
c©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Achieving Elementary Cycle Synchronization
between Masters in the Flexible Time-Triggered

Replicated Star for Ethernet

Alberto Ballesteros1, Julián Proenza1, David Gessner1, Guillermo Rodriguez-Navas2, Thilo Sauter3
1 DMI - Universitat de les Illes Balears, Spain

2 Mälardalen University, Västerås, Sweden
3 Center for Integrated Sensor Systems, Danube University Krems, Austria

{a.ballesteros, julian.proenza}@uib.es, davidges@gmail.com

Abstract—For a distributed embedded system (DES) to oper-
ate continuously in a dynamic environment, it must be flexible
and highly reliable. This applies in particular to its communi-
cation subsystem. The Flexible Time-Triggered Replicated Star
for Ethernet (FTTRS) aims at providing such a subsystem by
means of a highly-reliable switched-Ethernet architecture based
on the Flexible Time-Triggered paradigm (FTT), a master/slave
communication paradigm where the master periodically polls
the slaves using so-called trigger messages (TMs). In particular,
FTTRS interconnects nodes by redundant communication paths
provided by two switches, each embedding an FTT master that
manages the communication. This allows FTTRS to tolerate the
failure of one switch without interrupting the communication as
long as the masters are replica determinate, i.e., provide identical
service to the slaves. The master replica determinism entails the
masters broadcasting their TMs in a lockstep fashion: when one
master broadcasts a TM, the other should do the same quasi-
simultaneously. In this paper we present a solution inspired by
the Precision Time Protocol (PTP) for achieving this lockstep
transmission and preliminary results showing the precision with
which we can synchronize the masters on a software prototype.

I. INTRODUCTION

There is a growing interest in operating distributed embed-
ded systems (DES) in dynamic environments, usually for long
periods of time and also with high reliability. This poses new
challenges on the design of the communication subsystems for
such DES, which have to be flexible but still dependable.

The Hard Real-Time Ethernet Switching (HaRTES) [1]
has recently been suggested as a suitable infrastructure to
support flexible and reliable communication for distributed
embedded systems. HaRTES is an implementation of the
Flexible Time-Triggered (FTT) paradigm [2] over Switched-
Ethernet, and therefore handles real-time communication by
means of a centralized master-multislave polling mechanism.
Its main feature is that the FTT master is embedded within
the switch itself, allowing enhanced error-detection and error-
handling capabilities [1]. However, there is one limitation of
the FTT paradigm that HaRTES inherits: the master constitutes
a single point of failure because any failure of the master to
deliver its service will cause communication to cease.

In the FT4FTT project (which stands for Fault Tolerance
for Flexible Time-Triggered Ethernet-based systems) we pro-
pose an extension of HaRTES that eliminates this single point
of failure by means of a replicated star [3] [4] [5]. The

Switch 1
(master 1)

Switch 2
(master 2)

Slave A

Slave B

Slave C

slave link

interlinks

Fig. 1. FTTRS architecture.

resulting communication infrastructure is called Flexible Time-
Triggered Replicated Star (FTTRS) and is composed of two
HaRTES-based switches interconnected via several redundant
links known as interlinks. As depicted in Fig. 1, slaves connect
to both switches using dedicated slave links.

The channel replication of FTTRS naturally provides tol-
erance to failures of the communication links. How to handle
this redundancy has been first described in [3]. Later, some
mechanisms for handling master replication, based on semi-
active replication, were suggested in [4]. However, they were
not totally defined and were not validated experimentally.
This paper defines the full solution for semi-active master
replication in FTTRS and shows some experimental results
after a first software prototype implementation.

The problems to be solved by our master replication
scheme can be described in terms of the master functionality.
In any network following the FTT approach, time is divided
into time slots of fixed duration called Elementary Cycles
(ECs). Every EC is divided into three different windows:
Trigger Message, Synchronous and Asynchronous window.

The Trigger Message window (TMW) is used by the master
to construct and issue the Trigger Message (TM). This message
notifies the slaves that a new EC has started and contains the
list of messages that must be sent during the Sync window.
The challenge is therefore to ensure that, upon master failure,
the other master can take over immediately without disturbing
the on-going communication. Since the main function of the
master is to send the TM, this requires that both masters
are replica determinate with respect to the TM. That is, they
must be able to provide the same TM at approximately the
same instant. In this way, master replacement can be made
totally transparent for the slaves. This paper describes the
two mechanisms that have been implemented in order to
fulfill this property: (a) a novel fault-tolerant protocol for EC



initialization, and (b) a mechanism for EC synchronization
between the master replicas, which is based on a subset of
the IEEE 1588 standard for clock synchronization.

II. RELATED WORK

Replica determinism in the time domain for the masters
was already discussed in [4], where the authors identified the
temporal problems to be addressed, and sketched a first solu-
tion. They suggested a semi-active master replication scheme,
in which one master, called the leader, supplies the timing
of the whole system. This master notifies the beginning of
each EC by broadcasting its TMs to the slaves, through the
slave links, and to the other master, through the interlinks.
The second master, called the follower, autonomously issues
its TMs to all the other nodes as well. However, the follower
uses the leader’s TMs to resynchronize and, thus, keep in pace
with the leader. That is, it uses the arrival times of the leader
TMs to hasten or delay the transmission of the next TMs.

Using the TM for synchronization purposes has advantages
both for reliability and performance. On the one hand, as
described in [5], during the TMW each master transmits k
replicas of the TM to all the slaves and the other master,
where k is set considering the bit error rate of the channel.
If k is large enough, at least one TM replica will reach each
of the recipients with a sufficiently high probability, even in
presence of transient errors. Thus, the follower will be able to
resynchronize in every EC. On the other hand, using the TMs
makes the transmission of additional synchronization messages
unnecessary, so the communication overhead is actually null.

Regarding the reliability of this solution, the follower
remains synchronized unless the leader crashes or all the
interlinks suffer a permanent fault. The first situation is trans-
parently tolerated because the follower would continue its
operation as the new leader, without resynchronization. In
contrast, if the interlinks become disabled, the network is
partitioned in two and the masters would not be able to stay
synchronized. We are currently investigating how to enhance
the slaves to be able to detect and handle this situation.

The preliminary design in [4] did not include any mech-
anism for time synchronization between masters. However,
there have been previous efforts in addressing equivalent
issues, like in [6], where the authors proposed an algorithm to
synchronize multiple masters in an FTT multi-switch architec-
ture. In that proposal, masters exchange clock synchronization
messages during the sync guard window, i.e., a new window
inserted at the beginning of the EC. These messages are the
same as defined in the IEEE 1588 standard described next.

The IEEE 1588 standard, known as the Precision Time
Protocol (PTP) [7], is a protocol defined for measurement and
control systems that allows synchronizing distributed clocks
with a precision down to the microsecond range. This protocol
is based on a master-slave scheme, i.e., one or more PTP
slaves adjust their clocks with respect to a reference clock
provided by a PTP master. As can be seen in Fig. 2, first of
all, the PTP master transmits to a given PTP slave the so-called
Sync message. When doing so, the PTP master timestamps the
transmission time tm; whereas the PTP slave timestamps the
reception time ts. After that, the PTP master transmits the
Follow Up message, which contains the value of tm.

PTP master

PTP slave

Sync

tm

ts

Follow
U

p

Pd
el

ay
R

eq

t1

t2

Pdelay
R

esp

t3

t4

Pdelay
R

esp

Follow
U

p

Fig. 2. Exchange of messages in PTP.

Additionally, PTP makes it possible to determine the
propagation delay, i.e., the time needed by the Sync message
to travel from the PTP master to the PTP slave. Assuming
a symmetric delay, the peer delay mechanism can be used
for this purpose. This mechanism initiates with the PTP slave
sending a propagation delay request or Pdelay Req. Similarly
as with the Sync message, the PTP slave timestamps the
transmission time t1, whereas the PTP master timestamps
the reception time t2. Afterwards, the PTP master responds
by sending a propagation delay response or Pdelay Resp.
The transmission and reception times, i.e., t3 and t4, are
also registered. Finally, the PTP master transmits t2 and t3
by means of the Pdelay Resp Follow Up message. The PTP
slave determines the offset of its clock with respect to the PTP
master using (1), where the fraction is the propagation delay.

offset = ts − tm − (t4 − t1)− (t3 − t2)

2
(1)

III. DETAILED DESIGN

This section describes the ongoing research carried out to
complete the preliminary design of the EC synchronization
mechanism for the masters presented in [4] using some of the
ideas described in [6].

In our synchronization mechanism we distinguish between
two levels of synchronization that must be achieved. (a) The
first level provides an initialization for the two masters to
start their execution in a synchronous manner from the first
EC onwards. This ensures that an FTTRS network tolerates
master failures from the very first EC. Moreover, this level
also calibrates the parameters required by the second level. (b)
The second level is the synchronization of the ECs that allows
both masters to transmit their TMs in lockstep. For this, the
follower uses the arrival time of a leader’s TM replicas to infer
when the leader will start the next EC. Using this inferred time
instant, the follower adjusts its own timing to transmit its own
TM replicas simultaneously with the leader.

A. Level 2: Periodic lockstep resynchronization

As indicated above, the second level of synchronization al-
lows the follower to know when it should start transmitting the
TM replicas for the next EC, so as to do it as simultaneously
as possible with the transmission of the TM replicas by the
leader. In order to do this, the follower takes into account the
arrival times of the leader’s TM replicas for the current EC.

Fig. 3 identifies the relevant instants of the TM transmis-
sion. When the leader considers that EC number n has started,
denoted tlead

begin(n), it constructs the corresponding TM taking
into account the scheduling calculated in the previous EC.
The time required for this is denoted δ1. Then, at tlead

TM (n),
it instructs the transmission of the first TM replica, denoted



Leader

Follower

E
C

(n
)

tlead
begin(n)

tfoll
begin(n)

δ1

tlead
TM (n)

δ2
TM

tlead
tx,1 (n)

TM
1 (n

)

tfoll
rx,1(n)

τ

tlead
tx,2 (n)

TM
2 (n

)

tfoll
rx,2(n)

ECND

E
C

(n
+
1)

tlead
begin(n+1)

tfoll
begin(n+1)

LEC

Fig. 3. EC synchronization instants.

TM1(n). The time needed for this is denoted δ2 and may
significantly vary depending on the technology used, e.g., in
a software implementation the operation of the OS has to be
considered. At tlead

tx,1 (n) the network interface issues the last bit
of TM1(n) to the channel and, after the propagation delay, it
reaches the follower, who then registers the arrival of TM1(n)
at tfoll

rx,1(n). As explained in [5], this transmission is carried
out k times, with a constant separation of τ . Consequently,
each time a TM replica is received by the follower, it registers
tfoll

rx,i(n), where i ∈ {1, 2, 3, . . . k}.

Referring to Fig. 3, the beginning of the follower’s next
EC can then be calculated as

tfoll
begin(n+ 1) ≈ tfoll

rx,i(n)− (i− 1)τ − ECND + LEC, (2)

where tfoll
rx,i(n) is the reception instant of any of the TM replicas;

ECND is the EC notification delay, i.e., the time elapsed
since the leader considers a given EC to have started until
the follower receives the TM for said EC; and LEC is the
fixed length of the ECs. Note that ECND is constant and is
measured during the level 1 synchronization, as described in
the next section. It is important to highlight why we consider
that it is constant. First, the time δ1 needed to construct the
TM can be considered constant. This is because inserting the
scheduling into the TM takes a negligible amount of time.
Second, the time δ2 needed to process the TM’s transmission
is constant. This is due to the fact that during the TMW the
channel is idle and, thus, the internal transmission queue of the
leader is empty. Consequently, there are no additional delays
provoked by the transmission of other messages. Third, the
propagation delay is constant. The reason for this is because
the topology of the interlinks does not change. Finally, the
time needed to process the TM’s reception is constant. This is
because, like with the transmission, the reception queue of the
follower is empty and, thus, no message reception can provoke
additional delays.

Following the PTP approach, we consider the leader as PTP
master and the follower as PTP slave. In this sense, the TM is
our Sync message, i.e., a message periodically transmitted by
the leader to resynchronize the follower. However, since we
do not need tm, the Follow Up message it not used. Apart
from the clock state synchronization mechanism using the
TM, we also perform a rate correction, i.e., we decrease the
deviation suffered between two consecutive EC adjustments
by considering the relative speed between leader and follower
clocks. To do so, the follower measures the time between m
resynchronizations and compares it with the expected value,
i.e., m times LEC. The result is the relation between the
two clocks, which is taken into account by the follower when
computing the time for the next EC.

Leader

Follower

rN

rN
+1

rN
+2

rN
+3

E
C

(0)

lrv
m

sg
N

t0

lrv
m

sg
N

+1

fr
v

m
sg

N
+1

t1

t2

lrv
m

sg
N

+2

fr
v

m
sg

N
+2

t3

t4

TM(0)

TM(0)

lrv msgN+3

frv msgend

Fig. 4. Rendez-vous handshake.

B. Level 1: Achieving simultaneous start

In order to have master redundancy from the very be-
ginning, it is necessary to force both masters to start their
execution at the same time. For this, we introduce an ini-
tialization phase called rendez-vous phase, in which both
masters exchange some messages to agree on when the first
EC has to start. Additionally, the follower takes advantage of
this exchange of messages to determine the ECND using a
modification of the PTP peer-delay mechanism.

As depicted in Fig. 4, during the initialization the leader
starts by periodically sending the leader rendez-vous mes-
sage (lrv msg). Similar to the TMs, this message divides
the communication time into rounds which now are called
rendez-vous rounds. These rounds have the same length as
the ECs, i.e., LEC, which ensures that the conditions during
the ECND measurement are identical to the ones during the
normal operation of the masters. Note from the figure that
the first lrv msg seen by the follower is the one in a round
N (lrv msgN). After that, the follower starts transmitting its
own rendez-vous messages (frv msgs). The goal is for both
masters to transmit their rendez-vous messages in lockstep
by the end of the initialization. However, at the beginning
of the initialization the messages of the masters are out-of-
sync since the follower does not know when round N began
according to the leader. To achieve the synchronization, the
follower begins by using instead the only temporal reference
it has from the leader, namely the arrival time of lrv msgN at
t0. The follower considers the next round to start at t0 +LEC
and, thus, its rendez-vous message transmissions are initially
delayed with respect to the leader’s by the amount of time
it takes a leader’s rendez-vous message to reach the follower
since the start of round N. To correct this phase error, the
follower must therefore infer this time, which is equivalent
to the constant ECND used in (2). This can be achieved by
a mechanism similar to the one used in PTP to infer the
propagation time.

Each new round leader and follower issue their rendez-vous
messages. This exchange of messages allows the follower to
determine the ECND, similarly as done for the propagation
delay in PTP. Specifically, each frv msg and lrv msg is like a
Pdelay Req and Pdelay Resp in PTP, respectively. The only
difference to PTP is that t1 and t3 are registered at the instant
in which follower and leader, respectively, consider the current
round to have started. With this modification we take into
account δ1 and δ2, which are relevant in this measurement.
Additionally, with every lrv msg the leader conveys t3 − t2.
Thus, additional messages are not needed, as in PTP with
the Pdelay Resp Follow Up message. Finally, assuming that
δ1 + δ2 + prop delay is symmetric, ECND can be calculated
using the same formula for the propagation delay in the peer-
delay mechanism (see Eq. 1).



As can be seen in round N+3, once the ECND has been
measured, the follower is synchronized with the leader and,
thus, both issue their rendez-vous messages simultaneously.
At this point the follower instructs the leader to finish the
rendez-vous phase by transmitting a predefined rendez-vous
message (frv msgend). This forces both masters to wait for the
next rendez-vous round and then start the normal operation
and, thus, the first EC, at the same time.

As concerns the reliability of this mechanism, note that
channel errors can seriously affect the synchronization. For
instance, the omission of one rendez-vous message would lead
to a severe error in the calculation of the ECND. Thus, to
tolerate transient errors, ECND is measured multiple times
until its mean value does not significantly vary. Regarding
the omission of frv msgend, we use the same approach as in
the TM temporal redundancy mechanism, i.e., this message is
transmitted k times.

IV. EXPERIMENTAL ASSESSMENT

We carried out an experiment to both assess the correctness
of the design and take preliminary measures of the precision
that can be achieved in a software implementation. The testbed
is composed of three stations: two interconnected master
stations, leader (LS) and follower (FS), and one monitoring
station (MS) connected to both master stations. Each master
station is implemented in a regular multi-core PC and executes
the FTT code for the the master, i.e., it transmits TMs and
synchronizes with the other master as described. The MS is
built using hardware for embedded devices so that the results
provided are close to the ones in a real implementation. The
data it provides is the TM offset, i.e., the absolute value of
the time elapsed between the reception of the TMs issued for
the same EC by LS and FS. Thus, a TM offset of zero would
mean a perfect synchronization precision. The arrival times of
the TMs are timestamped in the MS using tcpdump, an OS
tool that provides one microsecond resolution. Finally, each
station runs a regular GNU/Linux OS.

In our first experiment we registered the reception of
one million TMs, using an EC length of 1 ms. This EC
length makes desynchronization between ECs negligible, thus
in this experiment we do not apply the rate synchronization
mechanism. In Fig. 5 we show the relevant statistical results, a
histogram of the TM offsets with a bin size of 1 µs, and a bar
diagram showing the value of each sample. The first thing to
highlight is the good results achieved in terms of the mean and
standard deviation values, which means an average deviation of
0.6-0.83 % of the EC length. Second, regarding the histogram,
note that it does not show all the values. This is because bin
31 µs and onwards have a frequency of 6 samples or less and,
thus, it is not worth to represent them since they would be
unnoticeable. The most relevant values appear in bins 6 and
7 µs, which embrace more than half of the samples. Finally,
in the bar diagram, we can observe some peaks that reach up
to 362 µs, i.e., the maximum. This value is important as it
determines the level of synchronization that can be achieved.
In our case, the follower can be hastened or delayed with
respect to the leader more than the third of the EC, which
is not acceptable. However, since these deviations are not very
common (7 samples over 1 million exceed 100 µs) means that
they are likely provoked by the indeterminism of the OS and,

Fig. 5. Experiment results. The main figure is the histogram of the TM
offsets with a bin size of 1 µs. The inset shows the value for each sample.

thus, that they can be reduced if we devote further efforts in
tuning the software components of the system.

V. CONCLUSIONS AND FUTURE WORK

In this paper we complete the design of the EC syn-
chronization mechanism between the two master replicas in
FTTRS, which was presented in [4]. For this, we adapt some
of the ideas used in [6]. However, since we rely on the TM
to perform all the synchronization tasks, there is no need
for additional messages. This solution is verified by means
of an experiment, in which we asses its correctness and take
preliminary measures of the precision that can be achieved in
a real software prototype. These experiments showed good re-
sults in terms of mean value and standard deviation. However,
significant time deviations have been found. These deviations
are provoked by the software components of the prototype,
which are important sources of indeterminism. The next step
involves tuning the software components to achieve a more
deterministic behaviour of the system. We also address for
future work a rendez-vous mechanism capable of seamlessly
reintegrating a desynchronized master without having to stop
the normal operation of the system.

ACKNOWLEDGEMENTS

This work was supported by project DPI2011-22992 and
grant BES-2012-052040 (Spanish Ministerio de economı́a y
competividad), and by FEDER funding.

REFERENCES

[1] R. Santos, “Enhanced Ethernet Switching Technology for Adaptive Hard
Real-Time Applications,” Ph.D. dissertation, Universidade Aveiro, 2011.

[2] P. Pedreiras and L. Almeida, “The Flexible Time-Triggered (FTT)
paradigm: An approach to QoS management in distributed real-time
systems,” in Proc. Int. Parallel and Distributed Processing Symposium.
IEEE Comput. Soc, 2001.

[3] D. Gessner, J. Proenza, M. Barranco, and L. Almeida, “Towards a
Flexible Time-Triggered Replicated Star for Ethernet,” in 18th IEEE
Conf. on Emerging Technologies & Factory Automation (ETFA), 2013.

[4] D. Gessner, J. Proenza, and M. Barranco, “A Proposal for Master Replica
Control in the Flexible Time-Triggered Replicated Star for Ethernet,” in
10th IEEE Int. Workshop on Factory Comm. Systems (WFCS), 2014.

[5] ——, “A Proposal for Managing the Redundancy Provided by the
Flexible Time-Triggered Replicated Star for Ethernet,” in 10th IEEE Int.
Workshop on Factory Comm. Systems (WFCS), 2014.

[6] M. Ashjaei, M. Behnam, G. Rodriguez-Navas, and T. Nolte,
“Implementing a clock synchronization protocol on a multi-master
Switched Ethernet network,” 18th IEEE Conf. on Emerging Technologies
& Factory Automation (ETFA), 2013.

[7] “IEEE Std 1588-2008, Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems,” 2008.


