentioned in Section 9.2, safety relevant components usually need to pro-
vide argument and associated evidence regarding absence of particular failures.
We generate the required argument-fragment based on previously established

9.3 FLAR2SAF 123

argument pattern HSFM for presenting absence of late failure mode, briefly
recalled in Section 9.2.3. By providing means to generate context-specific
argument-fragments, i.e., argument-fragments that include only information
related to those contracts satisfied in the particular context, we allow for reuse
of certain evidence related to the satisfied contracts.

To build an argument based on the HSFM pattern, we identify the known
causes of primary and secondary failures from the corresponding FPTC rules.
We identify the primary failures from the contracts translated from FPTC rules
that describe behaviours that mitigate a failure mode. The secondary fail-
ures are captured within the contracts translated from FPTC rules that describe
when a failure mode happens. All causes and assumptions not captured by the
corresponding FPTC rules should be additionally added to the safety contracts,
e.g., scheduler policy constraints. We construct the argument-fragment by us-
ing the reasoning from the HSFM pattern. The top-most goal claiming absence
of the failure mode is decomposed into three sub-goals focusing on primary,
secondary and controlling failures as described in Section 9.2.3. We adapt the
contract-satisfaction fragment from [8] to further develop the sub-goals.

We use the safety contracts to generate the supporting sub-arguments for
the primary and secondary failures and leave the goal related to controlling fail-
ures undeveloped. Supporting sub-arguments for both primary and secondary
failures are generated to argue that the corresponding safety contracts are satis-
fied with sufficient confidence. The sufficient confidence is determined based
on the specific SIL of the requirements allocated on the component and may
require additional evidence in case of higher SILs. We argue the satisfaction of
contracts as in [8] where we make a claim that the contract is satisfied with suf-
ficient confidence, i.e., that the guarantee of the contract is offered. We further
decompose the claim into two supporting goals: (1) an argument providing the
supporting evidence for confidence in the claim in terms of completeness of
the contract, and (2) an argument showing that the assumptions stated in the
contract are met by the contracts of other components. We further focus on the
first sub-goal related to evidence and adapt the rules related to generating the
evidence sub-argument to include additionally specified information about the
evidence artefacts.

For every evidence attached to a safety contract we create a sub-goal to
support confidence in the corresponding safety contract. At this point we can
use the additional information about the rationale connecting evidence and the
safety contract and present it in form of a context statement to clarify how this
particular evidence contributes to increasing confidence in the corresponding
safety contract. The evidence can be further backed up by the related trust-

124 Paper C

worthiness arguments that can be attached directly to a particular evidence. If
the evidence trustworthiness information is provided in a descriptive form then
additional context statements are added to the solutions, otherwise an away
goal is created to point to the argument about the trustworthiness of the evi-
dence, e.g., an argument presenting competence of a person that conducted the
analysis which resulted in the corresponding evidence.

To achieve the argument-fragment generation we extended the approach
for generation of argument-fragments from safety contracts [8] to allow for
argument-fragment generation in the specific form of the selected pattern. The
approach is adapted to generate an argument-fragment that clearly separates
and argues over primary, secondary and controlling failures as described above,
and to include additional information related to the evidence.

While the benefits of reusing evidence are great, a big risk can be falsely
reusing evidence which may result in false confidence and potentially unsafe
system. It must be noted that deriving safety contracts from safety analyses
does not necessarily result in complete contracts. To increase confidence in
reuse of safety artefacts, additional assumptions should be captured within
the safety contracts to guarantee the specified behaviour with sufficient con-
fidence. While this will limit reuse of the particular contract and the associated
evidence, the weak safety contracts notion allows us to specify a number of
alternative contracts describing particular behaviour in different contexts.

9.4 Application Example
In this section we demonstrate FLAR2SAF by applying it to a Wheel-Braking
System (WBS). We first briefly introduce the WBS in Section 9.4.1. In Section
9.4.2 we apply CHESS-FLA/FPTC analysis on WBS. We use the translation
steps from Section 9.3.2 to translate the contracts from the FPTC analysis re-
sults in Section 9.4.3. We present the generated argument-fragment in Sec-
tion 9.4.4.

9.4.1 Wheel Braking System (WBS)

In this section we recall WBS, which was originally presented in ARP4761 [16].
We use a simplified version of WBS to illustrate the use of FLAR2SAF.

WBS is a part of an airplane braking system. It takes two input brake pedal
signals that are used by the Brake System Control Unit (BSCU) to calculate
the braking force. The software architecture of BSCU modelled in CHESS

9.4 Application Example 125

Figure 9.6: BSCU model in CHESS

Table 9.2: A subset of FPTC rules for BSCU subcomponents
Component FPTC rule
subBSCU pedal1.late, pedal2.late→ valid.late, cmd.late;

pedal1.noFailure, pedal2.late→ valid.noFailure, cmd.omission;
pedal1.late, pedal2.noFailure→ valid.noFailure, cmd.omission;

validSwitch valid1.late, valid2.late→ valid.late;
valid1.noFailure, valid2.late→ valid.noFailure;
valid1.late, valid2.noFailure→ valid.noFailure;

selectSwitch valid.late, cmd1.late,cmd2.late→ cmd.late
valid.noFailure, cmd1.noFailure,cmd2.late→ cmd.noFailure
valid.noFailure, cmd1.late,cmd2.noFailure→ cmd.noFailure
valid.omission, cmd1.omission,cmd2.omission→ cmd.omission

is shown in Fig. 9.6. Based on the preliminary safety analysis performed on
the system, the BSCU is designed with two redundant dual channel systems
to meet the availability and integrity requirements. Each of the two subBSCU
systems, namely subBSCU1 and subBSCU2, provide a calculated command
value and a valid signal that indicates the validity of the corresponding com-
mand value. The selectSwitch forwards by default the command value from
subBSCU1 if the corresponding valid signal is true, otherwise the command
value from subBSCU2 is forwarded. The validSwitch component returns true
if any of the signals is true, otherwise it returns false indicating that an al-
ternate braking mode should be used, as the braking command calculated by
BSCU cannot be trusted.

126 Paper C

9.4.2 FPTC analysis
To perform the FPTC analysis we first model the system architecture in the
CHESS-toolset (Fig. 9.6) and then define FPTC rules for the modelled compo-
nents. The architecture and the corresponding failure behaviour of the compo-
nents are defined based on the system description in Section 9.4.1.

The specified FPTC rules are shown in Table 9.2. As mentioned in Sec-
tion 9.2.2, the FPTC rules specified for components are inherited by all the
instances, hence the FPTC rules for the two subBSCU component implementa-
tions are the same as they are instances of the same component. The validSwitch
component requires at least one valid signal present in order to forward the
correct response, i.e., at least to signal that there is a problem within BSCU.
Similarly, the selectSwitch component output depends both on valid and cmd
signals.

As shown in Fig. 9.6 in the FPTC specifications on the input ports, we run
the analysis for noFailure and late failure behaviours on the inputs. The FPTC
analysis then computes the possible failures on the output ports of BSCU based
on the FPTC rules for the BSCU subcomponents. The results show that the
validOut port can either not fail or propagate late failures, while the cmdOut
port in addition to noFailure and late failure can exhibit omission failure as
well.

9.4.3 The translated contracts
The results of the FPTC analysis can be interpreted in the form of FPTC rules
for the system component bscuSys. The resulting FPTC rule “pedal1.late,
pedal2.late→ validOut.late, cmdOut.late” for bscuSys can be translated to the
contract 〈B,H〉BSCU−1 shown in Table 9.4. The contract specifies that the
outputs of BSCU will not be late if both input pedals are not late. The contract
is supported by the FPTC analysis report from which the contract is derived.

The second translated contract 〈A,G〉BSCU−2 describes the behaviour when

Table 9.3: The results of the FPTC analysis for bscuSys component
Port type Port label Port values
input pedal1 noFailure, late
input pedal2 noFailure, late
output cmdOut noFailure, omission, late
output validOut noFailure, late

9.4 Application Example 127

Table 9.4: The translated BSCU contracts and associated evidence information
BBSCU−1: not (pedal1.late and pedal2.late);
HBSCU−1: not validOut.late and not cmdOut.late;
CBSCU−1: The contract is derived from the FPTC analysis results for the

bscuSys component;
EBSCU−1: name: bscuSys FPTC analysis report

description: FPTC analysis is performed in CHESS-toolset.
supporting argument: FPTC analysis conf;

ABSCU−2: -;
GBSCU−2: pedal1.noFailure, pedal2.late → valid-

Out.noFailure,cmdOut.omission;
CBSCU−2: The contract is derived from the FPTC analysis results for the

bscuSys component; Unit testing is used to validate that the contracts
are sufficiently complete with respect to the implementation;

EBSCU−2:

name: bscuSys FPTC analysis report
description: FPTC analysis is performed in CHESS-toolset.
supporting argument: FPTC analysis conf;
name: Unit testing results
description: -
supporting argument: Unit test conf;

only the second pedal is faulty. In that case the failure is detected by the BSCU
component and reported through the validOut port, hence the validOut port
reports no failure, while the cmdOut signal is omitted. The additional informa-
tion related to the supporting evidence includes context statements CBSCU−1
and CBSCU−2 and a set of evidence (EBSCU−1 and EBSCU−2). Each evi-
dence can be further described by a context statement and supported by a set
of arguments.

9.4.4 The resulting argument-fragment

A part of the resulting argument-fragment is shown in Fig. 9.7. In this argument
snippet we focus only on the identified causes of primary failures (AbsLatePri-
mary goal), while the other goals shown in Fig. 9.4 remain undeveloped. We
identified the BSCU-2 contract shown in Table 9.4 as the one related to primary
failures as it describes behaviour of the component that mitigates a possible
failure. By applying the rules to generate the contract satisfaction argument
(goal BSCU-2 sat), we divide the argument to argue over the satisfaction of
the supporting contracts (BSCU-2 supp sat) and supporting evidence in con-

128 Paper C

Goal: BSCU-2_sat
Contract BSCU-2 is satisfied with sufficient confidence

Goal:BSCU-2_confidence
Contract is sufficiently complete

Goal: BSCU-2_supp_sat
Every supporting contract is satisfied

with sufficient confidence

Goal:BSCU-2_1
”bscuSys FPTC analysis report” supports

completeness of the contract

Sol: BSCU-2_1
[FPTC analysis

report]

AbsLatePrimary
The component (CSF) succesfully

handles the primary failures

Goal: validSwitch-2_sat
The supporting contract validSwitch-2 is satisfied with sufficient confidence

BSCU-2_context
The contract is derived from the FPTC analysis results

for the bscuSys component

BSCU-2_context
FPTC analysis is performed in

CHESS-toolset

Goal:BSCU-2_2
”Unit testing results” supports completeness of

the contract

Sol: BSCU-2_2
[Unit testing

resultst]

Away Goal
FPTC analysis results are

sufficient to support
contract completeness

 FPTC_analysis_conf

Away Goal
Unit testing results are

sufficient to support
contract completeness

 Unit_test_conf

Goal: selectSwitch-4_sat
The supporting contract validSwitch-4
is satisfied with sufficient confidence

BSCU-2_context
Unit testing is used to validate that the contract are

sufficiently complete with respect to the implementation

ArgAbsLatePrimary
Argument over each identified

contract related to primary failures

Strat: BSCU-2_completeness
Describe all the attached evidence of EvidenceType==completeness

Strat: BSCU-2_supp_sat
Argument by satisfaction with sufficient
confidence of all supporting contracts

Goal: subBSCU-2_sat
The supporting contract subBSCU-2 is

satisfied with sufficient confidence

Figure 9.7: Argument-fragment based on the HSFM pattern

tract completeness (BSCU-2 confidence). While the argument for the BSCU-
2 supp sat goal follows the same pattern as for goal BSCU-2 sat, we focus on
the argument related to the BSCU-2 confidence goal.

The goal BSCU-2 confidence is clarified by the two context statements stat-
ing that the contract has been derived from the FPTC analysis and that unit test-
ing has been performed to validate that the contracts are sufficiently complete.
In the rest of the argument we create a goal for each of the attached artefacts
and enrich them with additional evidence information. The goal BSCU-2 1
presents the confidence in the FPTC analysis. Since we do not have an ar-
gument supporting qualification of the tool used to perform the analysis we
attach context statement clarifying that the FPTC analysis is performed in the
CHESS-toolset. We provide an away goal related to the evidence to support
trustworthiness in the analysis by arguing confidence in the FPTC analysis.
Further evidence might be provided to present competences of the engineers
that formed the FPTC rules and performed the analysis.

9.5 Related Work
The use of model-based development in safety-critical systems to support the
development of the system safety case has been the focus of much research
during the past years. Integration of model-based engineering with safety anal-
ysis to ease the development of safety cases is presented in [17]. The work
presents how the architecture description language EAST-ADL2 can be used
to support the development of safety-critical systems. Similarly, an approach

9.6 Conclusion and Future Work 129

to handling safety concerns and constructing safety arguments within a system
architectural design process is presented in [18]. The work presents a set of
argument patterns and a supporting method for producing architectural safety
arguments. The focus of these works is usually on extending the modelling
approaches to support the safety case development process and provide guide-
lines on how to produce the corresponding safety arguments. Unlike in these
approaches, in our work we provide a method for generating safety-arguments
from the safety contracts that are based on and supported by the safety analysis
performed on the system.

Deriving a safety argument from the actual source code is presented in [19].
The work focuses on constructing an argument for how the actual code com-
plies with specific safety requirements based on the V&V artefacts. The argu-
ment skeleton is generated from a formal analysis of automatically generated
code and integrates different information from heterogeneous sources into a
single safety case. The skeleton argument is extended by separately speci-
fied additional information enriching the argument with explanatory elements
such as contexts, assumptions, justifications etc. In contrast, in this work we
generate an argument-fragment from safety contracts obtained from and sup-
ported by FPTC analysis. We utilise the contracts to specify the additional
information regarding the context and additional assumptions and generate an
argument-fragment for a specific failure mode covered by the FPTC analysis.

9.6 Conclusion and Future Work

Reuse within safety-critical systems is not complete without reuse of safety
artefacts such as argument-fragments and the supporting evidence, since they
are the key aspects of safety-critical systems development that require signifi-
cant efforts. In this work we have presented a method called FLAR2SAF for
generating reusable argument-fragments. This method first derives safety con-
tracts from failure logic analysis results and then uses the contracts supported
by evidence to generate reusable pattern-based argument-fragments. By an
illustrative example we have shown how an argument-fragment could be gen-
erated and supporting evidence reused. The application of FLAR2SAF gives a
clear indication that safety contracts can be derived from failure logic analyses.
Moreover, accompanying COTS with a set of such safety contracts supported
by safety evidence artefacts allows us to generate context-specific argument-
fragments based on the satisfied contracts.

As our future work we are planning an evaluation of FLAR2SAF on an in-

130 Paper C

dustrial case study. Moreover, we plan to extend the CHESS toolset to include
our methods for derivation of contracts and generation of argument-fragments.
We plan to explore how different types of safety analyses can be used to derive
and support contracts, hence how different types of evidence could be easily
reused. Another interesting future direction would be to explore how this ap-
proach can help us with change management and reuse of safety artefacts in
case of changes in the system.

Acknowledgements. This work is supported by the Swedish Foundation for
Strategic Research (SSF) via project SYNOPSIS as well as EU and Vinnova via
the Artemis JTI project SafeCer.

Bibliography

[1] J. Varnell-Sarjeant, A. A. Andrews, and A. Stefik. Comparing Reuse
Strategies: An Empirical Evaluation of Developer Views. In International
Workshop on Quality Oriented Reuse of Software. IEEE, 2014.

[2] R. Bloomfield, J. Cazin, D. Craigen, N. Juristo, E. Kesseler, et al. Val-
idation, Verification and Certification of Embedded Systems. Technical
report, NATO, 2005.

[3] T. Kelly. Arguing Safety — A Systematic Approach to Managing Safety
Cases. PhD thesis, University of York, York, UK, 1998.

[4] ISO 26262-10. Road vehicles — Functional safety — Part 10: Guideline
on ISO 26262. International Organization for Standardization, 2011.

[5] AC 20-148. Reusable Software Components. FAA, 2004.

[6] B. Gallina, M. A. Javed, F. U. Muram, and S. Punnekkat. Model-driven
Dependability Analysis Method for Component-based Architectures. In
Euromicro Conference on Software Engineering and Advanced Applica-
tions. IEEE, 2012.

[7] CHESS-toolset, http://www.chess-project.org/page/
download.

[8] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Generation of Safety
Case Argument-Fragments from Safety Contracts. In Andrea Bondavalli
and Felicita Di Giandomenico, editors, 33rd International Conference on
Computer Safety, Reliability, and Security, volume 8666 of LNCS, pages
170–185. Springer, Heidelberg, September 2014.

131

http://www.chess-project.org/page/download
http://www.chess-project.org/page/download

132 Bibliography

[9] R. Weaver, J. McDermid, and T. Kelly. Absence of Late Hazardous Fail-
ure Mode, http://www.goalstructuringnotation.info/
archives/218.

[10] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Strong and weak con-
tract formalism for third-party component reuse. In International Work-
shop on Software Certification. IEEE Computer Society, November 2013.

[11] M. Wallace. Modular Architectural Representation and Analysis of Fault
Propagation and Transformation. In International Workshop on Formal
Foundations of Embedded Software and Component-based Software Ar-
chitectures. Elsevier, 2005.

[12] B. Gallina and S. Punnekkat. FI4FA: A Formalism for Incompletion, In-
consistency, Interference and Impermanence Failures Analysis. In Inter-
national workshop on Distributed Architecture modeling for Novel Com-
ponent based Embedded systems. IEEE, 2011.

[13] GSN Community Standard Version 1. Technical report, Origin Consult-
ing (York) Limited, November 2011.

[14] R. Hawkins, I. Habli, T. Kelly, and J. McDermid. Assurance cases and
prescriptive software safety certification: A comparative study. Safety
science, 59:55–71, 2013.

[15] B. Gallina, S. Kashiyarandi, K. Zugsbrati, and A. Geven. Enabling Cross-
domain Reuse of Tool Qualification Certification Artefacts. In Andrea
Bondavalli, Andrea Ceccarelli, and Frank Ortmeier, editors, International
Workshop on Development, Verification and Validation of Critical Sys-
tems, volume 8696 of LNCS, pages 255–266. Springer, Heidelberg, 2014.

[16] Society of Automotive Engineers (SAE) and European Organisation for
Civil Aviation Equipment (EUROCAE). ED-135/ARP-4761: Guidelines
and Methods for Conducting the Safety Assessment Process on Civil Air-
borne Systems and Equipment. SAE, 1996.

[17] D.J. Chen, R. Johansson, H. Lönn, Y. Papadopoulos, A. Sandberg,
F. Törner, and M. Törngren. Modelling Support for Design of Safety-
critical Automotive Embedded Systems. In MichaelD. Harrison and
Mark-Alexander Sujan, editors, 27th International Conference on Com-
puter Safety, Reliability, and Security, volume 5219 of LNCS, pages 72–
85. Springer, Heidelberg, 2008.

http://www.goalstructuringnotation.info/archives/218
http://www.goalstructuringnotation.info/archives/218

[18] W. Wu. Architectural Reasoning for Safety — Critical Software Applica-
tions. PhD thesis, University of York, York, UK, 2007.

[19] N. Basir, E. Denney, and B. Fischer. Building Heterogeneous Safety
Cases for Automatically Generated Code. In Infotech@ Aerospace Con-
ference. AIAA, 2011.

Chapter 10

Paper D:
Deriving Safety Contracts to
Support Architecture Design
of Safety Critical Systems

Irfan Šljivo, Omar Jaradat, Iain Bate, Patrick Graydon.
In Proceedings of the 16th IEEE International Symposium on High Assurance
Systems Engineering (HASE 2015), IEEE, January 2015

135

Abstract

The use of contracts to enhance the maintainability of safety-critical systems
has received a significant amount of research effort in recent years. However
some key issues have been identified: the difficulty in dealing with the wide
range of properties of systems and deriving contracts to capture those prop-
erties; and the challenge of dealing with the inevitable incompleteness of the
contracts. In this paper, we explore how the derivation of contracts can be per-
formed based on the results of failure analysis. We use the concept of safety
kernels to alleviate the issues. Firstly the safety kernel means that the prop-
erties of the system that we may wish to manage can be dealt with at a more
abstract level, reducing the challenges of representation and completeness of
the “safety” contracts. Secondly the set of safety contracts is reduced so it is
possible to reason about their satisfaction in a more rigorous manner.

10.1 Introduction 137

10.1 Introduction

Contract-based approaches aimed at decreasing certification costs and increas-
ing maintainability of safety-critical systems have been the topic of much re-
search recently. Many works focus on the underlying contract theory [1, 2, 3],
while not that many focus on the difficulty of specifying contracts and the
problem of their (in)completeness [4, 5]. A component contract is usually
defined as a pair of assumption/guarantee assertions such that the component
offers the guarantee if an environment in which the component is used satis-
fies the assumptions. The contracts can be characterised as either strong or
weak [6]. The strong contracts capture behaviours that should hold in all envi-
ronments/contexts in which the component can be used, while the weak con-
tracts capture context specific behaviours. A “safety contract” is a contract that
specifically deals with behaviours of the system linked to hazard mitigation.

Developers of safety-critical systems are sometimes required to construct a
safety case to show that the system is acceptably safe to operate in a given con-
text, i.e., that the risks of hazards occurring are reduced to acceptable levels.
As a way of documenting the safety case, a safety argument is often used to
show how safety claims about the system are connected and supported by ev-
idence. While the argument presents the safety-relevant information about the
system in a comprehensible way, safety contracts capture the safety-relevant
information in a more rigorous manner. The fact that both, the safety argument
and safety contracts, deal with the same information makes the contracts an
important aid in safety case maintenance [7].

As safety-critical systems are characterised by a wide-range of properties
that influence safety-relevant behaviour of components, it is challenging to de-
rive contracts with a complete set of relevant assumptions on the environment
that imply the guaranteed component behaviour. When dealing with complete-
ness of contracts without a reference point against which we can check if the
contracts are complete, then the contracts are inevitably incomplete, since we
cannot capture all assumptions. To talk about contract completeness we need
to identify the reference point against which we can check the contracts and
that we can use to derive the contracts as well. For example, safety contracts
describing failure behaviours of a component can be derived from a failure
analysis such as Fault Tree Analysis (FTA).

Not all failure behaviours obtained by failure analysis are relevant from the
perspective of hazard analysis results. Regardless of that, we still categorise
contracts capturing such behaviours as safety contracts, since the captured be-
haviours can be safety-relevant in case of change to the system or for other

138 Paper D

systems in which the component can be used. An approach to developing sys-
tems based on a “safety kernel” was first proposed by Rushby [8] and used by
Wika [9]. The basic principles of their work are that:

1. The safety kernel protects the system from key (higher criticality) haz-
ardous events by checking that data flowing out of a module of the sys-
tem would not violate Derived Safety Requirements (DSR) obtained via
hazard analysis.

2. The safety kernel itself is much simpler than the rest of the system.

The simplicity means that the safety kernel can be developed to the requi-
site high integrity even if the rest of the system cannot be. Overall, the system
is at least as safe as without a safety kernel but costs may be reduced. In this
paper, we extend the original concept to include safety contracts being asso-
ciated with the safety kernel which to help facilitate incremental certification.
The simplicity of the safety kernel also means the aforementioned problems of
representing contracts and achieving completeness are eased.

Potential system changes during the system lifetime may impact some parts
of the safety case. These affected parts necessitate updating the safety case
with respect to those changes. We refer to the updating of the safety case
after implementing a system change as incremental certification. The intention
that change impact analysis can be performed by mainly assessing whether
the contracts still hold is slightly unrealistic as there are significant issues with
achieving complete contracts [5]. We deem that change impact analysis can be
guided by accessing the satisfaction and completeness of contracts with respect
to failure analyses.

In this paper, we focus on the safety contract derivation and the issue of
their (in)completeness, as these two steps form the basis for establishing safety
case maintenance techniques using the safety contracts. We judge that the con-
tract completeness can be established only with respect to a clearly identified
reference point such as failure analysis. Since failure analysis itself can be
incomplete, the derived safety contracts are at least as complete as the anal-
ysis itself. Although contract completeness cannot be established in general,
contracts can be used for guiding the designer to the key properties of the sys-
tem as part of de-risking incremental certification and making it more efficient.
This is supplemented by the designer being given scenario-specific guidance on
how to deal with certain likely changes. In general for safety-critical systems
there is often a clear development roadmap that makes this form of guidance
practical. For instance it may be known that in N years time that the develop-
ers will want to change the processors used due to obsolescence or remove a

10.2 Background and Motivation 139

hydro-mechanical backup due to weight. Maintainers updating or upgrading
a system might benefit from the original designers’ insight on planned change
scenarios[7].

The contribution and structure of the paper is as follows. In section 10.2,
we present the related work and an illustrative example used to demonstrate
the approach. An architecture and supporting development process, in section
10.3, that allows two types of contracts to be supported that should lead to a
reduction in the initial certification costs as well as making the system easier
to maintain. In section 10.4, we demonstrate an approach to deriving safety
contracts from FTA and present how the derived contracts completeness check
could be performed with respect to the fault trees. In section 10.5, we present
a safety argument based on the use of the safety kernel and contracts. Finally,
we present summary and conclusions in section 10.6.

10.2 Background and Motivation
In this section we present the state of the art related to contracts and modular
safety arguments. In the second part of the section we provide a brief descrip-
tion of the computer assisted braking system used to illustrate the approach.

10.2.1 Related Work
We group the related work into two areas: contract-based approaches for safety-
critical systems and approaches related to safety arguments for incremental
certification.

Use of Contracts in Safety-Critical Systems

An “informal” contract-based approach is proposed in [4]. The approach uses
dependency-guarantee relationships to capture dependencies between modules.
The captured dependencies are identified by considering predicted changes in
the system in order to best contain their impact. A difficulty that arises is that
usually not all dependencies can be captured if contracts are restricted to the
relationship between just two modules as dependency chains can span across
several modules. Furthermore, the issue of contract incompleteness is not fully
addressed.

A more formal contract-based approach is shown in [10]. The work presents
a language for describing assumption/guarantee contracts used to capture ver-
tical dependencies between a software application and a hardware platform.

140 Paper D

While the approach provides a benefit of automatic generation of parts of ar-
guments, it does not support capturing the broad range of assumptions needed
for a guarantee to be still valid when a change in the environment occurs.

A range of formal contract-based approaches based on contract algebra can
be found in [1, 2, 3]. The contract algebra includes definitions of contract re-
finement, composition, conjunction etc., making these approaches quite pow-
erful when it comes to contract verification. The contract examples provided
in [2, 3] do not focus on failure behaviour, but rather on behaviour when no
failures occur. Moreover, the presented contracts on timing behaviour require
additional assumptions if they are to be used in the process of incremental or
modular certification [5]. In our work we propose that in addition to contracts
describing expected behaviour in a specific context captured within weak con-
tracts, we capture strong contracts describing how the faults in the system are
handled by the safety kernel. Due to the properties of the safety kernel, such
contracts are generally easier to satisfy due to fewer assumptions.

Safety Argumentation in Support of Incremental Certification

In safety critical systems, particularly those for which a safety case should be
provided, change management is a painstaking process. That is because ac-
commodating the changes in the system domain should be followed by updat-
ing the safety case (i.e., incremental certification) in a safe and efficient manner.
A process is proposed in [7] to facilitate the incremental change and evolving
system capability. One objective of the Modular Software Safety Case (MSSC)
process is to minimise the impact on the safety case of changes which might
be expected during the life of the system. Using the process may increase the
system flexibility to accept changes.

The structure of the argument has a significant role in accommodating the
changes. Well structured arguments clearly demonstrate the relationships be-
tween the argument claims and evidence, therefore it is easier to understand
the impact of changes on them than poorly structured arguments. Moreover,
well structured arguments can be exploited to prioritise the handling of change,
identify the key areas of concern, and hence de-risk the change management
process. An approach is proposed in [11] to show how the safety argument
structure facilitates the systematic impact assessment of the safety case af-
ter applying changes. More specifically, the proposed approach shows how
it is possible to use the recorded dependencies of the goal structure to follow
through the impact of a change and recover from change.

Another approach is proposed in [12] to facilitating safety case change im-

10.2 Background and Motivation 141

WBS
BSCU Hydraulics

subBSCU2

subBSCU1 Select
Switch

Valid&
Switch&

Valid&

CMD_AS&

AS&

CMD_AS1&

CMD_AS2&

AS1&

AS2&
Valid2&

Valid1&Pedal1&

Pedal2&
Valid1&

Alternate&
mode&

Emergency&
mode&

Braking&
command&

Figure 10.1: Wheel Braking System - High Level View

pact analysis. In this approach, automated analysis of information given as
annotations to the safety argument highlights suspect safety evidence that may
need updating following a change to the system being performed.

10.2.2 Overview of the Computer Assisted Braking System
In this section we will present the computer assisted braking system of an air-
craft used in ARP4761 standard [13] to demonstrate the safety assessment pro-
cess. The standard describes a Wheel Braking System (WBS) that takes two
input brake pedal signals and outputs the braking command signal. The high
level architecture is shown in Fig. 10.1. For the purposes of this paper we con-
sider that all six components of the WBS shown in Fig. 10.1 are implemented
in software.

The system is composed of two subsystems: Brake System Control Unit
(BSCU) and Hydraulics. The brake pedal signals are forwarded to BSCU,
which generates braking commands and sends the commands via direct link
to Hydraulics subsystem that executes the braking commands. If the BSCU,
which makes the normal operation mode, fails then Hydraulics uses an alter-
nate mode to perform the braking. If both, normal and alternate mode fail,
emergency brake is used.

In order to address the availability and integrity requirements, BSCU is de-
signed with two redundant dual channel systems: subBSCU1 and subBSCU2.
Each of these subsystems consists of Monitor and Command components.
Monitor and Command take the same pedal position inputs, and both calculate
the command value. The two values are compared within the Monitor compo-
nent and the result of the comparison is forwarded as true or false through Valid
signal. The SelectSwitch component forwards the results from subBSCU1 by

142 Paper D

default. If subBSCU1 reports that fault occurred through Valid signal, then
SelectSwitch component forwards the results from subBSCU2 subsystem.

10.3 Overall Development Approach

In order to make the safety contracts more useful, i.e., applicable in more dif-
ferent contexts and less susceptible to changes, we use the concept of safety
kernels in the development process. Safety kernels are generally simple and
independent mechanisms which behaviour can be easily ensured. Due to their
simplicity and high independence, safety kernel behaviours can be specified
more abstractly, i.e., with fewer context-specific assumptions. A reduced num-
ber of required assumptions increases reusability of safety information cap-
tured by the contracts. This allows us to provide better support for incremental
certification through reuse of evidence and safety reasoning related to con-
tracts, and ease change management within safety arguments. Besides safety
kernels, other types of failure mitigation and recovery techniques can be imple-
mented and packaged together with components. We refer to such techniques
as component wrappers.

We build our development approaches that utilise the notions of safety ker-
nels and component wrappers on the well-established practices recommended
by safety standards. The proposed development approaches can be summarised
by the following steps:

1. Perform a hazard analysis as required by most standards.

2. Perform causal analysis (e.g., FTA) to understand how the hazards can
occur.

3. Create strong contracts for the fault handling behaviours that are offered
in all contexts. Such behaviours that are specified more abstractly can be
achieved with the use of safety kernels.

4. Create weak contracts for the fault handling behaviours that are context
specific. Such behaviours are usually achieved by failure mitigation and
recovery techniques (e.g., component wrappers) that are not developed
with high independence from the context.

5. Create an architecture which includes:

10.4 Definition of Safety Contracts 143

(a) Features to enforce the separation between the safety kernel and
components. The safety kernel can only provide sufficient protec-
tion to allow it to provide fault tolerance if it can be argued that
failures of the components do not interfere with its operation.

(b) A design for the safety kernel that provides fault tolerance, princi-
pally fault detection and recovery, with respect to the mitigation of
the more critical hazards.

(c) A design for component wrappers that provides fault tolerance,
principally fault detection and recovery, with respect to the miti-
gation of the less critical hazards. This largely deals with signal
validation for data flowing in and out of the component. It is noted
that some signals will be protected by both a wrapper and a safety
kernel where used by multiple components.

6. Revise the fault tree to include the safety kernel and wrapper in the possi-
ble causes of hazards and judge whether the residual risks are acceptable.
If the risks are not acceptable, judge whether more complex wrappers or
more safety kernel functions would address the issues.

The development approach follows a typical set of stages except for the
addition of contracts and the use of a safety kernel and wrappers. After de-
riving the safety contracts, the development approach continues to revise the
contracts by checking if they are sufficiently complete and whether the de-
scribed behaviours are sufficient to show that all identified hazards have been
adequately addressed. Additional evidence backing the contracts is provided
during the verification steps.

10.4 Definition of Safety Contracts

In this section we present part of the FTA performed on WBS with (section
10.4.2) and without (section 10.4.1) safety kernels. Later in section 10.4.3,
we show how the results of the analysis can be used to derive safety contracts
capturing corresponding safety behaviour of components addressed within the
fault trees. In the second part of section 10.4.3 we discuss the problem of
incompleteness of the safety contracts and propose how the contract complete-
ness checking could be addressed.

144 Paper D

Figure 10.2: Reduced responsiveness of all wheel braking Fault Tree

10.4.1 Causal Analysis and Contracts for WBS

This section reuses the existing safety assessment of WBS presented in Ap-
pendix L of the ARP4761 document. Building upon the existing hazard analy-
sis from Appendix L, we identified failure condition reduced responsiveness of
wheel braking as hazardous, e.g., when it occurs during taxi phase it can lead
to low-speed vehicle collision.

In order to prevent the delayed response from the brakes, we specify a
timing safety requirement SR1 that the WBS response time (i.e., time from the
receipt of pedal brake signals to issuing the braking command) shall be no more
than 10 ms. The fault tree in Fig. 10.2 addresses the reduced responsiveness
failure condition. It shows that the delay in issuing the braking command can
be caused by either of the three modes. The fault tree focuses on the normal
mode and demonstrates that BSCU, Hydraulics or the communication channel
between the two can all contribute to causing a delay in normal mode.

After identifying the hazards and specifying the requirements, the safety
process continues to design the system to satisfy the specified requirements.
Consequently, the safety contracts are captured to show compliance with the
safety requirements. Strong safety contracts (denoted as a pair of strong as-
sumptions and guarantees 〈A,G〉) allow us to specify behaviours that always
must hold, i.e., strong assumptions (A) must be satisfied and strong guaran-

10.4 Definition of Safety Contracts 145

tees (G) must be offered [6]. On the other hand, weak contracts (denoted as
a pair of weak assumptions and guarantees 〈B,H〉) allow us to capture prop-
erties that change depending on the context in which the component is used.
The weak guarantees (H) are offered only when all the strong contracts and
the corresponding weak assumptions (B) are satisfied. The benefit of using the
strong and weak contracts distinction is twofold: (1) it provides methodological
distinction between properties that must hold and those that may hold in cer-
tain cases (e.g., weak contracts are used to describe multiple context-specific
behaviours), and (2) when performing contract checking in a particular envi-
ronment, violation of the strong assumptions is not tolerated, while violation
of the weak assumptions is allowed (since some of the weak contracts might
not be relevant for the particular context).

As the contracts need to be supported by evidence, we attach evidence in-
formation (E) with the contracts. We represent the contract/evidence pair as
“C: 〈A,G〉;E”, which can be read as follows: contract C, which under as-
sumptions A offers guarantees G, is supported by evidence E. The motiva-
tion for connecting the evidence with the contracts is not to argue contract
satisfaction (rationale description is needed for that), but to support change
management. Besides identifying which parts of safety case are affected by
change, safety contracts, when enriched by evidence information, can also be
used to identify which evidence should be revisited. The evidence can be asso-
ciated with a contract either directly, or indirectly through the associated con-
tracts. Since the underlying contract formalism assumes hierarchical structure
of components and contracts, all evidence needed to support a higher level con-
tract are not associated with that contract directly, but can support the contract
indirectly through the associated lower level contracts. The relation between
a contract and its supporting contracts is established through the dependency
assumptions.

Using component-based development notions, such as contracts, within
safety-critical systems has some difficulties. The out-of-context idea of safety
contracts causes difficulties that relate to both the nature of safety as a system
property and context dependent behaviours such as timing [5]. When it comes
to the nature of safety and contracts, it is difficult to capture all failure scenarios
that the component can contribute to since what is safety relevant in one system
might not be in another. For example, the difficulty with capturing timing prop-
erties within out-of-context contracts is not only that timing depends on many
factors, but that the timing analysis is usually calculated with incompatible or
simplified assumptions [14, 15, 16], which makes the timing information cap-
tured within contracts nearly impossible to reuse. While the inevitable solution

146 Paper D

WBS Weak 1:
〈 B1: Platform=x and Compiler=y AND Hydraulics delay ≤ 4 ms AND BSCU
delay≤ 4 ms AND communication delay≤ 0.1 ms AND emergency mode≤ 1 ms;
H1: WBS delay ≤ 10 ms 〉;
E1: WBS timing analysis under assumed conditions

Figure 10.3: WBS weak contract

WBS BSCU Weak 1:
〈B2: Platform=x and Compiler=y AND subBSCUx delay < 3 ms and SelectSwitch
delay < 1 ms AND scheduler policy does not cause delay;
H2: BSCU delay ≤ 4 ms 〉;
E2: BSCU timing analysis under assumed conditions

Figure 10.4: BSCU weak contract

in that case would be to re-run the timing analysis, the information captured
within contracts can still be useful in highlighting impact of the change on the
safety case.

Based on the causal analysis we specify the contract WBS Weak 1 (Fig. 10.3).
WBS Weak 1 contains dependency assumptions capturing connection between
WBS and its subcomponents, while the guaranteed property is the response
time of WBS. In order to guarantee timing properties, such as those noted
in [5], we need to include additional assumptions that are not provided in the
causal analysis. In case of WBS Weak 1 contract we included additional as-
sumptions on platform and compiler configuration, as such assumptions can
be easily omitted from the causal analysis, and any change or inconsistency
related to these properties may invalidate the corresponding contracts. We can
note that the causal analysis is useful for capturing dependency assumptions
within the safety contracts, but it is not sufficient as additional assumptions
need to be captured as well. The Ariane 5 rocket is an example of how causality
analysis does not cover some important assumptions. A piece of software that
should perform certain computations right before liftoff was reused from the
previous rocket version. Since restarting the software during liftoff might take
time, the engineers decided to leave it running even after liftoff. The software
then continued the unneeded computation during the flight time and caused an
exception due to a floating-point error which rebooted the processor [17].

The contracts in Fig. 10.3 and 10.4 focus on the behaviour of WBS when
there is no fault in the system. However the contracts don’t describe behaviour

10.4 Definition of Safety Contracts 147

Figure 10.5: Reduced responsiveness of all wheel braking Fault Tree (updated)

of the system in situation when anomalous behaviours occur, e.g. when BSCU
delay is greater than 4 ms or the communication channel fails. As mentioned
earlier, it is difficult to describe behaviour of a component in all the failure
scenarios, e.g. in some cases it is reasonable to consider communication chan-
nel failure in others it may not be the case. While the described behaviour in
contracts WBS Weak 1 and WBS BSCU Weak 1 can be useful to know in cer-
tain situations, it is very difficult to reuse such information in case of platform
change or moving the component from one system to another, as argued earlier.
That is why this behaviour is specified within a weak contract, as it cannot be
guaranteed in all systems. Further on we investigate how these weak contracts
can be complemented with strong contracts capturing behaviour that prevents
bad things from happening that is guaranteed wherever the component is used.

10.4.2 Causal Analysis and Contracts on WBS with Safety
Kernels

In the current design, the reduced responsiveness of WBS can be caused by
either of the modes. In order to reduce the criticality of timing requirements in
the Normal and Alternate modes to an appropriate level, a design decision was
made to use a simple and sufficiently independent safety kernel. This safety
kernel acts as a last resort failure mechanism in case of failures that might

148 Paper D

WBS Strong 1:
〈A1: sufficient independence of the safety kernel and emergency brake from normal
and alternate mode
G1: if braking command not received from normal or alternate mode before watch-
dog timer expiry then kernel activates the emergency brake 〉;
E3: Causal analysis; Contract completeness report
WBS Weak 1:
〈 B1: (Platform=x and Compiler=y AND Hydraulics delay ≤ 4 ms AND BSCU
delay ≤ 4 ms AND communication delay ≤ 0.1 ms) OR (watchdog timer expiry ≤
9 ms and emergency brake delay ≤1 ms);
H1: WBS delay ≤ 10 ms 〉;
E1: New WBS timing analysis under assumed conditions

Figure 10.6: WBS contracts

WBS SKC Strong 1:
〈 A2: -
G2: if the braking command signal not provided within 9 ms from the receipt of the
pedal signals, then activate emergency brake within 1 ms 〉;
E4: Formal verification report

Figure 10.7: Safety Kernel strong contract

prevent Normal or Alternate mode from generating the braking command. The
safety kernel in form of a watchdog timer is installed within Hydraulics compo-
nent. Once WBS receives the pedal signals the watchdog timer is started. Un-
less either Normal or Alternate mode does not provide the braking command
within the required time interval, the watchdog timer engages the emergency
brake.

With introduction of the safety kernel in the WBS architecture, the initial
FTA needs to be revisited to address both: changes to the criticality of Normal
and Alternate modes; and extension of the current fault tree to include possible
faults related to the kernel itself. The updated fault tree is shown in Fig. 10.5.
The changes in the fault tree consequently influence the contracts to be revis-
ited. More specifically, the WBS Weak 1 contract needs to be updated with the
new information relating to the watchdog timer and the emergency brake. The
updated WBS Weak 1 contract is shown in Fig. 10.6.

When using the safety kernels, we focus on capturing with the contracts
how the component handles faults in the system. Due to simplicity of the

10.4 Definition of Safety Contracts 149

kernel and its high independence from the rest of the system, we can spec-
ify strong safety contracts for the kernel that are easier to satisfy because of
fewer assumptions. The strong contracts in Fig. 10.6 and 10.7 complement the
weak contracts in Figures 10.3 and 10.4 by describing behaviour of the safety
kernel when the normal or alternate mode fail. The assumption of sufficient in-
dependence in the contract WBS Strong 1 can be identified through the AND
connection in the fault tree in Fig. 10.5 between normal or alternate mode
delays and kernel and emergency mode delays. The corresponding guarantee
describes the behaviour of the kernel in that situation. The WBS SKC Strong 1
contract on the safety kernel addresses possible delay because of the kernel it-
self by guaranteeing its timing behaviour for all systems in which the kernel is
used.

This example demonstrates that for the safety kernels we can specify the
strong safety contracts with fewer assumptions (due to the simplicity and inde-
pendence of the safety kernel). Fewer assumptions means that the correspond-
ing contracts are easier to satisfy. Moreover, by reducing criticality of require-
ments addressed by the weak contracts, the stringency of evidence required to
support the weak contracts is reduced. Consequently, overall less effort should
be required for producing evidence to support such weak contracts.

10.4.3 Contract Derivation and Completeness Checking Meth-
ods

To talk about completeness of contracts we need to identify with respect to
what should that completeness be checked. The safety contracts focus on fail-
ure behaviours of the system that can be obtained by failure analysis (e.g., FTA)
as these are most often the causes of hazards. In this work we use FTA, a well-
established method recommended by safety standards, for contract derivation
and completeness check. Deriving contracts from fault trees is performed as
follows:

1. Identify fault tree nodes directly related to the component for which the
contract is being derived such that the nodes do not belong to each others
sub-branches.

2. For each identified node:

(a) Create a safety contract that guarantees to prevent or minimise the
faulty state described by the node.

150 Paper D

(b) Identify candidate nodes for stating dependency assumptions such
that the assumption node belongs to the same branch as the guaran-
tee node, and that it refers to behaviour either of first level subcom-
ponent of the current component, other components in the environ-
ment that the current component is connected to or other system
properties.

3. The logical connection of the assumptions within the contract is switched
comparing to the connection in the fault tree (e.g., AND connections in
the fault trees become OR in the contracts), similarly as the guarantees
can be regarded as negations of the corresponding nodes (e.g., a node
“delay in execution” in a fault tree becomes a guarantee “does not cause
delay in execution”).

The assumptions on the first-level subcomponents are included to capture
dependencies between the two layers identified by FTA, and in that way facil-
itate independent development and change management. For example, BSCU
is independently developed by a contractor. Based on the specified dependency
assumptions we can identify if the provided (or replaced) component offers re-
quired behaviour to achieve the WBS behaviour. This can be done by checking
if the WBS dependency assumptions are satisfied by BSCU contracts.

Once the change occurs in the system or the component is moved to another
system, the completeness of the contracts needs to be checked with respect to
the fault trees. In our case, the contract WBS Weak 1 had to be changed after
introducing the safety kernel as the contract was not complete with respect to
the new fault tree in Fig. 10.5. Consequently, the evidence required to support
this contract had to be updated.

Completeness with respect to a specific failure analysis does not imply con-
tract completeness in general, but only with respect to the analysis. Confidence
in the completeness check stems from the confidence in the failure analysis
against which the check is performed. In our work we use FTA for complete-
ness check under assumptions that producing fault trees is well-established and
that the resulting fault trees are reasonably complete. It must be emphasised
that the approach does not rely on the fault trees actually being complete, as
the aim is to de-risk change rather than have a change process where only con-
tracts have to be checked following a change. The derived contracts usually
require additional assumptions that can be derived from different analyses and
used to enrich the contracts, hence increase their overall completeness. The
contracts completeness check with respect to a specific analysis is performed
to ensure that there are no inconsistencies between the dependencies captured

10.5 Safety Argument 151

within the contracts and those identified by the analysis. The results of such
check can indicate that the contracts are incomplete with respect to the analy-
sis (in case of changes to the system, and to the analysis), or the analysis can
be incomplete with respect to the contracts (if we have enriched the contracts
using other types of analyses). The contract completeness check with respect
to the fault trees is performed as follows:

1. Identify nodes in the fault tree that correspond to the contract guarantees.

2. Identify nodes in the fault tree corresponding to the assumptions.

3. For the identified assumptions within the fault tree, check whether they
belong to the branch corresponding to the identified node related to the
guarantee.

4. Identify the following inconsistencies:

(a) Nodes that are included in the assumptions but do not belong to the
same branch as the guarantee node.

(b) Nodes within the same branch as the guaranteed node that are not
covered by the assumptions (not all nodes of the branch should
be captured by assumptions but all should be covered, i.e., if the
node itself is not included, then its sub-nodes or leaves of its branch
should be included for the node to be covered).

5. If assumptions cover all nodes within the guarantees node branch then
the contract is complete with respect to the fault tree, but if there are
additional nodes that are assumed but do not belong to the same branch,
the inconsistency should be reported as either fault tree is not complete,
or the contract should be revised.

10.5 Safety Argument
In this section we present an overview of the graphical notation (section 10.5.1)
used to construct our arguments. The WBS safety argument is presented in
section 10.5.2.

10.5.1 Overview of Goal Structuring Notation
The Goal Structuring Notation (GSN) [18] – a graphical argumentation no-
tation – explicitly represents the individual elements of any safety argument

152 Paper D

Figure 10.8: Overview of the Goal Structuring Notation (GSN)

(requirements, claims, evidence and context) and (perhaps more significantly)
the relationships that exist between these elements (i.e. how individual require-
ments are supported by specific claims, how claims are supported by evidence
and the assumed context that is defined for the argument). The principal sym-
bols of the notation are shown in Fig. 10.8 (with example instances of each
concept).

The principal purpose of a goal structure is to show how goals (claims
about the system) are successively broken down into (“solved by”) sub-goals
until a point is reached where claims can be supported by direct reference to
available evidence. As part of this decomposition, using the GSN it is also
possible to make clear the argument strategies adopted (e.g. adopting a quan-
titative or qualitative approach), the rationale for the approach (assumptions,
justifications) and the context in which goals are stated (e.g. the system scope
or the assumed operational role). For further details on GSN see [18]. GSN has
been widely adopted by safety-critical industries for the presentation of safety
arguments within safety cases. While GSN is mainly used to record monolithic
safety arguments, an extension facilitates the creation of modular arguments.
As a part of the modularised form of GSN, an away goal statement can be used
to support the local claim by referring to a claim developed in another module.
In this paper the modularised form of GSN, as first introduced in [19, 20], is
used.

10.5.2 Wheel Braking System Safety Argument

Fig. 10.9 shows the safety argument fragment for WBS represented using GSN.
The argument focuses on the timing requirement SR1: “WBS response time
shall be no more than 10 ms”, specified in Section 10.4 and represented by

10.5 Safety Argument 153

SWCommandFailure—
Software fails to command braking when required is acceptably managed

ASSRCommandFailure—
Argument over software safety requirements

WBSSafetyExeTime—
WBS calculates braking force and
outputs braking command within 10 ms

...WBSSafetyContract1—
WBS should calculate braking force and output
braking command on receipt of brake pedal position

SWSafetyContracts—
All defined safety contracts for WBS are
consistent, and correct with respect to the
safety requirements
 SW Safety Requirements

WBSWeakContract1.1—
BSCU delay is ≤ 4 ms

CxtBSCU—
Ref: BSCU software description

CxtCommunication—
The Communication is the bus connects BSCU
and Hydraulics [Ref: WBS software description]

CxtSubBSCUx—
SubBSCUx is a subcomponent of the
BSCU [Ref: BSCU software description]

CxtSelectSwitch—
SelectSwitch is a subcomponent of the
BSCU [Ref: BSCU software description]

BSCUWeakContract1—
SubBSCUx delay is < 3 ms

BSCUWeakContract2—
SelectSwitch delay < 1 ms

WBSHydraulicsDelay1.2—
Hydraulics delay is ≤ 4 ms

WBSWeakContract1.3—
Communication delay is ≤ 0.1 ms

CxtContractWBSLink1—
WBSSafetyExeTime goal is the
guarantee of the [WBS_Weak_1] contract

CxtContractWBSLink1.3—
WBSWeakContract1.3 goal is the guarantee
of the [WBS_Comm_Weak_1] contract

CxtContractWBSLink1.1—
WBSWeakContract1.1 goal is
the guarantee of the
[WBS_BSCU_Weak_1] contract
CxtContractBSCULink1—
BSCUWeakContract1 goal is the guarantee
of the [BSCU_SUB_Weak_1] contract

CxtContractBSCULink2—
BSCUWeakContract2 goal is the guarantee
of the [BSCU_SUB_Weak_2] contract

CxtContractWBSLink1.2—
WBSHydraulicsDelay1.2 goal is
the guarantee of the [WBS_
Hydraulics _Weak_1] contract

CxtWBS—
Ref: WBS system description

Figure 10.9: WBS safety argument before introducing the safety kernel

the goal WBSSafetyExeTime within the argument. We base the argument that
SR1 is satisfied on the WBSSWSafetyReq justification that the software safety
requirements are addressed by the safety contracts. Moreover we provide
an away goal SWSafetyContracts presenting the required evidence to support
safety contract consistency, their correctness with respect to the associated
safety requirements and completeness with respect to the failure analysis. In
the presented argument we focus on the product rather than the process by
which we ensure that these contract properties are achieved.

Based on the WBSSWSafetyReq justification we address the WBSSafetyEx-
eTime goal by the WBS weak 1 contract that supports the SR1 requirement.
In order to clarify the WBSSafetyExeTime goal, we create a context statement
to identify the WBS weak 1 contract that addresses the goal, and to provide a
reference to WBS system description. To further develop the WBSSafetyEx-
eTime goal, we use the dependency assumptions of the associated contract
WBS weak 1 to identify the supporting sub-goals: WBSWeakContract1.1, WB-
SHydraulicsDelay1.2 and WBSWeakContract1.3. The context statements for
these sub-goals are provided in the same way as for the WBSSafetyExeTime
goal. Further development of the sub-goals follows the same procedure as for
the WBSSafetyExeTime goal, i.e. by identifying dependency assumptions of the
associated contract to the particular goal, we derive sub-goals until we reach
the lowest level component, i.e. where we have directly relevant evidence that
supports the goal.

As WBS architecture changed with addition of the safety kernel, the cor-

154 Paper D

WBSSafetyExeTime—
WBS calculates braking force and outputs
braking command within 10 ms

CxtContractWBSLink1—
WBSSafetyExeTime goal is the guarantee
of the [WBS_Weak_1] contract

CxtWBS—
Ref: WBS system description

WBSSafetyKernel—
Safety kernel activates the emergency
brake If braking command not received
from normal or alternate modes before
exceeding the watchdog timer

CxtKernelContractWBS—
WBSSafetyKernel goal is the guarantee
of the [WBS_Strong_1] contract

CxtSafetykernel—
[Ref: WBS system description]

CxtEmergencyMode—
Emergency brake [Ref: WBS
system description]

WBSDelaysWDogEmerg—
Safety kernel activates emergency
brake within 1 ms

CxtContractWatchDog—
This claim is addressed by
contract [WBS_SKC_Strong_1]

CxtWatchDogTimer—
Watchdog timer is 9 ms

WBSSafetyKernelReliability—
Safety Kernel has been developed to meet the
required reliability level

 Reliability Assurance

The other sub claims
are shown in Figure 9

Figure 10.10: The updated WBSSafetyExeTime goal after introducing the
safety kernel

responding safety argument needs to be updated as well. Based on the derived
safety contracts for the safety kernel provided in Figures 10.6 and 10.7, we
extend the safety argument from Fig. 10.9 with an additional supporting goal
WBSSafetyKernel to the WBSSafetyExeTime claim, as shown in Fig. 10.10.
The goal WBSSafetyKernel is clarified with context statements by referring to
the corresponding contract WBS Strong 1 (Fig. 10.6), and providing defini-
tions of the timer interval of 9 ms, and notions of emergency brake and safety
kernel definition. The WBSSafetyKernel goal is further supported by an away
goal WBSSafetyKernelReliability claiming that the kernel has been developed
to meet the required reliability level, and a sub-goal WBSDelaysWDogEmerg
based on the WBS SKC Strong 1 contract.

10.6 Summary and Conclusions
Means to capture failure behaviour within safety contracts have received little
attention in contract-based approaches for safety-critical systems. Moreover,
handling of inevitable contract incompleteness, implied by a great number of
assumptions that need to be captured, is not sufficient for showing that the
system is acceptably safe. We have presented a method for deriving safety
contracts from fault tree analysis and demonstrated it on an example. Once the
initial contracts have been derived, we introduced a safety kernel to the sys-
tem architecture to reduce the criticality of the rest of the system. To handle
the change in the system, we have proposed that completeness of the contracts
derived from failure analysis is re-evaluated with respect to that analysis after
the change has been introduced and the analysis updated. The proposed com-
pleteness check method identifies inconsistencies between the contracts and the
failure analysis and acts as guidance for change management. We have used

10.6 Summary and Conclusions 155

the notion of safety kernels to show how strong safety contracts can be derived
with fewer assumptions due to kernel’s simplicity and high independence from
the rest of the system. Deriving contracts from failure analysis results in at
least as complete contracts as the analysis itself. While particular analysis it-
self can be incomplete, different analyses can be used to enrich the contracts
and increase their completeness.

Future work will focus on developing safety contract-based change man-
agement techniques, which should cover both the safety argument and asso-
ciated evidence. Furthermore, we plan to investigate techniques for identify-
ing additional assumptions needed to enrich the contracts derived from failure
analysis.

Acknowledgement
We acknowledge the Swedish Foundation for Strategic Research (SSF) SYN-
OPSIS Project.

Bibliography

Bibliography

[1] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and
C. Sofronis. Multiple Viewpoint Contract-Based Specification and De-
sign. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, FMCO, volume 5382 of Lecture Notes in
Computer Science, pages 200–225. Springer, 2007.

[2] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using
Contract-based Component Specifications for Virtual Integration Testing
and Architecture Design. In Design, Automation & Test in Europe Con-
ference & Exhibition, pages 1–6. IEEE, 2011.

[3] A. Cimatti and S. Tonetta. A Property-Based Proof System for Contract-
Based Design. In Vittorio Cortellessa, Henry Muccini, and Onur
Demirörs, editors, 38th Euromicro Conference on Software Engineer-
ing and Advanced Applications, pages 21–28. IEEE Computer Society,
September 2012.

[4] J. L. Fenn, R. Hawkins, P. J. Williams, T. Kelly, M. G. Banner, and
Y. Oakshott. The Who, Where, How, Why and When of Modular and
Incremental Certification. In 2nd Institution of Engineering and Tech-
nology International Conference on System Safety, pages 135–140. IET,
2007.

[5] P. Graydon and I. Bate. The Nature and Content of Safety Contracts:
Challenges and Suggestions for a Way Forward. In The 20th Pacific Rim
International Symposium on Dependable Computing. IEEE, November
2014.

156

Bibliography 157

[6] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Strong and weak con-
tract formalism for third-party component reuse. In International Work-
shop on Software Certification. IEEE Computer Society, November 2013.

[7] Modular Software Safety Case (MSSC) — Process Description.
https://www.amsderisc.com/related-programmes/, November 2012.

[8] J. Rushby. Kernels for Safety?, chapter 13, pages 210–220. Blackwell
Scientific Publications, 1989.

[9] K. Wika and J. Knight. On The Enforcement Of Software Safety Poli-
cies. In Proceedings of the 10th Annual IEEE Conference on Computer
Assurance, June 1995.

[10] B. Zimmer, S. Bürklen, M. Knoop, J. Höfflinger, and M. Trapp. Vertical
Safety Interfaces – Improving the Efficiency of Modular Certification. In
Computer Safety, Reliability, and Security, pages 29–42. Springer, 2011.

[11] T. Kelly and J. McDermid. A Systematic Approach to Safety Case Main-
tenance. Reliability Engineering and System Safety, 71(3):271 – 284,
2001.

[12] O. Jaradat, P. Graydon, and I. Bate. An Approach to Maintaining Safety
Case Evidence After A System Change. In Proceedings of the 10th Eu-
ropean Dependable Computing Conference (EDCC), August 2014.

[13] Society of Automotive Engineers (SAE) and European Organisation for
Civil Aviation Equipment (EUROCAE). ED-135/ARP-4761: Guidelines
and Methods for Conducting the Safety Assessment Process on Civil Air-
borne Systems and Equipment. SAE, 1996.

[14] P. Graydon and I. Bate. Realistic Safety Cases for the Timing of Systems.
The Computer Journal, 57(5):759–774, May 2014.

[15] T. Kelly, I. Bate, J. McDermid, and A. Burns. Building a Preliminary
Safety Case: An Example from Aerospace. In Proceedings of the 1997
Australian Workshop on Industrial Experience with Safety Critical Sys-
tems and Software, October 1997.

[16] I. Bate and A. Burns. An Integrated Approach to Scheduling in
Safety-Critical Embedded Control Systems. Real-Time Systems Journal,
25(1):5–37, July 2003.

[17] J.-M. Jézéquel and B. Meyer. Design by Contract: The Lessons of Ariane.
IEEE, 30(1):129–130, January 1997.

[18] T. Kelly. Arguing Safety — A Systematic Approach to Managing Safety
Cases. PhD thesis, University of York, York, UK, 1998.

[19] I. Bate and T. Kelly. Architectural Considerations in the Certification of
Modular Systems. In Proceedings of the 21st International Conference
on Computer Safety, Reliability and Security, volume LNCS 2434, pages
321–333, 2002.

[20] I. Bate and T. Kelly. Architectural Considerations in the Certification of
Modular Systems. Reliability Engineering and System Safety, 81:303–
324, 2003.

Chapter 11

Paper E:
Using Safety Contracts to
Guide the Integration of
Reusable Safety Elements
within ISO 26262

Irfan Šljivo, Barbara Gallina, Jan Carlson, Hans Hansson.
Technical Report, ISSN 1404-3041, ISRN MDH-MRTC-300/2015-1-SE, Mälardalen
Real-Time Research Centre, Mälardalen University, March 2015
(Submitted for publication)

159

Abstract

Safety-critical systems usually need to be compliant with a domain-specific
safety standard, which in turn requires an explained and well-founded body of
evidence to show that the system is acceptably safe. To reduce the cost and
time needed to achieve the standard compliance, reuse of safety elements is
not sufficient without the reuse of the accompanying evidence. The difficulties
with reuse of safety elements within safety-critical systems lie mainly in the
nature of safety being a system property and the lack of support for systematic
reuse of safety elements and their accompanying artefacts. While safety stan-
dards provide requirements and recommendations on what should be subject
to reuse, guidelines on how to perform reuse are typically lacking.

We have developed a concept of strong and weak safety contracts that can
be used to facilitate systematic reuse of safety elements and their accompa-
nying artefacts. In this report we define a safety contracts development pro-
cess and provide guidelines to bridge the gap between reuse and integration
of reusable safety elements in the ISO 26262 safety standard. We use a real-
world case for demonstration of the process, in which a safety element is devel-
oped out-of-context and reused together with its accompanying safety artefacts
within two products of a construction equipment product-line.

11.1 Introduction 161

11.1 Introduction

The basis for building modern safety-critical systems often lies in reusing ex-
isting components [1]. Most of these systems need to comply with a domain
specific safety standard that often requires a safety case in form of a clear and
comprehensible argument supported by evidence to show why the system is
acceptably safe. The safety standards typically do not provide detailed guide-
lines for reusing safety elements and the accompanying artefacts, which makes
the integration of the elements and the provided evidence challenging [2]. For
example, the automotive safety standard ISO 26262 [3] supports reuse through
the notion of Safety Elements out of Context (SEooC), which are elements ex-
plicitly developed for reuse according to ISO 26262. While the standard pro-
vides requirements and recommendations on which information is needed for
the integration of SEooC, guidance on performing systematic reuse is missing.

Since safety is a system property, traditional safety analyses such as Fault
Tree Analysis (FTA) and other safety artefacts such as safety arguments are
made on the system level. Reusing such artefacts is difficult since what is
safety relevant in one system is not necessarily safety relevant in another sys-
tem. Non-systematic reuse of safety artefacts has shown to be dangerous [4],
hence there is a need to fill the gap created by the safety standards’ lack of
guidelines for systematic reuse and integration of safety elements and their
safety artefacts.

Systematic reuse of safety artefacts can be achieved by generative reuse.
The term “generative reuse” is used to indicate indirect reuse of artefacts [5],
be it the code itself, results of a failure analysis such as FTA [6] or parts of
safety arguments [7], where a customised artefact is generated for a specific
context from specification written in a domain specific specification language.
For example, an out-of-context component with a pre-developed safety argu-
ment is reused in a particular system. Such safety argument, produced out-of-
context, might contain irrelevant information for the particular system. Instead
of trying to reuse and integrate pre-developed safety arguments, the relevant
information for the particular system is first identified from the provided arte-
facts, and then the corresponding system safety argument is generated from
the identified information. In our work we use safety contracts for capturing
safety-related information and for identifying the relevant information for a
particular environment.

A contract is an assumption/guarantee pair, where a component offers guar-
antees about its own behaviour if the assumptions on its environment are met.
Safety contracts are a specific types of contracts that deal specifically with

162 Paper E

component behaviours that are deemed relevant from the perspective of hazard
analysis. In our previous work we showed how safety contracts can be used to
support generative reuse of safety artefacts [8]. Since reusable elements can ex-
hibit different behaviours in different environments, contracts are characterised
as either strong or weak to allow capturing these different behaviours in a more
flexible manner [9]. Furthermore, since the safety contracts deal with some of
the information used in the safety arguments, we can use the contracts to semi-
automatically generate the argument-fragments related to components [10].

In this report we complement the safety guidelines provided by ISO 26262
to include contract-specific activities and facilitate systematic reuse that aims
at easing integration of safety-relevant components and the provided evidence
within ISO 26262 systems. We first define the safety contracts development
process and the corresponding contract-specific activities. Then we provide
guidelines on how and when to use the contract-specific activities in the case
of SEooC.

To demonstrate the proposed process we use a product-line scenario as a
common real-world case. The product-line is composed of two construction
machines whose compliance to ISO 26262 will be required in the near future.
Both machines are equipped with lifting arms, whose software controller in
both cases includes a component for automatic positioning of the arm in a
predefined position. We develop this component as a SEooC and then reuse it
within the two products. On this real-world case we demonstrate how safety
contracts can be used for SEooC development. Moreover, we illustrate the
benefit of generative reuse of safety arguments on the the SEooC integration
within the two products.

The contributions of this work are (1) the guidelines in form of safety con-
tracts development process describing the role of the safety contracts within
the development and integration of reusable components within safety-critical
systems, (2) alignment of the proposed process with the ISO 26262 safety pro-
cess, and (3) its demonstration in a real-world case. In contrast to existing
works that focus on facilitating reuse of safety artefacts within safety-critical
systems [11, 12, 13, 14], we focus on detailing the guidelines for development
and integration of reusable safety elements within safety-critical systems via
safety contracts. More specifically, we align the proposed process with ISO
26262 to facilitate generative reuse of safety artefacts, primarily safety argu-
ments. We focus on providing means for capturing the SEooC assumptions
recommended by the standard and support their validation during integration
of the SEooC in an ISO 26262 compliant system. We assume that for the inte-
gration to work, both the SEooC and the target ISO 26262 system have safety

11.2 Background 163

contracts established.
The rest of the paper is structured as follows: In Section 11.2 we provide

background information. We present the safety contracts development process
and align it with the SEooC development process recommended by ISO 26262
in Section 11.3. In Section 11.4 we demonstrate the proposed process and the
related guidelines on a real-world case. We provide discussion in Section 11.5
and related work in Section 11.6. Finally, conclusions and future work are
presented in Section 11.7.

11.2 Background
In this section we provide background information on the ISO 26262 safety
process and the processes recommended for development and integration of
Safety Elements out of Context. Furthermore, we provide essential information
on the strong and weak safety contracts as well as graphical argumentation
notation for representing safety arguments.

11.2.1 ISO 26262

ISO 26262 [3] has been developed as a guidance to provide assurance that any
unreasonable residual risks due to malfunctioning of E/E systems have been
avoided. The standard requires a safety case in form of a clear and compre-
hensible argument to show that the safety requirements allocated to an item are
complete and satisfied by the evidence generated during the system develop-
ment. An item within ISO 26262 is composed of at least a sensor, controller
and an actuator, which together implement a function at the vehicle level.

Central part of Fig. 11.3 shows the safety process of the ISO 26262 stan-
dard. The process starts with the Concept phase (Part 3 of the standard) that is
initiated with the item definition activity where the main objective is to define
and describe the item by capturing its dependencies on, and interactions with,
its environment. In the subsequent activities of this phase the hazards related to
the item are identified and classified according to Automotive Safety Integrity
Levels (ASILs), safety goals are established and further refined into functional
safety requirements that are allocated to the architectural elements.

In the first part of the Product development at system level phase, the tech-
nical safety requirements are derived from the functional safety concept, and
the system is designed to comply with both the technical and functional safety
requirements. Based on the system design, development and testing of both

164 Paper E

the hardware (HW) and software (SW) elements is performed. During Product
development at HW/SW level (Parts 5&6 shown in Fig. 11.3) the correspond-
ing HW/SW safety requirements are derived with consideration of environ-
mental/operational constrains identified during the concept phase. The process
continues with integration and testing of the HW/SW elements, followed by
integration of elements that compose an item to form a complete system, and
then the item is integrated with other systems and tested on the vehicle level.
The Product development at system level is finalised with safety validation and
an assurance case is presented to show that the safety goals are sufficient and
that they have been achieved.

We provide additional information on the concept and system design phases
as they play an important role in reuse of safety elements. Based on the ISO
26262 development process, the information that needs to be gathered dur-
ing these phases includes the following: (1) purpose and functionality of the
item, (2) operating modes and states of the item (including the configuration
parameters), (3) law, regulation and standard requirements, (4) operational and
environmental constraints, (5) interface definition, (6) hazard analysis results,
including the known hazards, their ASILs and the associated safety goals.

To ease the development of ISO 26262 compliant systems, the standard
acknowledges different reuse scenarios: (1) elements that have been developed
for reuse according to ISO 26262 in form of SEooC, (2) pre-existing elements
not necessarily developed for reuse or according to ISO 26262 that have to be
qualified for integration, and (3) elements that qualify for reuse as proven-in-
use. In this report we focus on the SEooC reuse scenario.

Safety Element out of Context

SEooC can be an element used to compose an item, but it cannot be an item
since item implements functions at vehicle level, while a reusable elements
such as SEooC are not developed in the context of a particular vehicle. The de-
velopment of SEooC follows the ISO 26262 safety process, but since SEooC is
developed out-of-context, the information related to the system context (gath-
ered during the concept and system design phases) first needs to be assumed.
The assumptions are made to the functional safety concept as the main out-
put of the concept phase and the external design (system-level assumptions;
the interactions with, and dependencies on the elements in the environment are
assumed). After assuming the relevant system design, the development of the
SEooC follows the product development at SW/HW level.

11.2 Background 165

Figure 11.1: Component and safety contract meta-model

11.2.2 Safety Contracts
In our previous work [9], we have proposed a contract-based formalism with
strong 〈A,G〉 and weak 〈B,H〉 contracts to distinguish between context-specific
properties and those that must hold for all contexts. A traditional component
contract C = 〈A,G〉 is composed of assumptions (A) on the environment of
the component and guarantees (G) that are offered by the component if the
assumptions are met. The strong contracts capture behaviours of components
that should always be guaranteed (strong guarantees G) and the corresponding
strong assumptions (A) that should always be met. The weak contracts handle
behaviours that are not required to hold in every environment (weak guarantees
H), but only when besides all the strong assumptions, the corresponding weak
assumptions (B) are satisfied as well. For example, strong contracts can be
used to prevent misuse of configuration parameters of the component by requir-
ing parameters scope and guaranteeing interaction of the different parameters,
while weak contracts could be used to describe distinct component behaviours
achieved by the different configurable parameter values. The related contracts
of a contract C are those contracts that either assume the guaranteed properties
of C or the ones which guarantee properties that are assumed by the contract
C.

As introduced in Section 11.1, we call a contract capturing safety-relevant
behaviour a safety contract. Since not all safety-relevant information can be
captured in formal contracts, we recognise that contracts consist of both formal
and informal assumptions and guarantees. The formal part of the contracts can
for example be captured in form of Failure Propagation and Transformation
Calculus (FPTC) syntax [8].

The component meta-model (Fig. 11.1) that connects safety contracts with
supporting evidence provides a base for evidence reuse together with the con-
tracts [10, 8]. The component meta-model specifies a component in an out-

166 Paper E

of-context setting, composed of safety-contracts, evidence and the assumed
safety requirements. Each safety requirement is satisfied by at least one safety
contract, and each contract can be supported by one or more evidence. This
component meta-model is used as the basis for semi-automatic generation of
safety case argument-fragments [10]. For example, if we assume that late out-
put failure of the component can be hazardous, then we define an assumed
safety requirement that specifies that late failure should be appropriately han-
dled. This requirement is addressed by a contract that captures in its assump-
tions the identified properties that need to hold for the component to guarantee
that the late failure is appropriately handled. The evidence that supports the
contract includes the contract consistency report and analysis results used to
derive the contract.

Goal ID
Goal statement (e.g.,

system is acceptably safe)

Solution

Context ID
Context statement (e.g., acceptably safe in this

context means no single points of failure)

inContextOf

supportedBy

Goal ID
Goal to be

elaborated later on

Away Goal
Goal statement supported

by the referred module

Module reference

Strategy ID
Strategy statement (e.g., argument

over all identified hazards)

Strategy ID
Strategy statement (e.g., argument

over all identified hazards)

Figure 11.2: A subset of GSN symbols used within this article

11.2.3 Overview of Goal Structuring Notation

The Goal Structuring Notation (GSN) [15] is a graphical argumentation nota-
tion that can be used to represent the individual elements (e.g., goals/claims,
evidence, context) of any safety argument. More importantlynly, GSN can be
used to capture the relationships that exist between the individual elements by
using the two relationships inContext and supportedBy. The inContext rela-
tionship connects claims with the contexts that are used as the clarifications of
the related claims, while the supportedBy relationship is used for connecting
goals with its subgoals, backing up goals with evidence and specifying the de-
composition strategies used to decompose a goal to a set of subgoals. Basic
symbols of GSN used in this article are shown in Figure 11.2 (with examples
for each of the elements).

11.3 ISO 26262 Safety Process Supported by Safety Contracts
Development Process 167

Figure 11.3: ISO 26262, SEooC and safety contract development phases map-
ping

11.3 ISO 26262 Safety Process Supported by Safety
Contracts Development Process

In this section we present the guidelines for using the strong and weak safety
contracts for development and integration of reusable safety elements within
safety-critical systems. Moreover, we align the guidelines with the ISO 26262
safety process. More specifically, we first define the safety contracts develop-
ment process and the contract-specific activities, and then we detail how and
when these activities can be aligned with the SEooC development process.

11.3.1 Safety Contracts Development Process

As mentioned in Section 11.1, the nature of safety being system property and
the dangers of non-systematic reuse hinder reuse of safety elements within
safety-critical systems. To alleviate these issues a clear process and guidelines
on how to perform reuse should be provided to promote systematic reuse of
safety elements. To integrate the systematic reuse approach based on strong
and weak safety contracts within a safety process, a safety contracts develop-
ment process needs to be defined. We propose such a process divided into three
phases: (1) Preliminary safety contracts, (2) Safety contracts production, and
(3) Safety Contract utilisation and maintenance. The alignment of the safety
contract, SEooC and ISO 26262 development phases is shown in Fig. 11.3. In
the reminder of this subsection we provide more details about the correspond-
ing contract-specific activities each phase is constituted of.

168 Paper E

Preliminary Safety Contracts Phase

• Establishing strong and weak contracts: The strong contracts are estab-
lished by considering behaviours such as nominal functional or safety
mitigation behaviours not bound to context-specific configuration pa-
rameters. In contrast, weak contracts are established by considering be-
haviours bound to context-specific configuration parameters (e.g., accu-
racy of an algorithm may depend on the physical properties of the system
in which it is used).

• Enriching assumptions with environmental/operational constrains: The
different types of properties that should be captured by safety contracts
include nominal functional behaviour, failure logic behaviour, resource
usage behaviour and timing behaviour [14]. Upon establishing the strong
and weak contracts, the contract assumptions need to be enriched to
achieve sufficient level of completeness by including environmental prop-
erties such as platform properties, HW/SW interface and/or dependen-
cies to other elements.

• Preliminary matching of contracts to HW/SW safety requirements: As
mentioned in Section 11.2.2, the safety contracts should capture infor-
mation needed to satisfy the safety requirements allocated to the cor-
responding safety element. For example, supporting each derived SW
safety requirement allocated to a software element with at least one pre-
liminary contract is the final goal in completing the set of the preliminary
safety contracts. If the contract to satisfy a particular requirement has not
been previously developed, a preliminary contract should be established
with its guarantee reflecting the corresponding requirement.

Safety Contracts Production Phase

• Actualisation of the contracts with implementation-specific properties:
Since not all information is fully known during the preliminary safety
contracts phase, certain preliminary contracts (e.g., on resource usage)
can only be captured with speculative targeted behaviour. After the prod-
uct development stage, such contracts need to be finalised once the ac-
tual behaviour of the element (or a more accurate approximation) can be
established. For example, when more accurate information about the ac-
tual accuracy of an algorithm, actual timing behaviour, or actual memory
footprint of the element is available, then we can actualise the contracts

11.3 ISO 26262 Safety Process Supported by Safety Contracts
Development Process 169

capturing such behaviours with the actual implementation-specific val-
ues.

• Supporting contracts with evidence: The final step in producing the
safety contracts for reuse is to support such contracts with the evidence
supporting the information captured by the contracts. For example, in
case that information captured within a safety contract is based on sim-
ulation or testing results, the corresponding guarantee of the contract
should be based on the results while the assumptions should capture the
environmental parameters under which the simulation/testing has been
performed. The artefacts related to the simulation/testing are then at-
tached to the particular safety contract with a description in which way
they are related. Further trustworthiness evidence can be attached to the
artefacts [8]. Since each safety requirement is associated with an ASIL,
which in turn influences the stringency of evidence that needs to be pro-
vided to assure that the particular requirement is satisfied, the achieved
ASIL information is attached to the evidence rather than to the contracts
themselves. In this way the safety requirements are connected to the
achieved ASILs through the connection of the safety contracts with the
associated evidence.

Utilisation and Maintenance Phase

• Contract-based verification: The results of unsuccessful verification can
be interpreted as follows:

– Contracts are contradicting each other (e.g., strong and weak con-
tracts of the same component make contradicting assumptions on
the same property). To address this result, either the existing con-
tract assumptions and guarantees should be re-established or a re-
placement component should be used instead.

– Not all strong or relevant weak contract assumptions are satisfied,
which means that the component is either not compatible with the
particular context or cannot satisfy a particular safety requirement
allocated to it. In either case, the system can be re-designed to
handle the incompatibility (e.g., by adding component wrappers
to convert the input/output signals to a compatible format) or the
reused component itself can be replaced or modified.

– Contract assumptions are incomplete, e.g., safety contract on tim-
ing behaviour of component X guarantees the timing behaviour

170 Paper E

based on platform assumptions (including compiler configuration),
while a related contract on timing behaviour of component Y does
not include assumptions on compiler configuration. In this case the
contracts with missing assumptions should be re-evaluated and ei-
ther enriched with the appropriate assumptions or a new contract
should be established to capture the newly identified behaviour.

• Contract maintenance: In case of changes to the existing contracts, all
contracts of the corresponding component should be revisited, while
when updating contracts with additional assumptions, only contracts cap-
turing the same type of behaviour (e.g., timing) should be reassessed.
Modifications of a component or system design requires that all its con-
tracts are reassessed and reestablished if required.

• Contract-based artefacts generation: In this article we focus on the util-
isation of contracts for safety case argument generation. The generative
reuse potential of the contracts can be utilised for generating other arte-
facts, but that is out of scope of this article.

11.3.2 SEooC Development with Safety Contracts

SEooC development starts by capturing the system-level assumptions as shown
in Fig. 11.3. Simultaneously, the preliminary safety contracts phase is initiated,
as described in the Section 11.2.1. All relevant assumed properties should
be covered by the established preliminary contract assumptions. Once the
HW/SW safety requirements are derived, each requirement is associated with
at least one contract such that the behaviour achieved by the associated con-
tracts satisfies the required behaviour by the corresponding requirement. After
the safety contracts are established and associated with the safety requirements,
the safety contract production phase and the corresponding ISO 26262 prod-
uct development at HW/SW level are continued to develop the SEooC and its
safety contracts. At this point the development of the SEooC out-of-context is
completed.

Once the SEooC is used in a particular system (in-context), the assumed
requirements are compared and matched to the actual safety requirements al-
located to the element, and contracts are used to verify that the assumptions
captured during the SEooC development are satisfied. The contract production
phase continues in-context of a particular system to capture the behaviours of
the SEooC that could not be established out-of-context. In case of assumptions

11.4 Real-world Case 171

Figure 11.4: The assumed structure of the lifting arm unit context

mismatch, ISO 26262 impact analysis can be assisted by the contract mainte-
nance activity. Once all the relevant safety contracts are satisfied for the reused
SEooC, an argument for the element is generated to show the satisfaction of
the safety requirements through the satisfaction of the associated safety con-
tracts [10].

11.4 Real-world Case
In this section we demonstrate the application of the guidelines introduced in
Section 11.3. We use a product-line based case for our demonstration as it is a
common scenario found in industry. The aim of the case is to develop a com-
ponent out of context of a particular product and reuse the component and its
accompanying artefacts in two different products of a product-line. This can be
challenging even for two similar products such as those in a product-line since
the hazards related to the products can differ, as discussed in Section 11.1. The
SEooC we develop is a Lifting Arm Automatic Positioning (LAAP) compo-
nent commonly used within wheel-loaders and other construction machines.
We first present the LAAP and its SEooC development, and then we discuss
the LAAP integration within two different products of a wheel-loader product-
line.

11.4.1 SEooC definition and development
As discussed in Section 11.3.2, the development of a SEooC starts by making
assumptions on the item in which the component is intended to be used. The
assumed structure of the lifting arm unit context for a wheel-loader is shown in
Fig. 11.4. Wheel loaders are equipped with a lifting arm, which can perform
up and down movements that are directly controlled by a hydraulic controller.
The operator controls of interest for the development of the LAAP consist of a

172 Paper E

control lever that is used to lift/lower the arm and an automatic position request
button that positions the arm in a predefined position. Once the automatic po-
sitioning is started, it can be stopped by moving the control lever and switching
automatically to manual mode. Besides the operator controls, the LAAP uses
an arm angle sensor to determine the current arm position, recorded position
to which the arm should be moved and the ground speed of the vehicle for
tracking the vehicle movements. The assumptions include only information
deemed relevant to the SEooC development, hence the full interface of the arm
controller is not assumed at this stage.

Before specifying the assumed software safety requirements that the LAAP
will implement, we need to assume safety implications of the component and
its relation to possible hazards. We identified contributions of LAAP to two
possible vehicle-level hazards: (H1) unintended movement of the lifting arm,
and (H2) hydraulic leakage. We consider the hazards in the following opera-
tional situations:

• high speed (the vehicle is moving with varying speeds that can go up to
the maximum available speed)

• short cycle (a combination of load lifting and low speed transportation)

• load and carry (the vehicle is moving with varying ground speed with
bucket fully loaded)

Hazard H1 can be dangerous during high speed due to e.g., heavy traf-
fic when driving on a public road, during the short cycle and load and carry
phases it can be dangerous to bystanders present in the area while high preci-
sion movement is required from the machine. LAAP can contribute to hazard
H1 by e.g., value failure of the flow command that can be caused by value fail-
ures of the angle sensor and the recorded position variable. Furthermore, the
unintended arm movement can occur in case of omission of the autoPosition-
Req signal. Omission or late failure of the control lever signal can cause LAAP
to continue its operation when not intended.

The high-pressure hydraulic leakage could produce a highly flammable
oil/air mixture spray mist that might ignite in contact with hot surface, hence
the leakage should be identified as soon as possible. One way in which LAAP
can contribute to this situation is when the LAAP starts operating but due to the
leakage the arm either never reaches the recorded position or it moves much
slower than usual, which contributes to increasing the leakage. The occurrence
of the hazard H2 in either of the operational situations can be danger to the

11.4 Real-world Case 173

Table 11.1: SW Safety Requirements
SWSR1 Safe state shall be applied during high-speed ASIL B
SWSR2 The stop position of the arm shall not deviate more than ±

0.04 rad
ASIL B

SWSR3 Safe state shall be applied if erroneous input (ground speed,
angle sensor, control lever or recorded position) is detected

ASIL B

SWSR4 Safe state shall be applied if the operational time of the
LAAP is taking more than the maximum raise time of the
lifting arm

ASIL A

SWSR5 LAAP shall not start inadvertently ASIL B
SWSR6 Safe state shall be applied when manual arm movement is in

progress (i.e., when control lever value not 0)
ASIL B

driver, other participants in traffic and bystanders present in the area. To ad-
dress these possible hazardous events related to both hazards, functional safety
concept is assumed and the corresponding software safety requirements are
derived (Table 11.1).

The strong and weak contracts of the LAAP, initially captured during the
Preliminary Safety Contracts phase to address the SW safety requirements, are
shown in Table 11.2. The strong contract LAAP-1 requires that the ground-
SpeedLimit is set below 20km/h and guarantees that LAAP will be disabled
when the ground speed of the vehicle is greater than the groundSpeedLimit pa-
rameter. Disabling of the LAAP is the safe state achieved by setting the active
flag to false and the flow value to 0.

The strong contract LAAP-2 specifies the assumed value ranges of the in-
put signals and guarantees that the safe state shall be applied when either of
the inputs is out of bounds. In case of controlLever signal, the LAAP can be
active only when the lever is inactive (i.e., when the lever is 0), hence the con-
tract specifies that when controlLever is different than 0, the safe state shall be
applied.

The strong contract LAAP-3 describes a SW watchdog timer implemented
as a part of the component that disables LAAP if its operation time is longer
than expected. To detect possible hydraulic leakage, the timer is set within
the interval bound by raiseTime parameter that represents the maximum lifting
time of the arm under full load from lowest to highest position.

The weak contracts LAAP-4 and LAAP-5 capture failure propagation be-
haviour of the LAAP such that they state which conditions should the environ-
ment of the LAAP fulfil to mitigate a potentially hazardous failure propagation.

174 Paper E

Table 11.2: LAAP Safety Contracts
ALAAP−1: groundSpeedLimit within [0, 20] km/h AND groundSpeed within [0,

200] km/h;
GLAAP−1: groundSpeed > groundSpeedLimit implies (active = false and flow =

0)
ALAAP−2: groundSpeed within [0, 200] km/h AND angleSensor within [0,3]

rad AND controlLever within ± 1 rad AND recordedPosition within
[0,3] rad;

GLAAP−2: (groundSpeed not within [0, 200] km/h OR angleSensor not within
[0,3] rad OR controlLever not 0 rad OR recordedPosition not within
[0,3] rad;) implies (active = false and flow = 0)

ALAAP−3: watchdogTimerInterval within [raiseTime, 1.2*raiseTime] AND
raiseTime > 0;

GLAAP−3: (not (active = false and flow = 0) implies watchdogTimer start) AND
(LAAP-OperationalTime > watchdogTimerInterval implies (active =
false and flow = 0 and watchdogTimer reset));

BLAAP−4: not angleSensor.valueFailure AND not recordedPosi-
tion.valueFailure;

HLAAP−4: not flow.valueFailure;

BLAAP−5: not autoPositionReq.comission AND not controlLever.omission;

HLAAP−5: not flow.comission AND not active.comission;

BLAAP−6: angleSensor accuracy is 0.02 rad AND actuation deviation is within
±0.01 rad AND recordedPosition does not introduce deviation;

HLAAP−6: flow accuracy is 0.01 rad implies stop position is within ±0.04 rad
from the recordedPosition

The LAAP-4 contract specifies that in order to avoid the flow command value
failure, the environment of the LAAP should guarantee that the angle sensor
signal and recorded position value do not exhibit value failure. The LAAP-5
contract contract specifies that in order to mitigate inadvertent commands sent
from the LAAP (in form of commission failures of the flow and active output
ports), the environment should ensure that commission of the autoPositionReq
signal and omission of the controlLever signal do not occur.

The weak contract LAAP-6 relates the guaranteed flow accuracy and the
lifting arm stop position based on the assumptions on the accuracy of the angle
sensor, recorded position and the actuation.

The matching of the established contracts and the SW safety requirements

11.4 Real-world Case 175

Table 11.3: SW Safety Requirements and safety contracts mapping
SWSR1 LAAP-1
SWSR2 LAAP-4, LAAP-6
SWSR3 LAAP-2
SWSR4 LAAP-3
SWSR5 LAAP-5
SWSR6 LAAP-2, LAAP-5

is presented in Table 11.3. The contract LAAP-4 is not fully addressing the
requirement SWSR2, but it only establishes that the accuracy of the flow com-
mand is dependent on the accuracy of the angle sensor and the recorded posi-
tion value. Hence a more concrete contract LAAP-6 is established to fully ad-
dress the requirement SWSR2. During the Safety Contracts Production phase,
the contract LAAP-6 is updated with the actual accuracy of the flow command.

As mentioned in Section 11.3, the SW safety requirements addressed by
the safety contracts are supported with evidence through the connection of the
contracts and the supporting evidence. Since requirements are categorised with
ASILs, the stringency of the evidence supporting the contracts should be ap-
propriate for the corresponding integrity level. Since the assumed requirements
are associated with at most ASIL B, to support the contracts associated with
the requirements we use inspection and testing as verification means recom-
mended by ISO 26262 for the specified ASILs. The context statements that
provide clarifications of the contracts and the supporting evidence attached dur-
ing Safety Contract Production phase are shown in Figure 11.4. The context
statements are denoted with LAAP-x Cy and evidence with LAAP-x Cy., where
x is the number of the related contract and y the number of the evidence/context
statement.

11.4.2 SEooC Integration
The two products in which we reuse the developed SEooC are a part of the same
wheel-loader product line. First product is a Gigant Wheel-loader (GWL) used
within closed construction sites. Due to its size, both the GWL itself and its
arm move slower than other machines. Time needed to raise the arm under full
load from minimum to maximum position is around 10 seconds. The second
product is a Small Wheel-loader (SWL) used for less intensive tasks and often
outside of construction sites (e.g., public service). It is much more compact
than the GWL and it has two times faster lifting arm raise time.

176 Paper E

Due to the differences between the two products, what is hazardous in one
product is not necessarily hazardous in the other. Since the GWL is used
in a controlled environment and its tasks do not require high precision, the
value failure of the LAAPs’ flow port is not considered hazardous in that case.
Hence, the requirement SWSR2 is not considered safety-relevant in context of
the GWL, but is regarded as quality management. Moreover, the weak con-
tracts LAAP-4 and LAAP-6 are not satisfied in the context of GWL, as integrity
of the sensor data and recorded position is not ensured for the LAAP-4 contract,
and the assumption on actuation accuracy for the LAAP-6 contract.

In contrast to the GWL, since the SWL is used in less controlled envi-
ronments for tasks that usually require precision, the LAAP accuracy is much
more critical. Besides a higher quality angle sensor to ensure high confidence
in sufficient accuracy of the angleSensor input to the LAAP, an error-detecting
code is used to ensure that the stored recordedPosition has not been acciden-
tally changed (e.g., due to bit flip). Contracts of the corresponding components
guarantee these properties of the angle sensor and the recordedPosition variable
which satisfies the contract LAAP-6, while the contract LAAP-4 is not satisfied
in the SWL system either as it would be too expensive to achieve it.

Since the strong contract LAAP-1 requires groundSpeedLimit to be set in
every vehicle to a value below 20 km/h, both products must set the appropriate
values. In the GWL the limit is 20 km/h, since the arm moves much slower and
in a controlled environment, while the limit is 10 km/h for the SWL.

Once the reused contracts are checked and new contracts established during
theUtilisation and Maintenance phase, we utilise the contracts for the gener-
ation of safety argument-fragments. Based on the satisfied contracts we can
identify safety artefacts related to such contracts (e.g., test cases) that can be
useful in the current context.

11.4.3 Generated Safety Arguments
Figure 11.5 shows the top level goals of the LAAP safety argument for the
two systems. Both argument-fragments are generated in the same way, hence
share the similar structure. To support the top-level goal that the component
satisfies the allocated safety requirements, we decompose the top-level goal to
argue over the following: the LAAP strong contracts are satisfied, all satisfied
contracts are consistent, and the relevant weak contracts are satisfied. As all
strong contracts must be satisfied in both context, the argument related to the
strong contract satisfaction (Figure 11.6) is the same for both cases.

The top level goals are further decomposed to argue over satisfaction of

11.5 Discussion 177

G3
Allocated safety requirements are met

by the related contracts of LAAP

G1
LAAP satisfies the allocated

safety requirements

G4
Contracts of LAAP are consistent

G2
Strong contracts of LAAP are

satisfied with sufficient confidence

Contract
Consistency

Report

Figure 11.5: Top goals of the LAAP safety argument for both the GWL and
SWL

each allocated safety requirement. As discussed in Section 11.4.2, some of
the contracts are not satisfied in the GWL and in the same time some of the
requirements are discarded as quality management, hence not included in the
LAAP safety argument in context of GWL. In case of the GWL, SWSR2 and
SWSR4 are not included in the corresponding argument (Figure 11.7), while
for the SWL, all six requirements are included in the corresponding argument
(Figure 11.8).

As most of the requirements are addressed by the strong contracts that are
argued in a separate argument branch, the away goals are used to relate to those
arguments, while the weak contracts that are used to support a requirement for
the first time in the argument are further developed (e.g., the contracts LAAP-
5 and LAAP-6 for requirements SWSR2 and SWSR5). Establishing that the
safety contracts are sufficient to support a certain requirement is done by in-
spection.

11.5 Discussion
As described in Section 11.2.1, ISO 26262 requires certain information to be
gathered during the concept phase. The standard states that software safety
requirements should consider this information. In case of SEooC, this infor-
mation should be assumed out-of-context and validated in-context. In the case
of other reusable elements such as qualified software elements, this information
should be made available and validated prior to the integration of the element
into an ISO 26262 compliant system. The guidelines provided by the stan-
dard do not go into further detail but stop at the message that this information
should be considered, assumed and validated. As described in Section 11.3 and
demonstrated in Section 11.4, the generative reuse approach based on safety
contracts provides means to assume, consider and validate this information.
When developing SEooC, the required information is assumed within safety

178 Paper E

contracts, by associating these contracts with SW safety requirements, the re-
quirements are related and consider this information. Upon integration of a
reusable component together with its safety contracts, the assumed informa-
tion or information that should be made available is validated by checking that
the reused safety contracts assumptions are satisfied in the particular system.

As demonstrated in Section 11.4.2, what is safety relevant in one system
can sometimes be regarded as quality management in another system. This
is the main reason why reusing safety artefacts (such as product-based safety
argument-fragments) first needs a phase of identifying what is relevant, which
is supported by the safety contracts, and after that the relevant information
can be composed and the artefact reused. In the scope of our work we use
the safety contracts to generate safety case argument-fragments, while there
is potential to use the contracts to generate different types of safety analyses
(e.g., FTA) [16] through the connection of the safety contracts with the FPTC
analysis [8]. The generation of the specific safety argument-fragments is still
semi-automatically performed since the integrator needs to align the assumed
with the actual safety requirements. Although methods could be developed
to ease the matching of the safety requirements and the associated contracts,
and matching assumed and actual safety requirements, the step towards devel-
oping such methods would be formalisation of the requirements, which faces
different challenges [17]. Safety contracts share some of these challenges as
well. Hence we recognise the need for capturing both formal and informal
aspects in the safety contracts. While the formally specified parts of the as-
sumptions and guarantees are used for both contract-based verification and
argument-fragment generation, the informal parts are only used for the argu-
ments generation where they can be further reviewed manually.

11.6 Related Work

The ISO 26262 lack of detailed guidelines for systematic reuse has triggered
researchers to align different reuse engineering methods with the standard, e.g.,
Product-line Engineering (PLE) and Component Based Software Engineering
(CBSE). PLE can be aligned with the ISO 26262 to facilitate reuse of arte-
facts [11]. The proposed approach provides means to specify, manage and
trace commonalities and variabilities at different parts of the ISO 26262 safety
process.

Reusing safety artefacts requires that variability within them is managed.
A PLE-based approach shows how variability can be integrated into the func-

11.7 Conclusion and Future Work 179

tional safety models by combining functional safety and variability modelling
tools [12]. Another approach focuses on Trusted Product Lines by forming
a framework for demonstrating that the derived products are fit for purpose
in high-integrity civil airspace systems [13]. The work aligns PLE with civil
airspace safety standard recommendations on development and integration of
reusable elements.

An approach that distinguishes between component types as out-of-context
components and component implementations as in-context instantiations of
the component types explores use of assume/guarantee contracts to facilitate
reuse [14]. The work provides an incremental certification lifecycle for CBSE
and outlines the role of contracts in the proposed lifecycle.

In contrast to these works we focus on providing detailed guidelines for de-
velopment and integration of reusable safety elements within the safety-critical
systems. Moreover, we focus on the automotive industry by aligning the pro-
vided guidelines with the ISO 26262 safety process. More specifically, we
support generative reuse of safety argument-fragments since that increases the
reusability of the efforts invested in capturing safety rationale within the safety
contracts. We are not aware of other works with this specific focus.

11.7 Conclusion and Future Work

Safety standards, particularly ISO 26262, lack support for reuse and integra-
tion of safety elements, although modern safety-critical systems highly rely on
reuse. In this paper we have presented a safety contracts development process
that bases reuse of safety elements around the notion of safety contracts. We
have shown on a real-world case that the safety contracts can be successfully
used to complement and augment ISO 26262 safety process to provide support
for reuse and integration of safety elements. Moreover, safety contracts provide
a platform for generative reuse of safety artefacts by facilitating generation of
safety case argument-fragments and potentially other safety analyses.

As future work we plan to develop the real-world case further and conduct
series of studies to evaluate different techniques related to safety contracts.
Furthermore, we intend to fully utilise the generative reuse potential of the
safety contracts by looking into generation of different safety analyses. While
currently only partially supported by CHESS-toolset [18], we plan to continue
extension of the tool and further optimisations of the implemented contract
formalism.

180 Paper E

Acknowledgements
This work is supported by the Swedish Foundation for Strategic Research
(SSF) project SYNOPSIS and the EU Artemis-funded nSafeCer project.

11.7 Conclusion and Future Work 181

Table 11.4: The context statements and evidence of the LAAP safety contracts
LAAP-1 C1: The contract is based on the specification of the Input validation and

error handling of LAAP;
LAAP-1 E1 name: Unit testing results

description: The evidence satisfies ASIL B requirements.
supporting argument: -;

LAAP-2 C1: The contract is based on the specification of the Input validation and
error handling of LAAP;

LAAP-2 E1 name: Unit testing results
description: The evidence satisfies ASIL B requirements.
supporting argument: -;

LAAP-3 C1: The contract is based on the LAAP watchdog timer configuration;
LAAP-3 E1 name: Watchdog inspection report

description: The evidence satisfies ASIL A requirements.
supporting argument: -;

LAAP-3 E2 name: Unit testing results
description: The evidence satisfies ASIL B requirements.
supporting argument: -;

LAAP-4 C1: The contract is derived from the FPTC analysis results for the LAAP
component;

LAAP-4 E1 name: LAAP FPTC analysis report
description: The evidence satisfies ASIL B requirements.
supporting argument: FPTC analysis conf;

LAAP-5 C1: The contract is derived from the FPTC analysis results for the LAAP
component;

LAAP-5 E1 name: LAAP FPTC analysis report
description: The evidence satisfies ASIL B requirements.
supporting argument: FPTC analysis conf;

LAAP-6 C1: The contract is derived from the FPTC analysis results for the LAAP
component;

LAAP-6 E1 name: LAAP FPTC analysis report
description:The evidence satisfies ASIL B requirements.
supporting argument: FPTC analysis conf;

LAAP-6 E2 name: Unit testing results
description: The evidence satisfies ASIL B requirements.
supporting argument: -;

182 Paper E

G2
Strong contracts of LAAP are

satisfied with sufficient confidence

LAAP-1
LAAP-1 contract is satisfied with

sufficient confidence

LAAP-1_2
Contract LAAP-1 is sufficiently complete

LAAP-1_1
Every contract supporting assumed properties of the
contract LAAP-1 is satisfied with sufficient confidence

LAAP-1_A1
Contract groundSpeedLimitValue supports the

assumption “groundSpeedLimit within [0, 20] km/h”

LAAP-1_Assumptions
groundSpeedLimit within [0, 20] km/h AND

groundSpeed within [0, 200] km/h

LAAP-1_A2
Contract groundSpeedRange supports the

assumption “groundSpeed within [0, 200] km/h”

LAAP-1_C1
The contract is based on the specification of the

Input validation and Error handling of LAAP

Sol:LAAP-1_E1
[Unit testing

results]

Goal:LAAP-1_E1
”Unit testing results” supports
completeness of the contract

Away Goal
Contract groundSpeedRange is

satisfied with sufficient confidence

groundSpeedRange

Away Goal
Contract groundSpeedLimitValue is
satisfied with sufficient confidence

groundSpeedLimitValue

LAAP-1_E1_C1
The evidence satisfies
ASIL B requirements

LAAP-2
LAAP-2 contract is satisfied with

sufficient confidence

LAAP-2_2
Contract LAAP-2 is

sufficiently complete

LAAP-2_1
Every contract supporting assumed properties of the
contract LAAP-2 is satisfied with sufficient confidence

LAAP-2_A3
Contract controlLeverRange supports the
assumption “controlLever within 1 rad”

LAAP-2_C1
The contract is based on the

specification of the Input validation
and Error handling of LAAP

LAAP-2_Assumptions
groundSpeed within [0, 200] km/h AND angleSensor within [0,3] rad

AND controlLever within 1 rad AND recordedPosition within [0,3] rad;

LAAP-2_A4
Contract recordedPositionRange supports the

assumption “recordedPosition within [0,3] rad”

LAAP-2_A1
Contract groundSpeedRange supports the

assumption “groundSpeed within [0, 200] km/h”

LAAP-2_A2
Contract angleSensorRange supports the

assumption “angleSensor within [0,3] rad”

Away Goal
Contract groundSpeedRange is

satisfied with sufficient confidence

groundSpeedRange

Away Goal
Contract angleSensorRange is

satisfied with sufficient confidence

angleSensorRange

Away Goal
Contract controlLeverRange is

satisfied with sufficient confidence

controlLeverRange

Away Goal
Contract recordedPositionRange is
satisfied with sufficient confidence

recordedPositionRange

Sol:LAAP-2_E1
[Unit testing

results]

Goal:LAAP-2_E1
”Unit testing results”

supports completeness
of the contract

LAAP-2_E1_C1
The evidence satisfies
ASIL B requirements

LAAP-3
LAAP-3 contract is satisfied with

sufficient confidence

LAAP-3_2
Contract LAAP-3 is

sufficiently complete

LAAP-3_1
Every contract supporting assumed properties of the
contract LAAP-3 is satisfied with sufficient confidence

LAAP-5_A1
Contract watchdogTimerInterval supports
the assumption “watchdogTimerInterval

within [raiseTime, 1.2*raiseTime]”

LAAP-3_C1
The contract is based on the LAAP

watchdog timer configuration

Sol:LAAP-3_E1
[Watchdog
Inspection

Report]

Goal:LAAP-3_E1
”Watchdog inspection

report” supports
completeness of the contract

LAAP-3_Assumptions
watchdogTimerInterval within [raiseTime,

1.2*raiseTime] AND raiseTime > 0;

LAAP-5_A2
Contract armRaiseTime supports
the assumption ”raiseTime > 0”

Away Goal
Contract watchdogTimerInterval is
satisfied with sufficient confidence

watchdogTimerInterval

Away Goal
Contract armRaiseTime is satisfied

with sufficient confidence

armRaiseTime

Sol:LAAP-3_E2
[Unit testing

results]

Goal:LAAP-3_E2
”Unit testing results”

supports completeness
of the contract

LAAP-3_E2_C1
The evidence satisfies ASIL

B requirements

LAAP-3_E1_C1
The evidence satisfies
ASIL A requirements

Figure 11.6: Safety argument-fragment for the strong contracts (the same for
both systems)

11.7 Conclusion and Future Work 183

G3
Allocated safety requirements are met by the related contracts of LAAP

S1
Argument by satisfaction of all

allocated safety requirements on LAAP

S1
Argument by satisfaction of all

allocated safety requirements on LAAP

G3.1
SWSR1 is satisfied by the
related contracts of LAAP

G3.1.1
Every contract supporting

SWSR1 is satisfied with
sufficient confidence

G3.1.2
The set of contracts

is correct with
respect to SWSR1

G3.3
SWSR3 is satisfied by the
related contracts of LAAP

G3.5
SWSR5 is satisfied by the
related contracts of LAAP

G3.6
SWSR6 is satisfied by the
related contracts of LAAP

Inspection
Report

Away Goal
Contract LAAP-2 is satisfied
with sufficient confidence

LAAP-2

Away Goal
Contract LAAP-1 is satisfied
with sufficient confidence

LAAP-1

G3.3.1
Every contract supporting

SWSR3 is satisfied with
sufficient confidence

G3.3.2
The set of contracts

is correct with
respect to SWSR3

Inspection
Report

G3.5.1
Every contract supporting

SWSR5 is satisfied with
sufficient confidence

G3.5.2
The set of contracts

is correct with
respect to SWSR5

Inspection
Report

Away Goal
Contract LAAP-5 is satisfied
with sufficient confidence

LAAP-5

G3.6.1
Every contract supporting

SWSR6 is satisfied with
sufficient confidence

G3.6.2
The set of contracts

is correct with
respect to SWSR6

Inspection
Report

Away Goal
Contract LAAP-2 is satisfied
with sufficient confidence

LAAP-2

SWSR1-C1
The requirement is

categorised as ASIL B

SWSR3-C1
The requirement is

categorised as ASIL B

SWSR5-C1
The requirement is

categorised as ASIL B

SWSR6-C1
The requirement is

categorised as ASIL B

LAAP-5
LAAP-5 contract is satisfied
with sufficient confidence

LAAP-5_2
Contract LAAP-5 is

sufficiently complete

LAAP-5_1
Every contract supporting assumed properties of the
contract LAAP-5 is satisfied with sufficient confidence

LAAP-5_A1
Contract autoPositioning1

supports the assumption “Not
autoPositionReq.comission”

LAAP-5_C1
The contract is derived from the FPTC

analysis results for the LAAP component

Sol:LAAP-5_E1
[FPTC analysis

report]

Goal:LAAP-5_E1
”LAAP FPTC analysis report” supports

completeness of the contract

LAAP-5_Assumptions
not autoPositionReq.comission AND

not controlLever.omission

LAAP-5_A2
Contract controlLever1

supports the assumption “Not
controlLever.omission”

Away Goal
Contract controlLever1 is satisfied

with sufficient confidence

controlLever1

Away Goal
Contract autoPositioning1 is

satisfied with sufficient confidence

autoPositioning1

LAAP-5_E1_C1
The evidence satisfies ASIL

B requirements

Away Goal
FPTC analysis results are sufficient
to support contract completeness

 FPTC_analysis_conf

Figure 11.7: Safety argument-fragment for the safety requirements allocated
on the LAAP in context of GWL

184 Paper E

G3
Allocated safety requirements are met by the related contracts of LAAP

S1
Argument by satisfaction of all

allocated safety requirements on LAAP

S1
Argument by satisfaction of all

allocated safety requirements on LAAP

G3.1
SWSR1 is satisfied by the
related contracts of LAAP

G3.1.1
Every contract supporting

SWSR1 is satisfied with
sufficient confidence

G3.1.2
The set of contracts

is correct with
respect to SWSR1

G3.3
SWSR3 is satisfied by the
related contracts of LAAP

G3.5
SWSR5 is satisfied by the
related contracts of LAAP

G3.6
SWSR6 is satisfied by the
related contracts of LAAP

Inspection
Report

Away Goal
Contract LAAP-2 is satisfied
with sufficient confidence

LAAP-2

Away Goal
Contract LAAP-1 is satisfied
with sufficient confidence

LAAP-1

G3.3.1
Every contract supporting

SWSR3 is satisfied with
sufficient confidence

G3.3.2
The set of contracts

is correct with
respect to SWSR3

Inspection
Report

G3.5.1
Every contract supporting

SWSR5 is satisfied with
sufficient confidence

G3.5.2
The set of contracts is correct with respect to

SWSR5

Inspection
Report

Away Goal
Contract LAAP-5 is satisfied
with sufficient confidence

LAAP-5

G3.6.1
Every contract supporting

SWSR6 is satisfied with
sufficient confidence

G3.6.2
The set of contracts is correct

with respect to SWSR6

Inspection
Report

Away Goal
Contract LAAP-2 is satisfied
with sufficient confidence

LAAP-2

SWSR1-C1
The requirement is

categorised as ASIL B

SWSR3-C1
The requirement is

categorised as ASIL B

SWSR5-C1
The requirement is categorised as ASIL B

SWSR6-C1
The requirement is

categorised as ASIL B

LAAP-5
LAAP-5 contract is satisfied
with sufficient confidence

LAAP-5_2
Contract LAAP-5 is

sufficiently complete

LAAP-5_1
Every contract supporting assumed
properties of the contract LAAP-5 is
satisfied with sufficient confidence

LAAP-5_A1
Contract autoPositioning1

supports the assumption “Not
autoPositionReq.comission”

LAAP-5_C1
The contract is derived from
the FPTC analysis results for

the LAAP component

Sol:LAAP-5_E1
[FPTC analysis

report]

Goal:LAAP-5_E1
”LAAP FPTC analysis report”
supports completeness of

the contract

LAAP-5_Assumptions
not autoPositionReq.comission
AND not controlLever.omission

LAAP-5_A2
Contract controlLever1

supports the assumption
“Not controlLever.omission”

Away Goal
Contract controlLever1 is satisfied

with sufficient confidence

controlLever1

Away Goal
Contract autoPositioning1 is

satisfied with sufficient confidence

autoPositioning1

LAAP-5_E1_C1
The evidence satisfies
ASIL B requirements

Away Goal
FPTC analysis results are sufficient
to support contract completeness

 FPTC_analysis_conf

LAAP-6
LAAP-6 contract is satisfied
with sufficient confidence

LAAP-6_2
Contract LAAP-6 is

sufficiently complete

LAAP-6_1
Every contract supporting assumed
properties of the contract LAAP-6 is
satisfied with sufficient confidence

LAAP-5_A2
Contract hydraulicAcc supports the
assumption “actuation deviation is

within 0.01 rad”

LAAP-6_C1
The contract is based on the FPTC analysis

results for the LAAP component

Sol:LAAP-6_E1
[FPTC analysis

report]

Away Goal
FPTC analysis results are sufficient
to support contract completeness

 FPTC_analysis_conf

Goal:LAAP-6_E1
”LAAP FPTC analysis report” supports

completeness of the contract

LAAP-6_Assumptions
angleSensor accuracy is 0.02 rad AND actuation deviation is within

0.01 rad AND recordedPosition does not introduce deviation

LAAP-5_A3
Contract recPositionConf supports
the assumption “recordedPosition

does not introduce deviation”

LAAP-5_A1
Contract angleSensorAcc supports

the assumption “angleSensor
accuracy is 0.02 rad”

Away Goal
Contract recPositionConf is

satisfied with sufficient confidence

recPositionConf

Away Goal
Contract hydraulicAcc is satisfied

with sufficient confidence

hydraulicAcc

Away Goal
Contract angleSensorAcc is

satisfied with sufficient confidence

angleSensorAcc

Sol:LAAP-6_E2
[Unit testing

results]

Goal:LAAP-6_E2
”Unit testing results” supports
completeness of the contract

LAAP-6_E1_C1
The evidence satisfies
ASIL B requirements

LAAP-6_E2_C1
The evidence satisfies ASIL

B requirements

G3.4
SWSR4 is satisfied by the
related contracts of LAAP

G3.4.1
Every contract supporting

SWSR4 is satisfied with
sufficient confidence

G3.4.2
The set of contracts is
correct with respect

to SWSR4

Inspection
Report

SWSR4-C1
The requirement is

categorised as ASIL A

Away Goal
Contract LAAP-3 is satisfied
with sufficient confidence

LAAP-3

Figure 11.8: Safety argument-fragment for the safety requirements allocated
on the LAAP in context of SWL

Bibliography

[1] J.-M. Astruc and N. Becker. Toward the Application of ISO 26262 for
Real-life Embedded Mechatronic Systems. In International Conference
on Embedded Real Time Software and Systems. ERTS2, 2010.

[2] S. Baumgart, J. Fröberg, and S. Punnekkat. Industrial Challenges to
Achieve Functional Safety Compliance in Product Lines. In The 40th
Euromicro Conference on Software Engineering and Advanced Applica-
tions, August 2014.

[3] International Organization for Standardization (ISO). ISO 26262: Road
vehicles — Functional safety. ISO, 2011.

[4] B. Meyer. The next software breakthrough. Computer, 30(7):113–114,
1997.

[5] W. B. Frakes and K. Kang. Software Reuse Research: Status and Future.
Transactions on Software Engineering, 31(7):529–536, 2005.

[6] Y. Papadopoulos, M. Walker, D. Parker, E. Rüde, R. Hamann, A. Uhlig,
U. Grätz, and R. Lien. Engineering Failure Analysis and Design Optimi-
sation With HiP-HOPS. Engineering Failure Analysis, 18(2):590–608,
2011.

[7] R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. P. Kelly. Weaving
an Assurance Case from Design: A Model-Based Approach. In 16th
International Symposium on High Assurance Systems Engineering, pages
110–117. IEEE, January 2015.

[8] I. Sljivo, B. Gallina, J. Carlson, H. Hansson, and S. Puri. A Method
to Generate Reusable Safety Case Fragments from Compositional Safety

185

186 Bibliography

Analysis. In 14th International Conference on Software Reuse. Springer-
Verlag, January 2015.

[9] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Strong and weak con-
tract formalism for third-party component reuse. In International Work-
shop on Software Certification. IEEE Computer Society, November 2013.

[10] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Generation of Safety
Case Argument-Fragments from Safety Contracts. In Andrea Bondavalli
and Felicita Di Giandomenico, editors, 33rd International Conference on
Computer Safety, Reliability, and Security, volume 8666 of LNCS, pages
170–185. Springer, Heidelberg, September 2014.

[11] B. Gallina, A. Gallucci, K. Lundqvist, and M. Nyberg. VROOM & cC:
a Method to Build Safety Cases for ISO 26262-compliant Product Lines.
In SAFECOMP Workshop on Next Generation of System Assurance Ap-
proaches for Safety-Critical Systems. HAL / CNRS report, September
2013.

[12] M. Schulze, J. Mauersberger, and D. Beuche. Functional Safety and Vari-
ability: Can It Be Brought Together? In 17th International Software
Product Line Conference, pages 236–243. ACM, 2013.

[13] S. Hutchesson and J. McDermid. Trusted Product Lines. Information &
Software Technology, 55(3):525–540, 2013.

[14] P. Graydon and I. Bate. The Nature and Content of Safety Contracts:
Challenges and Suggestions for a Way Forward. In The 20th Pacific Rim
International Symposium on Dependable Computing. IEEE, November
2014.

[15] GSN Community Standard Version 1. Technical report, Origin Consult-
ing (York) Limited, November 2011.

[16] B. Gallina, M. A. Javed, F. U. Muram, and S. Punnekkat. Model-driven
Dependability Analysis Method for Component-based Architectures. In
Euromicro Conference on Software Engineering and Advanced Applica-
tions. IEEE, 2012.

[17] P. Filipovikj, M. Nyberg, and G. Rodriguez-Navas. Reassessing the
Pattern-Based Approach for Formalizing Requirements in the Automo-
tive Domain. In 22nd International Requirements Engineering Confer-
ence. IEEE, August 2014.

[18] CHESS-toolset, http://www.chess-project.org/page/
download.

http://www.chess-project.org/page/download
http://www.chess-project.org/page/download

	Thesis
	Introduction and Outline
	Outline

	Research Description
	Research Methodology
	Problem Statement and Research Goals

	Background
	Safety-Critical Systems
	Safety Standards
	Safety Case Representation
	Fault Tree Analysis

	Reuse Technologies
	Component-based Software Engineering
	Product-line Engineering
	Generative Reuse

	Contracts
	Assumption/Guarantee Contract Theory

	Thesis Contributions
	Strong and Weak Contract Formalism
	Methods for Derivation of Safety Contracts from Failure Analyses
	A Method for Reuse of Safety Case Argument-fragments and Supporting Evidence
	Safety Contracts Development Process

	Related Work
	Contract-based Approaches for Safety-Critical Systems
	Safety Case Artefacts Reuse

	Conclusions and future work
	Research Questions Revisited
	Research Question 1
	Research Question 2
	Research Question 3

	Future Research Directions
	Strong and weak contracts formalism optimisation
	Safety contracts language and patterns catalogue
	Safety case management
	Further safety case artefacts generation
	Further tool support

	Bibliography

	Included Papers
	Paper A: Strong and Weak Contract Formalism for Thrid-Party Component Reuse
	Introduction
	Background
	Off-The-Shelf Items
	Safety Standards and Reuse
	Fine-grained Contracts
	Motivating Example

	Fine-grained contracts further development
	Contract relations and operations

	Case Study
	Usage of the strong and weak contracts
	Discussion on benefits of the extended formalism

	Related Work
	Conclusion and Future Work
	Bibliography

	Paper B: Generation of Safety Case Argument-Fragments from Safety Contracts
	Introduction
	Background
	Illustrative Example: The Fuel Level Estimation System
	Strong and Weak Contracts
	Goal Structuring Notation

	Composable Arguments Generation
	Rationale of the approach
	Component meta-model
	Conceptual mapping of the component meta-model to GSN
	Overview of the architecture of the resulting argument-fragment
	Rules for generation of component argument-fragments

	Argument-fragment for FLES
	The safety contracts
	The resulting argument-fragment for the Estimator component

	Discussion
	Related Work
	Conclusion and Future Work
	Bibliography

	Paper C: A Method to Generate Reusable Safety Case Fragments from Compositional Safety Analysis
	Introduction
	Background
	COTS-based safety-critical architectures
	CHESS-FLA within the CHESS toolset
	Safety cases and safety case modelling

	FLAR2SAF
	Rationale
	Contractual interpretation of FPTC rules
	Argument-fragment generation

	Application Example
	Wheel Braking System (WBS)
	FPTC analysis
	The translated contracts
	The resulting argument-fragment

	Related Work
	Conclusion and Future Work
	Bibliography

	Paper D: Deriving Safety Contracts to Support Architecture Design of Safety Critical Systems
	Introduction
	Background and Motivation
	Related Work
	Overview of the Computer Assisted Braking System

	Overall Development Approach
	Definition of Safety Contracts
	Causal Analysis and Contracts for WBS
	Causal Analysis and Contracts on WBS with Safety Kernels
	Contract Derivation and Completeness Checking Methods

	Safety Argument
	Overview of Goal Structuring Notation
	Wheel Braking System Safety Argument

	Summary and Conclusions
	Bibliography

	Paper E: Using Safety Contracts to Guide the Integration of Reusable Safety Elements within ISO 26262
	Introduction
	Background
	ISO 26262
	Safety Contracts
	Overview of Goal Structuring Notation

	ISO 26262 Safety Process Supported by Safety Contracts Development Process
	Safety Contracts Development Process
	SEooC Development with Safety Contracts

	Real-world Case
	SEooC definition and development
	SEooC Integration
	Generated Safety Arguments

	Discussion
	Related Work
	Conclusion and Future Work
	Bibliography

