
Static Backward Program Slicing
for Safety-Critical Systems

Husni Khanfar(B), Björn Lisper, and Abu Naser Masud

School of Innovation, Design, and Engineering,
Mälardalen University, SE-721 23 Väster̊as, Sweden

{husni.khanfar,bjorn.lisper,masud.abunaser}@mdh.se

Abstract. Static program slicing is a technique to detect the program
parts (i.e. the “slice”) of the given program possibly affecting a given
property. The technique is of interest for analysing safety-critical soft-
ware, since it can identify the program parts that may affect various
safety properties. Verification efforts can then be directed towards those
parts, leading to a more efficient verification process.

We have developed a novel method for static backward program
slicing. The method works for well-structured programs, as commonly
demanded by coding standards for safety-critical software. It utilises the
program structure to obtain a highly efficient slicing process, where con-
trol dependencies are inferred from the program structure, and the slicing
is done on-the-fly concurrently with the data dependence analysis.

We have evaluated our method experimentally. For applications that
require few slices to be taken, like checking for a set of safety proper-
ties, we obtain large speedups as compared with the standard method
for static backward program slicing. We have also investigated how the
speedup varies with various parameters such as code size, size of the slice
relative to the full program, and relative frequency of conditions in the
code.

Keywords: Program slicing · Dataflow analysis · Strongly live variable ·
Program dependency graph

1 Introduction

Program slicing refers to a collection of techniques to find the parts of the given
program (so-called “slices”) that can affect, or be affected by, a certain prop-
erty [23]. The property is often abstracted into a slicing criterion, which typically
consists of some program variables in some specific program points. Program
slicing was first introduced by Weiser [24] in the context of debugging and par-
allel processing. It has since been applied in areas like software testing, soft-
ware measurement, program comprehension, program integration, and software
maintenance.

A particular slicing technique is static backward program slicing. For a given
slicing criterion, backwards slicing computes a slice consisting of all the state-
ments, conditions, and inputs to the program that can possibly affect the values
c© Springer International Publishing Switzerland 2015
J.A. de la Puente and T. Vardanega (Eds.): Ada-Europe 2015, LNCS 9111, pp. 50–65, 2015.
DOI:10.1007/978-3-319-19584-1 4

Static Backward Program Slicing for Safety-Critical Systems 51

of the variables in the slicing criterion in the respective program points. These
values can be affected in two ways: either through data dependencies, where data
produced by some statement are being read by some other statement, or through
control dependencies where a condition may affect the possible execution of a
statement. Fig. 1 shows a piece of code, and its backward slice (in boldface) with
respect to the slicing criterion {z} located at the last line.

p();
read(x); read(y); read(z);
z = y;
u = x + z;
if (x > 0) then x = 5 else z = 9;
y = x/z;

Fig. 1. Backward slicing example

Backward program slicing can be used to identify the program parts that
can possibly affect value-related safety properties, like, for instance, whether
memory accesses may be out of bounds. In the example in Fig. 1, there may be
a possible division by zero at the last line. The corresponding safety property
can be abstracted into the aforementioned slicing criterion {z}. Thus, the slice
computed w.r.t. this criterion is the part of the program that can possibly affect
whether a division with zero will occur or not. From this slice we can deduce that
the formation of test data to test for division of zero should focus on the inputs
for x and y, since the read statement for z and the initial value of u are not
included in the slice and thus cannot possibly influence the value of z at the last
line.

Backward slicing can also be used to find opportunities for early testing
before the software is complete. This can be valuable, since it helps catching
bugs early. In the example, the call to the procedure p is not included in the
slice. This means that this call cannot influence whether or not a division by
zero occurs, regardless of the code for p. Consequently we can replace p with a
stub, and test for division by zero before the actual code for p is written.

The standard method for static backward slicing is based on the Program
Dependence Graph (PDG) [9,20]. The nodes of the PDG are the nodes in the
control flow graph (CFG) of the program, and it is the union of the control
dependence graph (CDG) and the data dependence graph (DDG). The CDG
is computed from the CFG by a control dependence analysis computing the
strongest post-dominators for the conditions in the CFG. The DDG is com-
puted using some data flow analysis, typically Reaching Definitions [19], from
which the def-use pairs that constitute the edges in the DDG can be built. Once
the PDG is built, slicing w.r.t. some slicing criterion can be done by a sim-
ple backwards traversal of the PDG from the criterion. The PDG-based slicing
is intra-procedural. It can be extended to the inter-procedural case by instead
considering the system dependence graph (SDG) [22].

52 H. Khanfar et al.

A potential problem with PDG-based slicing is that the whole PDG has to
be built before the actual slicing is performed. This can be wasteful especially in
situations where the resulting slice is small relative to the full program, and it
may also cause problems with scalability. We have developed such a method for
static backwards slicing that avoids this problem. Our experiments show that
it performs considerably better than the PDG-based method when few slices
are computed, and it is also more space efficient. Our method computes slices
concurrently with the dependence analysis, avoiding the construction of any
dependence- or flow graphs. It works for well-structured, jump-free code: such
code is prescribed by coding standards for safety-critical applications such as
MISRA-C and SPARC 2014.

The rest of the paper is organized as follows. Section 2 reviews some back-
ground that is needed for the reading of the rest of the paper. In Section 3 we
give the distinguishing features of our algorithm, and in Section 4 we define the
underlying program representation that it uses. Section 5 explains more in detail
how the algorithm works. In Section 7 we give an account for our experimental
evaluation, comparing our approach with the PDG-based algorithm. Section 8
gives an account for related work, and Section 9 concludes the paper.

2 Preliminaries

2.1 A Model Language

Our work considers well-structured programs. Our algorithm is defined for a
minimal, well-structured model language with the following abstract syntax:

s ::= x := a | skip | s′; s′′ | if c then s′ else s′′ | while b do s′

We assume that all variables are numerical, and that arithmetic expressions a
and conditions c have no side-effects.

Adding features like procedures, pointers, non-numerical data types, struc-
tured types such as arrays and records, and procedures, is straightforward. Our
algorithm is interprocedural, and handles procedures with input and output
parameters (see Section 6). It can be extended to deal with the other features
as well.

2.2 Data Flow Analysis

Data flow analysis is used to compute data dependencies. We give a short account
for it here, as our algorithm uses a particular data flow analysis. Details can be
found in, e.g., [19].

Data flow analysis is often defined over a flowchart representation of the pro-
gram; a flowchart is essentially a CFG where the nodes are individual statements,
or conditions, rather than basic blocks. (For our model language in Section 2.1
the nodes are assignments, conditions, or skip statements.) The edges in the
flowchart are the program points: a data flow analysis computes a set of data

Static Backward Program Slicing for Safety-Critical Systems 53

flow items for each program point. These data flow items vary with the analysis,
but they typically represent some kind of data flows in the program.

A data flow analysis assigns a monotone transfer function fn to each flowchart
node n, which is used in an equation relating the sets Sentry(n) and Sexit(n) for
ingoing and outgoing edge of the node, respectively. (For simplicity we neglect
that some nodes may have more than one ingoing or outgoing edge.) For a
forward analysis the equation has the form Sexit(n) = fn(Sentry(n)), and for
a backward analysis it has the form Sentry(n) = fn(Sexit(n)). In both cases we
obtain a system of equations for the sets. This system is solved by a standard
fixed-point iteration. The resulting sets provide the result of the analysis.

Besides being forward or backward, data flow analyses are also classified as
may or must analyses. We will only be concerned with may analyses here: these
compute data flows that will never underapproximate the real data flows.

PDG-based slicing uses the Reaching Definitions (RD) analysis [19]. It is a
forward may analysis that computes sets of pairs (x, n), where x is a program
variable and n is a CFG node. If (x, n) belongs to the set associated with the
edge p, then the value of x assigned at n may still be present in x when at p
and thus, if x is possibly used at the node n′ immediately succeeding p, there is
a possible data flow from n to n′.

Our slicing algorithm uses another data flow analysis known as Strongly Live
Variables (SLV) [19]. It is a backward may analysis: given some “uses” of some
variables in some program points (basically a slicing criterion) it traces back-
wards the variables that may influence the values of the used variables. Thus it
computes in each program point a set of “Strongly Live Variables”, whose val-
ues in the respective program point may affect the values of the used variables.
The SLV sets also represent data dependencies: if x belongs to a SLV set, and
the preceding node possibly assigns x, then there may be a data flow from that
node to some of the variable uses. For SLV analysis the transfer functions take
the following form:

Sentry(n) = (Sexit(n) \ kill(n)) ∪ gen(n), if kill(n) ⊆ Sexit(n)
Sentry(n) = Sexit(n), otherwise (1)

where, Sentry(n) and Sexit(n) represents respectively the SLV set that is present
before and after the CFG node n. In the original formulation of SLV analysis [19],
the kill, and gen sets are defined as follows for assignments x := a, conditions
c, and skip statements:

kill(x := a) = {x} kill(c) = ∅ kill(skip) = ∅
gen(x := a) = FV (a) gen(c) = FV (c) gen(skip) = ∅ (2)

Here, FV (a) denotes the set of program variables that appear in the expression
a. The above definitions are according to the original formulation of SLV anal-
ysis where it is assumed that variables in the conditions are always used. The
definitions can easily be modified to deal with variable uses corresponding to
any possible slicing criterion in arbitrary program points [15].

54 H. Khanfar et al.

3 An Overview of the Slicing Algorithm

Our algorithm has the following distinguishing features:

– It uses an internal representation of interconnected code blocks, which basi-
cally provides a representation of the syntax tree. It can be generated from
the syntax tree in time linear in the size of the tree. No CFG is needed.

– For well-structured code the control dependencies are found directly from
the syntax. For our model language, the control dependencies are exactly
from a branch condition to the statements in the branches of a conditional
statement, and from a loop condition to the statements in its loop body.
This information is retained in the code blocks: thus, no further control
dependence analysis is necessary.

– The data dependence analysis uses SLV rather than RD. If the SLV set
succeeding an assignment x := a contains x then we know that some part of
the slicing criterion will be dependent on the value of x produced there, and
thus x := a can be immediately put into the slice already during the data
flow analysis. No DDG has to be built.

– Rather than maintaining a set of SLVs in each program point, and performing
a conventional fixed-point iteration where the sets grow until a fixed-point
is reached, the algorithm maintains a single set of SLVs for each code block
and keeps track of how far each variable has propagated within the block.
This reduces the memory requirements, and it can also sometimes eliminate
unnecessary iterations through statements that will not be included in the
slice anyway.

Thus the algorithm performs the slicing in a dynamic fashion, without the need
to build any control flow or dependence graphs.

4 Predicated Code Blocks

We use Predicated Code Blocks (PCB) to represent the control flow in the pro-
gram. A predicated code block, (s0, . . . , sn), consists of a conditional predicate
s0 followed by a sequence of statements s1, . . . , sn. Conditional statements, while
loops, and procedure bodies are represented by such code blocks, and a set of
interconnected blocks represents the whole program. The code blocks are derived
for these kinds of statements as follows:

if c then s1; . . . ; sm else s′
1; . . . ; s

′
n → {(c, s1, . . . , sm), (¬c, s′

1, . . . , s
′
n)}

while c do s1; . . . ; sn → {(c, s1, . . . , sn)}
A conditional statement is represented by two PCBs, one for each branch. A
procedure with body s1; . . . ; sn is represented by the PCB (true, s1 . . . , sn).

If some statement within a block B is a compound statement (if or while),
then a block is recursively created for that statement. That block will be con-
nected to the “parent” block B by interfaces, which are explained below. If the
statement is a while, then it is removed from B. If it is a conditional, then it is

Static Backward Program Slicing for Safety-Critical Systems 55

int Add(int a,int b){

return a+b;

}

void F(int c){

int p=0, n=0;

while(c ≥ 0){
if(c%2 == 0)

p=Add(c,p);

else

n=Add(c,n);

c=c-1

} print(p);

}

true

p=0, n=0

print(p)

B1 B2

B3

B4

B5

c ≥ 0

in_child

c=c-1

c%2 == 0

p=Add(c,p)

c%2 �= 0

n=Add(c,n)

true

return a+b

B1 B2

B3

B4

B5

Fig. 2. Running Example (left), PCB representation (above right), immediate succes-
sor relation among PCBs (below right)

replaced by a so-called in-child statement that acts as a place-holder (as shown
in PCB B2 in Fig. 2). The in-child statements play a certain role in directing the
flow of the slicing algorithm, see Section 5. The whole set of PCBs representing
the program is generated in a single traversal of the syntax tree, generating new
blocks when compound statements are encountered.

Within a PCB the program flow is represented by the sequence of statements.
For blocks representing while loops the represented flow is cyclic, with a back-
edge from the last statement to the condition, whereas the flow represented by
PCBs for conditional branches and non-recursive procedure bodies is acyclic.

Program flow between PCBs can be represented by interfaces. These are
graph edges that connect statements in different blocks: si → s′

j is an interface
if si and s′

j belong to different blocks B, B′, and there is a possible direct flow
of execution from si to s′

j . Interfaces will connect blocks representing while and
if statements to their “parent” blocks, and also procedure bodies to call sites.
Since we consider structured code, there will always be a “forward” interface
from parent to child block and a “back” interface in the reverse direction. We
obtain the following possible interfaces connecting B and B′ (s0 and s′

0 are the
conditions in B and B′ respectively):

– si → s′
0: a forward interface where either si is a simple statement or an

in child statement in B, and code block B′ originates from si+1 which is an
if or while statement, or si is a procedure call and B′ is the block for the
body of the called procedure.

– s0 → s′
i+1: a back interface where B originates from s′

i which is a while
statement, and s′

i+1 is a simple statement in B′. (If s′
i is the last statement

in the program part represented by B′, then we can consider s′
i+1 to be a

dummy statement following s′
i.)

56 H. Khanfar et al.

– sn → s′
i+1: a back interface where either B originates from s′

i, which is an if
statement, and si+1 is a simple statement, or B is a procedure body block
and si+1 is a call to this procedure in B′. (sn is the last statement in B.)

– s0 → s′
0: a forward interface. si and si+1 are statements in a parent block to

B and B′. B originates from si which is a while staement, and B′ originates
from si+1 which can be an if or while statement.

– sn → s′
0 : a forward interface. si and si+1 are as above. B originates from si

which is an if statement, and B′ originates from si+1 which can be an if or
while statement.

In the following we will sometimes write B.s to emphasise that statement
s belongs to block B. We say that B′ is an immediate successor to B, or
succ(B,B′), if B′ originates from a compound statement in the program part
represented by B.

Consider the example in Fig. 2. The C code to the left is represented by the
set of interconnected PCBs to the right. Note how the connecting edges represent
the inter-PCB control flow, while the intra-PCB control flow is represented by
the sequences of statements within the blocks. At the bottom, to the right, the
immediate successor relation between the PCBs is shown.

5 The Slicing Approach

We slice a program represented by a set of PCBs by solving local slicing problems
for PCBs individually. Initially, the slicing criterion for the global slicing problem
is distributed into local slicing criteria for the different PCBs. The local slicing
problems are then solved. In this process, new sets of SLVs may be communicated
over the backedges of interfaces connecting PCBs. The arrival of such a set
will create a new local slicing problem, which subsequently is solved taking the
set of SLVs as local slicing criterion. This procedure is iterated until no local
problems remain: then the slice can be computed as the union of the locally
sliced statements, and the algorithm terminates. A simple work list or job pool
can be used to manage the computation.

Solving the local slicing problems amounts to computing both data and con-
trol dependencies to identify statements to slice. We use the SLV analysis, which
is a backward data flow analysis, for computing data dependencies where the
analysis of a block will proceed backwards from the statement(s) of the slicing
criterion towards the condition. If the block is acyclic then the local analysis
will terminate there; if it is cyclic then it will continue backwards, through the
backedge towards the condition.

Our version of the SLV analysis uses the fact that the kill and gen sets of a
statement are constant. This has three consequences:

– a statement s where v ∈ kill(s) for some SLV v can be immediately sliced,
– the variables in gen(s) can then be generated as SLVs once and for all, not

being re-generated at subsequent visits to s, and

Static Backward Program Slicing for Safety-Critical Systems 57

– an SLV that is created at statement s, in a cyclic block, need only be prop-
agated until it comes back to s: then it can be safely removed.

Every SLV will therefore be removed sooner or later: either by being killed, or
by being removed at the end of a cycle for a cyclic block or at the beginning of
an acyclic block, and it can only be generated a finite number of times since the
statement generating it will be sliced, and there can only be finitely many such
statements. Thus, rather than doing a conventional fixedpoint iteration where
SLV sets grow to reach the fixedpoint, we maintain a single set of SLVs for each
block, and the iteration continues until this set is empty. To track the movement
of SLVs the SLV sets contain SLV pairs (i, v), rather than just variables v, where
si is the first statement in the block to start looking for the definition of the SLV
v. Global slicing criteria SC are also sets of SLV pairs: if variable v at statement
si belongs to the slicing criterion, then (i, v) ∈ SC. For each block B, its set of
SLV pairs SB is initialized to its part of the global slicing criterion before the
slicing starts.

If an SLV pair (k, v) is propagated or generated by a statement si in B, with
an incoming interface edge s′

j → si where s′
j is in B′ �= B, then (k, v) will be

propagated into (j, v) at s′
j . This pair will be added to the slicing criterion SB′

for the next local slicing problem for B′ to be solved.
Control dependencies are handled in the following way. A statement in block

B is control dependent on the condition of B as well as the condition of all
blocks “above” it: that is, all blocks B′ such that succ+(B′, B) where succ+

is the transitive closure of succ. The first time a statement is sliced in block
B, the condition c of B′ will be sliced for each B′ where succ+(B′, B), and
{ (0, v) | v ∈ gen(c) } will be added to the current slicing criterion of B′.

Suppose the given program is represented by the interconnected PCBs
〈Bs,Rs〉 where Bs is the set of PCBs, and Rs is the set of interface edges
connecting the PCBs. The initial set of SLV pairs SB for all B ∈ Bs is obtained
from the global slicing criterion SC. The SLV set SB for B is updated during
the local SLV data flow analysis and slicing. This is done by repeatedly applying
some of the transfer functions f j

i,e,v to the set SB , visiting the statements in B

in the backward direction. The transfer function f j
i,e,v applied to SB models how

(i, v) is successively propagated, and which effect this has on the set of SLVs.
j is the current point where the set of SLV pairs is updated according to the
SLV transfer function (3) based on the dependency between sj and v, and e is
an “endpoint” where the propagation of (i, v) can be safely terminated. It is
defined as follows:

f j
i,e,v(SB) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

SB\{(i, v)} if (j = e ∧ v �∈ kill(sj))

∨ (sj = ”in child”)∨
(v ∈ kill(sj) ∧ sj ∈ Nslice)

SB if j �= e ∧ v �∈ kill(sj)

SB\{(i, v)}∪{(j−1, u)|u ∈ gen(sj)}∪ΦB if v ∈ kill(sj) ∧ sj �∈ Nslice

(3)

58 H. Khanfar et al.

Here, ΦB = { (0, v) | v ∈ gen(s0), s0 ∈ B, s0 �∈ Nslice } is the set of SLV pairs
generated due to control dependency.

Algorithm 1. SlicingProgram(〈Bs, Rs〉, SC)

/* Initialization */

1 forall (B ∈ Bs) do SB := select SLV pairs from SC for B;
2 forall (s → s′ ∈ Rs) do Rm(s → s′) := ∅;
3 Nslice := ∅;

/* Slicing PCBs */

4 while (∃B ∈ Bs. SB �= ∅) do
5 Let B = (s0, . . . , sn) ;
6 (i, v) := Select(SB) ;
7 e := i if B is cyclic and n otherwise;
8 j := i;
9 repeat

10 SB := f j
i,e,v(SB);

11 if (B′.sl → B.sj ∈ Rs ∧ v �∈ kill(B.sj) ∧ v �∈ Rm(B′.sl → B.sj)) then
12 SB′ = SB′ ∪ {(l, v)};
13 Rm(B′.sl → B.sj) = Rm(B′.sl → B.sj) ∪ {v} ;

14 if (v ∈ kill(sj) ∧ (sj �∈ Nslice) then
15 Nslice := Nslice ∪ {s0, sj};
16 forall B′ such that succ+(B′, B) ∧ B′.s′

0 �∈ Nslice do
17 SB′ := SB′ ∪ { (0, v) | v ∈ gen(B′.s′

0) };
/* s′

0 is the condition in B′ */

18 Nslice := Nslice ∪ {B′.s′
0};

19 if (B′.sl → B.sj ∈ Rs ∧ v �∈ Rm(B′.sl → B.sj)) then
20 SB′ = SB′ ∪ { (l, v′) | v′ ∈ gen(B.sj) };
21 Rm(B′.sl → B.sj) = Rm(B′.sl → B.sj) ∪ gen(B.sj) ;

22 break;

23 if (sj = ”in child”) ∨ (v ∈ kill(sj) ∧ sj ∈ Nslice) then
24 break;
25 j := (j − 1) mod (n + 1);

26 until (j = e);

27 return Nslice;

Algorithm 1 describes the steps of slicing based on the SLV data dependence
analysis in the given PCBs 〈Bs,Rs〉. It will, for each block B with nonempty
slicing criterion SB , repeatedly pick a SLV pair (i, v) from SB and propagate
(i, v) in the block until either killed, or the “endpoint” e is reached. If (i, v) is
killed at sj then sj is sliced, if not already done, and new SLV pairs are generated
according to gen(sj) and added to SB: the details are found in (3), where the
transfer function f j

i,e,v is defined. If a statement sj ∈ B is sliced, the condition
s0 ∈ B is sliced also as sj is control dependent on the condition s0 as well as on
the conditions for all blocks B′ “above” it (lines 16-18).

Static Backward Program Slicing for Safety-Critical Systems 59

For each interface s → s′, the set Rm(s → s′) contains the SLVs propagated
over the interface so far. This set is used to prevent the same SLV to be propa-
gated several times: if not done, there would be a risk of nontermination due to
an SLV being propagated in a cycle through different blocks without ever being
killed.

6 Interprocedural Slicing

The slicing algorithm discussed so far is intra-procedural. In this section we
sketch how to extend it to an inter-procedural algorithm. We consider an exten-
sion of the model language in Section 2.1 with procedures according to the
following. The arguments are both readable and writable, and actual arguments
are variables. (Basically this is call-by-reference, passing pointers to the actual
arguments.) For simplicity we assume that each procedure has a single return
statement, at the end of the procedure body. Our approach is easily extended
to deal with arguments that are call-by-value, and multiple return statements:
indeed, our implementation can handle these features.

Global variables accessed in the procedure body can be considered as actual
arguments with the same name as the formal argument. Thus, global variables
are handled without further ado.

The PCB representation is easily extended to represent procedures and pro-
cedure calls. Each procedure body is represented by a block. Interfaces connect
call sites with procedure body blocks: from each call site a “call” interface reaches
the entry point of the procedure, and a “return” interface connects the return
statement with the call site. This is similar to how procedure calls are represented
for CFGs [19]. An example is shown in Fig. 2.

We now describe an approach to inter-procedural slicing that is context-
sensitive in that it treats different call sites separately. For a call site p(a) to
procedure p, wich actual arguments a, there are two problems to solve:

– How will the call contribute to the slice of the procedure body of p?
– What is the transfer function for the call? (I.e., given a SLV pair (i,v) where

v is an actual argument to p, which actual arguments when entering p may
influence the value of v at exit?

Our solution addresses both these problems. The idea is to slice the procedure
body separately for each call site, and for each SLV appearing as actual argu-
ment. For each procedure p, and formal argument x of p, we define μp(x) as the
set of formal arguments whose value at entry may affect the value of x at return.
μp can be used to compute transfer functions for calls to p by substituting actual
arguments for formal arguments. Our inter-procedural algorithm works as fol-
lows when encountering a call site p(a). Assume that an SLV pair (i, v) appears
at the return interface of p(a):

1. If v is not an actual argument in a, then the pair is just propagated to the
call interface. No slicing of p takes place.

60 H. Khanfar et al.

2. If v is an actual argument in a, for the formal argument x, then we check
whether μp(x) is already computed or not:

– If it is, then μp(x) is used to compute new SLV pairs at the call interface
by substituting actual arguments for formal arguments. No slicing is
done of the body of p.

– If it is not, then the slicing of the block holding p(a) is temporarily
halted. Instead the body of p is sliced, with x as slicing criterion at the
return statement. During this process, μp(x) can be computed by adding
some bookkeeping of SLVs to Algorithm 1. Then the slicing of the block
holding p(a) is resumed, using μp(x) as above.

This demand-driven approach attempts to minimise work by computing μp(x)
only for formal arguments x holding some SLV as actual argument, and by
reusing already computed sets μp(x) thus avoiding slicing the procedure body
anew for the same slicing criterion.

When all call sites to p have been sliced, for all SLVs appearing as formal
arguments, the slice of the body of p is computed as the union of the slices
computed with slicing criteria formed from the different SLVs. Note that each
slicing of the procedure body should be seen as a separate slicing problem, where
the original body is sliced: if subsequent slicings are done on already sliced code,
then dependences may be different from the original code and the computed
μp(x) sets may be incorrect.

7 Experimental Evaluation

We have implemented both the SLV-based and the PDG-based slicing algo-
rithms, and made an experimental evaluation of the results in order to measure
the relative correctness, and compare the efficiency of both approaches. Both
implementations are done in Microsoft Visual C++ 2013 (MVC), programs are
parsed using the “Regular Expression” built-in library in MVC, and experi-
ments have been performed on an Intel Core i5 3320M with 2.66GHz processor,
8 GB RAM, and 64-bit operating system. In addition to our own implemen-
tations we have also measured the running times for the CodeSurfer commer-
cial tool1, which uses PDG-based slicing. The execution times of CodeSurfer
are not directly comparable to the execution times for our implementations, as
CodeSurfer is implemented in a different framework, but it is still of interest to
compare with a state-of-practice tool.

Five factors influence the time and space complexities of the slicing process:
number of lines of code (LOC), number of variables, percentage of conditional
predicates, size of the slice relative to the size of the sliced program, and the max-
imum depth of the nested loops. Our experiments study each factor individually.
To do so we have used automatically generated, synthetic codes where these fac-
tors are systematically varied. These codes can be generated either in the model
language of Section 2.1, or as the corresponding C code. Our implementations
analyse the model language, and CodeSurfer analyses C code.
1 From GrammaTech, www.grammatech.com

www.grammatech.com

Static Backward Program Slicing for Safety-Critical Systems 61

7.1 Experimental Results

As regards of correctness, the PDG-based and the SLV-based slicing compute the
same slices in all our experiments. Otherwise the experiments compare running
times and memory consumption, and we compute speedup figures. The parsing
time is not included in the running times for any method. For CodeSurfer, which
also performs a number of other analyses, the time is measured as the time to
build the PDG plus the time to perform the backwards search to form the slice.
The resolution of the time reported by CodeSurfer to build the PDG is whole
seconds, which limits the precision of the computed execution time. In some
experiments the reported time for building the PDG is zero: those cases are
marked as “-” in the tables.

Table 1. SLV- vs PDG-based slicing: (a) code size is varied, (b) slice percentage is
varied

(a) (b)

10K 20K 50K 100K 150K 200K

SLV(sec.) 0.015 0.034 0.081 0.165 0.253 0.343

PDG(sec.) 0.676 1.5 4.028 8.183 12.86 16.945

C.Surfer(sec.) - 2 6 15 31 53

SpeedupPDG 45.06 44.12 49.73 49.59 50.83 49.40

SpeedupCS - 58.82 74.07 90.90 122.53 154.52

80% 40% 20% 10% 1.5%

0.172 0.093 0.062 0.031 0.015

8.158 8.127 8.128 8.128 8.112

15.45 15.25 15.155 15.07 15

47.43 87.39 131.10 262.19 540.80

89.8 164.0 244.4 486.1 1000.0

Table 1(a) shows the slicing time of six different source codes varying in
size from 10K to 200K. The slicing is performed with respect to a single slicing
criterion, and time is measured in seconds. Each example program contains 50
variables, 18% conditional predicates, the nesting of conditionals is at most four,
and the relative size of the slices is 70% of the source code. The execution time
is computed as an average of the times for five different runs. The execution
times of SLV-based slicing, our implementation of PDG-based slicing, and the
PDG-based slicing by CodeSurfer are shown in rows 2-4. The fifth and the sixth
rows show the speedups obtained by the SLV-based slicing over the PDG-based
slicing implemented by our tool, and CodeSurfer respectively. The results in
both rows indicate that SLV-based slicing gains a significant speedup compared
to the PDG-based method when computing single slices.

The reason for this speedup is that the SLV-based slicing is a demand-driven
method that avoids computing unnecessary data dependencies. As the PCB-
based representation efficiently captures all control dependencies, detecting con-
trol dependencies also becomes inexpensive. PDG-based slicing, on the other
hand, requires a complete dependence analysis. This method consumes most of
its time in building the PDG. Therefore, for the same source code, decreasing
the slice sizes (i.e., slicing w.r.t. a different slicing criterion) does not have a
noticeable effect on the execution time for the PDG-based method whereas the
SLV-based method runs significantly faster for smaller slices. Table 1(b) gives

62 H. Khanfar et al.

execution times when the relative size of the slice varies from 80% to 1.5%, with
source code size 100K, containing 50 program variables, 18% conditional pred-
icates, and nesting of conditionals at most four. As can be seen, the speedups
are significantly higher for the SLV-based method when the relative size of the
slice is smaller.

Increasing the number of variables will on average yield an increased number
of data dependencies in the program code. This increases the execution time of
both building the PDG, and the sizes of the SLV sets for the SLV-based slicing
method. This is shown in Table 2(a), where the slicing time increases with the
number of variables for both methods. Still, the SLV-based slicing method is
consistently faster than the PDG-based method. We also compare the memory
consumption of these methods in this table. The SLV-based slicing consumes con-
siderably less memory than the PDG-based slicing, and the difference increases
as the number of variables grows.

Table 2. SLV- vs PDG-based method: (a) varying number of variables, (b) varying
number of control predicates. Program size 100K, 50 variables (b), 18% conditional
predicates (a), nesting of conditionals at most four, relative slice size 70%.

(a) (b)

40 80 120 160 200 300 500

SLV(sec.) 0.171 0.359 0.624 1.061 1.622 3.65 12.574

PDG(sec.) 4.321 15.881 33.181 54.288 78.655 141.961 406.5

SpeedupPDG 25.3 44.2 53.2 51.2 48.5 38.9 32.3

C.Surf(sec.) 13.47 32.5 48.59 62 84 151.56 238.6

SpeedupCS 78.8 90.5 77.9 58.4 51.8 41.5 19.0

SLV(Mb) 17.3 23.5 25.8 26.7 29.4 32.9 31.7

PDG(Mb) 96.7 348.5 501.8 763 912 1005 1600

Mem.Save 5.6 14.8 19.4 28.5 31.0 30.5 50.3

7% 14% 28%

0,078 0,125 0,156

0.671 2.698 28.267

8,60 21,58 181,20

4 10 21

51.28 80.00 134.62

14 16 19.4

49.7 122.5 506.8

3.5 7.6 26.1

Table 2(b) shows the effect on slicing time and memory consumption of vary-
ing the percentage of control predicates in the code. The slicing time and memory
requirements increase with the number of control predicates for both methods,
however much faster for the PDG-based method. For the SLV-based method the
number of PCBs will increase, which will affect the execution time some. For
the PDG-based method, however, several factors affecting the execution time
will increase. First, the size of the CFG will be larger since more control predi-
cates will yield more edges. Second, the number of data dependencies will tend
to increase since there will be more paths in the code, increasing the likelihood
that different dependencies are carried by the same variable through different
paths. This will result in a larger PDG. Third, more fixed-point iterations will
be needed in the Reaching Definitions analysis due to the more complex nature
of the control and data flow.

The results shown in Table 2(b) confirm that the influence of an increased
percentage of control predicates is stronger for the PDG-based method than

Static Backward Program Slicing for Safety-Critical Systems 63

for the SLV-based method, both as regards execution time and memory con-
sumption. Both the speedup and the relative memory savings for the SLV-based
method grow quickly with the percentage of control predicates.

We also have studied briefly the effects of increasing the depths of loop nests
on the slicing time. This is interesting since loops will necessitate conventional
fixed-point iterations in the RD data dependency analysis used by PDG-based
slicing, whereas our SLV-based method uses a different mechanism to handle
loops.

We have obtained increasing speedups over the PDG-based method when the
source code contains loops that are nested deeper. For example, we analyzed a
program for loop nesting depths one to five, obtaining speedups 2.4, 6.3, 14.7,
27.3, 48.2. When we compared the execution times of our SLV-based method
with those of CodeSurfer, we obtained the speedups -, 80.0, 96.0, 92.0, 92.5.
(Here, the speedup for the first item could not be computed since the time
resolution of CodeSurfer gave zero execution time.)

8 Related Work

Program slicing was first introduced by Weiser [24,25] in the context of debug-
ging. Since then, different approaches to slicing were introduced including
static [24,25], conditioned [7], dynamic [13], amorphous [10], semantic [3], and
abstract slicing [11,18], of which static slicing techniques are the ones that are
most comparable to our approaches.

Ottenstein et. al. [9,20] introduced the PDG, and proposed its use in program
slicing. PDG-based slicing has then been the classical program slicing method
that has been extended to interprocedural slicing [12,21,22], to produce exe-
cutable slices [1,2,8], and to handle pointers [16].

Apart from PDG-based slicing, slicing based on data flow equations have
been proposed by Weiser [24,25], Lyle [17], and Lisper [15]. Even though some
of these approaches can handle unstructured control flow and low-level code, our
approach is more time and memory efficient for computing single slices of source
codes that does not contain arbitrary jumps. There have been several empirical
studies and survey papers [5,6,23,26] that compare different slicing techniques.

Sprite [4] is a slicing approach that divides the information of the code into
two levels: hard-to-demand and on-demand. The hard-to-demand information is
calculated early, and on-demand information like the data and control depen-
dencies are found during the slicing. The precision of Sprite is tunable, but the
algorithm favors less precise slicing. Katana [14] is a slicing approach that uses a
database-like program representation: it is fast, but less precise than PDG-based
slicing.

9 Conclusions and Future Work

We have proposed a slicing approach for well-structured programs appearing in
safety critical systems. The algorithm performs the slicing in a dynamic fashion,

64 H. Khanfar et al.

using an internal representation that is efficiently derived from the syntax tree.
An experimental evaluation indicates that the algorithm outperforms the current
state-of-the practice algorithm by a magnitude, both as regards execution time
and memory requirements, when single slices are taken for the same slicing
criterion. As future work we would like to extend the slicing approach to handle
arbitrary control flow, and make an empirical evaluation for large industrial code.
Furthermore we want to investigate how well a parallel job pool implementation
performs: its decoupled job structure should make the algorithm very amenable
to such an implementation.

Acknowledgments. The research presented in this paper is supported by the FP7
Marie Curie IAPP programme under the project 251413 APARTS, by the Swedish
Foundation for Strategic Research under the SYNOPSIS project, and by the KKS
Foundation under the project TOCSYC. We also thank GrammaTech for providing
access to CodeSurfer.

References

1. Agrawal, H.: On slicing programs with jump statements. SIGPLAN Not. 29(6),
302–312 (1994)

2. Ball, T., Horwitz, S.: Slicing programs with arbitrary control-flow. In: Fritzson,
P.A. (ed.) Proc. First International Workshop on Automated and Algorithmic
Debugging, AADEBUG 1993. LNCS, vol. 749. pp. 206–222. Springer, Heidelberg
(1993)

3. Barros, J.B., da Cruz, D., Henriques, P.R., Pinto, J.S.: Assertion-based slicing
and slice graphs. In: Proceedings of the 2010 8th IEEE International Conference
on Software Engineering and Formal Methods, SEFM 2010, pp. 93–102. IEEE
Computer Society, Washington, DC (2010)

4. Bent, L., Atkinson, D.C., Griswold, W.G.: A qualitative study of two whole-
program slicers for C. University of California San Diego, Tech. rep. (2000)

5. Binkley, D., Harman, M.: A large-scale empirical study of forward and backward
static slice size and context sensitivity. In: Proc. International Conference on Soft-
ware Maintenance, ICSM 2003, p. 44. IEEE Computer Society, Washington, DC
(2003)

6. Binkley, D., Harman, M.: A survey of empirical results on program slicing. In:
Advances in Computers, Advances in Computers, vol. 62, pp. 105–178. Elsevier
(2004)

7. Canfora, G.: Conditioned program slicing. Information and Software Technology
40(11–12), 595–607 (1998)

8. Choi, J.D., Ferrante, J.: Static slicing in the presence of goto statements. ACM
Trans. Program. Lang. Syst. 16(4), 1097–1113 (1994)

9. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

10. Harman, M., Binkley, D., Danicic, S.: Amorphous program slicing. In: Software
Focus, pp. 70–79. IEEE Computer Society Press (1997)

11. Hong, H.S., Lee, I., Sokolsky, O.: Abstract slicing: A new approach to program slic-
ing based on abstract interpretation and model checking. In: 2013 IEEE 13th Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM),
pp. 25–34 (2005)

Static Backward Program Slicing for Safety-Critical Systems 65

12. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

13. Korel, B.: Dynamic program slicing. Information Processing Letters 29 (October
1988)

14. Kraft, J.: Enabling Timing Analysis of Complex Embedded Software Systems.
Ph.D. thesis, Mälardalen University Press (August 2010)

15. Lisper, B., Masud, A.N., Khanfar, H.: Static backward demand-driven slicing. In:
Proceedings of the 2015 Workshop on Partial Evaluation and Program Manipula-
tion, PEPM 2015, pp. 115–126. ACM, New York (2015)

16. Lyle, J.R., Binkley, D.: Program slicing in the presence of pointers (1993) (extended
abstract)

17. Lyle, J.R.: Evaluating Variations on Program Slicing for Debugging (Data-flow,
Ada). Ph.D. thesis, College Park, MD, USA (1984)

18. Mastroeni, I., Nikolić, D.J.: Abstract Program Slicing: From Theory towards an
Implementation. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp.
452–467. Springer, Heidelberg (2010)

19. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis, 2nd edn.
Springer (2005). iSBN 3-540-65410-0

20. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a software
development environment. SIGSOFT Softw. Eng. Notes 9(3), 177–184 (1984)

21. Reps, T., Horwitz, S., Sagiv, M., Rosay, G.: Speeding up slicing. In: Proceedings
of the 2Nd ACM SIGSOFT Symposium on Foundations of Software Engineering,
SIGSOFT 1994, pp. 11–20. ACM, New York (1994)

22. Sinha, S., Harrold, M.J., Rothermel, G.: System-dependence-graph-based slicing of
programs with arbitrary interprocedural control flow. In: Proceedings of the 21st
International Conference on Software Engineering, ICSE 1999, pp. 432–441. ACM,
New York (1999)

23. Tip, F.: A survey of program slicing techniques. Journal of Programming Lan-
guages 3, 121–189 (1995)

24. Weiser, M.: Program Slicing. IEEE Transactions on Software Engineering SE-
10(4), 352–357 (1984)

25. Weiser, M.D.: Program Slices: Formal, Psychological, and Practical Investigations
of an Automatic Program Abstraction Method. Ph.D. thesis, Ann Arbor, MI, USA
(1979), aAI8007856

26. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)

	Static Backward Program Slicing for Safety-Critical Systems
	1 Introduction
	2 Preliminaries
	2.1 A Model Language
	2.2 Data Flow Analysis

	3 An Overview of the Slicing Algorithm
	4 Predicated Code Blocks
	5 The Slicing Approach
	6 Interprocedural Slicing
	7 Experimental Evaluation
	7.1 Experimental Results

	8 Related Work
	9 Conclusions and Future Work
	References

