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Abstract—Complexity in the real-time embedded software
domain has been growing rapidly. The component-based software
development approach facilitates the development process of such
software systems by dividing a complex system into a number
of simpler components. Resource reservation techniques have
been widely used for providing resources to real-time software
components. In this paper we target real-time components op-
erating on a distributed resource infrastructure. Furthermore,
we target a class of software components which demonstrate
dynamic resource consumption behavior. A prime example of
such components is a multimedia software component. In the
paper, we present a framework supporting multi-resource end-
to-end resource reservations. We reserve resource bandwidths on
both processor resources as well as on the network resources. The
proposed framework utilizes a Multiple Input Multiple Output
(MIMO) controller which adjusts the sizes of reservations track-
ing the dynamic resource demands of the software components.
Finally, we present a case study using a multimedia component to
demonstrate the performance and efficiency of our framework.

I. INTRODUCTION

Complex distributed systems are currently disseminated
over a large range of application domains, particularly in-
herent in cyber-physical/embedded systems. These systems
are typically subject to several non-functional constraints,
stretching from resource limitations to timeliness, including
safety and other constraints. Taming complexity in their design
is particularly important to ensure a swift development and a
correct software product.

To this end, component-based software development ap-
proaches are particularly well suited. In such approaches a
complex software system is divided into a number of simpler
software components. Each component is developed indepen-
dently, potentially by different teams. The components are
integrated at the final stage of the development. On the other
hand, for predictable resource provisioning, we can reserve
a fraction of the resource time for each component. This
technique is known as the resource reservation technique [1],
[2], [3]. Moreover, reservations enforce mutual isolation, par-
ticularly temporal isolation. Thus, components that run inside
adequate reservations can be proved correct independently of
other components possibly running in the system.

However, beyond correctness, current design trends aim
at resource efficiency, reducing the component footprint over
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the set of needed resources, particularly computing and com-
munication resources, and changing the resource requirements
at run time according to instantaneous needs. In this scope,
dynamic reservations can provide a suitable solution to guaran-
tee a continued adequate match between the varying resource
requirements and the provided reservations. Dynamic reser-
vation schemes are of particular interest in the multimedia
applications in which the instantaneous resource requirements
are highly dynamic. Dynamic reservations have been mostly
studied for single resource systems (e.g. [4], [5]). Distributed
dynamic reservations taken in a holistic way, particularly
considering processor and network resources in an integrated
fashion, have not received much attention. These, however,
are necessary for common multimedia systems ranging from
area surveillance to process monitoring and even safety driver
assistance.

This paper aims at contributing a solution to such a
problem, making use of dynamic resource reservations on pro-
cessor and network resources, coupled by dynamic component
requirements. We provide a solution which allows for matching
of dynamic requirements with the resource reservations, reduc-
ing typical overprovisioning of static designs (i.e., designed
with fixed reservations) and thus resource usage. In turn, since
more resource capacity will be potentially available, the system
service will also be improved, e.g. allowing for serving more
components and/or with more quality.

In this paper, we consider a component model in which
each component contains multiple tasks spread over a dis-
tributed system that communicate through the network using
messages. We consider an end-to-end soft real-time model.
We reserve a fraction of the processor as well as network
resources needed by the component to satisfy its timing
requirements. We refer to this reservation scheme as multi-
resource end-to-end reservations. Furthermore, we continually
monitor the actual resource usages of the components, and
we adjust the reservation sizes to match their instantaneous
resource requirements. In particular, we present the following
contributions in this paper:

• We present a new framework featuring multi-resource
end-to-end reservations in which the reservation sizes
are adaptive;

• We design a Multiple Input Multiple Output (MIMO)
Linear Quadratic Regulator (LQR), which adjusts the
reservation sizes during run-time;

• We present an on-line system identification method



based on Recursive Least Squares (RLS), which iden-
tifies the dynamics of the resource requirements;

• We present a surveillance case study in which three
processor nodes are used, connected through an Eth-
ernet switch.

The rest of the paper is organized as follows. In the
next section we review the related work regarding reservation
techniques on processors, networks and distributed systems.
Section III presents our modeling approach with respect to the
resources and components. The architecture of our framework
is presented in this Section IV. We present the control design
as well as the system identification method in Section V. We
present a surveillance component case study in Section VI.
Finally, we conclude the paper in Section VII where we also
describe the future directions.

II. RELATED WORK

In the following, we review the reservation techniques
inherent in three different areas, processor resources, network
resources, and end-to-end resources in distributed systems.
We also review two groups of works: (i) static reservations,
and (ii) dynamic reservations. From a modeling perspective,
several resource models have been proposed for modeling
resource reservation techniques. For instance, the Periodic
Resource (PR) model [1] uses a period and a budget for
characterizing a reservation. A reservation is guaranteed to
receive a specific budget during each time interval equal to the
period. The budget is reduced while the resource is consumed
by a particular component, and it is replenished at the start of
the period.

Resource reservations on processors. A number of resource
reservation models are realized on the processor resources.
For instance, the Constant Bandwidth Servers (CBS) [6] are
implemented in the Linux kernel [7], or the PR model is
implemented in VxWorks [8]. When the tasks have dynamic
resource demands, it is desirable to adapt the reservation pa-
rameters to deal with the resource demand changes. Adaptive
CBS is promoted in the AQuoSA project [4] for dynamic
tasks such as video decoders. The ACTORS projects [9] uses
adaptive CBS on multiprocessor platforms. In [5], the budget
of periodic servers are adapted tracking the processor demand
of the components. In this work the model is hierarchical,
i.e., the periodic servers may contain multiple tasks as well as
multiple child periodic servers.

Resource reservations on network. The same modeling
concepts as in processors have been applied on the network
resources. A general category of the resource management in
network is traffic shapers [10]. The purpose of these shapers
is to limit the amount of traffic that a node submits to the
network in a given time interval. Similar to the techniques used
by processor servers, the traffic shapers use methods based
on capacity which is replenished with different policies, e.g.
credit-based shaping in Ethernet AVB [11]. Moreover, some
real-time Ethernet protocols enforce a cyclic-based transmis-
sion and reserve windows for different classes of traffic (e.g.,
Ethernet POWERLINK [12], FTT-SE [13] and HaRTES [14]).
Also, a hierarchical server model [15] is proposed for the
Ethernet switches in the context of the FTT-SE protocol to

reserve a portion of bandwidth for different traffic types, hence
providing temporal isolation among them. An online QoS
management [16] is proposed in the context of a multimedia
real-time application, which adapts the video compression
parameters and the network bandwidth reservations to provide
the best possible QoS to the streams. Our end-to-end reser-
vation framework can use the above network technologies for
reserving the network resources.

Registering resource reservations on network. In order to
reserve resources for streams in the network several protocols
have been proposed, where they use similar concepts. For
instance, Stream Reservation Protocol (SRP) [17] defines a
set of procedures to reserve network resources for the specific
traffic streams, which are crossing through an Ethernet Audio
Video Bridging (AVB) network. The SRP protocol forces
the traffic to be registered on the AVB switches through
its path, before being transmitted. Furthermore, a Resource
ReSerVation Protocol (RSVP) [18] was proposed to reserve
resources for a stream with a specific Quality of Service
(QoS) requirement. This protocol operates using an admission
control, which checks whether there are enough resources to
supply the requested QoS requirement. In both protocols, the
mechanism performs by sending a request through the network
and checking in each node the availability of resources. These
protocols provide a support for communicating new reserva-
tions in adaptive reservation schemes such as ours.

Resource reservations in distributed systems. Few authors
have addressed the end-to-end reservation of resources for dis-
tributed systems, including processor and network resources.
A distributed kernel framework with a resource manager in
each node has been designed and implemented to provide
an end-to-end timeliness guarantee [19]. Also, a resource
management system, called D-RES [20], has been developed
to handle shared resources among multiple applications in
distributed systems. A very close work related to ours is the
one presented in [21] in which a pipeline task is considered.
Tasks may use one of the resources available in the system
to carry on their computations. Adaptive CBS is used to
track the resource demand of the tasks. In addition, a general
model, called Q-RAM [22], has been developed to manage the
resources shared among multiple applications. The applications
in this framework have different operation levels with different
qualities depending on the available resources. However, they
have to satisfy their needs such as timeliness, reliability
and data quality. The model allocates the resources to the
applications considering that the overall system utility becomes
maximum while the applications meet their minimum needs.
This model has been extended in [23] for the systems with
rapidly changing resource usage.

The main difference of our work with [21] and [22] is
that we consider adaptation for components which may in
turn be composed of multiple tasks. The existence of multiple
tasks inside one component makes the system dynamics model
in those works inapplicable to our setting. Therefore, we
use an on-line model identification method for estimating the
parameters of the model. Besides, we perform the adaptations
in an integrated fashion for all resources of the component
using MIMO controllers. This is because the MIMO control
approach allows us to simultaneously adapt the bandwidths
of all reservations considering the possible coupling among



them. Finally, in our framework we explicitly consider network
resources, and we present the result of our case study in which
we used a common network technology.

Adaptive distributed systems. Feedback scheduling tech-
niques have been used in the context of distributed systems.
In particular a line of work in this context focuses on keeping
the utilization of the processors below their schedulability
threshold. For instance Stankovic et al. have studied this
problem for independent tasks [24]. On the other hand, the
following two frameworks are proposed for end-to-end task
models: EUCON [25] and DEUCON [26]. While EUCON uses
a centralized controller, DEUCON employs a decentralized
approach in which task rates (periods) are adapted using
model predictive controllers. The main difference of our paper
with the aforementioned works is the following. Since we
consider component-based systems in which a component is
comprised of a set of end-to-end tasks, a reservation-based
scheduling policy is needed to isolate the timing behavior
of the components in run-time. This separation of run-time
behavior for components is not supported by the above frame-
works. Besides, we explicitly consider network resources in
our framework, while the above frameworks only focus on the
processor resources.

III. MODEL

We assume a Distributed Resource (DR) infrastructure with
M resources. We use rh to denote the hth resource in the
system. The set of resources is denoted by R = {r1, . . . , rM}.
We consider two types of resources: (i) network resources; (ii)
processor resources. We assume that N real-time components
are placed on the DR infrastructure. Each component uses a
subset of all resources.

Component and task model. We assume that the (ι)
th real-

time component C(ι) is composed of a set of tasks: C(ι) =

{τ (ι)1 , τ
(ι)
2 , . . . }, where τ (ι)i represent the ith task of C(ι). We

assume an end-to-end sporadic task model in which a task
τ
(ι)
i requires a subset of available resources (processor and/or

network) for completing its execution. τ (ι)i begins its execution
on a processor resource (source processor), and it finishes its
execution on a processor resource (destination processor). The
set of all resources consumed by τ

(ι)
i is denoted using R(ι)

i ,
where R(ι)

i ⊂ R. τ (ι)i is characterized with a minimum inter-
arrival time p(ι)i and an end-to-end soft deadline d(ι)i . p(ι)i refers
to the release of the task on the source processor, while d(ι)i
indicates its relative deadline on the destination processor. τ (ι)i
is composed of a set of subtasks each consuming a resource.
We use τ

(ι)
i,j to refer to the jth subtask of τ (ι)i . Note that we

also use the term subtask for the chunks of the end-to-end
tasks that consume the network resources (network subtasks).
In this model, a message is a set of network subtasks. τ(ι)

i,j

is characterized with a Resource Consumption Time (RCT)
c
(ι)
i,j which indicates execution/transmission time of the subtask.

We assume that the RCTs (i) are not known a priori to run-
time; (ii) are changing during run-time. The quality of service
experienced by tasks depends on the number of deadline
violations. The objective of our adaptive framework is to
minimize the number of deadline violations without significant
resource overprovisioning. To this end, we use a controller

module in our framework to track the resource requirements of
the components and adjust the reservation budgets accordingly.

Virtual DR. Recall that each component is assigned to a subset
of available resources denoted by R(ι). We use resource reser-
vation polices for partitioning the bandwidth of the resources.
For all rh ∈ R(ι), C(ι) receives a fraction of the bandwidth of
rh. We refer to the subset of partially available resources for
a component as a virtual DR, and we use Γ(ι) for denoting it.
The specification of the virtual DR allocated to C(ι) is denoted
using:

Γ(ι) =
〈

Π(ι), {Θ(ι)
1 ,Θ

(ι)
2 , . . . ,Θ

(ι)

M(ι)}
〉
,

where Π(ι) is the period of the resource reservations, Θ
(ι)
h

denotes the budget of rh reserved for C(ι) and M (ι) is the
number of resources used by C(ι). Without loss of generality, to
avoid a conflict in resource indexing, we consider M (ι) = M .
The above abstraction means that C(ι) is guaranteed to receive
at least Θ

(ι)
h time units of resource rh every Π(ι). The reserved

bandwidth of Γ(ι) on resource rh is denoted by α(ι)
h , and it is

defined as:

α
(ι)
h =

Θ
(ι)
h

Π(ι)
.

Note that such a periodic resource abstraction model is sup-
ported by several processor and network scheduling schemes.
For instance, on the processor resource we can use Constant
Bandwidth Servers (CBS) [6] or Periodic Servers (PS) [1].
While for the network resource we can use a hierarchical
server model [15] or the periodic model presented for the FTT-
SE [13] and HaRTES [27] architectures.

IV. FRAMEWORK

In this section we present the scheduling scheme of our
framework. We also provide an overview of our adaptation
mechanism.

Resource scheduler. We assume a resource scheduler per each
physical resource. The schedulers (i) enforce resource reserva-
tions; (ii) schedule subtasks; (iii) and communicate with the
respective controller modules to inform them about the state
of the reservations. Although resources are scheduled locally,
our end-to-end reservation scheme guarantees a predictable
system wide resource provisioning for the end-to-end tasks.
We use a hierarchical scheduling scheme in which scheduling
is performed at two levels. In the higher level the resource
scheduler schedules the reservations. Within each reservation,
however, it is the responsibility of the subtask-scheduler to
schedule different subtasks belonging to that reservation.

Controller module. We use a controller module per compo-
nent which is responsible to adjust the reserved bandwidths for
the component. The controller monitors the actual resource
usages of the component on its allocated resources. This
monitoring is performed through communications with the
local schedulers. Once the controller decides a new set of
reservation bandwidths, it communicates the new requirements
to the local resource schedulers. The controller samples and
adapts the system periodically. The sampling time is denoted
by k. The time distance between two consecutive samples is
referred as a sampling interval. We place the controller on a
processor resource, and we reserve a portion of that processor



resource for the controller executions as well as on the network
resources that support the communication with the resource
schedulers. These control reservations are static and attached
to each component.

Since the reservation sizes are adapted during run-time,
resources may temporarily become overloaded. In other words,
the overall reserved bandwidth on a resource may pass beyond
its schedulability threshold. In such a situation, the components
can be prioritized based on their importance in their contri-
bution to the overall goal of the system. If a component’s
bandwidth gets compressed on one of its resources, then it
may be efficient to compress its bandwidth on the remaining
component resources as well. Therefore, the framework should
follow a protocol in overload situations. The overload manage-
ment mechanism is out of the scope of this paper, and we leave
incorporating an overload manager module to our framework
for the future work. In this paper we intend to answer the
following question:

Given a component with requirements that vary dynami-
cally on different resources, how we can define dynamic
reservations that track the evolving requirements while
satisfying resource constraints?

Example. In the following we present an example for elabo-
rating our framework. In our example we assume a distributed
system consisting of six resources {r1, . . . , r6}, depicted in
Figure 1. r1, r4 and r5 are processor resources while r2, r3
and r6 are network resources. We assume that a surveillance
component has been placed on this distributed system. Two
cameras are attached to r1 and r5. We have two end-to-end
tasks: τ (1)1 and τ

(1)
2 . The video frames are preprocessed in

their source processors by the first subtasks of the two tasks.
Thereafter, the video frames are sent to r4 which hosts the final
subtasks. We model this surveillance system as a component
placed on the distributed infrastructure:

C(1) =
{
τ
(1)
1 , τ

(1)
2

}
.

τ
(1)
1 is composed of four subtasks: τ(1)

1,1 ,τ
(1)
1,2 ,τ

(1)
1,3 and τ

(1)
1,4 . τ(1)

1,1

represents the video encoder subtask placed on r1, while τ
(1)
1,4

is the decoder and display subtask on r4. τ(1)
1,2 and τ

(1)
1,3 represent

the message that consumes r2 and r3 on its path from r1 to r4.
Similarly τ

(1)
2 is composed of four subtasks: τ(1)

2,1 ,τ
(1)
2,2 ,τ

(1)
2,3 and

τ
(1)
2,4 consuming r5, r6, r3 and r4. The resource reservations of
C(1) is represented using the following interface:

Γ(1) =
〈

Π(1), {Θ(1)
1 ,Θ

(1)
2 ,Θ

(1)
3 ,Θ

(1)
4 ,Θ

(1)
5 ,Θ

(1)
6 }
〉
.

Note that C(1) may be sharing the resources with other
components.

V. COMPONENT CONTROLLER MODULE

The objective of our framework is to satisfy the quality of
service requirements of the tasks within the components. We
consider meeting the end-to-end deadlines as a measure of the
quality of service satisfaction. Our secondary objective is to
allocate the resources efficiently. That is, the deadlines should
be respected without significant resource overallocations. To
this end, we design a feedback based controller module in this
section.

𝒓𝟐 𝒓𝟑

𝜏1,1
(1)

𝜏2,4
(1)

𝜏2,1
(1)

𝜏1,4
(1)

Controller

𝒓𝟏 𝒓𝟒

Processor resource

Network resource

Path of a message

𝜏1,2
(1)

𝜏1,3
(1)

𝜏2,3
(1)

𝜏2,2
(1)𝒓𝟔

𝒓𝟓

Fig. 1: Surveillance component example. r1 and r5 have two cameras attached.
The lines connecting the resources represent logical connections. The network
resources are explicitly visualized as boxes.

We use a control theoretic approach, similar to [28],
for designing the component controller module. In such an
approach, to control the plant, we define controlled variables,
i.e., measurable variables that indicate the state of the plant,
and control inputs, i.e., variables that allow us to manipulate
the plant. Note that our plant is the set of resources that are
used by the component. The component controller samples and
adapts the plant periodically. In our framework, we consider
one component controller per component. In the rest of this
section, for notational convenience, we drop the component
index (ι) when referring to the parameters associated with C(ι).

Let αh(k) indicate the reserved bandwidth on rh during
sampling point k− 1 and k. The component utilizes a portion
of the reserved bandwidth. Let α′h(k) denote the amount of
consumed bandwidth during sampling point k−1 and k, where
0 ≤ α′(k) ≤ α(k). The amount of wasted bandwidth on rh
is: yh(k) = αh(k) − α′h(k), where we consider yh(k) the
hth output of our control system. Hence, the vector of system
outputs is:

y(k) = [y1(k) . . . yM (k)]T .

We selected the assigned bandwidth as our control inputs:
uh(k) = αh(k) − ᾱh, where ᾱh is the operating bandwidth
of the component on rh. This parameter is provided by
component developers. For instance it can be an estimate of
the average required bandwidth on rh. Note that this parameter
does not need to be exact since we use a feedback loop to
adjust the bandwidths. The vector of the control inputs is
defined as follows:

u(k) = [u1(k) . . . uM (k)]T .

At each sampling time, the goal of the component controller
is to find a control input vector u(k) such that y(k) = yref ,
where yref = [yref1 . . . yref

N(ι) ], and yrefh is the desired value
of yh(k). We assign this parameter to a small positive value
to provide some slack bandwidth for the component. This is
because yh(k) becomes saturated at zero, thus when yh(k) = 0
it is not possible to infer whether the component requires more
bandwidth or it is satisfied with the current bandwidth. To
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Fig. 2: The architecture of the control system.

reach the goal of the component controller, we use an on-line
system identification method along with an optimal controller.
Figure 2 illustrates the architecture of our control system. In
the following we explain the details of the system identification
method as well as the controller design. Note that, although
we do not monitor the end-to-end response times, we can
indirectly control the response times using our control inputs
u(k). This is because by manipulating the bandwidth of a
resource we can affect the response time of subtasks on that
particular resource. Since we manipulate the bandwidth of all
resources serving the end-to-end tasks, we can affect the end-
to-end response times.

We need to model the relation between the control inputs
u(k) and system output y(k). We use the following auto-
regressive MIMO model for modeling this relation:

y(k + 1) = Ay(k) + Bu(k) + εεε(k + 1), (1)

where A and B are M×M matrices, u(k) is the control input,
y(k) is the system output, {εεε(k + 1)} is a sequence of M-
dimensional random vectors with zero mean representing the
disturbance. A represents the dependency between the next
wasted bandwidth and the current wasted bandwidth, whereas
B represents the dependency between the current assigned
bandwidth and the next wasted bandwidth. The use of a MIMO
model allows us to capture the resource demand couplings
among different resources of a component. We explain our
approach for deriving A and B in the following subsection.
Note that although the plant is non-linear by nature, it is known
that linear models often work well for nonlinear systems [29].

A. System identification

In the above system model (Equation 1) matrices A and
B are unknown. Since the load situation of the components
may change during run-time, the above two matrices have to
be tuned to improve the accuracy of the model. Therefore,
we tune these matrices on-line at each sampling point. This
self-learning technique enables the controller to learn the
couplings among different system outputs/control inputs which
may emerge during run-time. In this subsection we assume that
A and B are also functions of the sampling time, i.e. A(k) and
B(k). Let us rewrite the system model in the following form:

y(k + 1) = X(k)φφφ(k) + εεε(k + 1), (2)

where

φφφ(k) =
[
(u)T (k) (y)T (k)

]T
,

X(k) =
[
B(k) A(k)

]
.

We identify X(k) during run-time by observing the system
outputs, and by making a correction action. We use the
Recursive Least Squares (RLS) method [30] for this purpose.
In this method the estimated value of matrix X(k), denoted by
X̂(k), is calculated using the following equations:

X̂(k + 1) = X̂(k) +
εεε(k + 1)(φφφ)T (k)P(k − 1)

λ+ (φφφ)T (k)P(k − 1)φφφ(k)
,

εεε(k + 1) = y(k + 1)− X̂(k)φφφ(k),

P−1(k) = P−1(k − 1) +
(

1 + (λ− 1)
(φφφ)T (k)P(k − 1)φφφ(k)

[(φφφ)T (k)φφφ(k)]2

)
φφφ(k)(φφφ)T (k),

(3)
where εεε(k + 1) is the estimation error vector, P(k) is the
covariance vector and λ is the forgetting factor [30].

B. Controller design

In the following, given that the system model is identified,
we design an LQR controller which provides optimal control
actions (u∗(k)) at each sampling point k. The LQR controller
design approaches allow component integrators to trade-off the
speed of reaction against error sensitivity. This approach also
allows the component integrators to assign different cost values
on different resources, perhaps based on the expected demand
fluctuations. Note that the LQR controller works after the RLS
system identifier. Therefore, in this subsection we assume that
the model parameters are already estimated, and we use Â and
B̂ to indicate the estimated values of A and B. We define error
eP(k) as:

eP(k) = yref − y(k). (4)

The dynamics of the control system based on eP(k) is as
follows:

eP(k + 1) = yref − Ây(k)− B̂u(k)

= ÂeP(k)− B̂u(k) + (I− Â)yref − εεε(k + 1).

Instead of directly using the model presented in Equation 1, we
use the system model based on error for the controller design.
In addition to eP(k), we also use integral errors:

eI(k + 1) = eI(k) + eP(k),

where ∀k ≤ 0 we have eI(k) = 0. Hence, the augmented
system model is:

e(k + 1) = Ĥe(k) + Ŝu(k) + L̂− εεε(k + 1), (5)

where

e(k) =

[
eP(k)

eI(k)

]
, Ĥ =

[
Â 0
I I

]
,

Ŝ =

[
−B̂
0

]
, L̂ =

[
I− Â

0

]
yref .



For our notational convenience we assume Ψ̂ΨΨ = [Ŝ Ĥ], and
we rewrite the above equation:

e(k + 1) = Ψ̂ΨΨ
[
u(k)T e(k)T

]T
+ L̂− εεε(k + 1). (6)

We define the objective function as:

J = E
{∣∣∣∣∣∣W(e(k + 1))

∣∣∣∣∣∣2 +
∣∣∣∣∣∣Q(u(k)− u(k − 1))

∣∣∣∣∣∣2}, (7)

where W and Q represent the cost of control error and the
cost of control action, respectively. These two matrices allow
the system designers to prioritize among different resources
by assigning larger cost values to more important resources
in case such a logical prioritization is needed. We derive the
optimal control action by explicitly capturing the dependency
of J on u(k), and by assigning the derivative of J with respect
to u(k) equal to zero [28]. The optimal control action is:

u∗(k + 1) =
(

(WŜ)TWŜ + QTQ
)−1[

(WŜ)TW

(L− Ψ̂ΨΨφ̃φφ(k + 1)) + QTQ(u)T (k)
]
, (8)

where
φ̃φφ(k + 1) = [0, (e)T (k)]T .

At each sampling time k the controller module takes the
following actions:

1) It reads the system output vector y(k) provided by the
local resource schedulers.

2) It updates its model of the plant’s dynamics using Equa-
tion 3. The result system model is used in the next step.

3) It calculates the new control input vector u∗(k) using
Equation 8.

4) It sends the new reservation bandwidths to the local
resource schedulers.

The fact that we selected the wasted resource bandwidth as
our system output (y) offers the following advantages: (i) the
adaptation scheme is independent of the number of tasks within
the components; (ii) the adaptation scheme is independent of
the assumed task model. In other words, the above adaptation
scheme works under other task models, e.g. models in which
a task can branch within its path from the source to different
destinations. Nevertheless, in our evaluations we have only
considered the task model presented in Section III.

VI. EVALUATIONS

In order to perform the evaluations we have used a simu-
lation tool, that is called SEtSim [31]. SEtSim was initially
developed to support different real-time network protocols,
such as the HaRTES architecture [27]. It was also recently
extended to support AVB networks [32]. In this work, we
modified the tool such that it supports our end-to-end task
model as well as our multi-resource end-to-end reservation
scheme. We consider the surveillance component case study
presented in Figure 1. This is representative of typical network-
based surveillance systems in which the bandwidth taken by
each camera varies according to the scenario being captured,
e.g., variable people walking, variable number of cars or
other vehicles, and also where the cameras can be switched
on and off on-line. We used a specific network technology

for scheduling the network resource as well as a server-
based scheduling policy for scheduling the processor resources.
Both reservation mechanisms are compliant with the periodic
abstraction model assumed in this paper (see section III). We
present two simulations in this section. In the first simulation,
we studied the response of our controller module to a step load
change. That is, we used fixed RCTs times until a certain point
in time. Thereafter, we increased the RCTs to larger numbers.
In the second simulation, on the other hand, we used RCTs
gathered from a real multimedia application to evaluate the
performance of the controller module in a real scenario.

A. Simulation setup

In the following we explain the details of the resource
reservation techniques as well as other parameters that are the
same for the two case studies.

We used CBS [6] with hard replenishments on the proces-
sor resources. The hard CBS scheme works as follows. The
server budget is periodically replenished to its maximum at
each server release (Π(ι)). The tasks within the server are only
allowed to run if the remaining budget is positive. The server
budget is reduced while an active task belonging to the server
is consuming the processor time. The tasks must stop as soon
as the server budget is depleted.

The task parameters were set as follows. The periods of the
two end-to-end task (p1 and p2) were set to 40ms. Therefore,
their first subtasks, i.e. τ1,1 and τ2,1, were released periodically
with the same period. We assumed that d1 = d2 = 40ms. The
messages are activated at the end of the execution of the sender
subtasks, i.e. τ1,1 and τ2,1. The final subtasks, i.e. τ1,4 and
τ2,4, were activated when they received their corresponding
messages. We also set the reservation replenishment period (Π)
to 40ms. We used different RCTs for the two case studies.

We used the HaRTES architecture [27] to connect the
processor nodes. Although we used a specific network tech-
nology in this evaluation, other network technologies that
provide a resource management mechanism can be used in our
framework. The HaRTES architecture uses modified Ethernet
switches, so called HaRTES switches, which separate traffic
in two classes, synchronous and asynchronous (Figure 3).
The former is scheduled by the switch while the latter is
shaped by the switch. Both the synchronous scheduling and
the traffic shaping use the temporal resolution dictated by a
pre-configured Elementary Cycle (EC). Within each EC, the
traffic of each kind is confined to respective windows that vary
dynamically in each network link according to the traffic needs
(Figure 3).

In the case study, the messages are activated by the first
subtasks, i.e. τ1,1 and τ2,1. Depending on the RCTs of the
subtasks, the activation of the messages can be different.
Therefore, we considered the messages as asynchronous traffic.
A network perspective of the case study is shown in Figure 4.
The network parameters were set as follows. The network
bandwidth capacity was set to 100Mbps. The EC size was
selected to be 40ms. The bandwidth reservations for the
transmission of the messages (αh(k)) were done within the
asynchronous window and were changed by the controller
during run-time depending on the load and bandwidth usage
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Fig. 4: The architecture of the case study from a network perspective. Figure 1
shows the resource perspective of the same system. Message one (m1) denotes
the following set of subtasks {τ1,2, τ1,3}, while message 2 (m2) represents
{τ2,2, τ2,3}.

Before step After step
c1,1, c1,4, c2,1, c2,4 4ms 10ms
c1,2, c2,2 2ms 5ms
c1,3, c2,3 4ms 8ms

TABLE I: The RCTs used in case study (1).

(resources r2, r3 and r6). The processor nodes (Node 1 and
Node 3 in Figure 4) generated two messages, respectively,
denoted by m1 and m2 in the figure. The destination of the
messages was Node 2, where the processing of the data was
performed. We used fixed priority scheduling for scheduling
subtasks within each resource reservation. We assumed that τ1
(also its subtasks) had a higher priority than τ2.

Regarding the controller parameters, we set the sampling
interval to 200ms. Also, we set Q = 0.1 × I and W =
tri(0.1, 0.1, 0.1, 0.1, 0.1, 0.1) + I to give a smaller weight for
the integral errors. Note that tri returns a lower triangular
matrix of its input vector. Based on the discussion presented
in Section V, we assigned the following reference vector:
yref = [0.08 0.10 0.15 0.08 0.08 0.10]T .

B. Case study (1): step response

Table I shows the RCTs used in this case study before and
after a step change in the RCTs. We changed the RCTs 4s after
the beginning of the simulations (i.e., after 100 task instances),
and we ran the simulations for 10s. The task response times
are illustrated in Figure 5. During the transient period of load
adjustment, a few instances of the end-to-end tasks missed their
deadlines. τ1 missed 20 deadlines (' 3.3 %), while τ2 missed
44 deadlines (' 7.3 %). Recall that τ2 had a lower priority
than τ1, hence it was scheduled later on the shared resources
(still within the component reservations). In addition, since
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Fig. 5: End-to-end response times of τ1 and τ2 in case study (1).

after the step load a backlog was built, it took a while until
the response times became stable again.

Figure 6 shows the consumed bandwidth α′h, assigned
bandwidth αh, and the control error (Equation 4) for each
resource separately. Although the RTCs were fixed throughout
the first 10 samples, the controller modified the assigned
bandwidths. This is because in the beginning of the simulations
the controller needs to adjust its model. Let ε̄εε denote the
average observed value of εεε(k) (Equation 3) which shows
the accuracy of the system identification. We observed the
following average differences between the estimated system
outputs and the real system outputs:

ε̄εε = 10−4 × [−74; 49; 54; −107; −75; 48],

which shows that the RLS approach has been successful in
identifying the system model.

C. Case study (2): multimedia application

In this simulation, in order to have realistic evaluation
of our framework, we used RCTs gathered from running
multimedia tasks on a real hardware platform [33]. We also
considered 10 % high priority interfering workload on all of the
resources to simulate the existence of other components. Fig-
ure 7 presents the evolution of the used bandwidths, assigned
bandwidths and control errors on all resources during the 100s
experiment (i.e., 500 control samples). The figure shows that
the controller managed to successfully track the evolution of
the workload. Figure 8 illustrates the response times of the two
end-to-end tasks. Since τ2 had a lower priority than τ1, it had
larger response times, and it occasionally violated its deadline.
In total, τ1 missed 4 deadlines (' 0.1 %), while τ2 missed 40
deadlines (' 1.6 %). We observed:

ε̄εε = 10−4 × [5; 1; −9; 15; 2; 16].

Let αααavg denote the vector of average assigned bandwidths
throughout the experiment. We had:

αααavg = [0.1977; 0.2600; 0.6378; 0.3686; 0.2030; 0.2174],
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Fig. 6: Consumed bandwidth α′
h, assigned bandwidth αh and control error eh of the six resources during case study (1).
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Fig. 8: End-to-end response times of τ1 and τ2 in case study (2).

which shows the high accuracy of the system identification.

In a new experiment, we used the above observed average
bandwidths αααavg , and we assigned them as fixed bandwidths to
the component. In total, the number of deadline misses for τ2
was 46 (' 1.8 %), while τ1 missed all of its deadlines. This is
because the first instance of τ1,1 finished in the 6th reservation
period. This phenomenon caused a large backlog for τ1. On
the other hand, since α2 was not enough for sending multiple
messages, τ1 never recovered from this backlog. The average
response time for τ1 was 248ms. This experiment shows that
given a certain resource efficiency level (i.e. reservation band-
widths) our adaptive framework works significantly better than
the static design approach. It should be noted that the static
design approach (i.e., the above static bandwidth assignments)
requires bandwidth estimations prior to the run-time, while our
adaptive approach does not have such a requirement.

D. Overhead

Our adaptive framework performs adaptations at the cost
of imposing two types of overhead: (i) communication over-
head; (ii) computation overhead. The controller requires the
bandwidth usage information (y(k)) during run-time to adjust
the bandwidth for each network resource. This information is
gathered by the resource scheduler in the nodes and switches
per link, and it is transmitted to the controller by means of
messages. Therefore, besides the data messages transmitted
through the network, the controller messages are sent through
the same links. For this particular information a specific band-
width is reserved on the network, that is isolated from the data
message bandwidth. For instance, in the HaRTES architecture,
the data messages are transmitted within the asynchronous
window, while the control messages are transmitted within the
synchronous window. Note that the controller is performed
periodically, thus the control messages can be transmitted
periodically as a set of synchronous messages. A small portion
of the synchronous window can be reserved for the control
messages. For the control purpose we can send messages
with the size equal to 500 Bytes (40µs) every reservation

period (40ms) which imposes 0.1 % overhead on the network.
The number of control messages can be reduced by devising
a decentralized control scheme similar to [34], where we
can decompose the system model presented in Equation 1.
However, we leave investigating this approach for the future
work.

Furthermore, the controller performs computations to first
update its model of the system using the RLS technique (Equa-
tion 3), and to calculate the control input u(k) (Equation 8).
For the purpose of the above case study, we implemented the
two functions in Matlab, and we ran them on our machine
featuring an Intel Core i7-4600U processor with 12 GB RAM.
The RLS identification took in average 373µs, while the
LQR computations took in average 240µs. Therefore, given
the sampling period, the controller module imposed around
0.31 % computation overhead. Note that the above values
are measured running Matlab code on a Windows operating
system. Therefore, an efficient implementation executed on
a real-time operating system will potentially impose lower
overhead. In general, overhead is proportional to the total
number of resources used by the component M (ι).

E. Discussions

We conclude from the above case studies that our con-
troller module manages to fulfill the objectives described in
Section V, that are (i) to serve the components with negligible
deadline violations; (ii) to allocate the resources efficiently
by matching the reservation bandwidths to the instantaneous
needs during run-time (instead of overprovisioning the re-
sources). Considering the network resources in the evaluation,
we changed the reservations within the asynchronous window
sizes in the EC during run-time. This allows other components
in the asynchronous window to utilize more bandwidth. Also,
we can reduce the size of the asynchronous window if it is not
used by the components within this window. In doing so, the
size of the other window, i.e., the synchronous window can be
increased. Therefore, more resource is available for the com-
ponents that use the synchronous window in the EC. The same
argument applies for the processor resources. The component
allows other components that share the resources with itself to
utilize larger bandwidths by keeping its reservation size low.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we designed an adaptive framework for
scheduling component-based distributed real-time systems. In
our framework we enforce end-to-end reservations across all
of the resources needed by the end-to-end tasks within the
components. The sizes of the reservations are adjusted during
run-time to cope with dynamic resource needs. We showed,
using two case studies, that our framework reduces the number
of deadline violations to a negligible level, while keeping the
reservation sizes close the actual demands.

In the future we will propose a protocol to manage overload
situations in which the overall resource reservation on a
resource is beyond its schedulability threshold. In addition,
we would like to investigate using a decentralized control
approach to see whether we can reduce the communication
overhead of the controller while keeping its performance at an
acceptable level.
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