
On Component-Based Software Development for
Multiprocessor Real-Time Systems

Nima Khalilzad, Moris Behnam, Thomas Nolte

MRTC/Mälardalen University

Västerås, Sweden

nima.m.khalilzad@mdh.se

Abstract—Component-based software development provides
a modular approach to develop complex software systems. In
the context of real-time systems, it is desirable to abstract the
timing properties of software components using an interface for
each component. The timing properties of the whole system,
composed of multiple components, is studied using the component
interfaces. In this paper we focus on periodic interface models. In
the case of components developed for single processor platforms,
for examining the system schedulability, the interfaces can be
regarded as periodic tasks. Thus, making it possible to use
the conventional schedulability analyses for the system level
schedulability test. In the case of components developed for
multiprocessors, since interfaces may have utilization larger than
100 % of a single processor, it is not possible to directly use the
component interfaces for the system schedulability test. There-
fore, the interfaces have to be decomposed before performing the
system level schedulability test.

In this paper, we target the special case of partitioned EDF
for scheduling the components integrated on a multiprocessor.
Therefore, the system level schedulability test is equivalent to
finding a feasible allocation of component interfaces on the
multiprocessor. We propose two algorithms for allocating the
multiprocessor periodic interfaces. In addition, we propose an
orthogonal approach for developing component-based real-time
systems on multiprocessors in which components with utilization
more than 100 % of a single processor are divided into smaller
subcomponents before abstracting their interfaces. We show,
through extensive evaluations, that our alternative approach
significantly reduces the interface overhead.

I. INTRODUCTION

Multiprocessor platforms provide a great amount of com-
putational capacity on a single hardware. Therefore, it is
possible to design and run large software systems on a single
chip. Component-based software development facilitates the
development process of large software systems. We consider
component models in which a real-time software component
is composed of multiple real-time tasks. In this approach,
software components are developed independently, possibly by
different teams, and later integrated. In the real-time systems
arena, component-based development approaches (e.g. [1], [2])
often follow a two step process. Firstly, the processor demand
of the tasks within each component is abstracted. This step
produces component interfaces. Secondly, the components are
integrated and their schedulability is studied using the compo-
nent interfaces. Abstracting the requirements of components

The research leading to this paper has received funding from the
Swedish Research Council (Vetenskapsrådet) under the project ARROWS,
the Swedish Foundation for Strategic Research (SSF) via the research project
PRESS and the Swedish Knowledge Foundation through the project RV-RED.

comes at a price. There is often a gap between the processor
utilization of the component interfaces and the utilization of the
task set within components. This gap (henceforward referred
as the abstraction overhead) results in a processor utilization
efficiency loss. Efficient utilization of the processor resource
is particularly important in resource constrained embedded
systems. To this end, it is important to study the abstraction
overhead of different approaches to understand their practical
applicability.

In this paper we focus on a periodic interface
model, namely the Multiprocessor Periodic Resource (MPR)
model [3]. The reason behind focusing on the periodic models
is that they can easily be implemented in practice. The schedu-
lability of systems, composed of multiple components, is in-
vestigated through studying the MPR interfaces. It is desirable
to use the same schedulability techniques used for studying the
schedulability of real-time tasks, and investigate the schedu-
lability of the components. However, the task schedulability
tests cannot be directly applied to the components for which
their interface utilizations are more than 100 % of a single
processor (i.e. one). This is because the basic assumption in
all of the schedulability tests is that the task utilization is less
than or equal to one. Therefore, components with interface
utilization more than one have to be decomposed to smaller
subcomponents with utilization less than or equal to one. The
component schedulability test, then, can be performed using
the decomposed subcomponent interfaces. In this paper we use
the partitioned Earliest Deadline First (pEDF) [4] algorithm
for scheduling the components. We propose two algorithms
which perform decomposition and allocation simultaneously,
each algorithm following a different objective.

In all of the proposed approaches for developing
component-based real-time systems on multiprocessors
(e.g. [3], [5], [2]) the component decomposition is performed
after abstracting the components. In this paper, we investigate
an alternative approach. We first decompose components
for which their utilization is more than one. Thereafter, we
abstract the component processor requirements using an
abstraction technique proposed in [6]. We show that, using
extensive simulations, performing the decomposition before
abstraction significantly reduces the abstraction overhead.
Also, we provide three integration algorithms for components
abstracted using our approach, i.e., decomposed before
the abstraction. Finally, using extensive simulations, we
compare the number of processors required for integrating the
components developed using the two alternative approaches.
We compare the performance of the proposed integration
algorithms within each approach.

Contributions. In this paper we study the complete process
of component-based development approaches for real-time
systems (focusing only on timing properties) from component
abstraction to the system integration using periodic interfaces.
We present the following contributions. (i) We propose two
integration algorithms for integrating components abstracted
using the MPR model. (ii) We propose a new approach in
which component decomposition is performed before abstrac-
tion. We propose a new interface model as well as three
integration algorithms for this new approach. (iii) We present
the result of our extensive simulations comparing the approach
based on the MPR abstraction model with our alternative
approach.

II. SYSTEM MODEL AND DEVELOPMENT APPROACHES

System and task model. We assume a multiprocessor platform
with m homogeneous processors. n components are composed
on the multiprocessor platform. The slack bandwidth of the
jth processor is denoted using Sj . We assume a constrained
deadline periodic task model in which the kth task τk is charac-
terized using period Tk ∈ N

+, deadline Dk ∈ N
+ and Worst-

Case Execution Time (WCET) Ck ∈ N
+ (Ck ≤ Dk ≤ Tk). We

assume that the tasks are independent, i.e., except the processor
resource, they do not share any other resources.

Scheduling scheme. We assume a hierarchical scheduling
scheme in which the scheduling is performed in two levels. At
the global level components are scheduled using a component-
scheduler. In this paper we use pEDF for scheduling the com-
ponents. Within the components, however, a task-scheduler
coordinates the execution of the tasks. In the case that a
component is assigned to one processor we use EDF as the
task-scheduler. When a component is spread over multiple pro-
cessors, we use global EDF (gEDF) [4] as the task-scheduler.
From a resource provisioning vantage point, the multiprocessor
resource is partitioned in the time domain. Each component is
assigned to a multiprocessor partition which indeed provisions
a fraction of the multiprocessor resource to the component.
The components, then, distribute their fraction of the resource
among their inner tasks.

Component-based system development. Component-based
development approaches often consider the following two
roles for the system development: (i) component developer
(ii) system integrator. The component developers develop
a task set, and they select a suitable task-scheduler. They
also calculate the component interface based on the task set
and the task-scheduling algorithm. The component interface
indicates the amount and the specifications of the required
processor resource fraction. This approach enables indepen-
dent development of components by different development
teams. The system integrator, on the other hand, receives
a set of component interfaces. The system integrators use
the component interfaces to examine the schedulability of
the system. If the component requires a processor fraction
more than one, then the integrator divides the component
into a number of subcomponents. This step is referred as the
transformation of interfaces into interface-tasks in the previous
approaches (e.g. [3], [2]). The reason behind performing this
transformation is that it is desirable to use the conventional
task schedulability analyses for examining the schedulability
of the system. The basic assumption in such analyses is that

the utilization of tasks is less than or equal to one. Therefore,
in order to perform schedulability test using the interfaces,
we require interfaces in which their utilization is less than or
equal to one. We use the word “decomposition” to refer to
the step in which a large component is divided into a number
of smaller subcomponents. After the decomposition step, the
interfaces of the subcomponents can be used for performing
the schedulability test.

Component model. We assume that component Ci is com-
posed of a set of tasks denoted by Ti. We use UTi

to denote
the task set utilization of Ci. The components are assigned
to the processors at the integration phase. We use ρi,j to
denote the amount of the utilization of Ci that is allocated
on the jth processor. In this paper we target components
for which their utilizations are more than one UTi

> 1,
i.e. they require more than one processor for performing
their computations. The following two alternative approaches
can be used when dealing with such components. (i) First
Abstraction, then Decomposition (FAD): in this approach the
component developers first abstract the resource requirements
of the entire component. The system integrators have to
divide the component into a number of subcomponents at the
integration phase.(ii) First Decomposition, then Abstraction
(FDA): the component developers first divide the component
into a number of subcomponents such that all subcomponents
have utilization less than or equal to one. The subcomponent
interfaces are then derived by the component developers.We
use Ci,r to denote the rth subcomponent of component i.
Similar to the components, we use ρi,r,j to denote the amount
of the utilization of Ci,r that is allocated on the jth processor.
In the following we explore the above two alternatives and we
compare the implications of using each approach.

The FAD approach. In this approach the processor require-
ments of a component is abstracted using a single interface.
The interface essentially indicates the fraction of the multi-
processor capacity required by the component. In doing so, it
is assumed that the tasks within one component are allowed
to migrate among processors, i.e., they are scheduled using
a global multiprocessor scheduling policy. For instance, in
the approach proposed by Easwaran et al. [3], the MPR
model is used for abstracting the processor requirements of the
components. In this model the interface of the ith component

is denoted by Γ
m′

i

i < Πi,Θi > where Πi ∈ N
+, Θi ∈ N

+

and m′
i ∈ N

+ characterize the period, total budget and the
parallelism level of the component. The parallelism level indi-
cates the maximum number of processors that can contribute in
providing the total budget to Ci. The MPR interface imposes
the following constraints by definition: 1 ≤ m′

i ≤ m and
Θi ≤ m′

i × Πi. The fraction of the required multiprocessor,
i.e the interface utilization, is denoted using:

U
Γ
m′

i
i

=
Θi

Πi

.

This model provides a great deal of flexibility at the integration
phase. This is because the total utilization can be provided
using any m′

i processors. Therefore, the integrators can use
the processors’ slack status to decide on how to perform
the decomposition. For instance, assume that we have two
processors with the following slacks S1 = S2 = 0.55. Suppose
that a new component is being integrated with U

Γ
m′

i
i

= 1.1

and m′
i = 2. The only decomposition that can deem the

system schedulable, is to divide the component into two
subcomponents each with utilization equal to 0.55. The only
problem with this model is that it incurs a considerable amount
of abstraction overhead (see Section IV). Therefore, in the
following we investigate an alternative approach in which
we allow the system integrators to trade-off the integration
flexibility with the abstraction overhead.

The FDA approach. In this approach the component de-
velopers are responsible to decompose the components, for
which their utilization is more than one, into a number of
subcomponents. The system integrator, then, can directly use
the subcomponent interfaces to examine the schedulability of
the system. We use the Periodic Resource (PR) [6] model for
abstracting the processor requirements of the subcomponents.
The PR model can be seen as a special case of the MPR model
where m′

i = 1. Note that the fact that m′
i = 1 allows us to use

a different analysis (i.e. single processor EDF schedulability)
for deriving the subcomponent interfaces. The FDA approach
does not provide any flexibility at the integration phase. This
is because the utilization required by one subcomponent has
to be provided using exactly one processor (m′

i = 1). For
instance, assume that, similar to the previous example, we have
two processors with the following slacks S1 = S2 = 0.55. The
component developer has decomposed its large component into
two subcomponents with utilizations equal to 0.65 and 0.45.
Although the total component utilization is equal to the overall
processor slack, it is not possible for the integrator to deem
the system schedulable. This is because the decomposition is
already performed before the abstraction, and the integrator has
to perform the integration using the provided subcomponents.

The fact that the FDA approach does not provide flexibility
at the integration phase may result in processor utilization
loss. In order to mitigate this problem, we propose an altered
modeling approach. In the new approach, after decomposing
the large components, the component developer uses the PR
model to abstract subcomponents’ processor requirements. In
addition, assuming that it may be impossible to fit one subcom-
ponent in one processor at the integration phase, the component
developer derives the MPR model for the subcomponents
assuming m′ ∈ [2,m]. We refer to this model as the Extended
Periodic Resource (EPR) model in the rest of the paper. In the
EPR model the component interfaces are denoted using the
following matrix:

Ωi =













Γ1
i,1 Γ1

i,2 · · · Γ1
i,pi

Γ2
i,1 Γ2

i,2 · · · Γ2
i,pi

...
...

. . .
...

Γm
i,1 Γm

i,2 · · · Γm
i,pi













,

where Γj
i,r denotes the MPR interface of Ci,k given that

its parallelism is equal to j. pi represents the total number
of subcomponents of Ci. pi depends on the decomposition
algorithm which is addressed later in this section. The budget
and the period of Γj

i,r is denoted using Θj
i,r and Πj

i,r respec-
tively. Ωi allows integrators to select an interface which has
a suitable parallelism level considering the processor slacks.
If the slacks are scattered throughout the processors, then it
may be beneficial to use an interface with a large parallelism
level. However, this additional flexibility comes at a price. As

it is shown in [3], increasing the parallelism level increases the
utilization of the MPR interfaces. We use ∆j

i,k to denote the
difference of the utilization required by subcomponent Ci,k in
parallelism level j and j − 1, i.e.:

∆j
i,k =

Θj
i,r

Πj
i,r

−
Θj−1

i,r

Πj−1

i,r

,

where ∀j < 1 Θj
i,k = 0. Informally speaking, ∆j

i,k denotes
the amount of penalty that needs to be paid for gaining an
additional level of flexibility.

The component decomposition algorithm takes one com-
ponent Ci and decomposes it into a set of subcomponents
{Ci,1, . . . , Ci,pi

}. We use the following three bin packing
heuristics for component decomposition: First Fit (FF), Best
Fit (BF) and Worst Fit (WF) [4]. In the case of the WF
heuristic, we assume that we have dUTi

e available processors
(i.e. pi = dUTi

e). If the decomposition fails, then we add a
new processor and reperform the decomposition.

III. INTEGRATION

In this section we present a number of algorithms for
integrating components with MPR interfaces as well as compo-
nents with EPR interfaces. The input to the integration problem
is a set of component interfaces. A solution to the integration
problem is a set of processor allocations such that (i) the sum
of all allocations on each processor is less than or equal to
one since we use pEDF for scheduling components; (ii) the
constraints specified in the component interfaces are met. In the
following we explain the integration algorithms corresponding
to each interface model in detail.

A. MPR composition

In the following we formally define the integration problem
of the FAD approach in which the components are abstracted
using the MPR interface model. This problem is similar to
that of what is found in the problem of bin packing with
fragmentable items. In this variation of the bin packing prob-
lem, a number of items have to be packed into a set of bins.
It is possible to divide items into smaller chunks. The item
division does not incur any overhead, i.e., the sizes of the
items do not increase by dividing them. The objective is to
minimize the number of fragments when placing the items
into the bins. In [7] Bertrand et al. proved that this variation
of the bin packing problem is strongly NP-complete. In our
MPR integration problem the items are the MPR interfaces
and the processors are the bins. However, our problem is
slightly more complex than the above bin packing problem
in the following aspects. Instead of minimizing the number
of fragments, our objective is to find an allocation in which
the number of fragments of all items is less than or equal to
their corresponding parallelism level m′

i. In the following we
present a mathematical formulation of the constraints of the
MPR integration problem:

∑n

i=1
ρi,j ≤ 1 ∀j ∈ [1 . . .m], (1a)

∑m

j=1
ρi,j = U

Γ
m′

i
i

∀i ∈ [1 . . . n], (1b)

∑m

j=1
fi,j ≤ m′

i ∀i ∈ [1 . . . n], ∀j ∈ [1 . . .m], (1c)

fi,j ∈ {0, 1}, ρi,j ∈ Z≥0, (1d)

Algorithm 1: MPR compact integration.

Input: Γi

Output: matrix of processor allocations {ρ} or failure.
1: sortProcessorsIncreasingSlack();
2: j = findFirstProcessors(m′

i, U
Γ
m′

i
i

);

3: if j < 0 then
4: return FALSE;
5: end if
6: U = U

Γ
m′

i
i

; B Unallocated utilization

7: while U > 0 and j ≤ m do
8: ρi,j = max(Sj ,U);
9: U -= ρi,j ;

10: j++;
11: end while
12: if U = 0 then
13: return {ρ};
14: else
15: return FALSE;
16: end if

where ρi,j is the amount of U
Γ
m′

i
i

allocated on processor j. fi,j

is equal to one when ρi,j > 0, i.e., Γ
m′

i

i is partially allocated
to processor j.

The FAD approach postpones the decomposition to the
integration phase. Therefore, we provide two algorithms in
which decomposition and allocation is performed simultane-
ously. In these algorithms each component is treated separately.
The component decomposition is performed based on the
current status of the slack utilizations on the multiprocessor.
We present two algorithms referred as compact integration and
balanced integration. In the compact integration algorithm, the
objective at each step is to (i) use a minimum number of the
processors (ii) use processors that already have other compo-
nents assigned on them. The compact integration algorithm
is presented in Algorithm. 1. We first sort processors based
on increasing slacks. The next step is to find the first m′′

i

processors which can accommodate the current component,
where m′′

i ≤ m′
i. Line 2 returns the index of the first

processor in the set that can accommodate the component.
Once the processors are sorted it is easy to find m′′

i . Function
findFirstProcessors(m′

i, U
Γ
m′

i
i

) loops through the pro-

cessors starting from the first processors. At each iteration, the

following sum is calculated:
∑j+m′

i

j Sj . If the above sum is
more than the utilization of the current component being inte-
grated Ci, then findFirstProcessors returns the current
processor index j. If this function fails to find the candidate
set of processors, then it returns −1 and the algorithm returns
failure. Otherwise, the algorithm starts filling each processor
until either the processor is full or the component is completely
allocated. This algorithm is called for all components. The
while loop Lines 7 to 11 has at most m iterations. Therefore,
since sorting the processors and finding the first processor
can be done in polynomial time, the entire algorithm runs in
polynomial time. The exact complexity, however, depends on
the particular implementations of the sort algorithm.

We present an alternative algorithm for integrating compo-
nents with MPR interfaces in Algorithm 2. This algorithm is

Algorithm 2: MPR balanced integration.

Input: Γi.
Output: matrix of processor allocations {ρ} or failure.

1: sortProcessorsDecreasingSlack();
2: j = findFirstProcessors(m′

i, U
Γ
m′

i
i

);

3: if j < 0 then
4: return FALSE;
5: end if

6: ST =
∑j+m′

i

i=j Si;
7: U = U

Γ
m′

i
i

; B Unallocated utilization

8: while U > 0 and j ≤ m do
9: ρi,j = max(Sj − ST ,U);

10: U -= ρi,j ;
11: j++;
12: end while
13: if U = 0 then
14: return {ρ};
15: else
16: return FALSE;
17: end if

referred as balanced integration. The objective in this approach
is to evenly distribute the slack at each step. The algorithm first
sorts the processors based on decreasing slack. Thereafter, it
finds the first m′′

i processors that can fit the components, where
m′′

i ≤ m′
i. Once the m′′

i target processors are selected, the
algorithm calculates the target slack ST on each processor.
Finally, it fills each processor until its target slack is reached.
Similar to the compact integration algorithm, the balanced
integration algorithm also runs in polynomial time.

We present an example for elaborating the above two
algorithms. Assume that we want to integrate two components
with the following interface utilizations: UΓ

2
1
= 1.5 and UΓ

2
2
=

1.2. Assuming that we start with C1, the compact integration
algorithm decomposes the interface into two subcomponents
with utilizations equal to one and 0.5. The result of this
step is illustrated in Figure 1a. Thereafter, C2 is integrated.
At this stage the findFirstProcessors function returns
processor 2 because C2 fits in the slack utilization of processor
two and three. C2 is decomposed into two subcomponents
with utilizations equal to 0.5 and 0.7 (Figure 1b). On the
other hand, the balanced integration divides C1 into two
identical subcomponents with utilizations equal to 0.75, and
it allocates them on the first two processors. The result of
this step is illustrated in Figure 1c. When integrating C2, the
findFirstProcessors function returns three because the
overall slack on processors {1,2} and {2,3} is not enough
for integrating C2. The algorithm, then, divides C2 into two
subcomponents with identical utilizations 0.6, and allocates
them on the third and forth processors (Figure 1d). As illus-
trated in Figure 1, the balanced integration algorithm resulted
in fragmented slacks, while the compact integration resulted
in one entirely free processor and one partially free processor.

B. EPR integration

In the following we formally define the integration problem
of the FDA approach in which the components are abstracted

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Component 1

(a) Algorithm 1: after integrating C1.

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Component 1 Component 2

(b) Algorithm 1: after integrating C2.

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Component 1

(c) Algorithm 2: after integrating C1.

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Component 1 Component 2

(d) Algorithm 2: after integrating C2.

Fig. 1: The steps of the two MPR integration algorithms.

using the EPR interface model. This problem is analogous to
the problem of bin packing with size-increasing fragmenta-
tion. In this variation of the bin packing problem the items
are allowed to be fragmented while fragmenting an item is
associated with a cost. Menakerman and Rom [8] showed that
this problem is also NP-hard. The EPR integration problem
is more complex because instead of a fixed fragmentation
cost, the fragmentation cost varies for different subcompo-
nents. For components with parallelism level equal to one,
the integration algorithm only has to allocate subcomponents
on the multiprocessor. This problem is equivalent to parti-
tioning implicit deadline periodic tasks on multiprocessors.
However, if the allocation fails, the integration algorithm
can fragment a subcomponent while adding a fragmentation
cost. The fragmentation cost for Γj

i,r is denoted using ∆j
i,r.

Since we treat each subcomponent separately, solving the EPR
integration problem for one component is equivalent to solving
this problem for all components in the systems. For notational
convenience, we drop the component index when referring to
the EPR interfaces in the rest of this section. Let qr be the
parallelism level of subcomponent Cr, and let Q be the set
of parallelism levels Q = {q1, . . . , qp}. Also, assume that the
total number of subcomponents is represented using n′. The
EPR integration problem is to find Q and allocations such that:

∑n′

r=1
ρr,j ≤ 1 ∀j ∈ [1 . . .m], (2a)

∑m

j=1
ρr,j = UΓ

qr
r

∀r ∈ [1 . . . n′], (2b)
∑m

j=1
fr,j ≤ qr ∀r ∈ [1 . . . n′], ∀j ∈ [1 . . .m], (2c)

fr,j ∈ {0, 1}, ρr,j ∈ Z≥0, (2d)

The EPR integration algorithm is presented in Algorithm 3.
First the subcomponents are sorted based on decreasing first
parallelism utilizations (m′

r = 1). The algorithm assigns the
parallelism levels of all subcomponents to one in Line 2. The
isfeasible(Q) function is called in Line 4. This function
performs the following utilization test based on the current
parallelism levels, i.e. Q:

∑n′

r=1
UΓ

qr
r
≤ m. (3)

The algorithm loops through all subcomponents in Line 5.
In Line 6, the algorithm calls the allocate function. The

Algorithm 3: EPR integration.

Input: An EPR interface Ωi.
Output: matrix of processor allocations {ρ} or failure.

1: sortInterfaces(); B Based on UΓ
1
r

2: ∀r ∈ [1, n′] qr ← 1;
3: FLAG← FALSE;
4: while FLAG = FALSE and isfeasible(Q) do
5: for r = 1; r < n′; k++ do
6: FLAG← allocate(Γqr

k);
7: if FLAG = FALSE then
8: Q ← IncreaseFlexibility(Q);
9: break;

10: end if
11: end for
12: end while
13: return FLAG;

following two cases may happen: (i) parallelism level equal
to one; (ii) parallelism level more than one. In the case of
parallelism level equal to one, the allocation is similar to
allocating implicit deadline periodic tasks on multiproces-
sors. We use different versions of the allocation function,
each version implementing a different bin packing heuris-
tic. In the evaluations we present the result of using the
following three heuristics: FF, BF and WF. In the case of
parallelism more than one, however, we use the MPR inte-
gration algorithms for allocating the subcomponents on the
multiprocessor. If the allocation fails, then the algorithm calls
the IncreaseFlexibility(Q) function. This function
selects one subcomponent, and it increments its parallelism
level. It selects the subcomponent which has the smallest ∆qr

r .
In other words, it selects a subcomponent that provides one
extra level of flexibility with a minimum overhead penalty.
Since the IncreaseFlexibility function only increases
the parallelism levels, in the worst-case the algorithm tries
n′×m different Q. However, in our evaluations, we observed
that the isfeasible function detects the infeasibility in
the early stages and it terminates the algorithm. For each
Q, the algorithm calls an allocation heuristic which runs in
polynomial time. Thus, the EPR integration algorithm runs in
polynomial time.

We present an example to further elaborate the EPR inte-
gration algorithm. Suppose we want to integrate five subcom-
ponents with the following utilization for their first parallelism
level: UΓ

1
1
= UΓ

1
2
= 0.7, UΓ

1
3
= UΓ

1
4
= 0.6 and UΓ

1
5
= 0.5.

Also, assume that the second parallelism utilizations are as
follows: UΓ

2
1
= UΓ

2
2
= 0.9, UΓ

2
3
= UΓ

2
4
= 0.85 and UΓ

2
5
= 0.8.

We call Algorithm 3 for all subcomponents, starting from C1.
C1 to C4 are allocated to processor one to four respectively. The
result of integrating the first four subcomponents is illustrated
in Figure 2a. When integrating C5, the allocation cannot be
performed using the first level parallelism. Therefore, the
algorithm calls the IncreaseFlexibility function, and
it increases the parallelism level of C5 to two. Thereafter, C5
is divided into two chunks and it is allocated on the third and
forth processors (Figure 2b).

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Subcomp. 1

Subcomp. 4
Subcomp. 2 Subcomp. 3

(a) Algorithm 3: after integrating C1,
C2, C3 and C4.

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Subcomp. 1

Subcomp. 4
Subcomp. 2

Subcomp. 5
Subcomp. 3

(b) Algorithm 3: after integrating C5.

Fig. 2: The steps of the EPR integration algorithm.

IV. EVALUATIONS

In this section we present two types of evaluations. In the
first set of evaluations our aim is to compare the abstraction
overhead of the MPR model against the abstraction overhead
of the EPR model. We used the interface calculation method
presented in [3] to calculate optimal MPR interfaces. Note that
the optimal MPR interfaces have the minimum possible par-
allelism level. The abstraction overhead of Ci abstracted using
the MPR model is calculated using the following equation:

OΓ

i = 100×
U

Γ
m′

i
i

− UTi

UTi

, (4)

where OΓ

i represents the percentage of abstraction overhead
of Ci abstracted using the MPR model. In addition, for the
EPR model, we calculate the abstraction overhead only for
parallelism level equal to one because the EPR integration
algorithm tries to use the first level parallelisms. We have:

OΩ

i = 100×

pi
∑

r=1

Γ1
i,r − UTi

UTi

, (5)

where OΩ

i represents the percentage of the first parallelism
level abstraction overhead of Ci abstracted using the EPR
model. In the second set of simulations we intend to answer the
following question: “given a set of components, which com-
bination of the abstraction models and integration techniques
requires the lowest number of processors for composing the
component set”?

Simulation setup. We generated components with specific
task set utilizations. Each task is assigned to a random period
between 100 and 200. The utilization of τi is selected randomly
using a uniform distribution between zero and the maximum
allowed task utilization. Except one evaluation in which we
varied the maximum allowed task utilization, in the rest of
the experiments this parameter was set to 0.9. The execution
time of tasks is derived by multiplying the period and the
utilization. We assigned deadlines equal to the periods for all
evaluations. For generating task sets with a target utilization,
we kept generating tasks until the remainder utilization was
less than the maximum allowed task utilization 0.9. Then we
generated the last task with the remainder utilization. Except
one evaluation in which we varied the component periods, we
set Πi = 50 for components in the rest of the evaluations.

A. Abstraction overhead

We evaluated the influence of increasing task set utilization
on the interface overhead. In this experiment, we generated

components with task set utilizations from 1.5 to 8 with step
size 0.1. For each utilization, we generated 1000 random task
sets. Figure 3a shows the result of our evaluation. Note that in
this figure the y-axis shows the abstraction overhead. Using the
same data, we plotted the relation between the number of tasks
and the interface overhead in Figure 3b. These results show
that (i) in average OΩ

i is significantly lower the OΓ
i ; (ii) OΓ

i

increases with respect to the task set utilization. Recall that we
use gEDF for the MPR interfaces and we use single processor
EDF for the first level EPR interfaces. The reason behind the
above result is the following. Firstly, the fixed-job priority
algorithms (e.g. gEDF) are not optimal for multiprocessors
while EDF is optimal for single processors. Secondly, the
analysis used for deriving the MPR interfaces are based on
sufficient schedulability tests in global algorithms. For the class
of partitioned algorithms, however, the exact schedulability
tests are available. Therefore, the first parallelism level EPR
interface calculation is based on the exact tests.

In order to evaluate the impact of the interface period on
the interface overhead, we performed another experiment. In
this experiment we fixed the task set utilization to 1.2, and
we generated random tasks as explained above. We varied the
component period from 10 to 200 with step size equal to 10.
We generated 10000 task sets for each period. The result is
illustrated in Figure 3c. This figure suggests that increasing
the interface period has a larger impact on the EPR interfaces
than on the MPR interfaces. However, even for a very large
interface period, the EPR interfaces still incur smaller overhead
than the MPR interfaces.

We performed another experiment to evaluate the impact of
individual task utilizations on the interface overhead. In other
words, we wanted to understand whether or not heavyweight
tasks and lightweight tasks have different impact on the
interface overhead. We fixed the task set utilization to 2.5, and
we varied the maximum task utilization from 0.3 to 0.9. We
generated 1000 random components for each maximum task
utilization. The results, presented in Figure 3d, show that (i)
the MPR interfaces are more sensitive to the task utilizations;
(ii) components with heavyweight tasks incur more abstraction
overhead.

B. Integration

In this part we generated random systems composed of
a number of components. Each component is generated ran-
domly using the method explained above. For each system
we had a target task set utilization. The task set utilization of
each component UTi

was selected randomly using a uniform
distribution between 1.5 and 3. We kept generating new com-
ponents until the remaining system utilization was less than
1.5 in which we generated a component with the remaining
utilization. Note that by target utilization we refer to the
task set utilizations as the interfaces were not derived at the
system generation phase. We generated systems with target
utilization from 5 to 10. We generated 10000 random systems
for each target utilization. Once we generated a system, we
calculated the MPR and EPR interfaces. We then ran the
integration algorithms presented in the previous section. We
ran the compact (CP) and the balanced (BL) algorithms for the
MPR integration. Note that in the legends of the figures we
use the abbreviation, i.e., CP and BL. For the EPR integration,

on the other hand, we examined different combinations of de-
compositions and integration algorithms. Since we used the FF,
BF and WF algorithms, there are nine possible combinations.
We denote each combination by combining the decomposition
algorithm with the integration algorithm in the legend of the
figures. For instance, FFBF means that we used FF for the
decomposition and BF for the integration.

In the next evaluation, we studied the performance of the
two integration algorithms comparing the number of required
processors by each algorithm against the minimum number of
processors. We define the ratio of extra required processors by
algorithm A as follows:

RA = 100×
required processors by A−ΨMPR

ΨMPR
, (6)

where ΨMPR is the minimum number of processors required for
integrating a set of MPR interfaces, and it is calculated using
the following equation:

ΨMPR =
⌈

n
∑

i=1

U
Γ
m′

i
i

⌉

.

Figure 3e presents RBL and RCP . Each point in the figure
is representing the average of 10000 samples. This figure
illustrates that both algorithms perform very closely to an
optimal algorithm. This shows that the flexibility provided
by the MPR interfaces has been exploited well by the two
algorithms. Also, the CP algorithm performs better than the
BL algorithm.

Let us define a new metric for evaluating the performance
of different approaches. We define the ratio of extra required
processors by approach A as follows:

R′A = 100×
required processors by A−ΨT

ΨT
, (7)

where ΨT represents the minimum number of processors
required based on the overall task set utilizations, and it is
calculated using the following equation:

ΨT =
⌈

n
∑

i=1

UTi

⌉

.

Note that we overloaded symbol A, and it refers to a com-
bination of the abstraction and integration techniques in the
FDA approach. Since we have 11 combinations in total, and
to keep the figures readable, we present the MPR integration
algorithms with three EPR algorithms in one single figure.
Figure 3f presents R′A against the task set utilization for the
case where we used FF decomposition. Similarly, Figure 3g
and Figure 3h present the cases in which we used BF and
WF decompositions respectively. We took the best algorithms
of the above three figures and we plotted them in Figure 3i
to make the comparison easier. This figure shows that the
BFBF combination provided the best result among the studied
combination of the algorithms, although it has a very close
performance to BFFF. The two algorithms based on WF de-
composition considered in this figure performed better than the
two algorithms that are based on FF decomposition. The best
MPR algorithm (i.e. CP) required 19.26 processors in average
when the collective task set utilization was equal to 10. While,
the best EPR algorithm combination (i.e. BFBF) required

13.87 processors in average for the same collective task set
utilization. In other words, the FDA approach, in average,
incurred 53.92 % less overhead than the FAD approach for
this particular target task set utilization.

V. RELATED WORK

Component-based development approaches have been the
subject of several studies in the real-time time scheduling
community. The basic idea behind most of these approaches
is to abstract the processor requirements of the components,
composed of multiple real-time tasks, in an interface. The
schedulability of the real-time systems, composed of multiple
components, are examined using the component interfaces.
These approaches are also referred to as hierarchical schedul-
ing frameworks since the component scheduling and task
scheduling are performed in two different levels. For realiza-
tion of such component based systems, the processors can be
time partitioned, while each partition is assigned to a single
component. The processor partitions have to be compliant
with the requirements specified in the component interfaces.
In doing so, the components are isolated from each other with
respect to their timing behavior. A timing anomaly in one com-
ponent will not be propagated to the other components. Several
modeling techniques have been proposed for abstracting the
processor requirements of the components. In the following
we review a subset of such modeling techniques related to our
work.

Single processor platforms. The bounded delay abstraction,
introduced in [9], specifies the bandwidth along with the
maximum blackout time of the processor supply. The maxi-
mum blackout time indicates the largest time interval that the
processor may be unavailable. The component schedulability
test under fixed-priority scheduling and EDF, based on the
bounded delay model, is presented in [10]. Shin et al. [6]
presented another abstraction model for the processor supply of
single processors, namely the Periodic Resource (PR) model.
The PR model specifies a budget and a replenishment period
in its interface. Easwaran et al. [11] proposed using a deadline
in the component interface to minimize the abstraction over-
head. In the case of single processor components abstracted
using a periodic model, the component integration problem
is equivalent to the task scheduling problem. Therefore, the
schedulability analyses previously developed for examining the
schedulability of the periodic tasks, can be directly applied to
the components assuming that the component budget is equal
to the task execution time.

Multiprocessor platforms. With the advent of multiproces-
sors, it became possible to develop components that require
more than one processor for their computations. Therefore,
researchers proposed abstraction techniques that can abstract
the processor demand of such components. Bini et al. pre-
sented the Multi Supply Function (MSF) model in [12] for
modeling the resource supply of multiprocessor platforms. The
Parallel Supply Function (PSF) model [13] is also proposed as
an alternative for modeling the resource supply of hierarchical
multiprocessor systems. This model indicates a set of supply
functions where each of them represent the minimum available
supply at a certain parallelism level (from 1 to m). Leontyev
and Anderson [14] proposed a model that only specifies
bandwidth w in the component interface. In this model bwc

2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

180

200

Task set utilization

In
te

rf
ac

e
o
v
er

h
ea

d

MPR

EPR

(a) Interface overhead (OΓ

i
and OΩ

i
) against task

set utilization. The step size was set to 0.1.

5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

Number of tasks

In
te

rf
ac

e
o
v
er

h
ea

d

MPR

EPR

(b) Interface overhead against the number of
tasks.

50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Π
i

In
te

rf
ac

e
o
v
er

h
ea

d

MPR

EPR

(c) Interface overhead against Πi. The step size
was set to 10.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

200

Mazimum task utilization

In
te

rf
ac

e
o
v
er

h
ea

d

MPR

EPR

(d) Max task utilization against interface over-
head. The step size was set to 0.1.

5 6 7 8 9 10
0.5

1

1.5

2

R
B

L

5 6 7 8 9 10
0

0.005

0.01

0.015

Task set utilization

R
C

P

(e) RBL and RCL (Equation 6) versus task set
utilization.

5 6 7 8 9 10
30

35

40

45

50

55

60

65

70

75

80

Task set utilization

R
�A

CP

BL

FFFF

FFBF

FFWF

(f) R′A versus task set utilization using the FF
decomposition algorithm.

5 6 7 8 9 10
20

30

40

50

60

70

80

Task set utilization

R
�A

CP

BL

BFFF

BFBF

BFWF

(g) R′A versus task set utilization using the BF
decomposition algorithm.

5 6 7 8 9 10
20

30

40

50

60

70

80

Task set utilization

R
�A

CP

BL

WFFF

WFBF

WFWF

(h) R′A versus task set utilization using the WF
decomposition algorithm.

5 6 7 8 9 10
26

27

28

29

30

31

32

33

34

35

Task set utilization

R
�A

FFFF

FFBF

BFFF

BFBF

WFFF

WFBF

(i) R′A versus task set utilization for the best
six algorithms.

Fig. 3: Evaluation of the interface overheads as well as integration algorithms. In all figures, the y-axis indicates the percentage of imposed overhead.

of a dedicated processor is assigned to the components and
the remaining w−bwc bandwidth is provided using a periodic
server. This model provides limited flexibility at the integration
stage for the system integrator as it requires bwc dedicated
processors. Lipari and Bini proposed the Bounded Delay
Multi-partition (BDM) abstraction model in [5]. This model
specifies the maximum blackout time and a bandwidth for
each parallelism level in its interface. They also provided
an algorithm for allocating the interfaces on multiprocessors.
In our work, we addressed periodic interface models. In
addition, we proposed a new approach in which component
decomposition is performed before interface abstraction.

Periodic interface models for multiprocessor platforms.
Zhu et al. [15] presented an approach in which a Deferrable
Server (DS) is attached to each processor. They provided
response time analysis for tasks assigned to the DSs which
can migrate across the multiprocessor platform. In this work,
the authors assumed that there can exist at most one DS per
processor. Thus, their approach is not suitable for complex
systems composed of several components. Shin et al. proposed
the MPR model [1]. The MPR model specifies a budget, a
replenishment period and a parallelism level in its interface.
Easwaran et al. [3] proposed an optimal component scheduling
algorithm for the MPR interfaces assuming that all components
have identical periods. Xu et al. proposed the Deterministic
MPR (DMPR) model in [16]. This model is different from the
MPR model in the following aspect. The DMPR model, similar
to [14], allows at most one partial processor allocation. Xi et
al. [17] have investigated the application of the MPR modeling
technique in the Xen virtual machine manager. The authors
have also reported some benefits of using partitioned task-
scheduling over global task-scheduling. On the other hand,
the Generalized MPR (GMPR) model [2] specifies a budget
for each parallelism level in the interfaces. This additional
information in the interface make it possible to reduce the
abstraction overhead.

Our work is different from the aforementioned works in
the following aspects. (i) All of the aforementioned approaches
perform component decomposition after the abstraction phase,
while in this paper we presented an approach for performing
the decomposition before the abstraction. Recall that, in order
to examine the schedulability of the systems using the task
schedulability analyses, the components with utilization more
than 100 % of a single processor have to be decomposed to
a number of smaller components. (ii) We have quantitatively
studied the overhead of using the MPR model considering
the whole compositional development processes, i.e., both
component abstraction and system integration.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we investigated two alternative approaches for
developing real-time software components on multiprocessor
platforms. The two approaches vary in the following aspect.
The first approach abstracts the component interfaces before
decomposing them at the integration phase. The second one,
however, first decomposes the components and then abstracts
their interfaces. Through extensive simulations, we showed
that the second approach utilizes the processor resource sig-
nificantly better than the first approach. For instance, we
showed that given a total task set utilization equal to 10, the

second approach in average incurs around 53 % less overhead
compared to the first approach.

In the future, we intend to propose an integration algorithm
for the GMPR interface model, and we propose to evaluate
the GMPR model against the two approaches presented in this
paper. We only considered pEDF for scheduling the compo-
nents in this paper. It is interesting to consider other algo-
rithms including global scheduling algorithms for component-
scheduling, and to compare their performances against the par-
titioned component-scheduling algorithms. Finally, we would
like to incorporate resource sharing in our approach and
compare the abstraction overhead of our approach with the
current state-of-the-art (e.g. [18]).

REFERENCES

[1] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework
for virtual clustering of multiprocessors,” in ECRTS’08, July 2008, pp.
181–190.

[2] A. Burmyakov, E. Bini, and E. Tovar, “Compositional multiprocessor
scheduling: the GMPR interface,” Real-Time Systems, vol. 50, no. 3,
pp. 342–376, 2014.

[3] A. Easwaran, I. Shin, and I. Lee, “Optimal virtual cluster-based mul-
tiprocessor scheduling,” Real-Time Systems, vol. 43, no. 1, pp. 25–59,
2009.

[4] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah, “A categorization of real-time multiprocessor scheduling
problems and algorithms,” Handbook on Scheduling Algorithms, Meth-

ods, and Models, 2004.

[5] G. Lipari and E. Bini, “A framework for hierarchical scheduling on
multiprocessors: From application requirements to run-time allocation,”
in RTSS’10, December 2010, pp. 249–258.

[6] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in RTSS’03, December 2003, pp. 2–13.

[7] B. Lecun, T. Mautor, F. Quessette, and M.-A. Weisser, “Bin packing
with fragmentable items: Presentation and approximations,” January
2013. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00780434

[8] N. Menakerman and R. Rom, “Bin packing with item fragmentation,”
Algorithms and Data Structures, vol. 2125, pp. 313–324, 2001.

[9] A. Mok, X. Feng, and D. Chen, “Resource partition for real-time
systems,” in RTAS’01, May 2001, pp. 75–84.

[10] I. Shin and I. Lee, “Compositional real-time scheduling framework,” in
RTSS’04, December 2004, pp. 57–67.

[11] A. Easwaran, M. Anand, and I. Lee, “Compositional analysis framework
using EDP resource models,” in RTSS’07, December 2007, pp. 129–138.

[12] E. Bini, G. Buttazzo, and M. Bertogna, “The multi supply function
abstraction for multiprocessors,” in RTCSA’09, August 2009, pp. 294–
302.

[13] E. Bini, M. Bertogna, and S. Baruah, “Virtual multiprocessor platforms:
Specification and use,” in RTSS’09, December 2009, pp. 437–446.

[14] H. Leontyev and J. Anderson, “A hierarchical multiprocessor bandwidth
reservation scheme with timing guarantees,” in ECRTS’08, July 2008,
pp. 191–200.

[15] H. Zhu, S. Goddard, and M. Dwyer, “Response time analysis of
hierarchical scheduling: The synchronized deferrable servers approach,”
in RTSS’11, December 2011, pp. 239–248.

[16] M. Xu, L. T. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and C. Gill,
“Cache-aware compositional analysis of real-time multicore virtualiza-
tion platforms,” in RTSS’13, December 2013, pp. 1–10.

[17] S. Xi, M. Xu, C. Lu, L. Phan, C. Gill, O. Sokolsky, and I. Lee, “Real-
time multi-core virtual machine scheduling in xen,” in EMSOFT’14,
Oct 2014, pp. 1–10.

[18] F. Nemati, M. Behnam, and T. Nolte, “Independently-developed real-
time systems on multi-cores with shared resources,” in ECRTS’11, July
2011.

