
Towards Energy-Aware Placement of Real-Time
Virtual Machines in a Cloud Data Center

Nima Khalilzad, Hamid Faragardi, Thomas Nolte

MRTC/Mälardalen University, Västerås, Sweden

{nima.m.khalilzad, hamid.faragardi, thomas.nolte}@mdh.se

Abstract—Cloud computing is an evolving paradigm which
is becoming an adoptable technology for a variety of appli-
cations. However, cloud infrastructures must be able to fulfill
application requirements before adopting cloud solutions. Cloud
infrastructure providers communicate the characteristics of their
services to their customers through Service Level Agreements
(SLA). In order for a real-time application to be able to use
cloud technology, cloud infrastructure providers have to be able to
provide timing guarantees in the SLAs. In this paper, we present
our ongoing work regarding a cloud solution in which periodic
tasks are provided as a service in the Software as a Service (SaS)
model. Tasks belonging to a certain application are mapped in
a Virtual Machine (VM). We also study the problem of VM
placement on a cloud infrastructure. We propose a placement
mechanism which minimizes the energy consumption of the data
center by consolidating VMs in a minimum number of servers
while respecting the timing requirement of virtual machines.

Keywords—Real-time cloud; energy aware allocation; VM
placement.

I. INTRODUCTION

Cloud computing is widely referred as the next generation
of computing systems in which dynamically scalable and
often virtualized resources are provided as services over the
Internet [1]. Service sharing and utility computing are the main
characteristics of Cloud Computing Systems (CCS), which
distinguish CCS from Grid, Cluster computing and other types
of distributed systems. Nowadays, a wide range of services are
served by the cloud providers such as computational resources
for high performance computing applications, web services,
social networking, and telecommunications services. Most of
these services are real-time in nature, i.e, there are some strict
timing requirements referred as deadlines in such services
which must be met by cloud providers. The timing constraints
are stipulated as one the Service Level Objectives (SLOs) in
the Service Level Agreement (SLA). The SLA provides a
facility to agree upon minimum requirements between end-
users and cloud providers. Other SLOs examples are security
or availability. If the SLOs are violated in the sense that
the services are not executed within the negotiated Quality
of Service (QoS), agreed upon consequences (usually penalty
payments) go into effect. Therefore, in order to avoid SLA
violation, the cloud providers should do their best to fulfill the
SLOs.

Scalability and heterogeneity are two key reasons that
make fulfilling timing requirements in cloud data centers a
challenging issue. From a scalability perspective, the deadlines
of applications must be met not only when few applications

The research leading to this paper has received funding from the Swedish
Research Council (Vetenskapsrådet) under the project ARROWS and the
Swedish Foundation for Strategic Research (SSF) via the research project
PRESS.

are running in the system but it also when a lot of applications
are executing in the system. In addition, from a heterogeneity
perspective, different applications located on different guest
operating systems should be able to meet their deadlines
while they may be running on different types of servers in
a cloud environment. This complexity should be taken into
consideration in three different levels: (i) the scheduler of the
guest OS; (ii) the placer component of the hypervisor located
on top of servers of a data center (iii) the scheduler of the host
OS in each server. The scheduler of a guest OS schedules a
set of periodic tasks of a given application. We assume a one-
to-one application to VM mapping. The placer component of
the hypervisors decide how the provided set of VMs should be
placed among the available servers of a data center. The host
OS scheduler, on the other hand, schedules the VM executions
by allocating the VMs to the cores and running a real-time
scheduler per core. In this paper, all these three levels are taken
into account as a comprehensive solution to deal with the real-
time requirements of applications in cloud environments from
a cloud provider’s perspective.

Another goal in this work is to consider energy consump-
tion as one of the significant topics in cloud computing sys-
tems. There might be several solutions which all of them can
meet the application timing requirements but among them the
solution consuming the minimum energy is the most desirable
one. The amount of money paid by end-users to utilize a
service is a considerable factor. If a service supplied by a
cloud provider is more expensive than that provided by others,
the users may not wish to utilize the services. Therefore,
cloud providers should struggle to supply services within
the admissible QoS with the minimum possible cost. Energy
consumption is a dominant factor which directly affects the
cost of services [2]. Hence, in this paper energy consumption
is also taken into account besides timing constraints.

Contributions. Although a wide range of studies are
carried out to investigate the running of real-time services
in the context of cloud computing, the contributions of this
paper are: (i) We provide a cohesive solution considering
three scheduling levels whereas, most of existing works only
consider one of these levels; (ii) We adapt the compositional
analysis provided in [3] for abstracting VM specification from
task set parameters; (iii) An energy aware placement algorithm
is introduced which consolidates VMs in a minimum number
of servers.

II. MODEL

We approach the problem from a cloud provider point of
view. The provider is responsible for running a set of real-time
applications in a timely manner according to the SLAs. We
assume that the applications are supposed to run on a single

Host OS 1 Host OS 2 Host OS M

Hypervisor

Application 1

Server 1 Server 2 Server M

Guest OS

Application 2

Guest OS

Application M

Guest OS

Communication NetworkH
a

rd
w

a
re

 L
a

y
er

...

...

Fig. 1: Target system architecture.

cloud data center with a set of homogeneous servers. The cloud
provider is interested in scheduling the application such that
(i) the timing requirements are met (ii) memory constraints
are satisfied (iii) the minimum number of servers are used so
that the remaining servers can be turned off to reduce energy
consumption.

Application model. We assume that the provider has received
N applications. Each application Ai consists of ni real-
time tasks τ ij where i and j denote the application and
task indices respectively. A task is activated periodically with
period P i

j , execution cost Ci
j and deadline Di

j . The memory
requirement of tasks is denoted using h. Periodic workloads
are found in multimedia [4] and telecommunication appli-
cations that can be provided as a service in the Software
as Service (SaS) model. Moreover, embedded devices (e.g,
surveillance cameras) may use Computation Offloading to
execute computational-intensive tasks on the cloud [5]. Online
video gaming is another example in which resources have to
be provided in a timely fashion [6]. In such applications, one
of the main challenges from cloud providers’ point of view is
inherent in the scheduling of the tasks of applications such that
the tasks meet their deadlines while other system requirements
are satisfied. In our model, tasks are scheduled using a task-
scheduler. This scheduling is performed within VMs by the
guest operating system. Let’s suppose Earliest Deadline First
(EDF) as the algorithm for task-scheduling.

Data center model. We assume a data center consisting of M
identical servers. Each server applies a multi-core processor
with m processing cores. Let’s assume, processing cores of a
server have identical processing power (homogeneous multi-
core). The available memory capacity of each server is denoted
by H . Our assumed architecture is presented in Figure 1.

III. SOLUTION

In this section we present our solution. We assume that the
applications are submitted to the cloud provider beforehand
and that the provider makes placement and allocation decisions
off-line. Our approach works in three steps.

1) We derive the specification of each VM using the tasks’
parameters within that VM.

2) The next step is to place VMs on servers. The placement
algorithm has to take into account both the resource

capacity of servers and the resource requirements of VMs.
This placement is performed in the hypervisor level. The
objective of the VM to server placement is to minimize
the number of used servers, for energy saving purposes.
In the following the VM placement problem is expressed
as an optimization problem and then a heuristic solution
is introduced to deal with the optimization problem.

3) Finally, VMs assigned to a server should be allocated
among different processing cores on that server. We
provide an algorithm for this mapping. VMs may utilize
partial bandwidth of a physical core. Hence, multiple
VMs may be allocated on a single core at the same time.
In our architecture, the VM-scheduler is responsible for
coordinating the execution of VMs that share the same
physical core. This scheduling is performed in the level of
host OS located on physical servers. The VM-scheduler
only uses the VM specifications for making scheduling
decisions, i.e, the scheduler is unaware of the task set
information within the VMs.

Note that we use the phrase “placement” referring to the VM
to server placement step. While the word “allocation” is used
for VM to core allocation step.

A. From application to VM specification

We use global EDF (gEDF) for scheduling tasks within
VMs (task-scheduling). gEDF works as follows. At each
scheduling instance the scheduler selects a task with the
earliest deadline and it assigns it on an idle processor. Since the
task-scheduling is performed within VMs, the scheduler selects
an idle virtual processor at scheduling points. We are interested
in deriving the specifications of VMs given the specification
of tasks that are assigned to the VM. We use the analysis
framework proposed by Easwaran et. al [3] for calculating the
VM specifications. The result of the analysis is the following
parameters: (i) the period of the VMs denoted by Π (ii) the
total budget that has to be provided within each period (Θ) to
the VMs (iii) the minimum number of processors that has to
be allocated to a VM (dΘ

Π
e), and (iv) the maximum number

of processors that can contribute in providing the total budget
m′. This specification means that the underlying virtualization
mechanism has to make sure that the corresponding VM
receives Θ units of processor time every Π time units using
dΘ

Π
e to m′ physical processors. Such a mechanism is supported

by the RT-Xen hypervisor [7]. It should be noted that VMs may
be split on more than their minimum number of processors
due to unavailability of the demanded number of processors.
The processor utilization of each VM is defined as follows:
u = Θ

Π
. The memory requirement of each application is equal

to the sum of memory requirement of its tasks. In summary, the
specifications of the ith VM is represented using the following
tuple:

< Πi, ui,m
′

i, hi > .

The VM specification generation process starts by assum-
ing a period for the VM. The period of the task with the
shortest period is often selected as the period of VMs. The
parallelism level m′ is then selected using a binary search. For
each value of m′ the smallest budget is selected such that the
schedulability of the task within the VM is preserved. Finally,
the most efficient interface, i.e, the one with the lowest u, is
selected as the VM specification.

To evaluate each candidate solution for the placement of
VMs on servers in the problem space we need an energy
model. This gives us the ability to calculate the amount of
energy consumption of a placement solution. An energy model
is suggested in the following.

Energy model. Let’s suppose that the given real-time appli-
cations running on the system have unlimited lifetime then
we attempt to minimize the power consumption of servers
to reach energy minimization. However, it is worth noting
that minimizing power consumption does not necessarily lead
to energy minimization in all situations. For example, if the
lifetime of the given workload is limited and the servers are
heterogeneous, then power reduction may increase the length
of execution time of the given workload which would yield a
non-optimal energy consumption.

The power consumption of a host consists of the power
consumed by CPU, memory, disk storage and network in-
terfaces. It is shown by [8] that power consumption of the
CPU dominates the overall power consumption of a host.
Accordingly, power consumption of a host could be achieved
based on the CPU utilization by a linear model defined in
Eq.1 [9].

P (U) = k × Pmax + (1− k)Pmax × U (1)

where P (U) is the power consumption of a host when its
CPU utilization is U , Pmax is the maximum power of a fully
utilized host and k is the fraction of power consumed by an idle
host. It is cost-effective to turn the host off when its utilization
is equal to zero. It should be noted that a host still consumes
energy when it is turned off. Thus, it should be taken into
consideration to provide a more accurate energy model off-
consumption (i.e., the consumption of plugged-host when it is
off). It is observed by [10] that off-consumption is 15% of the
idle consumption. Hence, with the assumption that a server is
always turned off whenever it is idle (utilization is equal to
zero) then Eq.2 can model power consumption of the ith host.

Pi(U) =

{

k × Pmax
i + (1− k)Pmax

i × Ui Ui > 0

0.15× Pidle Ui = 0
(2)

Power consumption of a host. The above mentioned power
model is originally proposed for a uni-processor however,
most of the common servers use a multi-core processor. There
are three ways to adapt the mentioned model for a multi-
core processor. The most straightforward way is to consider
each core as an independent processor which in this case, the
power model could be too pessimistic as the cores are located
on the same chip, and therefore their power consumption is
significantly lower than a multi-processor where processors
do not share the same chip. The second way to apply the
mentioned model for a multi-core processor is to assume that
a multi-core processor is a single processor with a higher
computation capacity which consumes more power. In this
case, as we assumed that the multi-core processor in each
server is homogeneous (all processing cores are identical) then
the total utilization of the workload assigned to this server
can be divided by the number of cores within this server and
then we can apply Eq.2 to calculate the power consumption of
this server. In fact, we assume that the assigned workload to
this server is uniformly distributed among its processing cores.
Nevertheless, we need a load-balancing allocation algorithm
to assign VMs to the cores of a server in a balanced manner.
The third power model is to investigate the effect of different

loads of the processing cores on the power consumption of
the multi-core chip. The third choice can be covered in future
work. In this paper the second way is adopted to model the
power consumption of a multi-core processor similar to [11].
Therefore, the power consumption of a server is derived by
Eq.2 where the server utilization is calculated by the following

Uj(X) =

∑N

i=1
uixij
m

(3)

where the set X refers to a particular VM placement. A
placement is defined as X = {x1,1, . . . , xN,M} where xi,j
denotes the existence of the ith VM on the jth server. If VM
i is placed on server j, then xi,j = 1, otherwise, we have
xi,j = 0. In addition, Uj(X) denotes the utilization of the jth
host corresponding to the placement X .

B. VM to core allocation

Let’s suppose that the replacement algorithm has already
assigned a subset of VMs to a server. The VMs have to
be allocated to the cores of the server in such a way that
the VM specification is respected. For instance, the VM to
core allocator is not allowed to split a VM to more than
its maximum parallelism level m′. Since the utilization of
VMs may be more than one, we first split the VMs into a
number of smaller utilizations. We investigate two alternatives
for the splitting: (i) compact splitting (ii) balanced splitting.
The compact splitting is performed in the following manner.
Each VM is split into buic full processor utilizations and one
utilization equal to ui−buic if ui 6= buic. For instance, a VM
with utilization equal to 2.3 will be divided to the following
three splits: 1, 1 and 0.3. The balanced splitting, however,
creates m′ splits with utilization equal to ui/m

′. For instance
a VM with utilization equal to 1.5 and m′ = 3 is split to three
splits with utilization equal to 0.5.

Thereafter, the split VMs are sorted based on decreasing
utilization. Finally, we allocate the split VMs on the cores
using the Worst Fit (WF) heuristic. WF works as follows.
The algorithm treats the splits in a sequence. Note that the
splits are ordered. At each allocation step, we select a core in
which after allocating the current split, maximum free space
is left in the core. If the algorithm fails to allocate the current
split, then it discards the current split and it continues with the
next one in the sequence. The rational behind using the WF
heuristic is that this algorithm allocates the utilization among
the cores in a balanced manner. The balanced core utilization,
in turn, minimizes the consumed power by the server. This is
because the idle cores are not shut down. The algorithm returns
a value indicating the amount of failures. The allocation failure
degree ρui is the sum of the utilization of all VM splits that the
allocation heuristic fails to allocate on the cores. We present
a simple example to elaborate this parameter. Suppose that
we want to allocate three VMs with utilization equal to 0.6
on a dual core server. The allocation failure degree is equal
to 0.6. Note that although the sum of utilization of VMs is
less than the available processing power of the multiprocessor
(1.8 < 2), the allocation fails (ρui = 0.6). A failure degree
equal to zero (ρui = 0) means that all the placed VMs can
be executed successfully on the server without any constraint
violation.

Optimization problem. In this subsection the problem is
mathematically formulated as an integer linear optimization

problem. There are a lot of tools and algorithms which then
can be applied to solve the optimization problem. The goal
function is to minimize the total power of the set of servers.

Minimize: TP (X) =
∑M

i=1
PServer
i (X), (4a)

Subject to:
∑N

i=1
hixij ≤ H ∀j ∈ [1 . . .M],

(4b)

ρui ≤ 0 ∀i ∈ [1 . . .M], (4c)
∑M

j=1
xij ≤ 1 ∀i ∈ [1 . . . N]. (4d)

where TP (X) indicates the total power of servers for the
assignment X , and PServer

i (X) denotes the power of the ith
server for the assignment X . It should be mentioned that Eq.4b
implies the memory constraint which according to that the
sum of the memory requirements of the VMs assigned to each
server should not exceed the available memory in that server.
Eq.4c reflects the effect of the utilization constraint on the
optimization problem. This formula is formed based on the
output of the worst fit algorithm mentioned as the mechanism
of the allocation of VMs to cores. The last constraint (Eq.4d)
represents the no redundancy restriction, meaning that each
VM should be assigned to no more than one server.

In the context of integer linear optimization it is highly
desirable to integrate the goal function and all constraints into
one function which can be used as the fitness function for
optimization problem solvers. In the following we suggest
a single fitness function comprising the whole optimization
problem.

Fitness(X) = TP (X)+α
M
∑

j=1

ρmem
j (X)+β

N
∑

i=1

ρui (X) (5)

where ρmem
j (X) is the penalty function defined by Eq.6 which

is applied to measure satisfiability of a given assignment from
a memory perspective. It should be noted that if the value
of both the second and the third terms in Eq.5 are zero,
then the assignment X satisfies all the memory and deadline
constraints. Otherwise, some of the deadlines are missed or
some memory violations happen. α and β are the penalty
coefficient used to guide the search towards valid solutions.
These coefficients tune the weight of the penalty functions
with regards to both the range of the goal function and the
importance of violation of each constraint. For example, in
a soft real-time system, where missing a small number of
deadlines may be tolerable, β can be set to a lower value.

ρmem
j (X) = max(0,

∑N

i=1
hixij −H) (6)

C. VM placement algorithm.

In this subsection an energy aware algorithm to placement
of VMs onto the servers is suggested. As the problem is NP-
hard, finding an exact solution needs an exhaustive search
which is dramatically time-consuming and can not be applied
for medium or large instances of the problem. Therefore,
we suggest a powerful meta-heuristic evolutionary algorithm
which is able to find a near-optimal solution in a reason-
able execution time. This evolutionary algorithm is a Max-
Min Ant System [12] being leveraged by an asynchronous

. . .

. . .

. . .

. . .

Termination

condition is

 satisfied

Update the best solution.

Increment iteration counter.

Update the pheromone trails.

Generate ants

according to the Eq. 13

Consider the first ant as

the initial solution for the

first thread

Consider the second ant

as the initial solution for

the second thread

Consider the th ant ant

as the initial solution for

the last thread

Return the best solution

along with the mapping

result of the best solution

Create threads and

assign the SA function to

each of which

Generate a random initial

solution as the starting

point for the SA

Generate a random initial

solution as the starting

point for the SA

Generate a random initial

solution as the starting

point for the SA

Apply the WF function on

the first initial solution,

and compute its total cost

Apply the WF function on

the second initial solution,

and compute its total cost

Apply the WF function on

the th initial solution,

and compute its total cost

Run SA+WF function, and

return the best local

solution

Run SA+WF function, and

return the best local

solution

Run SA+WF function, and

return the best local

solution

Yes

No

Thread 0 Thread 1 Thread

Start

Fig. 2: Flowchart representation for the proposed solution framework.

parallel version of the Simulated Annealing (SA) algorithm.
A flowchart scheme of this framework is given by Fig. 2.
As is seen in the flowchart, most parts of this algorithm are
implemented in a multi-threading manner where the threads
can be executed concurrently on different cores, and thus we
exploit the potential of multi-core processors to accomplish
a highly efficient search. Some further details regarding the
framework configuration are described below:

• Problem space: The set of all possible allocations for
a given set of VMs and servers is called the problem
space.

• Solution representation: Each point in the problem
space is corresponding to an assignment of VMs
to the servers that potentially could be a solution
for the problem. The solution representation strongly
affects the algorithm performance. We represent each
allocation solution with a vector of N elements, and
each element is an integer value between one and M .
The vector is called Placement Representation (PR).
Fig. 3 shows an illustrative example for a placement
solution. The third element of this example is two,
which means that the third VM (corresponding to the
third application) is assigned to the second server.
Furthermore, this representation causes satisfaction of
the no redundancy constraint.

Fig. 3: Representation for assignment of VMs to servers.

• Neighborhood structure used by the SA function: SA
constitutes a sub set of the problem space that is reach-
able by moving any single VM to any other server as
the neighbors of the current solution. Therefore, each

solution has N(M − 1) different neighbors, because
each VM can run on one of the other M − 1 servers.

• Selecting neighbor in SA: SA in each step, instead of
considering all neighbors (i.e., N(M − 1) neighbors),
selects one VM randomly and then it examines all
neighbors of the current solution in which the selected
VM is assigned to another server. Hence, it visits M−
1 neighbors, and then the best solution of this subset
is designated irrespective of whether it is better than
the current solution. We call this process stochastic-
systematic selection, because we use a combination of
systematic and stochastic process to select a neighbor.

• Cooling schedule in SA: There are two common types
of cooling schedules, namely, monotonic and non-
monotonic. The cooling schedule of the SA in this
paper is assumed monotonic in the sense that the
temperature of the current iteration is equal to µ ×
the temperature in the previous iteration, where µ is
a real value between zero and one.

• Stopping condition of SA: The algorithm terminates
when the current temperature ψi becomes less than
the final temperature ψf .

• SA+WF: The fitness function is used as the tool
to evaluate each candidate in problem space. The
function mentioned by Eq.5 is applied to this purpose
nevertheless, as is seen, in this equation the WF
function should be invoked to calculate the value of
the utilization penalty and thus, we call the whole
process SA+WF.

• Updating the pheromone trails: Real ants use trails of
a chemical substance to communicate with other ants
to inform them about the directions in which food can
be found. Actually, the pheromone trails are a kind
of distributed numeric information which is modified
by the ants to reflect their experience achieved during
solving a particular problem. In order to apply the ant
system to VM placement problems, a pheromone ma-
trix Ph with the size of M ×N is required where the
element Phij is corresponding to the assignment of
the ith VM to the jth server. Updating the pheromone
trails is done first by lowering the pheromone trails
by a constant factor (called evaporation) and then by
allowing the best ant to deposit pheromone on the
direction that it has visited (called reinforcement). In
particular, the update can be performed by

PhI+1
ij = $ × PhIij +

xbestij

Fitness(PRbest)
(7)

where $ denotes the evaporation factor, PhI+1
ij indi-

cates the pheromone value for the next iteration, xbestij

is a binary variable which is equal to one if in the
best solution the ith VM is assigned to the jth server,
otherwise it is set to zero, and Fitness(PRbest)
denotes the fitness value for the best solution.

• Generation of ants: The ants are created based on
a probabilistic decision relevant to the pheromone
values. In other words, if the pheromone value for the
element Phij is a large value then the ith VM will
probably be assigned to the jth server in the next ants.

This concept is reflected by the following formula

Probk(xij) =
Phij

∑NA

l=1
Phil

(8)

where Probk(xij) denotes the probability of assigning
the ith VM to the jth server in the kth ant.

• Stopping condition of the main algorithm: The algo-
rithm terminates after a specific number of iterations,
denoted by υ.

It is worth noting that the algorithm is developed in such a way
that only some light instructions are located in the non-parallel
part such as updating the pheromone trails and selecting the
next generation of ants while the CPU-intensive functions like
the fitness function is handled in the parallel part.

IV. RELATED WORK

Virtualization techniques have been widely studied in
the real-time scheduling community. Early works have been
evolved around virtualizing the computational capacity of
single-processor hardware. Such a virtualized hardware is
refereed as a Virtual Processor (VP). For instance, the periodic
resource model uses period and budget [13] for characterizing
the VPs. Several authors have proposed different virtualiza-
tion models targeting multiprocessors. Multiprocessor mod-
els also need to specify the maximum parallelism level in
their interface. Shin et al. proposed Multiprocessor Periodic
Resource (MPR) model [3]. Lipari and Bini suggested the
Bounded-Delay Multipartition (BDM) model [14]. Leontyev
and Anderson [15] proposed a model that only specifies band-
width w in the component interface. The Generalized MPR
(GMPR) model [16] reduces pessimism of the MPR model.
There is often a trade-off between simplicity and accuracy in
virtualization models. In other words, simple interfaces tend
to be pessimistic and introduce more resource loss than the
more detailed yet complex models. We opted the MPR model
because of its simplicity. Scheduling of VMs compliant with
the MPR model is implemented in the RT-Xen hypervisor [7].
The authors have implemented both global and partitioned
multiprocessor scheduling algorithms.

From an architectural point of view, different alternatives
have been investigated. In order to avoid replicating software
layers through hardware visualization, the operating system
can be virtualized in [17]. In this approach all user applications
are run on top of a single operating system. The periodic real-
time model is used for scheduling both batch and interactive
VMs using the EDF scheduling algorithm [18]. In the context
of the IRMOS project, a hierarchical scheduler is developed for
providing timing guarantees for the VMs [19]. Q-Cloud uses a
control theoretic approach for providing dynamic resources to
the VMs [20]. In this framework, the VMs communicate their
Quality-of-Service (QoS) to the hypervisor. The hypervisor
then adjusts the amount of resource provision considering the
current QoS as well as the SLA.

From a placement perspective, a wide range of studies
have been carried out to place a set of VMs into the physical
servers to minimize operation cost of a cloud data center
by maximizing its energy efficiency [21], [11]. The majority
of these works consider real-time aspects of VMs while the
real-time requirement is either refereed as the SLA [22] or
explicitly mentioned as deadlines [23], [24].

Recently, [9], [25] considered the placement of VMs to
servers in a cloud data center to minimize energy consumption
by using a consolidation approach while the live migration
was also taken into account. In addition, in some of these
works, e.g [26], energy consumption of network equipment is
also taken into consideration. On the other hand, there are a
wide range of studies that focus on the energy minimization
problem in cloud data centers using the Dynamic Voltage
Scaling (DVS) technique. They strive to reduce the frequency
of processors within the servers to consume lower energy. In
fact, the problem in such studies is finding a good compromise
between the QoS requirements and energy consumption.

Although extensive studies have been carried out in the
context of energy aware VM placement onto the cloud data
centers, the structure of their real-time VMs are completely
different with that considered in this paper. The VMs in the
mentioned works consist of a set of ordinary real-time tasks
where there is only one instance for each task whereas in this
paper we consider periodic real-time tasks (or sporadic with
a known minimum inter-arrival time) where a set of identical
instances of a task is released periodically. It leads us to an
additional complexity which must be handled in a holistic
manner.

V. CONCLUSIONS AND FUTURE WORK

In this paper we studied the problem of allocation of a set
of real-time applications where each of them are comprising a
set of periodic tasks onto a cloud data center. We approached
the problem from a cloud provider point of view. The periodic
tasks are first mapped to a set of VMs. The VM specification
is abstracted based on the property of tasks assigned to the
VM. VMs are then placed on servers. Not only the placement
algorithm considers the timing requirements of the real-time
applications running within the VMs but it also attempts to
minimize energy consumption by reducing the number of
used servers. To deal with this problem, an integer linear
optimization problem is first introduced and after that a two-
level placement framework was introduced.

In future we will study the behavior of our proposed solu-
tion through extensive simulation studies. In addition we would
like to relax the following assumptions. (i) We assumed that all
of the VMs are defined in advance and we provided a solution
for off-line placement of VMs. We intend to investigate on-line
VM placement given that the VMs are allowed to leave/join the
data center during runtime. (ii) We assumed that VM migration
is not allowed due to the off-line nature of our approach. We
will enable VM migrations while considering the migration
overhead on the scheduability of real-time VMs. (iii) We
only considered periodic VMs containing periodic tasks with
unbounded life-time in this paper. We will enable coexistence
of VMs which only need to run for one instance before a
given deadline together with periodic VMs on the same server.
(iv) Finally, we would like to assume limited life time for the
periodic VMs. This assumption, in turn, will trigger the need
for on-line VM migration (as discussed above).

REFERENCES

[1] G. Gruman and E. Knorr, “What cloud computing really means,”
InfoWorld, vol. 37, p. 13, 2008.

[2] J. G. Koomey, “Estimating total power consumption by servers in the
us and the world,” 2007.

[3] A. Easwaran, I. Shin, and I. Lee, “Optimal virtual cluster-based multi-
processor scheduling,” Real-Time Systems, vol. 43, no. 1, pp. 25 – 59,
September 2009.

[4] T. Cucinotta, K. Oberle, M. Stein, P. Domschitz, and S. Mullender,
“Run-time support for real-time multimedia in the cloud,” in REAC-
TION’13, December 2013.

[5] A. Toma and J.-J. Chen, “Server resource reservations for computation
offloading in real-time embedded systems,” in ESTIMedia’13, October
2013, pp. 31–39.

[6] M. Garca-Valls, T. Cucinotta, and C. Lu, “Challenges in real-time
virtualization and predictable cloud computing,” Journal of Systems
Architecture, vol. 60, no. 9, pp. 726–740, 2014.

[7] S. Xi, M. Xu, C. Lu, L. T. Phan, C. Gill, O. Sokolsky, and I. Lee, “Real-
time multi-core virtual machine scheduling in Xen,” in EMSOFT’14,
October 2014.

[8] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ACM SIGARCH Computer Architecture
News, vol. 35, no. 2. ACM, 2007, pp. 13–23.

[9] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755–768, 2012.

[10] A.-C. Orgerie, L. Lefevre, and J.-P. Gelas, “Demystifying energy
consumption in grids and clouds,” in GCC’10, 2010, pp. 335–342.

[11] H. R. Faragardi, A. Rajabi, R. Shojaee, and N. Yazdani, “Towards
energy-aware resource scheduling to maximize reliability in cloud
computing systems,” in HPCC’13, 2013.

[12] T. Stützle and H. H. Hoos, “Max–min ant system,” Future generation
computer systems, vol. 16, no. 8, pp. 889–914, 2000.

[13] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in RTSS’03, December 2003, pp. 2–13.

[14] G. Lipari and E. Bini, “A framework for hierarchical scheduling on
multiprocessors: From application requirements to run-time allocation,”
in RTSS’10, December 2010, pp. 249–258.

[15] H. Leontyev and J. Anderson, “A hierarchical multiprocessor bandwidth
reservation scheme with timing guarantees,” in ECRTS’08, July 2008,
pp. 191–200.

[16] A. Burmyakov, E. Bini, and E. Tovar, “Compositional multiprocessor
scheduling: the gmpr interface,” Real-Time Systems, vol. 50, no. 3, pp.
342–376, 2014.

[17] J. Sacha, J. Napper, S. Mullender, and J. McKie, “Osprey: Operating
system for predictable clouds,” in DSN-W’12, June 2012, pp. 1–6.

[18] B. Lin and P. A. Dinda, “Vsched: Mixing batch and interactive virtual
machines using periodic real-time scheduling,” in SC’05, 2005, p. 8.

[19] F. Checconi, T. Cucinotta, D. Faggioli, and S. S. S. Anna, “Hierarchical
multiprocessor CPU reservations for the linux kernel.” in OSPERT’09,
June 2009.

[20] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Managing
performance interference effects for qos-aware clouds,” in EuroSys’10,
April 2010, pp. 237–250.

[21] I. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, and
R. Sakellariou, “Energy-constrained provisioning for scientific workflow
ensembles,” in CGC’13, 2013, pp. 34–41.

[22] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning
of cloud resources for real-time services,” in MGC’09. ACM, 2009,
p. 1.

[23] A. Rajabi, H. R. Faragardi, and N. Yazdani, “Communication-aware and
energy-efficient resource provisioning for real-time cloud services,” in
CADS’13, 2013, pp. 125–129.

[24] Y. Gao, Y. Wang, S. K. Gupta, and M. Pedram, “An energy and deadline
aware resource provisioning, scheduling and optimization framework
for cloud systems,” in CODES’13, 2013, p. 31.

[25] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach for
energy-efficient consolidation of virtual machines in cloud data centers,”
in MGC’10, 2010, pp. 4–.

[26] J. A. Pascual, T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano,
“Towards a greener cloud infrastructure management using optimized
placement policies,” Journal of Grid Computing, pp. 1–15, 2014.

