
SMT-based Synthesis of TTEthernet Schedules: a
Performance Study

Francisco Pozo∗, Guillermo Rodriguez-Navas∗, Hans Hansson∗, and Wilfried Steiner†
∗School of Innovation, Design and Engineering, Mälardalen University

Västeras, Sweden
Email: {francisco.pozo, guillermo.rodriguez-navas, hans.hansson}@mdh.se

†TTTech Computertechnik AG
Vienna, Austria

Email: wilfried.steiner@tttech.com

Abstract—Time-triggered networks, like TTEthernet, require
adoption of a predefined schedule to guarantee low communica-
tion latency and minimal jitter. The synthesis of such schedules
is a problem known to be NP-complete. In the past, specialized
solvers have been used for synthesizing time-triggered sched-
ules, but more recently general-purpose tools like Satisfiability
Modulo Theories (SMT) solvers have reported synthesis of large
network schedules in reasonable time for industrial purposes.
An interesting characteristic of any general-purpose tool is that
its configuration parameters can be tuned in order to fit specific
problems and achieve increased performance. This paper presents
a study identifying and assessing which SMT solver parameters
have the highest impact on the performance when synthesizing
schedules for time-triggered networks. The results show that with
appropriate values of certain parameters, the time can be reduced
significantly, up to 75% in the best cases compared to previous
work.

I. INTRODUCTION
The time-triggered paradigm [1] defines an offline schedule

to ensure separation between time-triggered and non time-
triggered traffic while providing high reliability in the most
critical parts of the network. These offline schedules can be
seen as a contract in which there is an agreement in the
way the network resources are shared. For time-triggered
communication, the synthesis amounts to allocating all the
frames on the communication links while fulfilling a set of
constraints.

The problem of synthesizing a schedule can be formulated
as a constraint problem where a valid offline schedule is
obtained when every constraint is satisfied. Specialized solvers
have been designed to solve these specific constraints problems
[2], [3], but recently a very powerful type of general-purpose
constraints solver called Satisfiability Modulo Theory (SMT)
has emerged. SMT solvers can solve decision problem ex-
pressed in first-order logic with respect to background theories
[4]. Two examples of state of the art SMT solvers are Yices
and Z3.

The size and complexity of time-triggered networks are
steadily increasing, which is a challenging problem for the
synthesizer tool. An evaluation of the viability of SMT-
based synthesis of schedules was performed in [5], which
reported synthesis of schedules of industrial size networks
(1000 frames) in around half an hour. In the conclusion of the
evaluation, the author proposed different options to reduce the
time of the synthesis, by reducing the number of constraints.
Identifying how to reduce the synthesis time but maintaining
the same number of constraints is a relevant industrial problem:

only faster synthesis of schedules will allow faster exploration
of different frame assignments in the network; this is required
in order to be able to find feasible schedules for larger networks
in reasonable time.

In this paper we study how the configuration of the general-
purpose SMT solver impacts the performance for synthesizing
time-triggered network schedules. The study does not only
focus on the configuration parameters of the SMT solver
itself, but also how to use it for our purpose. We consider
TTEthernet constraints definitions and the case study networks
in conjunction with the schedule synthesizer developed by
Steiner [5]. In addition, we have developed a new schedule
synthesizer, which uses an up-to-date SMT solver that provides
more configuration parameters and better performance.

The paper starts with an explanation of the basic formalism
of the time-triggered TTEthernet network, the definition of the
synthesis of its schedule and the constraints that have to be
accomplished (Section II). Then the SMT-based strategy to
synthesize schedules is explained with the different parameters
that can be configured (Section III). Results of the study show
a synthesis time improvement up to 75% in the best case
compared to previous works for networks containing a large
number of constraints (Section IV). The paper ends with a
summary of the improvements brought by the configuration of
the different parameters of the SMT solver (Section V).

II. BACKGROUND
A. Network definition

TTEthernet networks are defined as multi-hop networks
that are composed by end systems, switches and communi-
cation links. End systems can only be connected to switches
by communication links whereas switches can be connected
to end systems and other switches. The physical topology
of a multi-hop network is defined by an undirected graph
G(V,E) where V is the set of end systems and switches and
E are the communication links. Figure 1 is an example of a
TTEthernet network with two switches, five end systems and
seven communication links.

Physical communication links are bidirectional and com-
posed by two directed unidirectional dataflow links that con-
nect two vertices, one for each direction. A sequence of
dataflow links forms a dataflow path that connects a vertex
(sender) with another vertex (receiver). In a TTEthernet net-
work the sender and receiver can only be end systems, whereas
the other vertices of the dataflow path can only be switches.
As seen in Figure 1, v1 = vs is the sender, v6 = vr is
the receiver and the other vertices in the dataflow path v4

978-1-4673-7711-9/15/$31.00 c© 2015 IEEE

Fig. 1: TTEthernet Network with two switches, five end
systems and seven communication links

and v5 are switches, forming the dataflow path denoted by
p = ((v1, v4), (v4, v5), (v5, v6)).

TTEthernet also allows multiple receivers for a unique
sender with the implementation of virtual links similarly to
ARINC 664-p7. A virtual link is a union of one or more
dataflow paths. Moreover, we can see the union of dataflow
paths as a directed tree structure where the sender is the root
and the receivers are leafs. In Figure 1, the virtual link tree
has v1 as root and v6, v7 as leafs.

Information between the sender and receivers is commu-
nicated by means of frames where the route from the sender
to the receivers is defined by the virtual link. An instance
of a frame is a specific frame being transmitted in a specific
dataflow link. Therefore a frame is defined by a collection of
instances of the frame, formulated as f (vi,vj), where the data
is transmitted from vi to vj .

TTEthernet has three different classes of frames:
• Time-Triggered (TT): has hard real-time requirements

and is scheduled offline.
• Rate-Constrained (RC): with soft real-time require-

ments, but with guaranteed bandwidth; is scheduled
online.

• Best-Effort (BE): follows the Standard Ethernet policy.

B. Scheduling rationale
In this paper we will focus only on TT frames as they are

the only ones whose schedule is synthesized. An instance of a
TT frame is defined by a triple with the period, length and
offset f (vi,vj) = {f.period, f.length, f (vi,vj).offset}. The
period and length of the TT frame are given a priori by the
designer of the network. The task of the tt-scheduler, the
synthesizer of schedules developed in this work, is to assign a
specific value to the offset for all the instances of TT frames.

The offset value of every TT frame instance has to identify
the transmitting time from the first and all the iterations until
the network stops. A cyclic scheduling of all the TT frames,
with a hyper-period, is defined by the least common multiple
of all the TT frames periods [6].

Another inconvenience is the high complexity of schedul-
ing with the resolution of the clock of the network (one clock
tick of the synchronization protocol. To reduce complexity, one
of the most used techniques is the division of the hyper-period
into equally sized slots called raster [7]. The size of the raster
slots is the time needed for the transmission of the longest
instance of the frame on any dataflow link.

C. Constraints definition
The assignment of the value to the offset of the TT frames

is limited by a series of constraints of the TTEthernet network.
We will mention the constraints that are implemented in the
tt-scheduler. Due to space limitations, the formal specification
of the constraints is not discussed here. Interested readers are
referred to [5].
• Avoid-collision: only one frame can be transmitted at

the same time through a given dataflow link.
• Ensure-causality: controls the correct sequence of

transmission of all the instances of the frame in their
path from the sender to the final receivers.

• Avoid-buffer-overflow: to be able to always receive the
TT frames and not having to discard frames because
the switch’s memory is full, we define a constraint on
the number of time slots that a frame can be stored in
the switch.

• Simultaneous-relay: optional implementation of
TTEthernet required for some implementations,
which will dispatch the frame simultaneously to all
outgoing dataflow links of the switch.

III. SMT-BASED SYNTHESIS OF SCHEDULES
The tt-scheduler developed in this work is based on the

SMT solver Yices, hence all the names of the SMT solver
functions are referred to Yices. The same strategy could,
however, be implemented in most of the others SMT solvers.

The principal flow of the tt-scheduler is divided in four
phases. The first phase parses the information of the input file
of the network into internal memory. The input file contains
the number of links of the network, the parameters of the
constraints and the virtual links of all the TT frames of
the network. This information will be used to generate the
scheduling constraints in the principal loop. The second phase
is the configuration of the Yices Solver and the synthesizer
of schedules. Different parameters can be chosen both in the
solver and in the synthesizer. The third phase is the principal
loop and will be explained in the following paragraphs. The
last phase, the output phase, gathers the information of the
solver and saves it in the appropriate file format.

A background theory is a collection of symbols and a
structure that interpret the symbols [8]. For example, if we have
the symbols 0, 1, +, − and <, interpreted in the usual way, we
get a theory that can add, subtract and calculate inequalities
of any number coded as boolean. There are many different
background theories, some of them are more used than others,
and every SMT solver chooses which ones to integrate. The
most implemented background theories in the SMT solvers
are the linear arithmetic (which we just described), difference
arithmetic, non-linear arithmetic, free function, bit-vectors and
array. Different background theories can be merged to create
new background theories, but not all combinations are possible.
Every SMT solver also chooses which background theories can
be merged.

The principal loop tries to solve all the constraints
and returns the schedule. The approach to solve sched-
ules with SMT-based solvers has two main steps: add con-
straints into the logic context of the solver with the function
yices assert formula() and solve the logic context with the
function yices check context(). In our case, as the number
of constraints is too large to be solved in one check, we
divide the whole set of constraints into groups and check them

Fig. 2: Principal Loop of the tt-scheduler

group by group. Note that every time a new group is checked,
the solution of the previous groups of constraints has to be
considered. Every group will be be divided by frames, such
that every group of constraints refers to a fixed number of
frames. This number is configured offline with a variable called
stepsize.

Figure 2 shows the tt-scheduler principal loop. In every
iteration of the loop, a stepsize number of frames is scheduled.
The loop starts building the constraints of the frames to
be scheduled, adding them into the logical context with the
yices assert formula() function and calling the solver with
yices check context() which tries to find a solution that ful-
fills all the constraints of the logical context. If the solver finds
a solution, the check function returns a status sat (satisfiable)
flag, otherwise it returns a status unsat (unsatisfiable) flag.
Along with the status sat flag, Yices creates a model with
a mapping into constant values of all the variables that fulfills
the constraints of the logical context, which is a valid schedule
of the network.

In the principal loop, when the tt-scheduler gets a safis-
tiable flag from Yices, it saves the logic context into an
internal stack of Yices with the yices push() function for
backtracking purposes. To take into account the solution for
the next iteration, new constraints are built from the results
of the model and are added to the logic context with the
place hard() function. These iterations will be performed
until there are no more frames to schedule, and in the last
iteration, the model of Yices will contain the schedule of
the whole network. In contrast, if the check context function
returns an unsatisfiable flag, the last satisfiable configuration is
loaded with the yices pop() function and the loop is repeated
again with the constraints of all the frames since the last
satisfiable configuration. Note that in the case that there is
no more satisfiable configuration to be loaded, it means that
the current network with these frames constraints cannot be
scheduled.

IV. STUDY
In the following studies we aim to improve the results

from [5]. A first approach to reduce the time to synthesize the
schedule and be able to study more configuration parameters is
to update the SMT solver to the newest version. The previous
evaluation has been done with the SMT solver Yices 1, a new

version of the solver, Yices 2.2, is available, which exhibits bet-
ter performance and offers more varied configuration options
[9]. The parameter of the SMT solver with strongest effect on
the performance is the Background Theories (BTs). Yices 1
only allows two configurations: the default BT, or use only
the arithmetic BT, which was used in the previous mentioned
evaluation. In contrast, Yices 2 offers a higher number of BTs.
There are also possibilities to change parameters outside Yices
to try to reduce the time. We study how the length of the steps
of every iteration, stepsize, impacts the time of synthesis.

To perform the study we ran the synthesizer in 20 different
networks from Steiner’s evaluation. All the networks have
a snowflake topology, 50 dataflow links and a number of
frames between 100 and 1000. The snowflake network was
chosen because it was reported as one of the more time
consuming to synthesize and to be a common configuration
for end-users applications. The networks are divided in two
groups depending on the distribution: a high distribution (HD)
group in which all end systems are broadcasting the frame
to all possible receivers; a low distribution group (LD) in
which between a third and a half of the end systems are
broadcasting and the rest of the end systems belong to two
different multicast groups that only exchange frames to the end
systems belonging to the same group. As for the configuration
parameters of the scheduler, the steps in frames of every
iteration is set with stepsize = 4. The study was run in a
MacBook Pro in OS X Yosemite with a 2,6 Ghz Intel Core i7
and 10 GB of RAM.

A. Yices 2 Background Theories
Nowadays, Yices 2 supports seven BTs: Arrays with eX-

tensionality (AX), BitVectors (BV), Integer Difference Logic
(IDL), Real Difference Logic (RDL), Linear Integer Arith-
metic (LIA), Linear Real Arithmetic (LRA) and Uninterpreted
Functions (UF). It also supports deactivating all BTs (for
propositional logic only) and up to three BTs combined at the
same time. Note that not all the BTs are valid to synthesize
schedules. Only the arithmetic BTs (IDL, RDL, LIA and
LRA) are valid, the other BTs do not interpret the constraints
as we need and therefore synthesize invalid schedules. The
combination of BTs with at least one arithmetic theory and
one or more non-arithmetic theories also generated invalid
schedules. The combination of only arithmetic BTs is still
valid, but unfortunately the only arithmetic combination that
Yices 2 supports is LIA + LRA, constituting the Linear Integer
Real Arithmetic (LIRA). To compare the performance between
Yices 1 and Yices 2, we used Steiner’s synthesizer, which is
implemented in Yices 1, using the arithmetic’s BT.

Figure 3a shows the synthesis time of the different BTs
for the LD networks, the Yices 1 synthesis time is shown
too for comparison purposes. Two different groups can be
distinguished: a first group with IDL, LRA and RDL BTs;
and a second group with LIA and LIRA BTs, which can
synthesize the same network schedule in almost half of the
time but slightly more time than Yices 1. LIA is the BT that
yields lowest synthesis time for our scheduling problem. The
combination of LIA with LRA also gives similar synthesis
times; this can be due to the fact that Yices 2 does not activate
the LRA BT in the LIRA combination, as it does not find
any Real variable in the logic context. Similar results can be
observed in Figure 3b for HD networks, where the schedule
is synthesized with LIA and LIRA in 40 % less time than

(a) LD network (b) HD network

Fig. 3: Synthesis time of different BTs in Yices 2 and Yices
1 for LD and HD networks

the with other BTs. The improvement compared to Yices 1
is about three times less synthesis time needed. There is no
data for the 900 and 1000 frames HD networks for Yices 1;
this is because the memory that the synthesizer needed was
more than 10 GB and the synthesizer stopped. This memory
problem does not occur in Yices 2. In a further study about the
memory consumption, the Yices 2 synthesizer only uses 4,6
GB of memory for 1000 frames HD networks and 2,2 GB for
800 frames HD networks. So as a side effect of this study, we
observed that Yices 2 has much lower memory consumption
than Yices 1, which enables scheduling of larger networks.

B. Stepsize
We study whether the number of constraints solved at every

iteration in the logical context can also affect the performance
of the synthesizer modifying the stepsize. The study is done
on Yices 2 with the LIA BT as this is the one that performed
best. The number of frames of the network was set to 1000
because it is the most complex to synthesize and thus will
make the difference in performance more evident.

As can be noticed in Figure 4, with a small value of
stepsize, the synthesis takes much longer, for instance with
HD network and if only one frame is scheduler per each
iteration, it takes more than 30 minutes. The lowest synthesis
time occurs for stepsize = 9. There is a range of stepsize
where the synthesis time is only slightly above the lowest
synthesis time, and when stepsize takes a value in the range
[6 − 22], the synthesis time is only slightly above the lowest
synthesis time, in no case it exceeds a 25% increase. The large
synthesis time for the synthesizer outside the [6−22] stepsize
range can be explained as a saturation caused by too many
checks for lower stepsize, or caused by too many constraints
to be solved at the same check for larger stepsize.

V. CONCLUSION
We have presented a performance study for SMT-based

synthesis of time-triggered network schedules. We first mi-
grated Steiner’s tool [5] to an up-to-date SMT solver, which
reduced the synthesis time in half for the most complex
networks considered. Moreover, we studied the impact on
the performance for the new background theories that an
up-to-date SMT solver can offer. Integer Linear Arithmetic
background theory reduced the synthesis time up to three
times compared with previous works. Last, we have performed
a study of the number of frames (stepsize) checked in the
logical context in every iteration. Our finding is that a range

Fig. 4: Synthesis time of different stepsize for 1000-frame
networks

of stepsizes ([6 − 22]) has better performance than other
stepsizes choices.

The improvement in performance brought for an up-to-
date SMT solver and an appropriate tune of its parameters
allows us to synthesize thousand-frames network in a more
than acceptable time for industrial purposes. For future work,
we want to develop a network test generator that allow us
extend our study to larger networks and different topologies.
Also we seek to perform a more rigorous study for the heuristic
parameters of SMT solvers in order to keep reducing the
synthesis time.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the People Programme (Marie Curie Actions) of the
European Union’s Seventh Framework Programme FP7/2007-
2013/ under REA grant agreement n◦607727 and from the
Swedish Knowledge Foundation (KKS), under project n◦

20130048.
REFERENCES

[1] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” Proceed-
ings of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[2] D.-T. Peng, K. G. Shin, and T. F. Abdelzaher, “Assignment and Schedul-
ing Communicating Periodic Tasks in Distributed Real-Time Systems,”
Software Engineering, IEEE Transactions on, vol. 23, no. 12, pp. 745–
758, 1997.

[3] C. Hang, P. Manolios, and V. Papavasileiou, “Synthesizing Cyber-
Physical Architectural Models with Real-Time Constraints,” in Computer
Aided Verification. Springer, 2011, pp. 441–456.

[4] L. De Moura and N. Bjørner, “Satisfiability Modulo Theories: Introduc-
tion and Applications,” Communications of the ACM, vol. 54, no. 9, pp.
69–77, 2011.

[5] W. Steiner, “An Evaluation of SMT-based Schedule Synthesis for
Time-Triggered Multi-Hop Networks,” in Real-Time Systems Symposium
(RTSS), 2010 IEEE 31st. IEEE, 2010, pp. 375–384.

[6] T. P. Baker and A. Shaw, “The Cyclic Executive Model and Ada,” Real-
Time Systems, vol. 1, no. 1, pp. 7–25, 1989.

[7] A. K. Mok and W. Wang, “Window-Constrained Real-Time Periodic
Task Scheduling,” in Real-Time Systems Symposium, 2001.(RTSS 2001).
Proceedings. 22nd IEEE. IEEE, 2001, pp. 15–24.

[8] L. De Moura and N. Bjørner, “Satisfiability Modulo Theories: An
Appetizer,” in Formal Methods: Foundations and Applications. Springer,
2009, pp. 23–36.

[9] B. Dutertre, “Yices 2.2,” in Computer Aided Verification. Springer,
2014, pp. 737–744.

