
Introducing SCRUM into a Distributed Software
Development Course

Ivana Bosnić
University of Zagreb, Faculty
of Electrical Engineering and

Computing
Zagreb, Croatia

ivana.bosnic@fer.hr

Federico Ciccozzi
Mälardalen University

School of Innovation, Design
and Engineering

Västerås, Sweden
federico.ciccozzi@mdh.se

Igor Čavrak
University of Zagreb, Faculty
of Electrical Engineering and

Computing
Zagreb, Croatia

igor.cavrak@fer.hr
Elisabetta Di Nitto
Politecnico di Milano

Dipartimento di Elettronica,
Informazione e Bioingegneria

Milano, Italy
elisabetta.dinitto@polimi.it

Juraj Feljan
Mälardalen University

School of Innovation, Design
and Engineering

Västerås, Sweden
juraj.feljan@mdh.se

Raffaela Mirandola
Politecnico di Milano

Dipartimento di Elettronica,
Informazione e Bioingegneria

Milano, Italy
raffaela.mirandola@polimi.it

ABSTRACT
The growing enactment of Global Software Engineering in
industry has triggered educational institutions to perceive
the importance of preparing students for distributed soft-
ware development. During the last twelve years we have
disclosed advantages and pitfalls of GSE to our students
through our Distributed Software Development course. Af-
ter running the projects according to the iterative process
model for eleven years, we decided to shift to an agile de-
velopment model, SCRUM. This decision was due to the
growing industrial adoption of agile methods, but more im-
portantly to increase proactiveness, sense of responsibility,
and to balance the workload among the project team mem-
bers. In this paper we describe the process and outcomes of
our first attempt at introducing SCRUM in our distributed
course.

Categories and Subject Descriptors
K.3 [Computers and education]: Collaborative learning,
Distance learning, Computer science education

General Terms
Theory, Experimentation, Human Factors

Keywords
Global Software Engineering, distributed software develop-
ment, education, agile methods, SCRUM

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ECSAW ’15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia
c© 2015 ACM. ISBN 978-1-4503-3393-1/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2797433.2797469

Global Software Engineering (GSE) is an established prac-
tice in industry. Although GSE education was at first lag-
ging somewhat compared to its industrial counterpart, re-
cently an increasing number of universities have recognised
the importance of preparing students for the prospect of
distributed software development [1–6]. On the one hand,
lower cost of development, shorter time to market, a 24-
hour development cycle, and being close to the customer
are among the potential benefits of employing a distributed
development approach. On the other hand, unclear respon-
sibilities and cultural clashes are some of the pitfalls. We
have been conveying both good and bad sides of GSE to our
students for twelve years through our Distributed Software
Development course (DSD) [7]. After running the projects
according to the iterative process model, we decided to align
the course with a recent trend that is becoming more and
more established in industry, namely agile development [8].
In general, agile methods promote a flexible software devel-
opment process with focus on iterative development, contin-
uous delivery and rapid response to changes in requirements.
Agile development often stresses the importance of face-to-
face communication, which, despite the existence of various
communication and collaboration tools, is not as seamless
and practical in a distributed setting. However, communi-
cation in general is a crucial aspect of distributed software
development, and agile methods can be tailored to embrace
distribution, even when it comes to communication.

Since industry provides a growing number of examples of
adopting agile methods in a distributed development set-
ting, it is important that this fact is reflected in the soft-
ware engineering education. Although rising, there are not
many efforts yet, which try to combine both agile methods
and distributed software development in education [9]. Ex-
periments with distributed pair programming in education
were performed in [10], showing that it is feasible to develop
software using distributed pair programming, and that re-
sults are comparable to those achieved with colocated or vir-
tual teams. [11] reports the experience of a capstone course
for three virtual teams, but does not provide a quantita-

http://dx.doi.org/10.1145/2797433.2797469

tive analysis. In [12], students from three sites used agile
methods and SCRUM in an experimental setting, in con-
junction with a specific end-to-end tooling solution. A simi-
lar approach, but using distributed SCRUM, was presented
in [13]. The same research group extended that work into
a course where team members were mixed in the middle
of the course, thus having the experience of both local and
distributed settings [14]. Their results showed that there
are no significant differences between distributed and non-
distributed work, and this would suggest that SCRUM can
help in mitigating several GSE issues.

In this paper we present the initial results of introducing
agile methods, in particular SCRUM [15] as one of the most
widely used agile practices, to our DSD course. We compare
the performance of SCRUM teams and teams following the
iterative process and we show that the adoption of SCRUM
has introduced advantages in the quality of decisions and
collaboration and, partly, in the distribution of workload.
The paper is organized as follows. In Section 2 we describe
the course organization and present the motivation for in-
troducing SCRUM. In Section 3 we present the comparison
of key project aspects in the old and new framework. In
Section 4 we shortly discuss the results, before concluding
the paper in Section 5.

2. DSD COURSE DESIGN

2.1 Overview and Original Organisation
DSD is a project-based Software Engineering course, run

since 2003/04. It is carried out in a distributed manner,
currently among University of Zagreb (FER), Mälardalen
University (MdH) and Politecnico di Milano (POLIMI). The
course goal is providing students with real-life experience of
distributed work, including all phases of software develop-
ment, such as defining project requirements with customers,
designing system’s architecture, developing, testing, docu-
menting and presenting the project on several occasions.

Distributed student teams are usually comprised from two
sides, each having 3-4 students as a small local team, being
assigned to a preferred project, if possible [16]. In addition
to all development-related issues, teams face several soft-
skills challenges, like working with team members whom
they never met, gaining trust, showing responsibility, using
technology to communicate on a distance, communicating
in a foreign language, or overcoming cultural differences (in-
ternational students come from a number of countries, not
just Croatia, Sweden or Italy).

Throughout the project, students and staff play several
roles from work environment, such as customers (either teach-
ing staff or external stakeholders - SE companies [17]) who
have the general idea of the project goal, Supervisors (teach-
ing staff) who monitor the project more closely, communi-
cating with their team and helping to solve potential team
issues; Project Leaders and Team Leaders (students cho-
sen by their team members) who are ”in charge” of organiz-
ing the team. Project Leader is located on the site where
the customer resides, while Team Leader is organizing and
leading team’s remote site. There should be a strong and
frequent collaboration between Project Leader and Team
Leader and they should communicate well with their team
members - other students. This type of organization is pre-
sented in Figure 1a. The project relies heavily on collabo-
ration, where students use several means of communication.

To document their decisions, they are required to publish
Minutes-of-meeting documents after each important discus-
sion.

At the end of the course, the evaluation is made based on
several aspects. Teaching staff grades the whole project on
60 criteria grouped into documentation quality, timeliness,
presentations, product quality and process quality. Project
points are sent to the Project Leader who decides how to
distribute them to team members. Such points distribution
can reflect possible team problems and is only a proposal to
the staff. Another part of the evaluation is a final question-
naire, which every student has to fill-in, containing several
questions regarding the process, team collaboration, meth-
ods used, etc. These answers, both quantitative and quali-
tative, can show students’ understanding of GSD.

2.2 Issues
As mentioned above the original DSD student team or-

ganization heavily relies on the mandatory roles of Project
Leader and Team Leader. We have observed some negative
aspects of such organization, primarily concerning the role of
Project Leader. Those aspects are: (i) overload for students
acting as Project Leaders; (ii) lack of initiative / proactive-
ness of other project members, relying on explicit leadership
of Team Leaders and Project Leaders; (iii) dependence of
project performance on the leadership /coordination skills
of just one person.

Overload of Project Leaders can be attributed to several
causes. Project Leaders and Team Leaders are, in general,
more involved than the other team members in the project
they are steering and feel obliged to do whatever it is needed
for the project to succeed. Since Project Leaders are acting
as communication point to the external customers, they are
putting additional effort to compensate the effect of frequent
requirements changes on other team members.

Lack of initiative of other team members can have two
reasons: i) when team members agree with the established
hierarchical organisation, they tend to act as followers and
to wait for inputs from their Project Leaders without realis-
ing that they are sometimes unable to actually steer them;
ii) in the cases the other team members do not agree with
the hierarchical organisation (or would have liked to act as
Project Leaders themselves), they tend to create problems to
the Project Leader by not accomplishing the assigned tasks
and not actively participating in common decision processes.

While the process of Project Leader and Team Leader se-
lection is supposedly a democratic decision of local teams,
in various cases it has lead to a non-optimal selection, typ-
ically because in the specific team there was no member
having the right maturity to act as a real leader. Depen-
dence of the project on just one (inexperienced) student in
the role of Project Leader has exhibited the following down-
sides: i) the authoritative approach taken by the Project
Leader where he/she takes decisions alone, suppresses the
initiative of other team members and lowers their enthu-
siasm and commitment; ii) the failure of Project Leader to
properly/timely assign tasks to the others leads to inefficien-
cies in the development process; iii) the failure of Project
Leader to convey sufficient information to the remote team,
effectively isolates the remote team and results in delegat-
ing to the remote team only minor tasks, while keeping main
effort on her/his side.

The current DSD project model considers role assign-

Local team Local team

Project team

Teaching

staff

Teaching

staff

Supervisor

External

Customer

Internal

Customer

Project
Leader Team

Leader

Development Team

Teaching

staff

Teaching

staff

Supervisor

External

Customer

Internal

Customer

Product
Owner Scrum

Master

Supervisor

Old (hierarchical) project work organization New (flat) project work organzation

Figure 1: (a) old project organization + iterative development (b) new project organization + SCRUM

ment to be permanent. Project Leader and Team Leader
roles have been reassigned on a relatively small number of
projects, and approximately half of those cases required in-
tervention of the teaching staff. In other cases, informal
re-assignment occurred where more capable students took
over the coordination of development, leaving the Project
Leader taking care of administrative tasks only.

2.3 Improvements
To overcome these limitations, some changes have been

considered in the project organization with the goals of (i)
reducing the burden on students playing a role of Project
Leader and (ii) involving all students in decision making as
much as possible, while keeping a high quality of project
work. Different possibilities have been analysed such as:

SCRUM-like project organization: SCRUM promotes self-
organized teams and relatively weak team roles, such as
the SCRUM Master and Product Owner. SCRUM Mas-
ter is in charge of monitoring the process and its progress,
and concerned mostly with organizational issues. Product
Owner acts as a bridge between customers and the team, in
product-related questions.

Role reassignment : during project work, the students could
agree with the others to change their roles. This reassign-
ment could encourage students to be involved in various
aspects of the project work rather than focusing on tasks
dedicated to a single role.

Peer-to-peer project groups: students in the team work as
peers, there is neither a prescribed structure nor hierarchi-
cally defined roles, students must coordinate the effort in a
democratic decision process.

Matrix organization: differentiate development roles from
managerial tasks. Each student is assigned a development
role and works on one or more modules, but is also a mem-
ber of a “project level body” that addresses certain manage-
rial aspects of the project (documentation, version control,
testing etc.). Such roles are also responsible for defining
and enforcing project-wide policies, but not for implement-
ing specific aspects of the project. In this way, no student
can be assigned only to managerial or trivial roles and all
students contribute to project management thus lowering
the load of the Project Leader.

After discussing the pro and cons of the different ap-
proaches, we have decided to experiment, in the academic
year 2014 / 15, with a SCRUM-like approach for the project
organization, to encourage proactiveness, awareness and com-
munication among all team members. Figure 1b shows the
new organisation. The term SCRUM-like implies the ab-
sence of prescribed SCRUM elements to be used by stu-
dents, apart from sprints and two – SCRUM Master and
Project owner – roles, but requires students to justify their
decisions regarding the SCRUM elements used / not used.
The students have been encouraged to assign the SCRUM
Master role to different persons during individual sprints to
avoid overload on single students and to promote the active
participation of all team members.

To better observe the local teams and help them with
problems related to new organization, mostly flat hierarchy
and self-organization, the role of supervisor has been intro-
duced to each local site involved in the project - thus each
local team had a local supervisor as well.

3. RESULTS
To assess the impact of introduced process and organiza-

tional changes, data from last three course iterations (aca-
demic years 2012/13, 2013/14 and 2014/15) have been col-
lected, analysed and compared (Table 1). Sources of col-
lected and summarized data include published summary week
reports, final project report documents, students final ques-
tionnaires and evaluation scores of each distributed project.
Overall, we studied the material produced by 96 students.

Out of a total of 14 projects studies, 10 were conducted
according to the old organizational schema and following
iterative process, while the last course iteration hosted 4
projects employing new organizational schema and agile de-
velopment process. The number of team members varied
from five to ten, and each project involved two locations.

Besides basic project data, the table contains the project
grading outcomes (overall evaulation score, as well as eval-
uation scores for development process and final product).
The number of overall work hours is taken as a measure of
invested team effort and is included in the table as well.

We identified and listed four major decision schemas used
by project teams to reach important, project-level decisions:

Table 1: Analyzed DSD projects
Year Pro– Process stu– Team Evaluation score Work Decison

ject dents locations project(%) process(%) product(%) hours schema

2012/13 A iterative 6 MdH, FER 67,7 65,1 74,4 1102 small group
2012/13 B iterative 6 MdH, FER 68,0 68,3 71,4 1065 voting
2012/13 C iterative 7 POLIMI, FER 94,6 93,5 93,9 1401 consensus
2012/13 D iterative 10 MdH, FER 78,1 66,9 79,5 2150 consensus
2012/13 E iterative 6 FER, MdH 69,0 64,8 63,0 1288 consensus
2012/13 F iterative 6 FER, POLIMI 88,5 88,8 86,5 1708 PL decides
2012/13 G iterative 8 POLIMI, FER 97,3 98,5 96,4 1086 voting
2013/14 H iterative 8 MdH, FER 90,7 74,1 100,0 1822 voting
2013/14 I iterative 7 POLIMI, MdH 95,2 94,0 96,3 2532 consensus
2013/14 J iterative 6 FER, POLIMI 77,6 72,1 96,1 1096 small group
2014/15 K SCRUM 5 POLIMI, MdH 85,5 87,4 91,6 566 voting
2014/15 L SCRUM 9 MdH, POLIMI 96,4 94,5 96,6 1297 voting
2014/15 M SCRUM 6 MdH, FER 91,7 93,1 90,8 801 consensus
2014/15 N SCRUM 6 FER, MdH 85,0 78,4 87,5 827 consensus

Consensus type of schema required the project team to
unanimously support the decision, while resorting to vot-
ing only in rare cases where consensus could not be reached
within a sensible time frame. While being the most demo-
cratic and recognized by students as the most beneficial for
building team cohesion, several drawbacks were identified
such as inefficient meetings, increased time to reach deci-
sions and high level of technical expertise required by all
team members.

Voting was a decision schema recognized by students as
more efficient than consensus but with the danger of lowering
team cohesion if some team members or subgroups had been
consistently outvoted. Most of the studied projects that
formally employed voting as the decision schema tended to
reach consensus, but without it being the primary process
goal.

In small group decision schema, project–level decisions
were made among a smaller number of project team mem-
bers. We have identified two sources of such a process: (a)
lack of technical expertise within a significant subset of team
members, preventing them from active participation in the
decision process and (b) asymmetry in project team size,
where a larger number of team members is located at one
location, effectively taking power and enforcing decisions on
team members at other location. Both types of small group
decision schema can appear as consensus or voting type at
first sight, but fundamentally do not provide equal oppor-
tunities for all team members to participate in decision pro-
cess.

Project Leader decides decision schema was occurring in
the case were, based on argumentation of proposed solutions
and discussion among project team members, the final de-
cision was left to the Project Leader alone.

3.1 SCRUM Adoption
Table 2 shows how SCRUM has been adopted by the

teams in the year 2014/15. Two teams organised the work in
four sprints of two weeks each while the other two adopted
a five sprint approach, one of those had a variable sprint
duration between 1 and 3 weeks.

All teams used a product backlog where they had been in-
cluding all features to develop. While SCRUM differentiates
between product and sprint backlog, three out of four DSD

project teams did not make a clear distinction between the
two. This was mainly due to the fact that they did not have
enough experience to split the backlog in clear sprint level
backlogs and because they did not have a clear sprint plan-
ning phase to accomplish this splitting. One of the teams,
instead, was able to focus on all sprint-related activities,
from planning to retrospective, and was therefore able to
build a sprint-specific backlog.

Given the distributed nature of the teams and the fact
that all team members were not working at the project full-
time, they did not run a daily SCRUM meeting but replaced
it with meetings with various frequencies, ranging from once
a week to twice a week. In one case, there was no fixed fre-
quency for such meetings, but they were called in an ad-hoc
manner. In all cases, however, students were using some
asynchronous communication means to share information
about the status of their work and of the backlog.

All teams adopted both the Product Owner and the SCRUM
Master role. Two of them decided to rotate the roles. In one
case this was due to the fact that the SCRUM Master felt
that he was not able to properly coordinate the process. In
the other case, a conflict between distributed teams occurred
early in the project, requiring involvement of teaching staff
and SCRUM Master role reassignment. Two teams also de-
cided to assign additional fixed roles, such as specific devel-
opment roles, testing role, documentation role etc., partly
inheriting the old organizational style and limiting the in-
volvement of team members to just a few project tasks.

3.2 Work Effort
We analysed the effort (declared work hours) invested by

the key roles in the iterative and SCRUM organizational
schemas compared to the average effort invested by their
project teams. The results show (Figure 2) that the Project
Leader role in the old organizational schema had invested a
significantly larger (120% of the average team effort) amount
than other team members. The Team Leader role also in-
vested more time (108% on average), proving that those
two key roles in the old schema posed a significant burden
on the involved students. The data for the new organiza-
tional schema reveal that the role of SCRUM Master does
have a lower average declared work hours (112% on average)
compared to the Project Leader role, but still requires more

Table 2: Adoption of key SCRUM elements by distributed projects in 2014/15
Sprints SCRUM roles SCRUM events SCRUM artefacts

pro– sprints dura– product SCRUM rotated sprint daily sprint sprint re– product sprint
ject tion owner master SM planning SCRUM review trospective backlog backlog
K 5 2 w y y y n 2-3/w n n y n
L 4 2 w y y n y 2/w y y y y
M 5 1-3 w y y n n ad-hoc n n y n
N 4 2 w y y y n 1/w n n y n

70%

80%

90%

100%

110%

120%

130%

140%

150%

Project Leader Team Leader Scrum Master Project Owner

avg hours max hours min hours

Figure 2: Average work effort of key project roles

effort than basic Development Team member role. On the
other hand, the role of Project Owner does not seem com-
parable to Team Leader role – the average declared effort is
even lower than the average project team effort (95%).

Observing the total effort required by the two key roles
in each organizational schema, the older schema clearly re-
quired more above–the–average effort, finding that is con-
sistent with our empirical observations. In the new schema,
the task of team coordination is formally delegated to just
one role, but due to the self-organizing nature of teams and
the employed decision process – spreading much of the effort
to all team members – the required SCRUM Master effort
and the overall key role effort is lower. It is interesting to
note, however, that the maximum effort by three roles (PL–
136%, TL–135%, SM–134%) is almost the same. While un-
derstandable in the old organizational schema, such a high
required effort in the new schema might indicate problems in
self-organization of the specific teams, requiring the SCRUM
Master to effectively play the role of Project Leader.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4

itera0ve SCRUM

Figure 3: Variation of project team effort

We further analysed the variation of invested effort among
project teams by observing the standard deviations of av-
eraged work hours within each team. The distribution of
deviations for projects using iterative and SCRUM process

is presented on the histogram in Figure 3. Although the
number of projects analysed precludes drawing firm conclu-
sions based on statistically significant results, a clear trend
can be observed: projects employing SCRUM process tend
to yield lower variation of work hours (X-axis) among team
members (in percentage, Y-axis).

3.3 Decision Process
In the old organizational model and iterative development

process, all four decision schemas were present; consensus
was the most frequently occurring one (4), followed by voting
(3), small group (2) and PL decides (1). In the new model,
equally represented consensus and voting schemas (2) were
identified. It is reasonable to conclude that the new project
organisation favoured more democratic decision processes,
preventing explicit occurrence of PL decides schema. How-
ever, it generally does not prevent transformation of those
two schemas into a small group schema, driven by different
negative properties of project teams.

In order to gain more understanding of students’ view
on the decision process type and its properties, we have
analysed the answers to the following questions in the Fi-
nal Questionnaire, defining five process quality perception
indicators:

Decision process: rate if the process of reaching deci-
sions in your project was a good one or not (from 1-bad to
5-excellent).

Influence: rate and describe how much you could affect
the project decisions (from 1-no influence to 5-high influ-
ence).

Role: rate and describe satisfaction with your role in the
project and tasks assigned during the project (from 1-very
dissatisfied to 5-very satisfied).

Insight: rate and describe awareness on other people
roles and their work status (from 1-had no idea to 5-completely
aware).

Overview: rate and describe information flow in your
project team, awareness of the overall project status, im-
portant information and events (from 1-kept in the dark to
5-completely aware).

Figure 4 presents the averaged indicator values for old and
new project organisation / development processes. All the
indicator values are higher for the new project organization,
and the largest progress can be observed with the insight
indicator. Thus we can conclude that self-organization and
lack of a priori work division have made team members more
familiar with each other tasks and results. Influence and role
indicators also show significant improvements; individual in-
fluence on decisions was increased and the lack of firmly de-
fined roles allowed team members to proactively choose the
work items they were more motivated for.

Figure 5 presents the analysis results with regards to the

3.40

3.60

3.80

4.00

4.20

4.40

4.60

4.80

decision
process

influence role insight overview

itera;ve scrum

Figure 4: Influence of development process on pro-
cess quality perception indicators

3.40

3.60

3.80

4.00

4.20

4.40

4.60

4.80

decision
process

influence role insight overview

consensus vo:ng small group PL decides

Figure 5: Influence of decision process on process
quality perception indicators

adopted decision schema. Consensus schema has the high-
est valuation for all but one indicator. The students’ opinion
of the decision process is highest for the Consensus schema,
lowest for the Small group schema, and, surprisingly, com-
parable for the other two schemas. Individual’s influence on
the decisions made is, as expected, lower for the two schemas
not involving all team members. Similar ratings can be ob-
served for the insight indicator, where those two decision
schemas do not promote strong team cohesion.

-‐6%

-‐4%

-‐2%

0%

2%

4%

6%

process quality influence role insight overview

Figure 6: Influence of SCRUM on process quality
perception indicators

To evaluate the impact of development process alone on
process quality perception, we compared the average val-
ues of indicators between SCRUM projects and iterative
projects using only voting and consensus decision schemas.
Figure 6 reveals a slight decrease in the perception of de-

cision process quality by around 5%, while influence, role
satisfaction and insight indicators show slight increase. The
drop in process quality perception can be attributed to in-
experience of students in applying SCRUM in practice and
more effort needed to self-organize the teamwork, lacking the
structure the old organizational schema provided. Positive
influence on other perception indicators can be explained by
the encouraging effects of self-organization and the increased
proactiveness required from students in such an organiza-
tional environment.

3.4 Communication and Collaboration
To assess the impact of new project organization and pro-

cess on communication and collaboration, we analysed the
quantitative observations of cooperation among local and
distributed teams, where each student rated local and re-
mote cooperation with a score 1–10.

Table 3: Ratings of local and remote cooperation
Location

process local remote

iterative 8,16 7,26
SCRUM 8,35 7,42
iterative without PL de- 8,43 7,65
cides, small group

Table 3 shows slightly increased scores of both coopera-
tion within local teams and cooperation between distributed
teams for SCRUM development process, compared to iter-
ative one. However, if only iterative projects using voting
and consensus decision schema are compared to SCRUM
projects, their score is even higher.

0

1

2

3

4

5

6

7

8

9

10

consensus vo3ng small group PL decides

local remote

Figure 7: Impact of decision schema on local and
remote cooperation

The highest cooperation ratings, concerning the decision
schema used (Figure 7), were assigned to consensus and,
surprisingly, PL decides schemas, while Small group schema
was the worst one, hampering overall cooperation.

The relative difference between average ratings of local
and remote cooperation tends to be the same regardless of
the development process (Table 4). However, there is a sig-
nificant difference between two ratings with regards to the
decision schema used in the project; while voting schema has
a slightly more uniform valuation of local and remote coop-
eration than consensus, small group and PL decides schemas
exhibit larger differences, pointing towards systematic prob-
lems in collaboration.

Table 4: Difference between local and remote coop-
eration

process/decision schema difference (%)

iterative 11
SCRUM 11
iterative without PL de- 9
cides, small group
consensus 11
voting 8
small group 16
PL decides 17

From the data presented, it can be concluded that the
quality of local and remote cooperation can depend on the
decision schema used, but not directly on the development
process itself. Both self-organizing and authoritative deci-
sion schemas can prove as efficient coordinators, however
they can have different effects on the quality of local and
remote cooperation: some schemas tend to even local and
remote cooperation (consensus, voting), while others tend
to emphasize related differences (PL decides, small group).
The difference in observed quality between local and remote
cooperation can be influenced up to a certain point, as the
ease of local communication among local team members over
remote communication with distant team members will al-
ways prevail in well–functioning distributed teams.

3.5 Project Evaluation
Another research question to answer is whether develop-

ment process used and decision schema have influenced the
project evaluation scores, observing the overall project score
and scores related to development process and product qual-
ity.

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

project process product

itera6ve scrum

Figure 8: Impact of development process on evalu-
ation scores

The analysis reveals that the overall project evaluation
scores tend to be higher for projects employing SCRUM
as the development process (Figure 8). The difference be-
tween iterative and SCRUM is even more evident in process–
related scores. However, voting and PL decides decision
schemas outperform consensus schema for all three out-
comes observed (Figure 9). Those results suggest that, in
spite of being the highest rated by students, consensus schema
is not the most efficient one concerning the project and pro-
cess end results. Other two schemas, while modestly or
significantly reducing cohesion within project teams, gain
better end results in two fundamentally different ways; vot-

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

consensus vo0ng small group PL decides

project process product

Figure 9: Impact of decision schema on evaluation
scores

ing schema promotes efficiency by a majority of competent
team members, while PL decides enforces efficiency by plac-
ing most of the power in hands of one (or two) project team
members. Both approaches however bring along significant
risks. Voting schema, in case of a small number of competent
students tends to transform into a small group schema with
serious consequences for team cohesion, while performance
of projects employing PL decides schema strongly depend
on personality and competence of just one or two students.

3.6 Threats to Validity
The analysis we have presented is clearly based on a very

limited number of cases. This means that our observations
do not have, by any means, a statistical validity. We have
no objective way at the moment to mitigate such threat to
validity, but we do think that the fact data and feedback
from students reflect the expectations of instructors can be
seen as a first and preliminary confirmation of results.

4. DISCUSSION
After 11 years of iterative development with hierarchical

team organization, due to several reasons mostly related to
the role of the Project Leader such as, e.g., overload for lead-
ing students and lack of proactiveness of other group mem-
bers, we decided to introduce a SCRUM-like approach with
flatter team organization. The role of “leader” together with
the lack of self-(re)organization possibilities had triggered
several unwanted plights in the previous course editions.
With a SCRUM-like approach, our hope was that, flattening
the roles by avoiding leading roles, by giving the teams the
“power” of self-(re)organization with generally weaker fixed
roles, would naturally lead to more democratic decisions as
well as enhanced proactiveness and sense of responsibility
from the whole team. So, are we there yet?

One of the reasons for flattening the team organization
was to mitigate the likelihood of witnessing unfair overload
for project leaders who drag the rest of the team. While ex-
periencing a reduction of maximum effort for the somehow
corresponding role of SCRUM master, on average it is still
way above the rest of the team members. The decision of
having a “masked” project leader was (not entirely but still)
unexpected and seems to indicate the need of a clear guid-
ance for most students. This could be either due to the fact
that students with a weaker background tend to put them-
selves in the hands of the more skilled colleagues, but it can
also be a consequence of unwillingness to proactively par-

ticipate in decision making. In either case, we need to find
instruments to mitigate the tendency, since the sole intro-
duction of a more agile development process does not seem
to help all the way as we wished.

Another crucial reason for introducing a flatter organiza-
tion was to trigger more democratic decision making, proac-
tiveness, and strengthen team cohesion and awareness. We
have indeed noticed a general improvement of team cohesion
and awareness, especially in those cases where reorganiza-
tion was not needed. In fact, while flexibility of reassigning
roles seemed to be one of the keys for improvements, we no-
ticed that it actually led to organizational problems when
exploited. When it comes to decision making, not having
a project leader triggered more democratic approaches in
some cases. In others, the SCRUM master became, as afore-
mentioned, a de-facto project leader, and consequently de-
cision making was delegated to one individual again. While
project and process could slightly profit from a central deci-
sion source, quality of the final product seems to grow when
more democratic decisions (often through voting driven by
the group of more skilled team members) are taken. This
means that we need to come up with more effective ways
to achieve a more equally distributed workload without un-
dermining project and process end results, and keeping in
mind the strong signal that more democratic decisions lead
to better products.

5. CONCLUSIONS
In this paper we have presented a comparative analysis

of the performance of student teams developing software
engineering projects in a distributed setting following two
different processes, iterative and SCRUM-based. The iter-
ative process is the one we have applied in our Distributed
Software Development course for eleven years, while the
SCRUM-based is the one we have adopted in this academic
year for the first time. The veer towards SCRUM was partly
motivated by the growing industrial adoption of agile meth-
ods in software engineering, but mainly by the observation
of an unbalanced workload, in the initial iterative approach,
between project leaders and the rest of the teams. Our
assumption was that the adoption of SCRUM would have
resulted in a more even distribution of work in the teams.
Moreover, we were hoping that less fixed roles would have led
to increased proactiveness and sense of responsibility from
the whole team. Our analysis has produced the following
findings: i) we have observed a positively improved team
cohesion and awareness as well as more democratic decision
models leading to better final products; ii) even though the
SCRUM masters showed, on average, lower declared work
hours compared to project leaders, still they have been work-
ing more than the other team members. In the future, we
plan to continue using SCRUM, trying to enable the stu-
dents in achieving a flat organizational structure with an
equal distribution of work and responsibilities.

6. ACKNOWLEDGMENTS
We express our gratitude to professors Ivica Crnković (Mä-

lardalen University / Chalmers University) and Mario Žagar
(University of Zagreb) for their pioneering work in establish-
ing and running of the DSD course.

7. REFERENCES
[1] M. Nordio, C. Ghezzi, B. Meyer, E. Di Nitto,

G. Tamburrelli, J. Tschannen, N. Aguirre, and V. Kulkarni.
Teaching Software Engineering Using Globally Distributed
Projects: the DOSE Course. In Procs of CTGDSD,
Waikiki, Honolulu, HI, USA, 2011.

[2] M. Paasivaara, C. Lassenius, D. Damian, P. Räty, and
A. Schröter. Teaching Students Global Software
Engineering Skills Using Distributed Scrum. In Procs of
ICSE, San Francisco, CA, USA, 2013.

[3] E. Stroulia, K. Bauer, M. Craig, K. Reid, and G. Wilson.
Teaching Distributed Software Engineering with UCOSP:
The Undergraduate Capstone Open-source Project. In
Procs of CTGDSD, New York, NY, USA, 2011.

[4] S. Case, S.K. Schneider, L.J. White, S.J. Kass, K. Manning,
and N. Wilde. Integrating Globally Distributed Team
Projects into Software Engineering Courses. In Procs of
CTGDSD, San Francisco, CA, USA, 2013.

[5] F. Fagerholm, N. Oza, and J. Munch. A Platform for
Teaching Applied Distributed Software Development: The
Ongoing Journey of the Helsinki Software Factory. In Procs
of CTGDSD, San Francisco, CA, USA, 2013.

[6] E. Almeida, Li Dali, S. Faulk, C. Lima, Zhang Rui,
D. Weiss, Jin Ying, M. Young, and Lian Yu. Teaching
Globally Distributed Software Development: An
Experience Report. In Procs of CSEE&T, Nanjing,
Jiangsu, China, 2012.

[7] I. Crnković, I. Bosnić, and M. Žagar. Ten Tips to Succeed
in Global Software Engineering Education. In Procs of
ICSE, Zurich, Switzerland, 2012.

[8] R. C. Martin. Agile Software Development: Principles,
Patterns, and Practices. Prentice Hall PTR, 2003.

[9] L.L. Fortaleza, T. Conte, S. Marczak, and R. Prikladnicki.
Towards a GSE international teaching network: Mapping
Global Software Engineering courses. In Procs of
CTGDSD, pages 1–5, Zurich, Switzerland, 2012. IEEE.

[10] P. Baheti, L. Williams, E. Gehringer, D. Stotts, and J.M.
Smith. Distributed Pair Programming: Empirical Studies
and Supporting Environments. TR02-010. University of
North Carolina at Chapel Hill Dept. of Computer Science,
2002.

[11] D.F. Rico and H.H. Sayani. Use of Agile Methods in
Software Engineering Education. In Procs of AGILE,
Chicago, IL, USA, 2009.

[12] C. Scharff, O. Gotel, and V. Kulkarni. Transitioning to
Distributed Development in Students’ Global Software
Development Projects: The Role of Agile Methodologies
and End-to-End Tooling. In Procs of ICSEA, Nice, France,
2010.

[13] M. Paasivaara, C. Lassenius, D. Damian, P. Räty, and
A. Schröter. Teaching Students Global Software
Engineering Skills Using Distributed Scrum. In Procs of
ICSE, San Francisco, CA, USA, 2013.

[14] M. Paasivaara, K. Blincoe, C. Lassenius, D. Damian,
J. Sheoran, F. Harrison, P. Chhabra, A. Yussuf, and
V. Isotalo. Learning Global Agile Software Engineering
Using Same-Site and Cross-Site Teams. In Procs of ICSE
JSEET, Florence, Italy, 2015.

[15] K. Schwaber and M. Beedle. Agile Software Development
with Scrum. Prentice Hall PTR, 2001.

[16] I. Bosnić, I. Čavrak, M. Orlić, and M. Žagar. Picking the
Right Project: Assigning Student Teams in a GSD Course.
In Procs of CSEE&T, San Francisco, CA, USA, 2013.

[17] I. Bosnić, I. Čavrak, M. Žagar, R. Land, and I. Crnković.
Customers’ Role in Teaching Distributed Software
Development. In Procs of CSEE&T, Pittsburgh, PA, USA,
2010.

