Architectural Allocation Alternatives and Associated
Concerns in Cyber-Physical Systems: A Case Study

Jakob Axelsson
Swedish Institute of Computer Science (SICS)
Kista, Sweden
jakob.axelsson@sics.se

ABSTRACT

Cyber-physical systems is an extension of traditional embedded
systems, where communication to the outside world is given more
emphasis. This leads to a new design space also for software
development, allowing new alocation strategies for functionality.
In traditional embedded systems, al functionality was inside the
product, but now it becomes possible to partition the software
between the embedded systems and IT systems outside the
product. This paper investigates, through a case study from the
automotive domain, possible new allocation alternatives where
computation is offloaded from the embedded system to a server,
and what additional architectural concerns this leads to, including
performance, resource utilization, robustness, and lifecycle
aspects. In addition, the paper addresses new opportunities
created by allocating functionality outside the embedded systems,
and thus making data available for extended services, as well as
the larger concerns that result on the organizational level,
including new competency in architecture and DevOps.

Categoriesand Subject Descriptors
D.2.11 [Softwar e Ar chitectur €] : Domain-specific architectures.

General Terms
Design, Experimentation.

Keywords
Cyber-physical systems,
alocation, cloud.

architecture, system-of-systems,

1. INTRODUCTION

Cyber-physical systems (CPS), i.e., systems containing interacting
elements of mechanics, electronics, and software, are of ever-
increasing importance in our society. They are part of a large
range of industrial products, in domains such as automotive,
aerospace, and industrial automation. Traditionally, these domains
have focused on embedded systems (ES), where the emphasis is
on the computers integrated in a product, which are interacting
with the physical parts of the same product. One of the
fundamental differences between ES and CPS, is the connections

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

ECSAW '15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia

© 2015 ACM. ISBN 978-1-4503-3393-1/15/09...$15.00

DOI: http://dx.doi.org/10.1145/2797433.2797448

from the ES to other software-intensive systems outside the
product [1]. These other systems may be tightly integrated with
the ES, or be more independent as is the case in systems-of-
systems (SoS) [2][3].

The architecture of a system is defined as the “fundamental
concepts or properties of a system in its environment embodied in
its elements, relationships, and in the principles of its design and
evolution” [4]. In a traditional ES, the architecture is often
focused on a hardware view, showing the electronic control units
(ECUs) and their communication links. This is complemented
with various software oriented views, showing the functions of the
system, and how the functions are alocated to ECUs. Also, there
is often a view showing how the ECU software is layered into
application components, operating system, device drivers, etc. In
many domains, such as the automotive, it is common to use
distributed embedded systems, where the ECUs are connected
using communication networks.

It is important to realize that the focus has traditionally always
been on the ES as part of a delimited product, with no or limited
connections to computer systems outside that product. Thisis one
of the main differences between ES and CPS, where in the latter
the connections to the outside are emphasized. In a CPS
architecture, it becomes natural to also add computational units
outside the product, on dedicated servers or even cloud solutions.

The main contribution of this paper isto study, through a practica
case, some of the trade-offs architects need to perform in such a
situation. What are the opportunities and challenges that we need
to face if the system border is extended to IT and cloud, who thus
become parts of the system-of-interest? The traditiona ES and
new CPS architectures areillustrated in Figure 1.

This paper addresses the following research questions:

1. What are the new dlocation alternatives that emerge in
CPS compared to traditional, closed ES?

2. Which concerns become important in these alocation
alternatives?

3. What are the broader consequences and opportunities of
using the new alocation strategies?

To our knowledge, these questions have not been studied in detail
in previous research, and the paper thus contributes to an
increased understanding of the possibilities and risks provided by
CPS.

The research method used is explorative and based on design
science [5], where a specific case is designed on an architectural
level, and followed up by prototype implementations of different
aternatives, thereby giving concrete examples of both the design
space and concerns that arise. The observations and experiences
gained from this provides empirical evidence that is used to derive
at least partia answers to the questions.

Network
< I I I) m
D

ECU ECU ECU Server

Sensor | | Actuator
Controlled system

(a) Traditional ES

(B) CPS extension

Figure 1. Traditional ES vs. CPS architecture

The remainder of the paper is structured as follows: In the next
section, the case study is introduced, followed by a description of
the allocation alternatives that occur in traditional ES solutions
and in a CPS. Then, in Section 4, the architectural concerns are
enlisted and used for evaluating the aternatives. Section 5
discusses the findings from the case study and expands it to
broader questions related to the organizations and skills needed,
and Section 6 provides an overview of some related work. Finally,
in Section 7, the conclusions are summarized together with
indications of future work.

2. CASE DESCRIPTION

In this section, the case study is described, which is about
extending an existing product in the automotive domain with
additional functionality. First, the existing product and its
architecture will be presented, followed by a description of the
added functionality and some important properties.

2.1 Existing product and ar chitecture

The case study is placed in the context of automotive systems or
mobile robots. It has been carried out using a demonstration
system called the Mobile Open Platform for Experimental Design
(MOPED) [6], which consists of a model car in scale 1:10. The
car has three ARM-based ECUs running a 700 MHz onboard,
two of which execute the automotive software standard
AUTOSAR [7], and a third which is used for telematics and runs
Linux. The ECUs are connected via an internal network in the car,
which is using the CAN protocol running at 500 kbit/s. The car is
equipped with various sensors and actuators, including steering
and propulsion. It aso has external communication through WiFi,
making it possible to send and receive data from other systems.
The overall architecture is thus similar to the generic CPS
architecture shown in Figure 1 above.

The purpose of the demonstration platform is that it should be
very redistic and mimic real, industrial systems with high
accuracy when it comes to the software. This means that
experiments done using MOPED will yield results that are likely
to be useful also for CPSin practice.

2.2 Added functionality

In the case study, the purpose was to extend the MOPED platform
with a vision sensor, together with advanced image processing
algorithms. The results from the agorithms will be used by
control functions in the car, which means that it is important to
achieve a sufficient update frequency and sufficiently short
response times. The output from the agorithm is also useful for
other cars, and there is thus a need for functionality to
communicate those results externally to a server (in this case

Image
sensor incl. Image Control
device processing algorithm
driver (P) (€)
(s)

Actuator
(A)

Controlled system

Figure 2. Functional flow.

based on the MQTT protocol, [8]), in order to form a SoS. An
overview of the functional flow is shown in Figure 2.

The initial intent was to implement the functiondity in a
traditional ES fashion, i.e. by alocating the algorithm in one of
the ECUs. The image sensor requires device drivers, which are
only available under Linux, and therefore the telematics unit is the
one where the sensor must be connected. The control algorithms
and actuators are also by necessity in one of the other ECUs.

2.3 Performance

The image processing algorithm is computationally intensive, and
even if an ECU was dedicated to this agorithm, it would be
difficult to reach the response times needed by the control
algorithms. If the ECU aso has other functionality allocated, it
would be difficult to reach satisfactory response times. Some jitter
is also inevitable, due to the nature of the algorithm, since the
processing time depends on what is actualy present in the
captured image.

The data transfer from the sensor to the image processing isin the
order of afew hundred kb for each sample, although there is some
flexibility in this using image compression or reduced resolution.
In the subsequent steps, only afew tenths of bytes are transferred.

3. ALLOCATION ALTERNATIVES

In this section, we will study what allocation alternatives exist for
the functionality described in the previous section, thereby
providing the answer to the first research question: What are the
new alocation alternatives that emerge in CPS compared to
traditional, closed ES?

The discussion will focus on four aternatives for alocating the
image processing component to each of the existing ECUs or to a
server. The reason for focusing on this component is that it is the
most demanding one in the system, and the one which is least
constraint in alocation since it does not interface directly with the
hardware.

An additional alternative could have been to add a fourth ECU to
the system, dedicated to the image processing, but this was ruled
out due to lack of physical space in the vehicle. One could aso
have considered redesigning one of the ECUs to include more
powerful hardware, or hardware acceleration through application
specific integrated circuits (ASIC) or graphical processing units
(GPU). However, this would have both a significant cost for
redesign and production, but also increase the lead time.

In the following subsections, each of the four aternatives are
described. They are also summarized graphically in Figure 3.

Alt. 3. On separate ECU

Alt. 2. With actuator

Sa@2 =

Alt. 4. On server

Figure 3. Image processing allocation alternatives.

3.1 With sensor

The first aternative studied is to alocate the image processing
together with the sensor. This makes a lot of sense, since it would
keep the massive data transfer from the sensor out of any
communication networks. It has also the benefit that this ECU,
which is responsible for telematics, has a direct external
connection for publishing the result to other users.

At the same time, it limits the processing frequency severely,
since the ECU has other essential and time critical tasks. In the
implementation used, the typical processing time was in the order
of amost 1s, but with a considerable jitter depending on other
workloads. Since this node is running Linux, software
development is fairly easy, since many image processing libraries
used are available on this platform.

3.2 With actuator

The second alternative was to instead move the processing to the
AUTOSAR based ECU where the control agorithm and actuator
are allocated. This ECU has more time deterministic behavior due
to a known workload of control agorithms and a real-time
operating system, and the jitter of the image processing would
then be reduced compared to the previous alternative. However,
the raw processing time would be similar, i.e. around 0.5-1s.

A major drawback of this solution is that the image data has to be
transferred over the CAN network, and this can be expected to
take several seconds, and potentially have a negative impact on
the performance of other traffic. Also, software development
would suffer from the lack of image processing libraries on this
platform, leading to an increased effort in porting the algorithms.
Since AUTOSAR does not provide a file system, it is difficult to
save sensor data for post mortem analysis. Findly, the result of
the processing has to be sent over the network back to the
telematics unit for transfer to external servers.

3.3 On separate ECU

Another possibility is to use the third ECU in the system for the
image processing. This ECU has a dightly lower workload than
the actuator ECU, giving a potential of reducing the processing
time marginally. However, in al other aspects it suffers from the
same performance problems as the previous aternative.

3.4 Onserver

Given the difficulties encountered with a traditional ES solution
to the problem, it was decided to also investigate the potential
benefits of a CPS system in offloading the image processing to an
external server. This would solve the performance problems of the
processing, since even a simple server can do the processing
within about 100ms. Scalability would also not be an issue, since
each processing task is independent and thus possible to alocate
to different hardware units. The processing result would also be
directly accessible to other cars. Table 1 gives an overview of the
timing of the different alternatives, based on estimates of
implementations on the MOPED platform.

Software development would also be easier, given the access to a
wide range of libraries and also a better development environment
than when working on embedded ECUSs, including easy access to
the sensor input data.

The main question about this solution is of course the external
communication, both regarding response time and jitter caused by
other traffic over the shared network.

Table 1. Indicative timing analysis of control loop.

Time | Alt.1 | Alt.2 | Alt.3 | Alt. 4
(ms)
CAN, parameter 0.1 1 0 0
CAN, image 2000
External, 0.01 0 0
parameter
External, image 200 0 0 0
Computation 500-
ECU 1000
Computation <100 | O 0 0 1
server
Tota roundtrip 500.1- | 2500- | 2500- | <
(ms) 1000.1 | 3000 | 3000 | 300.11

4. CONCERNS

In the previous section, the aternatives were described, and for
each of them a number of concerns were identified, primarily in
relation to performance which would be the main differentiator in
many trade-off situations in traditional ES. In this section, we will
expand on those concerns to cover some new ones which become
relevant as a conseguence of including CPS based aternatives in
the evaluation, thereby addressing the second research question.

At the end of the section, a systematic evaluation of the
alternatives based on the full set of concernsis presented.

4.1 Traditional ES concerns
As indicated above, the traditional ES concerns apply aso in this
case, and the primary ones are:

Response time: What is the time from reading the sensor
data to writing to the actuator?

Jitter: How much isthe variation in response time?

Resource utilization: How much computationa
resources are needed? In the example, the main concern
was CPU time, but the concern also includes
consumption of other limited resources, such as memory
footprint and network bandwidth. The resource
utilization has a direct relation to the cost of the
product.

4.2 Additional CPS concerns
When the ES is extended with server side functionality accessed
over shared networks, the following technical concerns are added:

Server resource utilization: How much computational
resources are needed on the server? This relates directly
to the investment and operational cost, but may aso
affect scalability.

Robustness: How well does the system function in the
presence of invalid input or stressful environmental
conditions? In the example, the fact that the system now
includes resources which are shared with unknown
other users means that latencies and availability cannot
be analyzed statically. In traditional ES architectures, al
the resources are dedicated to the system, and hence
under full control.

4.3 Lifecycle concerns

So far, the discussion has mainly been about technical concerns.
However, there are many factors related to the lifecycle of the
system that differ between traditional ES and CPS architectures:

Development support: Development on embedded
hardware is much more complicated than on desktop or
server systems using standard hardware and operating
systems. This includes all stages of the development
cycle, such as programming where compilers and
libraries are specific; debugging, where it is hard to see
what is going on; etc.

Software updates. One area where the difference
becomes dramatic with the server based solution is
software updates. If the sensor algorithms are updated,
in the server based solution the new version only needs
to be deployed in one place and all users instantly get
access. If it isinstead alocated in the ES part, it has to
be deployed to al system instances which can take a

very long time and possibly not happen at all for some
instances. This leads to problems with many different
variants being used.

Operational feedback: In ES, it is very difficult to get
access to data from the operating system, and
developers often lack insight into how the systems
actually work in practice. With a CPS solution,
important data is transferred to the server, and can be
used for both off-line and on-line analysis. This opens
up the possibility to create a learning system, which
applies advanced data processing to discover
improvements to the agorithms, which can then be
deployed through a software update on the server.
Approaches such as A/B testing commonly used for web
based systems can now aso be applied in the CPS
domain, leading to improved quality.

4.4 Analysisof alternatives

To summarize the anaysis, a Pugh analysis [9] has been
performed, as shown in Table 2. In the table, each dternative is
rated qualitatively against the concerns. Alternative 1, the
traditional ES solution, is considered a baseline, and is hence
given arating of O for each concern. The other aternatives are
rated + if they are considerably better than the baseline, - if they
areworse, and O if they are equivalent.

Since the table does not show any weights between concerns, and
has a very qualitative analysis scale, it is not meaningful to sum
columns and compare them to find the best dternative. Still, the
table clearly indicates that alternatives 2 and 3 provide few
benefits compared to aternative 1, and thus the main choice is
between dternatives 1 and 4.

The table can be used for identifying important trade-offs that
need to be studied further to determine if aternative 4 is superior.
One such trade-off is that this alternative gives a shorter response
time at the cost of increasing jitter and decreasing robustness.
Another factor is that alternative 4 trades ES resources for server
resources, and the total cost for this can be calculated further.

5. DISCUSSION

Having analyzed the different dternatives with respect to
concerns, we will now broaden the discussion to address research
question 3. In this, we generalize from the example and discuss
patterns related to quality of service, extended services,
architecture, and operations, that we believe will recur also in
other systems.

Table 2. Evaluation of alter natives against concerns.

Concern Alt.1 | Alt.2 | Alt.3 | Alt. 4
Response time 0 - - +
Jitter 0 + + -
ES resource utilization 0 +
Server resource 0 -
utilization

Robustness 0 0 0 -
Development support 0 - - +
Software updates 0 +
Operational feedback 0 +

5.1 Application quality of service

An important aspect is the quality of service (QoS) that can be
achieved, and how this differs between a traditional ES solution
and a CPS one. The term QoS is often used for describing
properties of communication networks, but here the focus is on
application QoS, involving the combination of computation and
communication. This means that a lower service level in the
communication can be compensated by alternative computation
algorithms that may differ in their quality but also resource usage.
We will now discuss three complementary approaches to
increasing the QoS in CPS.

5.1.1 Redundant computation

One possibility that comes to mind in the example is to combine
alternatives 1 and 4, and implement both the on- and off-board
sensor processing. When sensor data has been captured, it is sent
over the network to the server, and at the same time, a local
processing is initiated. The response that arrives first is used,
thereby putting an upper bound on the response time (even in the
case of a complete network failure), while getting the possibility
of amuch lower average response time.

5.1.2 Load balancing

The second approach is to include a control functionality that
analyzes performance, and uses this to choose the best approach
from a set of aternatives. In situations with low communication
bandwidth, this could include choosing a faster but less
performant a gorithm; compressing the sensor information using a
lossy algorithm; etc.

5.1.3 Jitter compensation

A control agorithm is often built on the assumption of periodic
inputs, and to achieve that in a situation where input is subject to
considerable jitter, one approach is to create alocal estimator that
can predict future values. Once a new value arrives, the estimates
are compensated to use the best available knowledge. Kalman
filters [10] aretypically used for such tasks.

5.2 Extended services

An intriguing opportunity provided by a centraization of data
processing is the possibility to use the data to build new or
improved services. By having multiple ES delivering data, the
server can build a much more complete picture of the world. In
the example, the different vehicles driving around will report data
from different places, and by comparing this, it might be possible
to extrapolate what the world looks like in between the samples.
This can be used to provide an overall world view useable for
other users, but can aso be used to raise the quality of the
responses from the sensor processing agorithms, by combining
the sensor datawith a priori information.

5.3 Architecture

One of the fundamenta shifts in moving from ES to CPS is the
change of system border. Previously, the system-of-interest used
to be very clear and easy to identify, by simply looking at the
electronic components of the product where the ES is included.
Now, there are also server or cloud components inside the system
border, components which may be shared also with other systems
dynamically. Similar aspects apply for the communication
networks, where sharing also starts to occur with other unknown
applications. It is no longer evident what is inside or outside the
system border.

To achieve properties such as QoS, robustness, scaability,
architectural solutions are needed which include redundancy, and
self-protective mechanisms, including but not limited to security.
The range of aspects architects need to deal with expands
significantly. Most likely, layered or hierarchical architecture
patterns with service based interfaces will become even more
important to correctly implement functionality and mechanisms
on different levels of the system.

5.4 DevOpscompetency

Organizations that develop ES typically have a large competency
in electronics and embedded software. When the system border is
expanded to also include server side functionality, architects and
developers need to broaden this to also understand the trade-offs
and implementation details concerned with cloud computing,
internet protocol based communication, etc.

However, these organizations additionally become involved with
operating IT systems, ensuring that they maintain a high
availability level while till being able to encompass rapid
changes in functionality. In essence, the organizations will face a
close co-operation between development and IT operations
(DevOps), which also includes embedded system devel opers.

6. RELATED WORK

There are a number of fairly recent papers that discuss different
aspects of CPS architecture with a bearing on our work. A first
group considers the overal logical structure of a system
consisting of both on-board and off-board components. Most of
these papers advocate a layered approach, similarly to the one
sketched in Section 5.3. In the domain of automotive CPS, [11]
proposes the V-cloud architecture consisting of three
interdependent layers, namely in-car, vehicle-to-vehicle (V2V),
and vehicle-to-infrastructure (V2I) systems. The V2V and V2I
layers are also connected to cloud environments. [12] suggests a
similar architecture, but call the levels Micro, Meso, and Macro
layers. They aso indicate on a very high level how different
functions can be allocated to the layers, including computation
off-loading, but do not provide any more detailled analysis. In
[13], yet another similar architecture is presented, and it is
discussed how the availability of datain the cloud can be used for
data mining of warranty data, and for parking assistance.

A second group of papers look at a more logica structuring. [14]
applies techniques from service oriented architecture (SOA) on
CPS, arriving again at a three layer architecture, with an
environmental tier containing the physical nodes, a control tier for
controlling access to the devices, and a service tier which makes
interfaces available to other systems. SOA is aso used by [15] in
the context of industria automation, with the inclusion of cloud
based functionality.

A third group discusses performance issues for both computation
and communication, bringing up properties like the ones
discussed in Section 3. [16] present different communication
techniques for CPS, looking at both the low-level technologies for
wireless communication including performance aspects, as well as
its application in different industry sectors. [17] discusses various
aspects of swarm computing, i.e., utilizing the devices’
computational power, and identifies different trade-off points,
such as computation vs. communication. Finally, [18] evaluates,
through a small case study, performance aspects of cloud
computing when applied to time-critical CPS applications,
concluding that platform-as-a-service is the most suitable cloud

approach, but also that even small details in the implementation of
the cloud services can have alarge impact on performance.

All these aspects are relevant for the kind of systems discussed in
this paper. However, they do not address the analysis of different
alocation aternatives for functionality, and the trade-offs it leads
to for different properties. Also, lifecycle consequences are not in
the focus of these references.

7. CONCLUSIONSAND FUTURE WORK
Not so many years ago, the idea to send sensor data from an
embedded system to a server for processing, and then feeding
back the result for usage in control loops would have been very
far fetched. With the rapid development of communication
technology, which is still ongoing, it can be expected that such
solutions will become increasingly attractive. In this paper, the
consequences of such allocations have been studied, and it is clear
that there are many benefits resulting from such an approach, but
also challenges.

The challenges are primarily technical, including how to deal with
increasing variation in response time and availability due to the
use of shared communication and computation resources. The
solutions to this touch all domains of CPS, including control
engineering, ES engineering, communications, and algorithms.
There are also additional competency challenges related to the use
of technology not traditionally associated with ES, such as cloud
systems, which leads to a DevOps situation including also IT
operations.

The opportunities are many, and in particular include improved
development process, continuous software upgrades, operational
feedback, and extended services based on the data from many
systems.

In the future, we plan to look at more cases to reach a deeper
understanding of recurring patterns in this kind of solutions, and
also further analyze potential solutions for increased robustness
and for supporting DevOps of CPS.

8. ACKNOWLEDGMENTS

This work is supported in part by The Knowledge Foundation in
Sweden, as part of the ORION project (Grant No. 20140218), and
in part by VINNOVA, the Swedish Agency for Innovation
Systems (Grants No. 2013-03492, 2014-05599).

9. REFERENCES

[1] Broy, M. and Schmidt, A. (2014). Challenges in Engineering
Cyber-Physical Systems. Computer. 47(2):70-72.

[2] Maier, M.W. (1998). Architecting principles for systems-of-
systems. Systems Engineering. 1(4):267-284.

[3] Axesson, J., and Kobetski, A. (2014). Architectural

Concepts for Federated Embedded Systems. In Proc. 2™ Intl.
Workshop on Software Engineering for Systems-of-Systems.

[4] 1SO/IEC/IEEE Std. 42010 (2011). Systems and software
engineering — Architecture description.

[5] Hevner, AR. et d. (2004). Design Science in Information
Systems Research. MIS Quarterly. 28, 1 (2004), 75-105.

[6] Axelsson, J. et al. (2014). MOPED : A Mobile Open
Platform for Experimental Design of Cyber-Physical
Systems. Euromicro SEAA.

[71 AUTOSAR consortium. www.autosar.org.

[8] Banks, A. and Gupta, R. (Eds) MQTT Version 3.1.1. OASS
Sandard, 2014.

[9] Pugh, S. (1991). Total Design: Integrated Methods for
Successful Product Engineering. Addison-Wesley, New
York.

[10] Faragher, R. (2012). Understanding the Basis of the Kalman
Filter Viaa Simple and Intuitive Derivation. IEEE Signal
Processing Magazine, pp. 128-132.

[11] Abid, H., et a. (2011). V-Cloud: vehicular cyber-physical
systems and cloud computing. In Proc.4™ Intl. Symposium on
Applied Sciencesin Biomedical and Communication
Technologies.

[12] Wan, J. et d. (2014). VCMIA: A novel architecture for
integrating vehicular cyber-physical systems and mobile
cloud computing. Mobile Networks and Applications 19(2):
153-160.

[13] He, W., Yan, G., and Da Xu, L. (2014). Developing
vehicular data cloud servicesin the loT environment. IEEE
Trans.on Industrial Informatics, 10(2), 1587-1595.

[14] La, H. J., and Kim, S. D. (2010). A service-based approach
to designing cyber physical systems. In Proc. IEEE/ACIS 9th
International Conference on Computer and Information
Science, pp. 895-900.

[15] Karnouskos, S. et al. (2012). A SOA-based architecture for
empowering future collaborative cloud-based industrial
automation. In 38" Annual Conference on |EEE Industrial
Electronics Society, pp. 5766-5772.

[16] Chen, M., Wan, J., and Li, F. (2012). Machine-to-Machine
Communications. KS | Transactions on Internet and
Information Systems, 6(2), 480-497.

[17] Rabaey, J. M. (2011). The swarm at the edge of the cloud-a

new perspective on wireless. In Proc. IEEE Symposiumon
VLS Circuits, pp. 6-8.

[18] Olson, M., and Chandy, K. M. (2011). Performance issuesin
cloud computing for cyber-physical applications. In IEEE
International Conference on Cloud Computing, pp. 742-743.

