
A Many-Core based Execution Framework
for IEC 61131-3

Matthias Becker∗, Kristian Sandström†, Moris Behnam∗, Thomas Nolte∗†

∗MRTC / Mälardalen University, Västerås, Sweden

{matthias.becker, moris.behnam, thomas.nolte}@mdh.se
†ABB Corporate Research, Västerås, Sweden

kristian.sandstrom@se.abb.com

Abstract—Programmable logic controllers are widely used for
the control of automation systems. The standard IEC 61131-3
defines the execution model as well as the programming languages
for such systems. Nowadays, actuators and sensors connect to
the programmable logic controller via automation buses. While
such buses, as well as the sensors and actuators, become more
and more powerful, a shift away from the current distributed
operation of automation systems, close to the field level, becomes
possible. Instead, execution of complex control functions can be
relocated to more powerful hardware, and technologies. This
paper presents an execution framework for IEC 61131-3, based on
a many-core processors. The presented execution model exploits
the characteristics of the IEC 61131-3 applications as well as the
characteristics of the many-core processor, yielding a predictable
execution. We present the platform architecture and an algorithm
to allocate a number of IEC 61131-3 conform applications.
Experimental as well as simulation based evaluation is provided.

I. INTRODUCTION

Automation systems are constantly gaining in complexity,
while at the same time they must be able to quickly adapt
to marked changes. This is especially important for smaller
industries, where flexibility and adaptability is crucial in order
to stay competitive.

Communication mechanisms are one of the backbones of
automation systems. Traditionally, bus based systems domi-
nated the automation industry. However, more powerful and
flexible automation networks appear and allow the connection
of thousands of actors and sensors to the same network, while
still obtaining the required timing performance. An example of
such a bus technology is the Ethernet based PROFINET [1],
an overview of several other industrial Ethernet variants is
provided in [2]. Those changes in the communication tech-
nologies open the possibility of computation further away
from the field level, compared to how it is done in today’s
automation systems. On the other hand, many sensors and
actuators have become intelligent, already today. This means,
they are equipped with small microcontrollers, allowing them
to do basic data processing inside the sensor, and they are able
to connect directly to the new bus technologies.

Both trends, the increased flexibility of automation sys-
tems, and the increased capabilities of sensors and actuators
paired with more capable bus systems, pave the way for
cloud-based solutions in an industrial automation environment.

The work presented in this paper is supported by the Swedish Knowledge
Foundation via the research project PREMISE.

Several solutions on different levels of an automation process
are already proposed [3]. Having basic data processing done at
the lowest level, e.g. directly at the sensor, and a connection
to capable networks, allows the reallocation of applications,
such as control loops, away from the field level into so called
compute pools. Such compute pools are decentralized with
enough compute power for a large number of applications,
while providing the required flexibility to quickly adapt to
changes of the applications requirements. This has several ben-
efits. On the one side, the shop floor level gets more flexible.
Changing control applications becomes merely a problem of
reconfiguration in the compute pool. Costs will decrease as
well, the Programmable Logic Controller (PLC) is migrated
to the compute pool, i.e. the need for physical PLCs will be
decreased. This is already visible in the trend of so called Soft
PLCs [4], where PLC systems are executed as applications
within a legacy OS. Maintenance costs will be decreased as
well. However, moving computations away from the process
must be done with caution. If the compute pool is situated off
site, the existing infrastructure of the network provider is used
to connect to the compute pool. Delays on such networks, and
thus the delays imposed on the control loops, are in general
unpredictable. One alternative is the use of on premise compute
pools, where knowledge about the network and its performance
can be used to bound these delays.

In order to pave the way for cloud based solutions which
satisfy the requirements of the automation domain, current
trends in hardware architecture are exploited. Having a steady
increase in the number of cores, implemented on one processor,
allows for new techniques in order to consolidate applications.
Additionally, such many-core processors come with low energy
consumption and a massive amount of computational power [5]
compared to single core solutions.

As main contribution of this paper, we present an execution
framework for IEC 61131-3. This framework is based on a
many-core platform, allowing the consolidation of legacy IEC
61131-3 applications. Additionally we present an algorithm to
map a set of IEC 61131-3 applications to such a platform.

The remainder of the paper is organized as follows. In
Section II we present related work. Section III presents the
background and system model. In Section IV, the proposed
execution model and framework are introduced, followed by
an algorithm to allocate multiple IEC 61131-3 applications
on such a platform. Finally, we present the evaluation of the
proposed framework in Section V, followed by concluding
remarks in Section VI.

II. RELATED WORK

Several works address the IEC 61131-3 standard. Beremiz,
as an academic project, offers full capabilities to design and
compile IEC 61131-3 conform applications to several hardware
platforms [6], [7]. As multi-core processors become more
common, their usage in the context of industrial automation
is addressed as well. Recent efforts focus on the parallel
execution of function blocks of one network, in order to
minimize the finishing time of the application [8], [9], [10],
[11]. This allows for shorter scan cycle times and therefore
better control. In contrast, [12] and the framework presented
in this paper linearize applications where the focus lies on
consolidation of multiple legacy applications on the same PLC.
The objectives are therefore orthogonal.

On the hardware side, the increasing demand for compu-
tational power leads to an architecture shift. A slow trend
away from multi-core processors towards many-core proces-
sors is visible. Many-core processors have a large number of
simple cores implemented on one die. This allows for tighter
analysis [5] compared to today’s complex multi-core proces-
sors [13]. In [14] the authors propose an operating system
designed for such many-core processors. In their approach
the cores are exclusively reserved for one service. This is
viable, because future processors are expected to accommodate
thousands of cores. Kalray’s MPPA processor for example is
expected to implement up to 1024 compute cores with its next
generation [15].

III. BACKGROUND AND SYSTEM MODEL

In this section we first discuss the basic concepts of
automation applications following the IEC 61131-3 standard.
Additionally we describe the hardware platform which will be
used to base our execution framework on.

A. IEC 61131-3

As an effort to provide one common basis to program
industrial control systems, the International Electrotechnical
Commission defined the standard IEC 61131-3 [16]. This
standard defines four programming languages for the Pro-
grammable Logic Controller (PLC). In this paper, without loss
of generality, we focus on the Function Block Diagram (FBD),
as one of the four languages defined by the standard.

When using FBDs, different forms of program organization
units can be used to define the program. Functions provide
rudimentary functionality. They have no internal state and thus
always yield the same output values for the same input values.
Function blocks on the other hand are more complex. They
can contain more elaborate functionality and have internal
states. Both, functions and function blocks, have well defined
interfaces and hidden internals. While this behavior is in line
with the principles of component based software engineering
other structural elements in IEC 61131-3 (global variables,
direct addressed variables, access paths, etc.) introduce hidden
interfaces, hindering a fully component based usage. Sünder
identifies such hidden interfaces in [17].

Programs written using FBDs are networks of functions
and function blocks, as shown in Fig. 1a. For execution, they
are mapped to tasks of the operating system. Here, they are

Inp. 1

Inp. 2

Inp. 3

Act. 1

Function 1

Function 2

Function 3

read execute write

(a) Example of a FBD network with separation in its three execution phases.

read execute write

t t+ sct

scan cycle time

(b) Different execution phases of one application during one period.

Fig. 1: FBD network and the representative execution schedule.

periodically or event triggered executed based on the read-
execute-write semantic. Execution based on this paradigm is
depicted in Fig. 1b. All input values are read to local memory
at the beginning of the cycle, and all output values are written
back at the end of the cycle. During the execution phase, only
the local copies of the data are used. This execution model
has several advantages. Data communication is only needed
during the defined phases. Also, the jitter, experienced by
the actuators, is reduced, allowing for a higher quality of the
control loops.

The standard further defines a complete software model,
where a configuration can be seen as highest level of abstrac-
tion, encapsulating all software needed to solve the designated
task. A detailed definition of the software model and its
individual parts can be found in the standard [16].

In this work, C represent one IEC 61131-3 configuration,
and Θ represents one FBD network as depict in Fig. 1a. As one
configuration usually consists of multiple FBD networks, C is
represented by a set {Θ1,Θ2, . . . ,Θn}, where n is the number
of FBD networks. Each FBD network Θ is represented by the
tuple Θ = {δ, T}. T represents the period, or scan cycle time,
of the graph. δ is a directed graph δ = (F , E). F represents the
set of m functions or function blocks F = {f1, f2, . . . , fm}
composing the application. Each function fi, has a weight wfi

which is equal to its Worst Case Execution Time (WCET).
The edges E represent the set of data dependencies in the
network. One edge ei,j ∈ E represents a data dependency
between fi and fj , where fi is writing and fj is reading
the data. An edge weight of wei states the size of the data
communicated each cycle. Each edge is further associated with
a name, representing the data variables involved. Having the
read-execute-write semantic, we add one node at the beginning
of the graph and one node at the end of the graph, both of
weight 0. All input variables which need to be read during
the read phase are represented as edges from the input node
to the respective nodes. All output variables of the application
are represented by edges ending in the end node.

B. Hardware model

In this section we present the design of the compute
node, used to execute the workload. The basic design can be

..
.

..
.HW

COM

manager

Network
driver 1

Network
driver 2

Network
driver m

Application 1

Application 2

Application n

Many-Core ProcessorDual-Core Processor

(a)

(b) S
h
ar

ed
M

em
o
ry

Compute PartNetwork Part

Fig. 2: Architecture view of one Compute Node.

seen in Fig. 2. It consist of two parts, this is in line with
available architectures (see for example [18]). The network
part, consisting of a powerful multi-core processor, is used to
receive and transmit the sensor and actor data over the network.
This part is also responsible to write and read data into the
shared memory, where it can be accessed from the many-core
based compute part. It thus can be seen as an abstraction layer
between the data aggregation over the respective network and
the execution of the IEC 61131-3 configurations. The compute
part consists of a many-core processor, and it is responsible for
the execution of the IEC 61131-3 configurations. It consists of
a 2 dimensional mesh-based Network-on-Chip (NoC) of size
l×l and a set of l×l compute cores N = {N1, N2, . . . , Nl×l}.
Each core, together with local memory, is connected to one of
the NoC routers. Note, that the core local memory is usually
magnitudes smaller than the off-chip memory but access to off-
chip memory must nevertheless be handled with great caution
since the induced delays are significant. We limit ourselves
therefore to only use this core-local memory for code and data
placement.

As shown in Fig. 2, the network part consist of multiple
elements. As its main purpose is to abstract the data com-
munication away from the compute part, it contains one or
possibly multiple network drivers. A software layer, called
communication manager, is used to handle the different com-
munication forms. This communication can be platform local
(a) or targeting an element reachable over one of the available
networks (b). The communication manager is responsible to
provide this abstraction. From an application point of view
there is no difference between on-platform or platform to
platform communication, since data always needs to be written
into the shared memory from where it is picked up by the
communication manager.

IV. EXECUTION MODEL OF THE COMPUTE NODE, AND

MAPPING OF FUNCTION BLOCK NETWORKS TO CORES

This section describes the execution model of the compute
node. Precisely the execution of IEC 61131-3 configurations on
the many-core based part of the node, followed by a heuristic
algorithm to allocate applications to the cores.

A. Dividing the platform in SCT-Cores

Since our approach solely targets IEC 61131-3, we can
exploit several characteristics of such applications. (i) One
configuration consists of a large number of moderate sized
FBD networks. (ii) The execution time of one function block is

small and usually in the range of µs. (iii) While the Scan Cycle
Time (SCT) of a network can be an arbitrary time, the number
of different scan cycle times in real industrial applications is
usually small (i.e., one SCT for fast control loops, normal
control loops, and housekeeping functionality).

Based on those observations and the fact that we want
to consolidate legacy applications, preserving their execution
behavior rather than reducing their SCTs, we can conclude
that parallel execution of function blocks of the same network
is not beneficial for our approach. Thus, reducing the end-
to-end delays of one application network is not subject of
optimization. Having in mind the relatively small size of such
networks, the gain in parallelization will diminish and at the
same time produce greater complexity for the mapping of
function blocks to cores, for the communication on the NoC,
but also for the execution of said networks. Thus, application
networks are mapped as a whole.

Since solely the IEC 61131-3 configurations are executed
on the many-core platform all interrupts and overhead related
to the network is handled by the network part of the node
and thus on a different processor. Therefore, most demands
on the operating system are on the network side and a small
embedded operating system on each of the compute cores
is sufficient. Employing fixed priority scheduling [19], as
standard in industry, we have lower schedulability bounds than
for example earliest deadline first scheduling [19]. However,
exploiting the first and third observation and the given hard-
ware characteristics, i.e. the large number of compute cores on
the many-core platform, we can use cores to execute function
blocks of one scan cycle time only. Having relatively many,
but small, application networks, allows us to allocate these
independent elements on any core of same scan cycle time.

From a scheduling point of view, this is beneficial, since
it leads to simpler systems with possible utilization of up to
100%. The schedulability condition for a core i with scan cycle
time SCTi can be formulated by Inequation 1. A core can
schedule all its FBD networks, as long as the time taken for
reading and writing all global variables plus the execution of
all function blocks is less or equal to the scan cycle time.

SCTi ≤ TRead + TExecute + TWrite (1)

B. Heuristic algorithm to allocate FBD networks to compute
cores

Based on the execution model described in the previous
section, we now propose an algorithm to distribute a set of
IEC 61131-3 configurations Ω = {C1, C2, . . . , Cn} to the
cores of a compute node. The input for the mapping algorithm
is a set of k compute cores and a set of FBD networks
A = {Θ1,Θ2, . . . ,Θm}. A contains all FBD networks Θ of
all configurations Ci ∈ Ω. As discussed before, FBD networks
are always executed on the same core. Thus, as a first step
for the mapping algorithm, we transform a FBD network Θ
into its serialized version θ. A serialized FBD network θ can
then be described by the tuple {C, T, Einput, Eoutput}, where
C represents the WCET of the serialized network and T
represents its scan cycle time. Since exchange of parameters on
the same core is fast compared to core-to-core communication,
we neglect those overheads and we therefore only build the sets
Einput and Eoutput, in order to represent the global variables

which are read or written during one scan cycle. Ci can be
computed in a simple way: Ci =

∑
∀fk∈Fi

wfk .

As discussed before, one scan cycle of an application
network consists of three parts (see Fig. 1b). Having only
application networks of the same scan cycle time on one
core allows us to group the respective parts of all application
networks on the core. The utilization of a core i ∈ [1, k] can

then be computed by: Ui =
TRead,i+TExecute,i+TWrite,i

SCTi
, where

SCTi is the scan cycle time of the core. TRead,i describes
the time taken to read all variables from the shared memory.
TExecute,i describes the total execution time of all functions
and function blocks, and TWrite,i represents the time taken to
write all variables to the shared memory. Equation 2 shows
the detailed calculations for the different parts.

Ui =

∑
∀ek∈Ri

(wek · α) +
∑

∀θi∈Ni
Ci +

∑
∀eg∈Wi

(weg · β)

SCTi
(2)

Ri contains all global variables which are read by any
of the FBD networks mapped to the core Ni. Similar, Wi

contains all global variables which are written by any of the
FBD networks mapped to the core Ni. Since the weight of
the edges in Ri and Wi represent the size of the data, we
multiply them by a parameter α and β respectively. Those
factors represent the time it takes to read/write one data unit
from/to the shared memory. Note that multi-core processors
often implement different networks for read and write access
and they commonly execute at different frequencies. Since, at
this time, we do not know the traffic patterns of the cores
connected to the NoC, we can not compute exact worst case
delays of the messages used to access the shared memory. α
and β are therefore used to give sufficient approximations.

Having serialized FBD networks reduces the complexity
of the problem. The allocation algorithm now only needs to
allocate the serialized blocks to the cores. Several requirements
need to be considered. (i) The first FBD network mapped
to a core dictates the scan cycle time of the core. I.e., all
consecutive FBD networks mapped to that core must have the
same scan cycle time. (ii) The mapping algorithm should use
as few cores as possible. This will leave more space for FBD
networks added afterwards. (iii) Additionally to the execution
of function blocks on the cores, the cores need to read and
write the input and output values once each scan cycle time.
This time needs to be considered during the mapping as well.
(iv) Memory requirements of the global variables required
by the FBD networks, which are mapped to a core, need
to be taken into account. The size of the shared memory is
magnitudes larger and allows for allocating data equivalent to
all local memory of the compute cores. Thus, while mapping,
only the core local memory is taken into account.

Allocating tasks on many-core processors is a complex
problem itself. It is possible to reduce the bin-packing problem
to the problem at hand and thus, the problem is NP-hard [20].
Heuristic algorithms are therefore used to find solutions for
such problems. Having the second requirement, we base our
algorithm on the First Fit Decreasing (FFD) algorithm, because
it utilizes a low number of cores. Since we do not assign
FBD networks of different scan cycle time to the same core,
we can split the assignment algorithm in two parts. The first
part, presented in Alg. 1, receives a set of FBD networks

A, which are of same scan cycle time, and assigns them to
a set of cores N . As third parameter the algorithm received
maxMem which states the maximal available memory space
for global variables in the core local memory of each core.
The algorithm first sorts the FBD networks by their WCET
and saves the sorted list in L (line 4). Then, as long as
there are FBD networks to assign, the algorithm checks the
utilization, where UNi

is the current utilization of the core
in focus and Uθ1 is the utilization of the first FBD network
in L, and the available memory of all previously used cores.
The utilization check is based on Equation 2 and the memory
check is done by a function memReq() which returns true
if the memory can be allocated. If a core can accommodate
the additional utilization and memory requirement of the first,
and thus largest FBD network, this network is assigned to that
core and subsequently removed from the set. For the next FBD
network all cores are checked again (line 18). Once all FBD
networks are assigned to cores, the function returns the set
of still empty cores (line 20). If an FBD network can not be
assigned to one of the used cores, the algorithm adds a new
core for this scan cycle time(line 13).

Algorithm 1 Assigning networks of the same scan cycle time

1: function = AssignSCT(A, N, maxM)

2: i = 1;
3: iMax = i;
4: L =sortDescending(A, C);
5: while L 6= ∅ do
6: θ1 =getFirstElement(L)
7: while 1− UNi

< Uθ1
∨ !memReq(maxM,Ni,θ1) do

8: i++;

9: if i > |N | then
10: return ∅;
11: end if
12: if i > iMax then
13: iMax = i;
14: end if
15: end while
16: assign(θ1, Nix);
17: L = L \ θ1;
18: i = 1;
19: end while
20: return {Ni|iMax < i ≤ |N |};
21: end function

The main mapping algorithm is presented in Alg 2. It
also receives a set of FBD networks A, a set of cores N ,
and the maximal memory available on each core maxM as
input parameters. As first step, the algorithm converts the FBD
networks into their sequential representation and saves them in
the set L (line 2). Then it assigns the FBD networks until they
are all assigned. First, the algorithm checks if the set of cores
is non-empty. If cores are available, the lowest scan cycle time
in L is computed (line 7). Based on this scan cycle time, the
subset of all FBD networks ∈ L, of said scan cycle time, is
saved in K (line 8). Those FBD networks are then removed
from the set L (line 9). In line 10, we call the previously
described algorithm to assign the set of FBD networks of same
scan cycle time. Note, that this function returns the set of not
used cores, these cores are then used for FBD networks of
other scan cycle times.

Algorithm 2 Assigning networks to cores

1: function = MapToCores(A, N, maxM)

2: L=CreateSequentialRepresentation(A)
3: while L 6= ∅ do
4: if N = ∅ then
5: return error
6: end if
7: Tlow = {T |T ≤ Tk ∈ L}
8: K = {ai|Ti = Tlow, ai ∈ L}
9: L = L \ K

10: N = AssignSCT(K, N, maxM)

11: end while
12: return success
13: end function

V. EVALUATION

The evaluation of the proposed framework was carried
out partly based on real measurements and partly based on
simulations. We first describe measurements to quantize the
induced delays brought by the shared memory communication.
Later we present different properties of the system, based on
a case study.

A. Delays induced by the shared memory on the compute node

One critical part of the hardware architecture (see Sec-
tion III-B) is clearly the shared memory. While the execution of
IEC 61131-3 can be parallelized on the many-core processor,
the data flow to and from the sensors, actuators, and other
applications over the host processor is realized using a shared
memory. Measurements on a hardware platform [18] similar
to the one assumed in this work were conducted in order to
verify the applicability of such a design.

The hardware platform consist of a dual core ARM Cortex
A9 CPU implemented on the Zynq-Z7010 processor [21], act-
ing as host and running a Linux based operating system. A 16
core version of Adapteva’s Epiphany processor [22] constitutes
the compute part of the platform. Communication between
the ARM and the Epiphany processor is done using a shared
memory. We conducted measurements with two different data
sizes, 512 kB and 1024 kB, and with a varying number of
active slave cores. For each data point 1000 measurements
where taken.

The time taken for the read and write sequence of a scan-
cycle was measured. One measurement consists of the network
part writing the data into the shared memory. Once the data
is in the shared memory, a varying number of cores on the
epiphany processor is notified about the arrival of the data in
the shared memory. After this trigger each compute core loads
the data to the core-local memory. Since we are just interested
in the read and write times, those cores immediately write the
data back into the shared buffer, followed by notifying the
dual core processor. After the notification was received from
all active compute cores, the network processor reads the data
from the shared memory.

The delay encountered during those operations is shown
in Fig. 3. The x-axis depicts the number of compute cores
used for each measurement. It can be seen that the delay
encountered for 1024 kB of data increases slightly faster than
that for the 512 kB of data. The reason is the increased
interference on the NoC, additionally to the increase in data.

TABLE I: Parameters for the generation of FBD networks

Parameter Min Max

Execution time 0.122ms 1.223ms

Input Parameter 1 byte 50 byte

Output Parameter 1 byte 50 byte

B. Case study

In this section we present different properties of the system.
We generate a number of IEC 61131-3 configurations based
on parameters commonly found in industrial automation sys-
tems. Those configurations are then mapped to the hardware
platform.

Table I presents the parameters for the generation of the
FBD networks. The values for execution times are based
on the measurements presented in [23]. An average function
block execution time of 12.24 µs was chosen based on their
measurements, and the values for the execution times were
selected accordingly, assuming between 10 and 100 function
blocks in one FBD network. The minimal and maximal size
of input and output parameters is shown in the table as well.
The value for each FBD network was chosen in those ranges
based on a uniform distribution. We further assume that FBD
networks operate on a small set of scan cycle times, {10ms,
20ms, 100ms, 200ms} with uniform distribution.

The platform parameters were chosen based on the
Epiphany processor [22]. The compute part implements 16
cores. Each core has 16 kB of local memory which is used for
both, code and data. For the experiments we allow the usage of
4 kB for input and output data per compute core. We further
select the parameters α and β of Equation 2 based on the
throughput measurements. For the experiments we assume the
same operation frequency on read and write network, which
results in α = β = 1.145 µs

byte
.

Because the mapping algorithm does not distinguish be-
tween FBD networks of different configurations we only
generate one configuration, consisting of 800 FBD networks.
Each of these FBD networks are generated based on the values
above. The generated configuration is then assigned to the
compute cores. The algorithm assigns FBD networks of SCT
10ms to 6 cores, SCT 20ms to 4 cores, and SCT 100ms and

S
h

ar
ed

m
em

o
ry

d
el

ay
[m

s]

Number of active cores

1024 kB

512 kB

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig. 3: Measurement of the communication delay between network and
compute part for different data sizes, read and written by a varying number
of compute cores.

Core Utilization Memory Utilization

U
ti

li
za

ti
o

n
in

%

50

100

40

30

20

10

60

70

80

90

(a) Scan cycle time of 10ms.

Core Utilization Memory Utilization
U

ti
li

za
ti

o
n

in
%

50

100

40

30

20

10

60

70

80

90

(b) Scan cycle time of 200ms.

Fig. 4: Comparison of the average core and memory utilization of the cores
belonging to one scan cycle time.

200ms are each assigned to 3 cores.

In this experiment, the two limiting factors on one com-
pute core are examined. Namely the core utilization and the
utilization of the memory region used to save the input and
output parameters. Fig. 4 depicts the two corner cases, namely
the average distributions on all cores operating at scan cycle
time 10ms and 200ms. We can see that the cores operating at
10ms are almost utilized up to 100% while still more than half
of the available memory is unused. On the other hand the cores
operating at 200ms have very low core utilization while the
available memory is almost completely used. This observation
is not surprising, since the execution time of the application is
not dependent on the scan cycle time. Thus, a core executing
FBD networks of a large scan cycle time can host significantly
more FBD networks than a core executing at a low scan cycle
time. So the relatively low size of core local memory will
become the bottleneck. Note that this heavily depends on the
used many-core processor. While the core local memory on the
reference platform is small,other many-core processors provide
much more core local memory. Kalray’s MPPA-256 processor
for example provides 128 kB of core local memory [5].

VI. CONCLUSION AND FUTURE WORK

In this work we presented a many-core based execution
framework for IEC 61131-3. The co-processor based archi-
tecture of most of today’s available many-core platforms is
exploited to divide the encountered work on a PLC. Network
communication is carried out on the host processor and ex-
ecution of the IEC 61131-3 code is done on the many-core
co-processor. Executing only FBD networks of the same scan
cycle time on one core reduces the scheduling complexity
immense, this is possible due to the large number of cores
on such many-core processors.

Future work will focus on a prototype implementation
as well as on the challenges of resource management and
load balancing in a compute pool of multiple such nodes.
We think powerful hardware architectures, such as many-core
based systems, will allow a seamless transition to cloud-based
solutions. The architecture characteristics of such platforms
allow for simpler execution models, yielding less overhead and
more predictability.

REFERENCES

[1] PROFINET, last access April 2015, available at
http://www.profibus.com/technology/profinet/.

[2] J.-D. Decotignie, “The many faces of industrial ethernet [past and
present],” IEEE Industrial Electronics Magazine, vol. 3, no. 1, pp. 8–19,
2009.

[3] O. Givehchi, H. Trsek, and J. Jasperneite, “Cloud computing for indus-
trial automation systems - a comprehensive overview,” in IEEE 18th

Conference on Emerging Technologies Factory Automation (ETFA),
2013, pp. 1–4.

[4] O. Givehchi, J. Imtiaz, H. Trsek, and J. Jasperneite, “Control-as-a-
service from the cloud: A case study for using virtualized PLCs,” in 10th

IEEE Workshop on Factory Communication Systems (WFCS), 2014, pp.
1–4.

[5] B. D. de Dinechin, D. van Amstel, M. Poulhiès, and G. Lager, “Time-
critical computing on a single-chip massively parallel processor,” in
Conference on Design, Automation & Test in Europe (DATE), 2014,
pp. 97:1–97:6.

[6] E. Tisserant, L. Bessard, and M. de Sousa, “An open source IEC 61131-
3 integrated development environment,” in 5th IEEE International

Conference on Industrial Informatics (INDIN), 2007, pp. 183–187.

[7] Beremiz, last access April 2015, available at http://www.beremiz.org/.

[8] A. Canedo, L. Dalloro, and H. Ludwig, “Pipelining for cyclic control
systems,” in 16th International Conference on Hybrid Systems: Com-

putation and Control (HSCC), 2013, pp. 223–232.

[9] A. Canedo, H. Ludwig, and M. Al Faruque, “High communica-
tion throughput and low scan cycle time with multi/many-core pro-
grammable logic controllers,” IEEE Embedded Systems Letters, vol. 6,
no. 2, pp. 21–24, 2014.

[10] A. Canedo and M. Al-Faruque, “Towards parallel execution of IEC
61131 industrial cyber-physical systems applications,” in Design, Au-

tomation Test in Europe Conference Exhibition (DATE), 2012, pp. 554–
557.

[11] A. Monot, A. Vulgarakis, and M. Behnam, “Pasa: Framework for
partitioning and scheduling automation applications on multicore con-
trollers,” in IEEE Emerging Technology and Factory Automation

(ETFA), 2014, pp. 1–8.

[12] A. Vulgarakis, R. Shooja, A. Monot, J. Carlson, and M. Behnam,
“Task synthesis for control applications on multicore platforms,” in 11th

International Conference on Information Technology: New Generations

(ITNG), 2014, pp. 229–234.

[13] G. Fernandez, J. Abella, E. Quiñones, C. Rochage, T. Vardanega,
and F. J. Cazola, “Contention in multicore hardware shared resources:
Understanding of the state of the art.” in 14th International Workshop

on Worst-Case Execution Time Analysis (WCET), 2014.

[14] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): The
case for a scalable operating system for multicores,” SIGOPS Operating

Systems Review, vol. 43, no. 2, pp. 76–85, 2009.

[15] Kalray MPPA Many-Core, last access April 2015, available at
http://www.kalray.eu/IMG/pdf/FLYER MPPA MANYCORE.pdf.

[16] IEC 61131-3, International Electrotechnical Commission Std., 2003.

[17] C. Sunder, A. Zoitl, J. Christensen, H. Steininger, and J. Rritsche,
“Considering iec 61131-3 and iec 61499 in the context of component
frameworks,” in 6th IEEE International Conference on Industrial In-

formatics (INDIN), 2008, pp. 277–282.

[18] Parallella Board, last access April 2015, available at
www.parallella.org.

[19] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[21] Zynq-7000 Silicon Devices, last access April 2015, available at
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/silicon-
devices.html.

[22] Epiphany Architecture Reference, Adapteva Inc., Adapteva Inc. 1666
Massachusetts Ave, Suite 14 Lexington, MA 02420 USA, 2013.

[23] M. Oriol, M. Wahler, R. Steiger, S. Stoeter, E. Vardar, H. Koziolek,
and A. Kumar, “FASA: A scalable software framework for distributed
control systems,” in 3rd International ACM SIGSOFT Symposium on

Architecting Critical Systems (ISARCS), 2012, pp. 51–60.

