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Abstract—Safety-critical systems usually need to comply with
a domain-specific safety standard. To reduce the cost and time
needed to achieve the standard compliance, reuse of safety-
relevant components is not sufficient without the reuse of the
accompanying artefacts. Developing reusable safety components
out-of-context of a particular system is challenging, as safety
is a system property, hence support is needed to capture and
validate the context assumptions before integration of the reusable
component and its artefacts in-context of the particular system.

We have previously developed a concept of strong and
weak safety contracts to facilitate systematic reuse of safety-
relevant components and their accompanying artefacts. In this
work we define a safety contracts development process and
provide guidelines to bridge the gap between reuse of safety
elements developed out-of-context of a particular system and their
integration in the ISO 26262 safety standard. We use a real-world
case for demonstration of the process.

Keywords—Safety Element out of Context, ISO 26262, Reuse,
Safety Contracts, Safety Argumentation.

I. INTRODUCTION

The basis for building modern safety-critical systems often
lies in reusing existing components [2]. Most of these systems
need to comply with a domain-specific safety standard that
frequently requires a safety case in form of a clear and
comprehensible argument supported by evidence to show why
the system is acceptably safe. The safety standards typically
do not provide detailed guidelines for reusing safety-relevant
components and the accompanying artefacts, which makes
the integration of the components and the provided evidence
challenging [3]. For example, the automotive safety standard
ISO 26262 [13] supports reuse through the notion of Safety
Elements out of Context (SEooC), which are elements ex-
plicitly developed for reuse according to ISO 26262. While
the standard provides requirements and recommendations on
which information is needed for the integration of SEooC,
guidance on performing systematic reuse by capturing and
validating the context assumptions is missing.

Since safety is a system property, traditional safety analyses
such as Fault Tree Analysis (FTA) and other safety artefacts
(e.g., safety arguments) are made on the system level. Reusing
such artefacts is difficult since what is safety relevant in one
system is not necessarily safety relevant in another system. Fur-
thermore, non-systematic reuse of safety artefacts has shown to
be dangerous [14]. Hence, there is a need to fill the gap created
by the safety standards’ lack of guidelines for systematic reuse
and integration of safety components and their safety artefacts.

Systematic reuse of safety artefacts can be achieved by
generative reuse, which indicates reuse of artefacts [6] (be it

the code itself, results of a failure analysis such as FTA [15]
or parts of safety arguments [11]) where a customised artefact
is generated for a specific context from specification written
in a domain specific specification language. For example, con-
sider an out-of-context component with a pre-developed safety
argument that is reused in a particular system. Such safety
argument, produced out-of-context, might contain irrelevant
information for the particular system. Instead of trying to reuse
and integrate pre-developed safety arguments, the relevant
information for the particular system is first identified from the
provided artefacts, and then the corresponding system safety
argument is generated from the identified information. In our
work we use component safety contracts for capturing safety-
related information and for identifying the relevant information
about the component in a particular context. The context of a
component can be for instance a specific system in which the
component is used. The contracts provide a way to handle
systematically the context assumptions related to the SEooC.

A contract is an assumption/guarantee pair, where a com-
ponent offers guarantees about its own behaviour if the as-
sumptions on its environment are met. Safety contracts are a
specific types of contracts that deal specifically with compo-
nent behaviours that are deemed relevant from the perspective
of hazard analysis. In our previous work we showed how
safety contracts can be used to support generative reuse of
safety artefacts [19]. Since reusable components can exhibit
different behaviours in different environments, contracts are
characterised as either strong or weak to allow capturing
these different behaviours in a more flexible manner [17].
Furthermore, since the safety contracts deal with some of
the information used in the safety arguments, we can use
the contracts to semi-automatically generate context-specific
argument-fragments related to components [18].

In this paper we enrich the safety guidelines provided by
ISO 26262 to include contract-specific activities and demon-
strate how systematic reuse that aims at easing integration
of safety-relevant components within ISO 26262 systems can
be achieved. We first define the safety contracts development
process and the corresponding contract-specific activities. Then
we provide guidelines on how and when to use the contract-
specific activities in the case of SEooC.

The current version of the ISO 26262 standard is aimed
at passenger vehicles up to 3500 kilograms, while the next
version of the standard is planned to also address heavy
vehicles such as construction machines and trucks. Hence,
heavy vehicle companies have already started preparing for
the upcoming compliance to ISO 26262. To demonstrate the
proposed process we use a product-line scenario composed



of two construction machines as a common real-world case.
Both machines are equipped with lifting arms, whose software
controller in both cases includes a component for automatic
positioning of the arm in a predefined position. We develop
this component as a SEooC and then reuse it within the two
products. On this real-world case we demonstrate how safety
contracts can be used for SEooC development. Moreover, we
illustrate the benefit of generative reuse of safety arguments
on the the SEooC integration within the two products.

The contributions of this work are (1) the guidelines in
form of a safety contracts development process describing the
role of the safety contracts within the development and inte-
gration of reusable components within safety-critical systems,
(2) application of the guidelines to support development and
integration of SEooC within ISO 26262 compliant system, and
(3) its demonstration in a real-world case. In contrast to exist-
ing works that focus on facilitating reuse of safety artefacts
within safety-critical systems [7], [9], [12], [16], we focus
on detailing the guidelines for development and integration
of reusable safety components within safety-critical systems
via safety contracts. More specifically, we align the proposed
process with ISO 26262 to facilitate generative reuse of safety
artefacts, primarily safety arguments. We focus on providing
means for capturing the SEooC assumptions recommended by
the standard and support their validation during integration of
the SEooC in an ISO 26262 compliant system. We assume
that for the integration to work, both the SEooC and the target
ISO 26262 system have safety contracts established.

The rest of the paper is structured as follows: In Sec-
tion II we provide background information. We present the
safety contracts development process and align it with the
SEooC development process recommended by ISO 26262 in
Section III. In Section IV we demonstrate the proposed process
and the related guidelines on a real-world case. We provide
discussion in Section V and related work in Section VI. Finally,
conclusions and future work are presented in Section VII.

II. BACKGROUND

In this section we provide background information on the
ISO 26262 safety process and the processes recommended
for development and integration of Safety Elements out of
Context. Furthermore, we provide essential information on
the strong and weak safety contracts as well as graphical
argumentation notation for representing safety arguments.

A. ISO 26262

ISO 26262 [13] has been developed as a guidance to
provide assurance that any unreasonable residual risks due
to malfunctioning of E/E systems have been avoided. The
standard requires a safety case in form of a clear and compre-
hensible argument to show the completeness and satisfaction
of the safety requirements allocated to an item by providing
evidence generated during the system development. An item in
ISO 26262 is composed of at least a sensor, controller and an
actuator, which together implement a vehicle level function.

Central part of Fig. 1 shows the safety process of the ISO
26262 standard. The process starts with the Concept phase
(Part 3 of the standard) that is initiated with the item definition
activity where the main objective is to define and describe the
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Fig. 1. Projection of the ISO 26262 lifecycle activities to SEooC development
and integration process

item by capturing its dependencies on, and interactions with,
its environment. In the subsequent activities of this phase the
hazards related to the item are identified and classified ac-
cording to Automotive Safety Integrity Levels (ASILs), safety
goals are established and further refined into functional safety
requirements that are allocated to the architectural elements.

In the first part of the Product development at system
level phase, the technical safety requirements are derived from
the functional safety concept, and the system is designed
to comply with both the technical and functional safety re-
quirements. Based on the system design, development and
testing of both the hardware (HW) and software (SW) elements
is performed. During Product development at HW/SW level
(Parts 5&6 shown in Fig. 1) the corresponding HW/SW safety
requirements are derived with consideration of environmen-
tal/operational constrains identified during the concept phase.
The process continues with integration and testing of the
HW/SW elements, followed by integration of elements that
compose an item to form a complete system. The item is then
integrated with other systems and tested on the vehicle level.
Product development at system level is finalised with safety
validation and an assurance case is presented to show that the
safety goals are sufficient and that they have been achieved.

We include additional information on the concept and
system design phases as they play an important role in reuse
of safety elements. Based on the ISO 26262 development
process, the information that needs to be gathered during the
concept and system design phases includes the following: (1)
purpose and functionality of the item, (2) operating modes and
states of the item (including the configuration parameters), (3)
law, regulation and standard requirements, (4) operational and
environmental constraints, (5) interface definition, (6) hazard
analysis results, including the known hazards, their ASILs and
the associated safety goals.

To ease the development of ISO 26262 compliant sys-
tems, the standard acknowledges different reuse scenarios: (1)
elements that have been developed for reuse according to
ISO 26262 in form of SEooC, (2) pre-existing elements not
necessarily developed for reuse or according to ISO 26262
that have to be qualified for integration, and (3) elements that
qualify for reuse as proven-in-use. In this paper we focus on
the SEooC reuse scenario.



Fig. 2. Component and safety contract meta-model

SEooC can be an element used to compose an item, but it
cannot be an item since item implements functions at vehicle
level, while a reusable elements such as SEooC are not devel-
oped in the context of a particular vehicle. The development
of SEooC follows the ISO 26262 safety process, but since
SEooC is developed out-of-context, the information related to
the system context (gathered during the concept and system
design phases) first needs to be assumed. The assumptions
are made to the functional safety concept as the main output
of the concept phase and the external design (system-level
assumptions; the interactions with, and dependencies on the
elements in the environment are assumed). After assuming the
relevant system design, the development of the SEooC follows
the product development at SW/HW level.

B. Safety Contracts

In our previous work [17], we have proposed a contract-
based formalism with strong 〈A,G〉 and weak 〈B,H〉 con-
tracts to distinguish between context-specific properties and
those that must hold for all contexts. A traditional component
contract C = 〈A,G〉 is composed of assumptions (A) on the
environment of the component and guarantees (G) that are of-
fered by the component if the assumptions are met. The strong
contracts composed of strong assumptions (A) and strong
guarantees (G) allow for specification of properties that should
hold in all systems of intended usage of the component, while
the weak contracts composed of weak assumptions (B) and
weak guarantees (H) allow for specification of properties that
hold in a subset of systems of intended usage. For example,
strong contracts can be used to prevent misuse of configuration
parameters of the component by requiring parameters scope
and guaranteeing interaction of the different parameters, while
weak contracts could be used to describe distinct component
behaviours achieved by the different configurable parameter
values. The related contracts of a contract C are those contracts
that either assume the guaranteed properties of C or the ones
that guarantee properties assumed by the contract C.

If a system (in terms of hardware and software) is described
with a set V of variables/properties that belong to all the
components of the system, then assumptions for contracts of a
component C within the system can be made on all variables
from V that do not belong to the component C. The assump-
tions of all the strong contracts of a component determine
a set of environments/contexts in which the component can
operate and exhibit different behaviours. The context of a
component in terms of contracts is defined by the assumptions
of the corresponding component contracts. When a component
is being developed out-of-context of a particular system, then
the possible system contexts in which the component can be
used are constrained by the strong contract assumptions.
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Fig. 3. A subset of GSN symbols used within this paper

As introduced in Section I, we call a contract capturing
safety-relevant behaviour a safety contract. Despite the theoret-
ical possibility of formalising all safety-relevant information,
in practice it is not reasonable to capture all the safety-relevant
information within formal contracts. Thus we recognise that
safety contracts consist of both formal and informal assump-
tions and guarantees. In our previous work [19] we used the
CHESS-toolset1 to demonstrate how the formal part of the
contracts can be captured using the Failure Propagation and
Transformation Calculus (FPTC), both implemented within the
toolset.

The component meta-model (Fig. 2) that connects safety
contracts with supporting evidence provides a base for evi-
dence reuse together with the contracts [19]. The component
meta-model specifies a component in an out-of-context setting,
composed of safety-contracts, evidence and the assumed safety
requirements. Each safety requirement is satisfied by at least
one safety contract, and each contract can be supported by one
or more evidence. This component meta-model is used as the
basis for semi-automatic generation of safety case argument-
fragments [18]. For example, if we assume that late output
failure of the component can be hazardous, then we define
an assumed safety requirement that specifies that late failure
should be appropriately handled. This requirement is addressed
by a contract that captures in its assumptions the identified
properties that need to hold for the component to guarantee
that the late failure is appropriately handled. The evidence that
supports the contract includes the contract consistency report
and analysis results used to derive the contract.

C. Overview of Goal Structuring Notation

We will use the Goal Structuring Notation (GSN) for spec-
ifying safety arguments. GSN [1] is a graphical argumentation
notation that can be used to represent the individual elements
(e.g., goals/claims, evidence, context) of any safety argument.
More importantly, GSN can be used to capture the relation-
ships that exist between the individual elements by using the
two relationships inContext and supportedBy. The inContext
relationship connects claims with the contexts that are used as
the clarifications of the related claims, while supportedBy is
used for connecting goals with its subgoals, backing up goals
with evidence and specifying the decomposition strategies used
to decompose a goal to a set of subgoals. Undeveloped goals
are those that are not further developed within the argument,
while the goals to be developed later on are used to display
an argument over several figures. Basic symbols of GSN used
in this paper are shown in Fig. 3.

1http://www.chess-project.org/page/download
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III. ISO 26262 SAFETY PROCESS SUPPORTED BY
SAFETY CONTRACTS DEVELOPMENT PROCESS

In this section we present the guidelines for using the
strong and weak safety contracts for the development and
integration of reusable safety-relevant elements within safety-
critical systems. Moreover, we present how the guidelines can
be used with the ISO 26262 SEooC notion. More specifically,
we bring the guidelines in form of the safety contracts devel-
opment process and the contract-specific activities, and detail
how and when these activities can be aligned with the SEooC
development.

A. Safety Contracts Development Process

As mentioned in Section I, the nature of safety being a sys-
tem property and the dangers of non-systematic reuse hinder
reuse of safety components within safety-critical systems. To
alleviate these issues a clear process and guidelines on how
to perform reuse should be provided to promote systematic
reuse of safety components. To integrate the systematic reuse
approach based on strong and weak safety contracts within a
safety process, a safety contracts development process needs
to be defined. We propose such a process divided into three
phases: (1) Preliminary safety contracts, (2) Safety contracts
production, and (3) Safety Contract utilisation and mainte-
nance. The alignment of the safety contract and the SEooC
development phases is shown in Fig. 4. While the first two
safety contract phases support the two out-of-context phases of
the SEooC development (Fig. 1), the third safety contract phase
supports SEooC integration in context of a particular system.
The first safety contract phase includes the capturing of SEooC
assumptions. The second contract phase is performed together
with the corresponding SEooC development phase, while the
third contract phase includes support for integration of SEooC
in a particular system. In the reminder of this subsection we
provide more details about the corresponding contract-specific
activities each phase is constituted of.

1) Preliminary Safety Contracts Phase: This phase should
be performed before the development of the item/component
for which the contracts are being established. The phase
constitutes of the following contract-specific activities:

• Establishing strong and weak contracts: The strong con-
tracts are established by considering behaviours such as
nominal functional or safety mitigation behaviours not
bound to context-specific configuration parameters. In

contrast, weak contracts are established by considering
behaviours bound to context-specific configuration param-
eters (e.g., accuracy of an algorithm may depend on the
physical properties of the system in which it is used).

• Enriching assumptions with environmental/operational
constrains: The different types of properties that should
be captured by safety contracts include nominal func-
tional behaviour, failure logic behaviour, resource usage
behaviour and timing behaviour [9]. Upon establishing
the strong and weak contracts, the contract assumptions
need to be enriched to achieve sufficient level of com-
pleteness by including environmental properties such as
platform properties, HW/SW interface and/or dependen-
cies to other elements.

• Preliminary matching of contracts to (assumed) HW/SW
safety requirements: As mentioned in Section II-B, the
safety contracts should capture information needed to sat-
isfy the safety requirements allocated to the corresponding
safety component. For example, supporting each derived
SW safety requirement allocated to a software component
with at least one preliminary contract is the final goal in
completing the set of the preliminary safety contracts.
If the contract to satisfy a particular requirement has
not been previously developed, a preliminary contract
should be established with its guarantee reflecting the
corresponding requirement.

2) Safety Contracts Production Phase: This phase should
be performed during the component development stage and the
following verification and validation activities on the compo-
nent level. The phase constitutes of the following activities:

• Actualisation of the contracts with implementation-
specific properties: Since not all information is fully
known during the preliminary safety contracts phase,
certain preliminary contracts (e.g., on resource usage) can
only be captured with speculative targeted behaviour. Af-
ter the component development stage, such contracts need
to be finalised once the actual behaviour of the component
(or a more accurate approximation) can be established.
For example, when more accurate information about the
actual accuracy of an algorithm, timing behaviour, or
memory footprint of the component is available, then we
can actualise the contracts capturing such behaviours with
the actual implementation-specific values.

• Supporting contracts with evidence: The final step in
producing the safety contracts for reuse is to support such
contracts with the evidence supporting the information
captured by the contracts. The evidence related to the con-
tracts consistency is generated by checking whether the
contracts are free of contradictions (e.g., strong and weak
contracts of the component do not make any contradicting
assumptions on the same property). The confidence in
completeness of the information captured within the con-
tracts can be for instance increased through the evidence
from which the contract is derived. For example, in case
that information captured within a safety contract is based
on simulation or testing results, the corresponding guaran-
tee of the contract should be based on the results while the
assumptions should capture the environmental parameters
under which the simulation/testing has been performed.
The artefacts related to the simulation/testing are then



attached to the particular safety contract with a description
in which way they are related. Further trustworthiness
evidence can be attached to the artefacts [19]. Since each
safety requirement is associated with an ASIL, which in
turn influences the stringency of evidence that needs to
be provided to assure that the particular requirement is
satisfied, the achieved ASIL information is attached to the
evidence rather than to the contracts themselves. In this
way the safety requirements are connected to the achieved
ASILs through the connection of the safety contracts with
the associated evidence.

3) Utilisation and Maintenance Phase: This phase is per-
formed in context of a particular system and the activities re-
lated to contract utilisation and maintenance can be performed
at different stages of the system lifecycle. For instance, the
safety contracts can be utilised for:

• Supporting architectural design of safety-critical sys-
tems [20].

• Selection of components based on the safety-relevant
behaviours captured in the safety contracts [19].

• Integration of a component in an existing system, as one
of the main roles of contracts is to promote independent
development of components and their easier integration
via contract-based verification [4].

• Contract-based safety assessment activities in form of
contract-based artefacts generation. Contracts can be
utilised for generation of different safety case artefacts
such as safety case argument-fragments [18].

The supporting activity for the contract development and
utilisation is contract maintenance. For example, in case of
changes to the existing contracts, all contracts of the corre-
sponding component should be revisited, while when updating
contracts with additional assumptions, only contracts capturing
the same type of behaviour (e.g., timing) should be reassessed.
Modifications of a component or system design requires that
all its contracts are reassessed and reestablished if required.

B. SEooC Development with Safety Contracts

SEooC development starts by capturing the system-level
assumptions (Fig. 1). Simultaneously, the preliminary safety
contracts phase is initiated, as described in the Section II-A.
All relevant assumed properties should be covered by the es-
tablished preliminary contract assumptions. Once the HW/SW
safety requirements are derived, each requirement is associated
with at least one contract such that the behaviour achieved
by the associated contracts satisfies the required behaviour by
the corresponding requirement. After the safety contracts are
established and associated with the safety requirements, the
safety contract production phase and the corresponding ISO
26262 product development at HW/SW level are continued to
develop the SEooC and its safety contracts. At this point the
development of the SEooC out-of-context is completed.

Once the SEooC is used in a particular system (in-context),
the assumed requirements are compared and matched (e.g.,
manually) to the actual safety requirements allocated to the
component, and contracts are used to verify that the assump-
tions captured during the SEooC development are satisfied
(provided that the contracts are established for the rest of the

Fig. 5. The assumed structure of the lifting arm unit context

system). The contract production phase continues in-context
to capture the behaviours of the SEooC that could not be
established out-of-context. In case of assumptions mismatch,
ISO 26262 impact analysis can be assisted by the contract
maintenance activity. Once all the relevant safety contracts are
satisfied for the reused SEooC, an argument for the component
is generated to show the satisfaction of the safety requirements
through the satisfaction of the associated safety contracts [18].

IV. REAL-WORLD CASE

In this section we apply the guidelines introduced in
Section III on a product-line scenario commonly found in
industry. The aim of the case is to develop a component out of
context of a particular product and reuse the component and its
accompanying artefacts in two different products of a product-
line. This can be challenging even for two similar products
such as those in a product-line since the hazards related to
the products can differ, as discussed in Section I. The SEooC
we develop is a Lifting Arm Automatic Positioning (LAAP)
component commonly used within wheel-loaders ? heavy
equipment machines used in construction to move material
or load material into/onto other types of machinery such as
trucks. We first present the LAAP and its SEooC development,
and then we discuss the LAAP integration within two different
products of a wheel-loader product-line.

A. SEooC definition and development

As discussed in Section III-B, the development of a SEooC
starts by making assumptions on the item in which the com-
ponent is intended to be used. The assumed structure of the
lifting arm unit context for a wheel-loader is shown in Fig. 5.
Wheel loaders are equipped with a lifting arm, which can
perform up and down movements that are directly controlled
by a hydraulic controller. The operator controls of interest
for the development of the LAAP consist of a control lever
that is used to lift/lower the arm and an automatic position
request button that positions the arm in a predefined position.
Once the automatic positioning is started, it can be stopped
by moving the control lever and switching automatically to
manual mode. Besides the operator controls, the LAAP uses
an arm angle sensor to determine the current arm position,
recorded position to which the arm should be moved and
the ground speed of the vehicle for tracking the vehicle
movements. The assumptions include only information deemed
relevant to the SEooC development, hence the full interface of
the arm controller is not assumed at this stage.

Before specifying the assumed software safety require-
ments that the LAAP will implement, we need to assume safety
implications of the component and its relation to possible
hazards. We identified contributions of LAAP to two possible
vehicle-level hazards: (H1) unintended movement of the lifting



TABLE I. SW SAFETY REQUIREMENTS

SWSR1 Safe state shall be applied during high-
speed

ASIL B

SWSR2 The stop position of the arm shall not
deviate more than ± 0.04 rad

ASIL B

SWSR3 Safe state shall be applied if erroneous
input (ground speed, angle sensor, control
lever or recorded position) is detected

ASIL B

SWSR4 Safe state shall be applied if the opera-
tional time of the LAAP is taking more
than the maximum raise time of the lifting
arm

ASIL A

SWSR5 LAAP shall not start inadvertently ASIL B
SWSR6 Safe state shall be applied when manual

arm movement is in progress (i.e., when
control lever value not 0)

ASIL B

arm, and (H2) hydraulic leakage. We consider the hazards in
the following operational situations:

• high speed (the vehicle is moving with varying speeds
that can go up to the maximum available speed)

• short cycle (a combination of load lifting and low speed
transportation)

• load and carry (the vehicle is moving with varying ground
speed with the bucket fully loaded)

Hazard H1 can be dangerous during high speed due to
e.g., heavy traffic when driving on a public road, during the
short cycle and load and carry phases it can be dangerous for
bystanders present in the area while high precision movement
is required from the machine. LAAP can contribute to hazard
H1 by e.g., value failure of the flow command that can be
caused by value failures of the angle sensor and the recorded
position variable. Furthermore, the unintended arm movement
can occur in case of omission of the autoPositionReq signal.
Omission or late failure of the control lever signal can cause
LAAP to continue its operation when not intended.

High-pressure hydraulic leakage could produce a highly
flammable oil/air mixture spray mist that might ignite in
contact with hot surface, hence the leakage should be identified
as soon as possible. One way in which LAAP can contribute
to this situation is when the LAAP starts operating but due to
the leakage the arm either never reaches the recorded position
or it moves much slower than usual, which contributes to
increasing the leakage. The occurrence of the hazard H2 in
either of the operational situations can be danger to the driver,
other participants in traffic and bystanders present in the area.
Table I presents the software safety requirements derived from
the assumed functional safety concept that address the possible
hazardous events related to both hazards.

The strong and weak contracts of the LAAP, initially
captured during the Preliminary Safety Contracts phase to
address the SW safety requirements, are shown in Table II. The
strong contract LAAP-1 requires that the groundSpeedLimit is
set below 20km/h and guarantees that LAAP will be disabled
when the ground speed of the vehicle is greater than the
groundSpeedLimit parameter. Disabling of the LAAP is the
safe state achieved by setting the active flag to false and the
flow value to 0.

The strong contract LAAP-2 assumes the correct input

TABLE II. LAAP SAFETY CONTRACTS

ALAAP−1: groundSpeedLimit within [0, 20] km/h;
GLAAP−1: groundSpeed > groundSpeedLimit implies (active

= false and flow = 0);
ALAAP−2: controlLever within ± 1 rad;
GLAAP−2: (groundSpeed not within [0, 200] km/h OR angle-

Sensor not within [0,3] rad OR controlLever not
0 rad OR recordedPosition not within [0,3] rad;)
implies (active = false and flow = 0);

ALAAP−3: watchdogTimerInterval within [raiseTime,
1.2*raiseTime] AND raiseTime > 0;

GLAAP−3: (not (active = false and flow = 0) implies watch-
dogTimer start) AND (LAAP-OperationalTime >
watchdogTimerInterval implies (active = false and
flow = 0 and watchdogTimer reset));

BLAAP−4: not angleSensor.valueFailure AND not recordedPo-
sition.valueFailure;

HLAAP−4: not flow.valueFailure;

BLAAP−5: not autoPositionReq.comission AND not con-
trolLever.omission;

HLAAP−5: not flow.comission AND not active.comission;

BLAAP−6: angleSensor accuracy is 0.02 rad AND actuation
deviation is within ±0.01 rad AND recordedPosi-
tion does not introduce deviation;

HLAAP−6: flow accuracy is 0.01 rad implies stop position is
within ±0.04 rad from the recordedPosition;

TABLE III. SW SAFETY REQUIREMENTS AND SAFETY CONTRACTS
MAPPING

SWSR1 LAAP-1
SWSR2 LAAP-4, LAAP-6
SWSR3 LAAP-2
SWSR4 LAAP-3
SWSR5 LAAP-5
SWSR6 LAAP-2, LAAP-5

value range for the controlLever signal and guarantees that the
safe state shall be applied when inputs other than controlLever
are out of bounds. Moreover, since the LAAP component
can be active only when the control lever is inactive (i.e.,
when controlLever is 0), the LAAP-2 contract also guarantees
that the safe state shall be applied when controlLever is
different from 0.

The strong contract LAAP-3 describes a SW watchdog
timer implemented as a part of the component that disables
LAAP if its operation time is longer than expected. To detect
possible hydraulic leakage, the timer is set within the interval
bound by raiseTime parameter (the maximum lifting time of
the arm under full load from lowest to highest position).

The weak contracts LAAP-4 and LAAP-5 capture failure
propagation behaviour of the LAAP such that they state which
conditions should the environment of the LAAP fulfil to miti-
gate a potentially hazardous failure propagation. The LAAP-4
contract specifies that in order to avoid the flow command
value failure, the environment of the LAAP should guarantee
that the angle sensor signal and recorded position value do not
exhibit value failure. The LAAP-5 contract contract specifies
that in order to mitigate inadvertent commands sent from the
LAAP (in form of commission failures of the flow and active



output ports), the environment should ensure that commission
of the autoPositionReq signal and omission of the controlLever
signal do not occur.

The weak contract LAAP-6 relates the guaranteed flow
accuracy and the lifting arm stop position based on the
assumptions on the accuracy of the angle sensor, recorded
position and the actuation.

The matching of the established contracts and the SW
safety requirements is presented in Table III. The contract
LAAP-4 is not fully addressing the requirement SWSR2, since
it only establishes that the accuracy of the flow command is
dependent on the accuracy of the angle sensor and the recorded
position value. Hence a more concrete contract LAAP-6 is
established to fully address the requirement SWSR2. During
the Safety Contracts Production phase, the contract LAAP-6 is
updated with the actual accuracy of the flow command.

As mentioned in Section III, the SW safety requirements
addressed by the safety contracts are supported with evidence
through the connection of the contracts and the supporting
evidence. Since requirements are categorised with ASILs, the
stringency of the evidence supporting the contracts should be
appropriate for the corresponding integrity level. Since the
assumed requirements are associated with at most ASIL B,
to support the contracts associated with the requirements we
use inspection and testing as verification means recommended
by ISO 26262 for the specified ASILs. The context statements
that provide clarifications of the contracts and the supporting
evidence attached during Safety Contract Production phase
are shown in Table IV. The context statements are denoted
with LAAP-x Cy and evidence with LAAP-x Cy., where x is
the number of the related contract and y the number of the
evidence/context statement.

B. SEooC Integration

The two products in which we reuse the developed SEooC
are a part of the same wheel-loader product line. First product
is a Gigant Wheel-loader (GWL) used within closed construc-
tion sites. Due to its size, both the GWL itself and its arm
move slower than other machines. Time needed to raise the
arm under full load from minimum to maximum position is
around 10 seconds. The second product is a Small Wheel-
loader (SWL) used for less intensive tasks and often outside
of construction sites (e.g., public service). It is more compact
than GWL and it has two times faster lifting arm raise time.

Due to the differences between the two products, what
is hazardous in one product is not necessarily hazardous in
the other. Since the GWL is used in a controlled environment
and its tasks do not require high precision, the value failure
of the LAAPs’ flow port is not considered hazardous in
that case. Hence, the requirement SWSR2 is not considered
safety-relevant in context of the GWL, but is regarded as
quality management. Moreover, the weak contracts LAAP-
4 and LAAP-6 are not satisfied in the context of GWL, as
integrity of the sensor data and recorded position is not ensured
for the LAAP-4 contract, and the assumption on actuation
accuracy for the LAAP-6 contract.

In contrast to the GWL, the SWL is used in less controlled
environments for tasks that usually require precision where

TABLE IV. THE CONTEXT STATEMENTS AND EVIDENCE OF THE
LAAP SAFETY CONTRACTS

LAAP-1 C1: The contract is based on the specification of the
Input validation and error handling of LAAP;

LAAP-1 E1 name: Unit testing results
description: The evidence satisfies ASIL B re-
quirements.
supporting argument: -;

LAAP-2 C1: The contract is based on the specification of the
Input validation and error handling of LAAP;

LAAP-2 E1 name: Unit testing results
description: The evidence satisfies ASIL B re-
quirements.
supporting argument: -;

LAAP-3 C1: The contract is based on the LAAP watchdog
timer configuration;

LAAP-3 E1 name: Watchdog inspection report
description: The evidence satisfies ASIL A re-
quirements.
supporting argument: -;

LAAP-3 E2 name: Unit testing results
description: The evidence satisfies ASIL B re-
quirements.
supporting argument: -;

LAAP-4 C1: The contract is derived from the FPTC analysis
results for the LAAP component;

LAAP-4 E1 name: LAAP FPTC analysis report
description: The evidence satisfies ASIL B re-
quirements.
supporting argument: FPTC analysis conf;

LAAP-5 C1: The contract is derived from the FPTC analysis
results for the LAAP component;

LAAP-5 E1 name: LAAP FPTC analysis report
description: The evidence satisfies ASIL B re-
quirements.
supporting argument: FPTC analysis conf;

LAAP-6 C1: The contract is derived from the FPTC analysis
results for the LAAP component;

LAAP-6 E1 name: LAAP FPTC analysis report
description:The evidence satisfies ASIL B re-
quirements.
supporting argument: FPTC analysis conf;

LAAP-6 E2 name: Unit testing results
description: The evidence satisfies ASIL B re-
quirements.
supporting argument: -;

LAAP accuracy is much more critical. Besides a higher quality
angle sensor to ensure high confidence in sufficient accuracy
of the angleSensor input to the LAAP, an error-detecting code
is used to ensure that the stored recordedPosition has not been
accidentally changed (e.g., due to bit flip). Contracts of the
corresponding components guarantee these properties of the
angle sensor and the recordedPosition variable which satisfies
the contract LAAP-6, while the contract LAAP-4 is not satisfied
in the SWL system as it would be too expensive to achieve it.

Since the strong contract LAAP-1 requires ground-
SpeedLimit to be set in every vehicle below 20 km/h, both
products must set the appropriate values. In the GWL the limit
is 20 km/h, since the arm moves slower and in a controlled
environment, while the limit is 10 km/h for the SWL.

Once the reused contracts are checked and new contracts
established during theUtilisation and Maintenance phase, we



utilise the contracts for the generation of safety argument-
fragments. Based on the satisfied contracts we can identify
safety artefacts related to such contracts (e.g., test cases) that
can be useful in the current context.

C. Generated Safety Arguments

Fig. 6 shows the top level goals of the LAAP safety
argument for the two systems. To support the top-level goal
that the component satisfies the allocated safety requirements,
we decompose the top-level goal to argue over the following:
the LAAP strong contracts are satisfied, all satisfied contracts
are consistent, and the relevant weak contracts are satisfied.
As all strong contracts must be satisfied in both contexts, the
argument related to the strong contract satisfaction (Fig. 6) is
the same for both cases. For the sake of brevity, the goals
related to the satisfaction of the LAAP-2 strong contract and
the SWSR3 safety requirement are left undeveloped.

The top level goals are further decomposed to argue over
satisfaction of each allocated safety requirement. As discussed
in Section IV-B, some of the contracts are not satisfied in
the GWL and in the same time some of the requirements
are discarded as quality management, hence not included in
the LAAP safety argument in context of GWL. SWSR2 and
SWSR4 are not included in the GWL safety argument (Fig. 8),
while for the SWL, all six requirements are included in the
corresponding argument (Fig. 7).

As most of the requirements are addressed by the strong
contracts that are argued in a separate argument branch, the
away goals are used to relate to those arguments, while the
weak contracts that are used to support a requirement for
the first time in the argument are further developed (e.g., the
contracts LAAP-5 and LAAP-6 for requirements SWSR2 and
SWSR5). Establishing that the safety contracts are sufficient
to support a certain requirement is done by inspection.

V. DISCUSSION

As described in Section II-A, ISO 26262 requires certain
information to be gathered during the concept phase. The stan-
dard states that software safety requirements should consider
this information. In case of SEooC, this information should be
assumed out-of-context and validated in-context. In the case of
other reusable elements such as qualified software elements,
this information should be made available and validated prior
to the integration of the element into an ISO 26262 com-
pliant system. The guidelines provided by the standard do
not go into further detail but stop at the message that this
information should be considered, assumed and validated. As
described in Section III and demonstrated in Section IV, the
generative reuse approach based on safety contracts provides
means to assume, consider and validate this information.
When developing SEooC, the required information is assumed
within safety contracts, by associating these contracts with SW
safety requirements, the requirements are related and consider
this information. Upon integration of a reusable component
together with its safety contracts, the assumed information
or information that should be made available is validated
by checking that the reused safety contracts assumptions are
satisfied in the particular system.

As demonstrated in Section IV-B, what is safety relevant in
one system can sometimes be regarded as quality management
in another system. This is the main reason why reusing safety
artefacts (such as product-based safety argument-fragments)
first needs a phase of identifying what is relevant. This is
supported by the safety contracts, and after identification the
relevant information can be composed and the artefact reused.
In the scope of our work we use the safety contracts to generate
safety case argument-fragments, while there is potential to use
the contracts to generate different types of safety analyses (e.g.,
FTA) [8] through the connection of the safety contracts with
the FPTC analysis [19]. The generation of the specific safety
argument-fragments is still semi-automatically performed since
the integrator needs to align the assumed with the actual
safety requirements. Although methods could be developed
to ease the matching of the safety requirements and the
associated contracts, and matching assumed and actual safety
requirements, the step towards developing such methods would
be formalisation of the requirements, which faces different
challenges [5]. Safety contracts share some of these challenges
as well. Hence we recognise the need for capturing both formal
and informal aspects in the safety contracts. While the formally
specified parts of the assumptions and guarantees are used
for both contract-based verification and argument-fragment
generation, the informal parts are only used for the arguments
generation where they can be further reviewed manually.

VI. RELATED WORK

The ISO 26262 lack of detailed guidelines for systematic
reuse has triggered researchers to align different reuse engi-
neering methods with the standard, e.g., Product-line Engi-
neering (PLE) and Component Based Software Engineering
(CBSE). PLE can be aligned with the ISO 26262 to facilitate
reuse of artefacts [7]. The proposed approach provides means
to specify, manage and trace commonalities and variabilities
at different parts of the ISO 26262 safety process.

Reusing safety artefacts requires that variability within
them is managed. A PLE-based approach shows how vari-
ability can be integrated into the functional safety models
by combining functional safety and variability modelling
tools [16]. Another approach focuses on Trusted Product Lines
by forming a framework for demonstrating that the derived
products are fit for purpose in high-integrity civil airspace
systems [12]. This work aligns PLE with civil airspace safety
standard recommendations on development and integration of
reusable elements. A model-based assurance approach focuses
on facilitating reuse of safety assets within a product-line by
extending the argumentation notation to include product-line
elements to handle variabilities within the argument [10]. An-
other model-based approach [11] is proposed for standardising
the representation of the assurance cases by generating them
from automatically extracted information from the system
design, analysis and development models.

An approach that distinguishes between component types
as out-of-context components and component implementations
as in-context instantiations of the component types explores
use of assume/guarantee contracts to facilitate reuse [9]. The
work provides an incremental certification lifecycle for CBSE
and outlines the role of contracts in the proposed lifecycle.
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Fig. 6. Top goals of the LAAP safety argument with the strong contracts argument-fragment developed (the same for both the GWL and SWL)
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Fig. 7. Safety argument-fragment for the safety requirements allocated on the LAAP in context of SWL

In contrast to these works we focus on providing guidelines
for development and integration of reusable safety components
within safety-critical systems. Moreover, we focus on the
automotive industry by aligning the provided guidelines with
the ISO 26262 safety process. More specifically, we support
generative reuse of safety argument-fragments by utilising the
efforts invested in capturing safety rationale within the safety
contracts. To the best of our knowledge the contribution of our
work is in this respect novel and unique.

VII. CONCLUSION AND FUTURE WORK

Safety standards, particularly ISO 26262, lack support for
reuse and integration of safety-relevant components, although
modern safety-critical systems highly rely on reuse. In this pa-
per we have presented a safety contracts development process
that bases reuse of safety components around the notion of

safety contracts. We have by a real-world case shown that the
safety contracts can be successfully used to support reuse and
integration of safety elements out-of-context. Moreover, safety
contracts provide a platform for generative reuse of safety
artefacts by facilitating generation of safety case argument-
fragments and potentially other safety analyses.

Construction machines typically come in many different
variants that are developed to operate in significantly different
environments. As a lesson learned from the application of ISO
26262 to such systems, we can conclude that the issue of
context and reuse of safety elements out-of-context plays a
significant role in these systems and requires improved support
from the standard.

As future work we plan to further develop the guidance
for development and integration of reusable safety-relevant
components using safety contracts according to the automotive
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Fig. 8. Safety argument-fragment for the safety requirements allocated on the LAAP in context of GWL

and the other domain-specific safety standards. Furthermore,
we plan to utilise the safety contracts to provide support
for generation of process-based arguments. While currently
only partially supported by the CHESS-toolset, we plan to
continue extension of the tool and further optimisations of the
implemented contract formalism.
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