
Automotive System Testing by Independent
Guarded Assertions

Thomas Gustafsson
Scania CV AB

Södertälje, Sweden
thomas.gustafsson@scania.com

Mats Skoglund, Avenir Kobetski, Daniel Sundmark
Swedish Institute of Computer Science

Kista, Sweden
firstname.lastname@sics.se

Abstract—Testing is a key activity in industry to verify and
validate products before they reach end customers. In hardware-
in-the-loop system-level verification of automotive systems, testing
is often performed using sequential execution of test scripts, each
containing a mix of stimuli and assertions.

In this paper, we propose and study an alternative approach
for automated system-level testing automotive systems. In our
approach, assertion-only test scripts and one (or several) stimuli-
only script(s), execute concurrently on the test driver. By sep-
arating the stimuli from the assertions, with each assertion
independently determining when the system under test shall be
verified, we seek to achieve three things: 1) tests that better
represent real-world handling of the product, 2) reduced test
execution time, and 3) increased defect detection. In addition
to describing our proposed approach in detail, we provide
experimental results from an industrial case study evaluating
the approach in an automotive system test environment.

I. INTRODUCTION

The primary means for quality assurance of software-
intensive systems in the automotive industry today is by
using testing. At integration level, in addition to in-vehicle
testing, the systems under test (SUTs) are generally divided
into separate functional parts, which are tested in isolation
by exercising pre-defined (often scripted) test scenarios in
Hardware-In-the-Loop (HIL) test rigs.

Although scenario-based testing does ensure that certain
requirements are covered during testing, it has a number of
drawbacks. When using HIL testing, the execution of test
cases is time consuming, due to the sheer number of test cases
executed, and often conducted in overnight batch runs. More-
over, test cases are designed using a divide-and-conquer-based
approach following the division of the system requirements
into smaller functional entities (which is in accordance with
recent textbook guidelines for functional test design [1], [2]).
Once having been created, scripted and incorporated in the
test suite, test cases are typically repetitively executed without
much variation. This leads to a situation where only a small
portion of the vast set of possible scenarios that the system
could be subjected to are thoroughly tested, while the others
are left entirely unexplored. In addition, test cases are typically
based on requirements defining how the system should behave
during normal operation [3]. While this provides valuable
confirmation with respect to the system’s fitness for use in
the normal case, there are results indicating that focusing on

normal requirement-based cases might not be the best strategy
when trying to maximize fault-detection (see e.g., [4] and [5]).

In this paper, we introduce the use of independent guarded
assertions in order to reduce testing time, increase defect
detection, and improve the real-world representativeness of
HIL-based automotive integration testing. More specifically,
for each test case, the state-changing stimuli (i.e., the inputs)
are separated from the verdict-generating assertions (i.e., the
comparisons between the actual and expected output). Then,
the assertions are guarded from evaluation based on the state
of the system under test, while the sequences of state-changing
stimuli are fed to the system under test independently and with
very few restrictions. The assertion guards merely monitor the
state of the system during test execution. Each instance where
the system state satisfies the conditions of an assertion guard,
the assertion is performed and a verdict generated.

Independent guarded assertions allow for 1) parallellized
execution of test cases (both in terms of guarded assertions and
sequences of stimuli), 2) repeated and frequent evaluation of
assertions, often with the system being in states not explicitly
considered in the original requirements, and 3) reduction of
testing time, since repetetive and time-consuming test case
setup and cleanup can be reduced if not ignored.

In the paper, we also provide initial experimental results
from an industrial case study, preliminarily evaluating the
effects of the approach on the above stated benefits.

II. THEORETICAL BACKGROUND

Software testing is traditionally performed by exercising test
cases on the software under test. A test case consists of inputs
(or stimuli) to be provided to the software under test, and the
corresponding expected output (or response), to be compared
to the actual response of the software under test in order to
provide a test verdict (typically pass or fail).

For simple programs, single inputs or input vectors can be
used to explore the behavioural space of the software. Each
input vector, when executed on the software under test, pro-
duces an output that can be compared to the expected output
for the software. For reactive systems, however, especially on
higher levels of integration or system testing, test cases that
use ordered sequences of inputs or stimuli in order to subject
the system to specific scenarios are often used. This type of
testing is known as scenario-based testing [6].



A. Automotive System Testing

Based on our experience, sceniario-based testing, using
hardcoded scripted test cases seems to be the current de facto
standard of control system testing in the automotive, as well
as in the more general vehicular industry. Often times, these
test cases are executed on the system under testing by means
of hardware-in-the-loop (HIL) or software-in-the-loop (SIL)
based integration testing platforms. There is also an increasing
trend of utilizing model-based testing for this purpose, and
techniques focusing on model-based testing dominate research
in the (relatively sparsely populated [7]) automotive testing
area (see e.g., [8] and [9]).

It should however be noted that scenario-based testing can
be seen as a special case of the more general model-based
testing approach [6]. Both techniques rely on a divide-and-
conquer procedure, where requirements and specifications are
broken down into smaller units, either from an architectural
or a functional perspective. These smaller units are then
expressed as test models (typically some form of state charts)
or specific scenarios (that could theoretically be seen as indi-
vidual paths through the state chart). Such model or artefacts
are valuable for testing of the individual units, but typically do
not express the expected behavior stemming from interaction
between the modeled units.

B. Declarative Testing

The approach proposed in this paper draws inspiration from
previous work on declarative testing [10], [11]. The informal
description of the difference between traditional testing and
declarative testing is to switch test engineers’ focus from how
to perform tests to what to test [11]. Declarative testing focuses
on describing the goals of a scenario instead of the steps
needed to execute it.

Traditional testing techniques are not sufficient to cope
with the non-determinism, various configurations and network
topologies involved in distributed systems. Thus, a declarative
testing approach was proposed using the Bloom language in
[10]. In the approach, a framework is presented where the test
engineer describes the input/output relation in a declarative test
specification which an automated test system then utilizes to
produce possible execution paths satisfying the specifications.

Another approach using declarative testing, initially con-
ceived as a method for automated graphical user interface
testing at Microsoft, is described in [11]. According to the
authors, in the GUI test automation context a declarative
testing approach can be used to reduce the number of test
cases. Since the goal is expressed instead of the actions to
reach the goal, duplications such as testing both a keyboard
shortcut gesture and mouse gestures reaching the same end
state can be avoided if only the end reaching the end state is
of interest. Also, declarative testing increases maintainability
of test code since declaration of interesting states are separated
from the code describing the actions. Thus changing the
software under test may sometimes only require changes to
one entity instead of several.

III. APPROACH

This section provides a detailed description of the tradi-
tional approach of scenario-based HIL testing, as well as the
proposed new approach using independent guarded assertions.

A. Traditional approach

In Figure 1, an example of a framework for integration tests
is shown. This particular example is taken from the Swedish
truck manufacturer Scania1 but based on our experience with
several other vehicular OEMs, we argue that it is sufficiently
representative for test frameworks in general in this domain.

Test driver 
Sequential execution of test cases 

API 

Real-time model 
I/O model and dynamic vehicle model 

SUT 

Input stimuli from 
test cases called 

using API methods 

Manipulation of 
sensor values in 

the I/O model 

Sensor values 
from the I/O model 

Manipulation of 
actuator values in 

the I/O model 

Actuator values 
from the I/O model 

and dynamic 
model state values 

System behavior 
observed using 

API method calls 

Regression 
test suite 

Test cases 

Fig. 1. Integration Test Framework.

A test case for the framework represents some user function
scenario that should be verified. A test case is typically
structured into three phases according to the AAA principle of
Arrange, Act and Assert. Sometimes a cleanup phase is also
included. The general structure of a test case is depicted in
Figure 2.

• The goal of the Arrange phase is to put the SUT in a
certain state where the test scenario suitably can be tested
(e.g., accelerating up to a certain speed or setting a certain
temperature).

• In the Act phase, the steps in the scenario are executed.
• In the Assert phase the actual result of the previous steps

is compared to some pre-specified expected result.
• In the Cleanup phase, the SUT is put in a state where

execution of the next test case can commence without
disturbances from the previous test case.

All phases can be constructed by means of sequences
of input API method calls, sleeps and assertions comparing
expected behavior with actual behavior. Based on the outcome
of its assertions, a test case can, when exercised, render three
different results: A passed test case is one with no violated
assertions, a failed test case is one where the expected behavior

1www.scania.com



Arrange
0 . . . m of stimulus

Act 1
Stimuli 1
Stimuli 2
. . .
Stimuli n
Assert 1
Assert 2
. . .
Assert p

Act 2
. . .
Act r

Cleanup
0 . . . s of stimulus

Fig. 2. An example of a structure of a test case.

does not match the behavior of the SUT (ideally indicating a
fault in the SUT), and an aborted test case is a test case where
some test case action cannot be performed (ideally indicating
a fault in the test case or the test environment). A test suite is
a set of test cases in a specific order. It is executed by a test
driver, one test at a time.

This traditional approach has several limitations. Since test
cases are executed sequentially, possible interactions between
the behavior of several test case stimulus are not considered.
For example, even though individual and separate test cases
testing the reverse light and the hazard warning may exist, the
combined effect of turning on the hazard warning while putting
the gear in reverse would remain untested unless specific test
cases were created testing this scenario.

The testing in each act depends on which stimuli is given.
For example, the reverse light is tested by engaging reverse
gear and checking the lamp, but it is not verified it is not
lit for every other gear. Should such tests be performed, new
acts must be developed, even though other scripts use forward
gears for other testing purposes.

B. New Approach: Using Independent Guarded Assertions

In order to address the above limitations, a novel approach
for automotive system HIL testing is presented. In our ap-
proach, instead of the traditional test case structure with
arrange, act, assert and cleanup as described above, a test suite
can be divided into two parts; 1) The assertions, guarded by
conditions on the state of the SUT as described below, and 2)
The stimuli that drives the SUT to satisfy the states needed to
release the guards and trigger the assertions to evaluate.

1) Writing Test Cases as Independent Guarded Assertions:
In the proposed approach, a test case is structured in a manner
similar to the guarded command approach [12]. The command
is the assertion that should be evaluated on the SUT and
the guard is a condition on the state of the SUT defining

when the assertion is valid to evaluate. This can be described
more formally as {guard ⇒ assertion}, with the meaning
that when the guard condition is satisfied the assertion is
evaluated. For example, when gear is in reverse it is asserted
that the reverse light is on. Consequently, when gear is not in
reverse the assertion is not valid and should not be evaluated.
In this example the guarded assertion can be formulated
as {gear=reverse ⇒ reverse_light=On}. The test
cases are formulated as read-only in the sense that the guards
and the assertions of test cases are only allowed to read the
state of the SUT but not to manipulate it in any way.

Using the proposed approach, a test case can be made to
“wait” for a certain state of the SUT, and evaluate an assertion
when that state is reached. For example, a test case “waiting”
for the gear to be in reverse can - when that condition is
satisfied - assert that the reverse light is on. Pseudo code of
this example, using guarded assertions, is shown in Figure 3.

while(true){
EventWait(gear == Reverse);
Assert(Reverse_light == On);

}

Fig. 3. The guarded assertion structure as pseudo code.

The EventWait call makes the test case wait for the gear
part of the state of the SUT. When the gear is Reverse the
guard will release and the Assert(Reverse_light ==
On) will be evaluated and report failure if the reverse light
is not on. The guarded assertion will execute within the outer
infinite loop that continuously evaluates the assertion when
gear is in Reverse.

Since the assertions do not affect the state of the SUT, it
is possible to execute several independent guarded assertions
in parallel without risk of them interfering with each other.
Thus, an example test suite testing various lights and gears in
a parallel fashion could be:

1) {gear = reverse ⇒ reverse light = On}
The reverse light is on when the gear is in reverse.

2) {gear <> reverse ⇒ reverse light = Off }
The reverse light is off when the gear is not in reverse.

3) {hazard = On ∧ dir = Off ⇒ dir ind flashing}
Direction indicators shall flash if hazard warning is on.

Test 3 can be tested simultaneously with either test 1 or 2.
Test 1 and 2 are mutually excluded.

2) Driving the SUT: In order to satisfy the guards of the
assertions during testing, stimuli that change the state of the
SUT accordingly must be provided. In the proposed approach,
the script(s) providing the stimuli required to release the
guards are executed in parallel with the assertion scripts, as
shown at the top of Figure 4. Using the above example above
with gears and lights, this provided stimuli should ideally
ensure changing gears to reverse and neutral to release the
guards of the assertions in the test cases.

Since the purpose of the stimuli is to put the SUT in a state
that release the guards, they correspond to the stimuli used in



Test driver 
Parallel execution of stimuli and assertions 

API 

Real-time model 
I/O model and dynamic vehicle model 

SUT 

Input stimuli from 
test cases called 

using API methods 

Manipulation of 
sensor values in 

the I/O model 

Sensor values 
from the I/O model 

Manipulation of 
actuator values in 

the I/O model 

Actuator values 
from the I/O model 

and dynamic 
model state values 

System behavior 
observed using 

API method calls 

Regression 
test suite 

Stimuli 
(potentially parallel) 

Independent 
Guarded Assertions 
(potentially parallel) 

Fig. 4. New Integration Test Framework.

a traditional test case’s Arrange and Act phases. However, in a
traditional approach the arrange phase is sometimes required
because the test case should start executing from a known
starting state of the SUT. For example, the first test case in a
test suite execute from a ”fresh” SUT state and may need to
perform some state changes in its Arrange phase. Also, all test
cases following a test case that restores the SUT to its original
starting state in its cleanup phase may also require the Arrange
phase. The cleanup phase in a traditional test case may be a
requirement to avoid introducing dependencies between test
cases where a certain test case cannot execute correctly unless
some other test case has executed first. Consequently, several
test cases may have similar arrange phases (e.g. speed up to
a certain speed or turn ignition on) and also similar cleanup
phases, e.g. put the gear in neutral or turn off engine. Such
frequent (and often times unnecessary) sets and resets of
system state may result in an inefficient test suite execution.

In the proposed approach, all independent guarded asser-
tions may execute continously in parallel, the stimuli that cause
SUT state changes are centralized, and thus the concept of
restoring the state after an assert is no longer needed. Instead,
the provision of the stimuli can be designed such that desired
assert coverage of the test cases is acheived. This approach
provides possibilities to have several parallel sources of stimuli
aimed at certain goals, e.g. coverage goals where all asserts
should be executed as fast as possible, to mimic a real-work
usage of the SUT, or even to maximise fault detection (e.g.,
by evaluating the same assertions in as many different “valid”
SUT states as possible). This is further elaborated in Section
V-A future work.

IV. EXPERIMENTAL RESULTS

This section describes the results of an experiment con-
ducted to provide an initial evaluation of the benefits of the

approach with respect to the objectives of increased real-world
representativeness, reduced execution time, and increased de-
fect detection. Section IV-A describes the experimental setup,
and Section IV-B shows the results and the analysis.

A. Experimental Setup

We have executed an experiment focusing on executing
multiple test scripts in parallel. Here we have taken 10 test
scripts from Scania’s full vehicle integration test suite and
converted them into 68 independent guarded assertion scripts,
and one stimuli script. The stimuli script, or the course, is a
concatenation of all stimuli in the original scripts where timing
and order is kept.

Scania’s test automation framework is used. It is
client/server based where each script constitutes a client, and
access to the HIL is done via the server. The server supports
multiple clients.

First, the server is started, then all assertion scripts are
started, and when they are ready, the course script is started.
The assertions are closed when the course script is finished.

B. Results and Analysis

Figure 5 shows a plot where the x axis shows time (x = 0
at start of course), and the y axis is allocated one integer value
for each assertion, and y = 1 is allocated for the course. Each
time the course script is providing stimuli to the system under
test a dot is plotted on y = 1. A signal can, for instance, be
pressing the hazard warning button. Each time an assertion
has executed, a dot is plotted on the corresponding y value.

As can be seen from the figure, assertions are executed
concurrently, and are performed more times than only once
for a majority of the assertions.

Moreover, of all assertions that are performed at least
once, they have done so at the time 374 seconds, which
is 5 seconds faster compared to running the test scripts
sequentially. Further, 9 assertions have been performed before
their corresponding part of the course has started. These two
results indicate that without optimizing the course against any
objective, it is still possible to get benefits relating to time and
concurrency.

We noticed that this initial transformation of the original
scripts into guarded assertions gave three different results:

• the transformed script reaches the same verdict as the
original script,

• the transformed script reaches at least one verdict that is
different from the original script, and

• the transformed script is never executed (there are several
such transformed scripts in Figure 5).

The last bullet can be due to mistakes in the transformation
so the script is aborted by the runtime environment, but it
can also be due to a too strict guard. The second bullet is
most likely due to too insufficiently strict guards; they let tests
against expected responses be executed even if the intended
preconditions are not fully met. Based on these observations,
we focused efforts on learning how guards can be constructed,
described below.



Fig. 5. Plots of stimuli in the course, and when assertion scripts perform assertions. x axis shows time in seconds, and y axis shows when assertions are
performed or when the course performs a stimuli.

Test scripts 1 and 2 test different aspects of hazard warning.
We saw that the verdicts of several guarded assertions differed
from those of their sequential counterparts, e.g., assertion 2 of
test script 1. We found that the assertion guard collects data for
around 10 seconds, and then analyzes it. The hazard warning
shall be activated during this period, but the course deactivated
it too early for the assertion guard to be satisfied. This can
be remedied by either correcting the course or constructing
a guard that checks the functionality during data collection.
Thus, there is a relationship between the course and the
assertions that must be considered when constructing a course.

Test script 5 tests the worklight. By pressing a button,
worklight lamps are enabled for easier maneuvering at low
speeds. Furthermore, the button has two functions, pressing
it always turns on/off the worklight, but if it is pressed for
more than 3 seconds, then it activates/deactivates the automatic
activation of the lamps if the reverse is engaged. Now we focus
on assertion 4 and its transformation into a guarded command.
The implementation of the guard of assertion 4 covers the used
techniques of the other assertions of this test script.

Assertion 4 shall verify that if the worklight button has been
pressed an even amount of times, i.e., the functionality is off,
but the 3 second functionality can still be active, then when
switching gear from reverse to neutral, the worklight lamps
and the indication shall be off. The guard for this is given in
Figure 6. Three concurrent threads of execution is needed to
implement the guard. One checks the worklight switch, one

determines when the gear is changed from reverse to neutral,
and the third fuses the information into one decision: test or
not to test. Thread 1 needs to consider that it takes time for
the systems handle button presses.

V. CONCLUSIONS AND FUTURE WORK

In this work, we set out to find a way to achieve the
following objectives:

1) increased real-world representativeness,
2) shorter testing time, and,
3) improved defect detection.
We argue that being able to execute tests concurrently is one

way to address all three bullets at the same time. However,
executing tests containing stimuli concurrently has a risk of
putting the SUT in a state that none of the executing scripts
want it to be in. Our way of resolving this problem is to utilize
independent guarded assertions.

In our experimental evaluation, 10 test scripts, divided into
68 acts, were transformed into 68 independent guarded asser-
tions and then executed concurrently with a script representing
the course. The conclusions are as follows:

• Some assertions are triggered only once, but many are
triggered multiple times, where each additional time is a
new possibility to find a fault.

• The guards must be complete, otherwise assertions are
triggered at the wrong occasion, or not triggered at all.

• There is an intricate relationship between the executabil-
ity of a script’s assertions and the stimuli in the course.



Thread 1
while(true) {
EventWait(WorklightSwitch != Off)
EventWait(WorklightSwitch != On)
if worklight {
worklight=false;
negative_edge = true;

}
else {
worklight = true; negative_edge = false;

}
counter++;

}

Thread 2
while(true) {
EventWait(Gearbox != GearboxInReverse)
status = false
EventWait(Gearbox != GearboxNotInReverse)
status = true

}

Act Thread
while(true) {
Wait for Gearbox != GearboxNotInReverse

and Thread 2 status is true
and Thread 1 counter is even
and (Thread 1 negative_edge is false
or Thread 1 negative_edge is true

for at least 10 ms)
Perform tests

}

Fig. 6. Implementation of the guard of assertion 4 in test script 5.

• The testing time can be decreased even though the same
stimuli as in sequential testing is given.

• Multiple assertions are triggered simultaneously even
without optimizing the course for this.

The above results indicate that independent guarded asser-
tions is one way to change how one reasons about testing, yet
getting benefits in terms of representativeness, testing time,
and default detection.

A. Future Work

As for future work, a larger, more rigorous empirical evalua-
tion of gains acheived in terms of efficiency and effectiveness
is called for. Related, another important direction for future
work concerns construction of stimuli sequences. In our initial
approach, stimuli are executed in the way they were defined by
existing legacy test scripts, including setting up preconditions
and returning the SUT to some safe state after test evaluation.
Stimuli sequences could however be constructed to meet
one or several optimization criteria, such as fault detection,
assertion coverage, or execution time minimization.

In terms of practically integrating the proposed approach
into everyday testing practice, evaluating and (if needed)

improving scalability is a concern. For example, in our current
implementation, each independent guarded assertion is contin-
uously polling a signal database in order to detect appropriate
conditions for test evaluation. This could be replaced by
a hierarchical approach, where frequently used signals are
examined by a common poll mechanism, which in its turn
trigger appropriate test evaluations. We are also starting to
look at alternatives where test logs are processed and evaluated
post-mortem.

ACKNOWLEDGMENTS

This work has been partially funded by VINNOVA, Swe-
den’s innovation agency, within the FFI program.

REFERENCES

[1] M. Young and M. Pezze, Software Testing and Analysis: Process,
Principles and Techniques. John Wiley & Sons, 2005.

[2] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed. New
York, NY, USA: Cambridge University Press, 2008.

[3] L. M. Leventhal, B. Teasley, D. S. Rohlman, and K. Instone,
“Positive test bias in software testing among professionals: A review,”
in Selected papers from the Third International Conference on
Human-Computer Interaction, ser. EWHCI ’93. London, UK,
UK: Springer-Verlag, 1993, pp. 210–218. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646181.682601

[4] L. M. Leventhal, B. E. Teasley, and D. S. Rohlman, “Analyses
of factors related to positive test bias in software testing,” Int. J.
Hum.-Comput. Stud., vol. 41, no. 5, pp. 717–749, Nov. 1994. [Online].
Available: http://dx.doi.org/10.1006/ijhc.1994.1079

[5] A. Causevic, R. Shukla, S. Punnekkat, and D. Sundmark, “Effects of
negative testing on tdd: An industrial experiment,” in International
Conference on Agile Software Development, XP2013, H.Baumeister
and B. Weber, Eds. Springer, June 2013. [Online]. Available:
http://www.mrtc.mdh.se/index.php?choice=publications&id=3276

[6] A. Bertolino, E. Marchetti, and H. Muccini, “Introducing a reasonably
complete and coherent approach for model-based testing,” Electr. Notes
Theor. Comput. Sci., vol. 116, pp. 85–97, 2005.

[7] E. Bringmann and A. Krämer, “Model-based testing of automotive
systems,” in Proceedings of the 2008 International Conference
on Software Testing, Verification, and Validation, ser. ICST ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 485–493.
[Online]. Available: http://dx.doi.org/10.1109/ICST.2008.45

[8] G. Park, D. Ku, S. Lee, W.-J. Won, and W. Jung, “Test methods of the
autosar application software components,” in ICCAS-SICE, 2009, Aug
2009, pp. 2601–2606.

[9] A. Ray, I. Morschhaeuser, C. Ackermann, R. Cleaveland, C. Shel-
ton, and C. Martin, “Validating automotive control software using
instrumentation-based verification,” in Automated Software Engineering,
2009. ASE ’09. 24th IEEE/ACM International Conference on, Nov 2009,
pp. 15–25.

[10] P. Alvaro, A. Hutchinson, N. Conway, W. R. Marczak, and J. M.
Hellerstein, “Bloomunit: Declarative testing for distributed programs,”
in Proceedings of the Fifth International Workshop on Testing Database
Systems. ACM, 2012, p. 1.

[11] E. Triou, Z. Abbas, and S. Kothapalle, “Declarative testing: A paradigm
for testing software applications,” in Information Technology: New
Generations, 2009. ITNG’09. Sixth International Conference on. IEEE,
2009, pp. 769–773.

[12] J. L. Wagener, “Guarded command,” in Encyclopedia of Computer
Science. Chichester, UK: John Wiley and Sons Ltd., pp. 761–762.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1074100.1074433

[13] D. Sundmark and A. Kobetski, “Parallelization of integration tests,
prestudy report,” SICS, Tech. Rep., May 2013.


