
Offline Analysis of Independent Guarded Assertions
in Automotive Integration Testing

Guillermo Rodriguez-Navas
Mälardalen University

Västerås, Sweden
guillermo.rodriguez-navas@mdh.se

Avenir Kobetski and Daniel Sundmark
Swedish Institute of Computer Science

Kista, Sweden
avenir.kobetski@sics.se, daniel.sundmark@sics.se

Thomas Gustafsson
Scania CV AB

Södertälje, Sweden
thomas.gustafsson@scania.com

Abstract—The size and complexity of software in automotive
systems have increased steadily over the last decades. Mod-
ern vehicles typically contain numerous electrical control units
(ECUs), and more and more features require real-time interaction
between several dedicated ECUs (e.g., gearbox, brake and engine
control units) in order to perform their tasks. Since system
safety and reliability must not be adversely affected by this
increase in complexity, proper quality assurance is a must.
Such quality assurance is often performed by testing the system
in different levels of integration throughout the development
process. However, the growth of complexity of the system under
test aslo affects the testing, making it laborious, difficult and
costly.

This paper presents a novel method for efficient offline analysis
of traces, which has been especially tailored for integration testing
of automotive systems. The method exploits the recently defined
concept of independent guarded assertion in order to formally
describe the events that are relevant for the analysis as well
as the expected behavior in those events. The offline analysis is
implemented using a standard commercial model checker and
has shown good performance in the conducted experiments.

I. INTRODUCTION

The primary means for quality assurance of software-
intensive systems in the automotive industry today is by using
testing. Testing in software and systems engineering generally
and historically suffer from various problems, including being
an underprioritized activity [1], being labor-intensive and
costly [2], [3], and lacking sufficient tool and infrastructure
support [4]. A recent review by Kasoju et al. [5] reveals that
testing of automotive systems is no exception, and suffers
from most of the problems commonly experienced in general
software and system development.

Given their embedded nature, automotive and vehicular
systems are typically developed using a traditional V-model
of requirements engineering, design, development, integration
and testing. At the full-vehicle integration level, the systems
under test (SUTs) are generally divided into separate func-
tional parts, which are tested in isolation by exercising scripted
scenarios in Hardware-In-the-Loop (HIL) test rigs or Software-
In-The-Loop (SIL) type simulators.

While practically useful and intuitive, this type of testing
suffers from a number of drawbacks. Specifically, since test
scenarios are hard-coded, there is little variation in how
the testing is performed over time. In addition, such test
scenarios are typically based on requirements defining how

the system should behave during normal operation, potentially
overlooking less intuitive scenarios and non-specified interac-
tion sequences. Moreover, in the case of HIL testing, execution
of only one scenario at a time in a batch run causes poor
utilization of expensive bottleneck equipment.

In order to address the above problems, the notion of Inde-
pendent Guarded Assertions (IGAs) was recently introduced as
an alternative approach for automated system-level testing of
automotive systems [6]. When using IGAs, the state-changing
stimuli (i.e., the inputs) for each test case are separated
from the verdict-generating assertions (i.e., the comparisons
between the actual and expected output).

The assertions are then guarded in such a way that they
only evaluate the system response when they recognize a
specific sequence of events occurring in the system under
test. Independent guarded assertions allow for 1) parallelized
execution of test cases (both in terms of guarded assertions and
sequences of stimuli), 2) repeated and frequent evaluation of
assertions, often with the system being in states not explicitly
considered in the original requirements, and 3) reduction of
testing time, since repetitive and time-consuming test case
setup and cleanup can be reduced if not ignored.

While independent guarded assertions provide a number
of benefits over traditional scenario-based testing, the online
nature of IGAs (and specifically the IGA guards) may incur
probe effects on the system under test and the test framework.
These probe effects hamper the scalability of the method and
put limits on the number of parallel IGAs that can be active
at a given point in time during testing. Further, when using
online versions of IGAs, the drawback of having to utilize the
bottleneck HIL infrastructure for all testing is still a potential
impediment for efficient and effective testing.

In this paper, we describe an alternative method for testing
independent guarded assertions using a commercial model
checker and recorded system traces. This offline approach, as
contrasted to the previously proposed online variant of IGA-
based testing, provides several benefits:
• The use of offline traces eliminates probe effects in

the analysis, and the online real-time limitation on the
number of IGAs active during testing becomes irrelevant.

• Test cases can be run as soon as a set of guards is valid,
since the requirement of access to the bottleneck test
equipment is eliminated.



• There is a clear separation of concerns between the IGAs
and the verification engine (the model checker), which
facilitates review and validation of the tests by external
experts.

• The approach can be used off-site for analysis, continuous
improvement, and research purposes, e.g. to elaborate on
how to optimize test design (including design of test
stimuli sequences, guards, and assertions), or how to
perform the actual verification in an efficient way.

For the model-checking-based offline trace analysis, we use
the UPPAAL model checker [7]. In addition to providing an
in-depth description of the proposed method, and how the
IGAs can be represented as UPPAAL timed automata, we also
provide an explanatory and evaluative case study performed at
the full-vehicle integration testing level at the Swedish truck
manufacturer Scania CV1.

The remainder of this paper is structured as follows: Section
II provides a background on automotive system testing, inde-
pendent guarded assertions, and UPPAAL. Section III describes
our proposed approach for offline analysis of IGAs. Section
IV presents an explanatory and evaluative case study of the
proposed method. In Section V, related work is summarized,
and Section VI concludes the paper and discusses potential
directions for future work.

II. BACKGROUND

This paper expands on existing work on integration testing
of automotive systems by independent guarded assertions.
The offline analysis of integration test traces is performed
with UPPAAL, a state-of-the-art model checker. The notions
required for understanding this approach are reviewed here.

A. Automotive System Integration Testing

In our experience from working with several OEMs in
the automotive and vehicular domains, automotive system
development typically follows a fairly traditional V-model of
development, integration and testing. At full-vehicle integra-
tion level, in addition to in-vehicle testing, the systems under
test (SUTs) are generally divided into separate functional
parts, which are tested in isolation by defining use-case based
test sequences. This type of test design, while not limited to
embedded system testing, is commonly referred to as scenario-
based testing [8]. Scenario-based testing, using hard-coded
scripted test cases seems to be the current de facto standard of
control system testing in the automotive, as well as in the more
general vehicular industry. Often times, these test cases are
executed on the system under test by means of hardware-in-
the-loop (HIL) or software-in-the-loop (SIL) based integration
testing platforms. There is also an increasing trend of utilizing
model-based testing for this purpose, and techniques focusing
on model-based testing dominate research in the (relatively
sparsely populated [9]) automotive testing area (see e.g., [10]
and [11]).

1www.scania.com

Although scenario-based testing does ensure that certain
requirements are covered during testing, it has a number of
drawbacks. When using HIL testing, the execution of test
cases is time consuming due to the sheer number of test
cases executed, and thus often conducted in overnight batch
runs. Moreover, test cases are designed using a divide-and-
conquer-based approach following the division of the system
requirements into smaller functional entities (which is in
accordance with recent textbook guidelines for functional test
design [12], [13]). Once having been created, scripted and in-
corporated in the test suite, test cases are typically repetitively
executed without much variation. This leads to a situation
where only a small portion of the vast set of possible scenarios
that the system could be subjected to are thoroughly tested,
while the others are left entirely unexplored. In addition, test
cases are typically based on requirements defining how the
system should behave during normal operation [14]. While this
provides valuable confirmation with respect to the system’s
fitness for use in the normal case, there are results indicating
that focusing on normal requirement-based cases might not be
the best strategy when trying to maximize fault-detection (see
e.g., [15] and [16]).

It should however be noted that scenario-based testing can
be seen as a special case of the more general model-based
testing approach [8], [17]. Both techniques rely on a divide-
and-conquer procedure, where requirements and specifications
are broken down into smaller units, either from an archi-
tectural or a functional perspective. These smaller units are
then expressed as test models (typically some form of state
charts) or specific scenarios (that could theoretically be seen
as individual paths through the state chart). Such model or
artefacts are valuable for testing of the individual units, but
typically do not express the expected behavior stemming from
interaction between the modeled units.

B. Independent Guarded Assertions

Partially based on previous work on declarative testing [18],
[19], we recently proposed the use of Independent Guarded
Assertions (IGAs) for integration testing [6]. Independent
guarded assertions allow for 1) parallellized execution of test
cases (both in terms of guarded assertions and sequences of
stimuli), 2) repeated and frequent evaluation of assertions,
often with the system being in states not explicitly considered
in the original requirements, and 3) reduction of testing
time, since repetitive and time-consuming test case setup and
cleanup can be reduced if not ignored. By 1) and 2), IGA
testing inherently and indirectly addresses the lack of focus
on interaction between modeled units that is a consequence
of divide-and-conquer based approaches such as model- and
scenario-based testing.

Testing using IGAs relies on two kinds of inputs: system
traces and guarded assertions. A system trace is a time-
stamped record of the system’s state evolution. It contains
sampled values of relevant signals observed periodically inside
the Hardware In the Loop system (HIL), and collected by
the test automation framework. A typical setup is illustrated



in Figure 1, which shows the different functional blocks of
the framework for full-vehicle integration regression testing
used by Scania, the case company studied in this paper. The
sequence of test stimuli is introduced (left hand side of the
picture) in order to induce changes of the System Under Test
(SUT). Entities in the real-time model and communication
buses are stored in the system trace file by the test automation
framework (right-hand side of picture), resulting in an ordered
and timestamped system test trace bearing information on the
state changes and actuator signals resulting from the stimuli
sequence used to test the SUT.

Test driver 
Parallel execution of stimuli and assertions 

API 

Real-time model 
I/O model and dynamic vehicle model 

SUT 

Input stimuli from 
test cases called 

using API methods 

Manipulation of 
sensor values in 

the I/O model 

Sensor values 
from the I/O model 

Manipulation of 
actuator values in 

the I/O model 

Actuator values 
from the I/O model 

and dynamic 
model state values 

System behavior 
observed using 

API method calls 

Regression 
test suite 

Stimuli 
(potentially parallel) 

Independent 
Guarded Assertions 
(potentially parallel) 

Fig. 1. Independent Guarded Assertions Test Framework.

Even if system traces are most typically collected by exe-
cuting pre-defined stimuli in a test framework like the one
in Figure 1, they could alternatively be recorded during a
drive session in a real vehicle, or even using some simulation
tool. In the latter cases though, the number of actual signals
included into the trace and, in the case of simulation, the extent
they reliably represent realistic real-time operation data, could
potentially be reduced. In any case, an important condition
is that the sampling period of any trace must guarantee that
each signal change caused by the input stimuli is detected,
thus ensuring that all relevant states and events are stored for
further analysis.

A guarded assertion represents certain requirements on how
the system should behave, and contains two elements: the
guard and the assertion. A guard consists of a sequence or
composition of temporal logic expressions on system signals
and describes the conditions (or, more precisely, sequence of
events leading to a state) under which a given test is supposed
to be assertable (i.e. it can be evaluated). An assertion is
simply a validation of certain signals with respect to their ex-
pected values, which must be satisfied once the corresponding
guard holds. Guarded assertions are denoted as G ⇒ A. For
explanatory purposes, we below provide three examples taken

from the automotive industry:
1) {gear = reverse⇒ reverse light = On}

The reverse light is on when the gear is in reverse.
2) {gear <> reverse⇒ reverse light = Off }

The reverse light is off when the gear is not in reverse.
3) {hazard = On ∧ dir = Off ⇒ dir ind flashing}

Direction indicators shall flash if hazard warning is on,
even if the direction indicator button (dir) is off.

Assertions do not have to be necessarily evaluated at one
time instant. For example, a test might check how many times
a given signal changes its value after a certain state has been
reached.

Typically, it is important to validate that a test never fails.
This means that when a guard is evaluated to true, its assertion
should never evaluate to false. Expressed in temporal logics,
it should be verified that G always implies A. In our setting,
where stimuli are decoupled from the actual tests, it is vital
to also check whether a given test has been asserted at all, in
order to avoid the trivial fulfillment of the implication when the
antecedent is never true, also known as vacuity problem [20].
For that, it is enough to validate that the assertable state (G)
has been reached at least once.

C. UPPAAL

Model checking is a technique that, given a formal model of
a system and a set of properties to be fulfilled by the system,
automatically determines whether the possible behavior of said
model agrees with the stated properties or not [21], [22]. While
the system model is generally specified with some kind of
automata, the properties to be verified are usually expressed
in some form of temporal logics, such as LTL, CTL or TCTL.

UPPAAL is a model checker based on the theory of timed
automata, which is particularly suitable for the formal veri-
fication of real-time systems [7]. Timed automata extend the
traditional concept of finite state automata with a symbolic
representation of time, called clock variables, which are used
in order to model time progression explicitly. Other arguments
for using UPPAAL include separation of concerns between the
system model and the tests, good user support and availability
of the tools, traceability of the tests (via counter examples),
confidence on the correctness of the proofs, and efficiency.
Note however that while our framework has been tailored for
UPPAAL, other model checkers can be used.

Each timed automaton in UPPAAL contains a number of
locations and transitions among locations (called edges). The
state of a timed automaton is the combination of the location
together with the value of all the variables, including integer
and boolean variables, as well as clocks. Figure 2 shows a
model containing two locations and one edge between them.

Over each edge, the defined system variables can be
updated, with one restriction: clock variables can only be
restarted, e.g., x = 0 in Figure 2

Moreover, two or more actions in different timed automata
can be synchronized by defining synchronous channels in
the UPPAAL model (sync! in Figure 2 is synchronized with
other edges labeled with sync?). Whenever one transition is



Fig. 2. UPPAAL example

performed, the other transitions, which are synchronized with
that, are fired to a new location in the system. A location can
be changed in a timed automaton (for both synchronized and
regular transitions) whenever the guard condition defined for
that transition is satisfied. The guard condition can be defined
based on an integer, boolean or clock variable, e.g, x >= v1
in Figure 2. In order to guarantee progression of the system,
for each location an invariant can be defined upon the clock
variable, which limits the amount of time the model can stay
in that location, e.g., x ≤ v2, where v2 ≥ v1.

A system can stay in a certain location as long as the
edge guard and the invariant of the location are not satisfied.
However, a particular type of location, namely committed
location, is available such that the system should immediately
leave this location. This location can interleave with other
committed locations, only, which allows us to model atomic
actions.

III. METHOD

The goal of our offline analysis method is to verify that
a number of predefined guarded assertions are detected and
satisfied within a recorded system trace. This section describes
how the concept of model checking can be exploited in order
to perform this analysis more efficiently.

A. Verification approach

Figure 3 depicts the three phases in which this method
is executed. As indicated in Section II-B, the system traces
and the guarded assertions constitute the main inputs of our
framework. We assume that prior to the analysis, the system
traces have been divided into individual signal traces recorded
as Matlab files (.mat). This format is chosen because it is
a de-facto standard for the design of control systems in the
automotive industry. In the first phase of the analysis, each
individual signal trace is transformed into a so-called Trace
automaton. The rules of this automated transformation will be
described in Section III-B .

In the second phase, each guarded assertion is manually
decomposed into a number of checks that are also specified
as timed automata, which will be called Guard observers, and
into two additional properties expressed in TCTL, the assertion
checks. The principles applied for this decomposition will be
discussed in Section III-C

Finally, all the generated automata are combined into a
single network of timed automata that is fed to the UPPAAL
model checker, whereas the assertion checks are expressed
as UPPAAL queries. The results provided by UPPAAL will
indicate for each Independent Guarded Assertion whether the

Traces'

.mat'

TA'.mat'

Trace'Automata'

Independent'
Guarded'Asser3ons'

.mat'

TA'Text'

Guard'observers'+'
Asser3on'checks'(TCTL)'

Uppaal'

IGA' Executed' Verified'

1' ✓' ✓'

2' ✓' ✗'

3' ✓' ✓'

…'

1'

2'

Fig. 3. Proposed framework for offline analysis.

test has been executed or not, and, if executed, whether the
test has been verified or not.

B. Automated generation of trace automata

Definition 3.1: Signal Trace. A signal trace, denoted Vn,
is the discretized version of a continuous system signal V(t),
sampled with frequency f = 1

T , and annotated with the time
instant in which each sample was recorded. Thus, Vn is a finite
sequence of pairwise values (ti, vi), such that vi = V (ti);
where ti is called the sampling instant of the i-th sample, and
vi is the sampled value. The hypothesis of periodic sampling
is not required specifically for the presented framework, but
since it is a common characteristic of most instrumentation
environments, it will be assumed without losing generality.

Definition 3.2: Signal Transition. Given a signal trace
Vn, we say that a signal transition occurs in sample i (or
equivalently, at time instant ti) if and only if vi 6= vi−1. This
will be denoted as st(i) = 1. By default, st(0) = 1.

Signal transitions are very relevant from a verification point
of view, because they indicate moments in which the system’s
state changes. For this reason, they are extracted into a so-
called transition vector, which will constitute the basis for
constructing the trace automata.

Definition 3.3: Transition vector. Given a signal trace
Vn, its transition vector V ↑n is a finite sequence of pairs
(t↑j , v

↑
j ) containing only the signal transitions of Vn; it is:

V ↑n = {(ti, vi) | st(i) = 1}. Each value v↑j is called a transition
value, while each instant t↑j is called a transition instant.

Definition 3.4: Trace automata. The trace automata of a
certain signal trace Vn, denoted as AV , is a deterministic timed
automata that accepts the word corresponding to Vn.
There is a straightforward method for creating a trace automata
from any signal trace. This trace automata is a timed automata
containing one location per each transition value in V ↑n , a
clock t that is never reset again after initialization of the
automaton, and a variable v representing the signal value,
which is initialized to v↑0 . The transitions between states are
specified with one guarded edge connecting every location li
to location li+1, with a guard t == t↑i+1, and the update
v = t↑i+1. To ensure that the state changes happen in the



right moments of time, every location li is annotated with
the invariant t ≤ t↑i+1, except for the last location, in which
the invariant is t ≤max. duration of the trace. Figure 4 shows
a simple example of such an automata, where the variables
v[i] and t[i] represent the transition values and the transitions
instants, respectively.

t <= Max_Trace_Durationt<=t[3]

s2s1

t<=t[1]

s3

t<=t[1]

s0

v= v[2]v= v[1] v = v[3]
t== t[2] t == t[3]t == t[1]

Fig. 4. Exemple of a simple trace automata generated with UPPAAL

There are more compact ways to construct an equivalent
trace automata, and some of them have been implemented
in our framework for evaluation purposes. For instance, it is
possible to create a timed automaton that contains one location
per each different transition value, so that locations can be
revisited during the trace. But for the sake of brevity and
because they have not been fully assessed, these alternative
automata will not be described here.

C. Transformation of Guarded Assertions into timed automata

A Guarded Assertion (GA) consists of a number of con-
dition checks (the Guard) that indicate when the system has
reached an assertable state; it is, a state in which the assertion
can be evaluated. The strategy followed in our framework
is to define one timed automaton, the guard observer, for
monitoring the signals of interest for each GA. This observer
automaton contains a minimum of four locations: the initial
location (wait), in which the Guard is not satisfied, a location
(eval) in which the Guard is satisfied and hence the assertion
can be evaluated, and two locations (pass and fail) correspond-
ing to the two possible outcomes of the assertion test.

x == 200

longPressOdd and gearbox_reverse == 0

wl_ind and wl_status

eval

fail

x <= 200

pass
reset

wait

asap!

asap!

x = 0

not (longPressOdd and gearbox_reverse == 0)

not (longPressOdd and gearbox_reverse == 0)

asap!

asap!

Fig. 5. Example of a Guard observer.

Figure 5 provides an illustrative example of Guard observer,
taken from the automotive industry. The goal of this test is
to check that: if Button is pressed long an odd number of
times, while the gearbox is not in reverse, then both the work
light indicator and the work light status must be turned on
before 200ms. Note that the transition from location wait to
location eval is guarded by the expression longPressOdd and

gearbox reverse == 0, corresponding to the Guard. From
location eval, the automaton passes the test (i.e. it goes to
location pass) only if the assertion wl ind and wl status and x
<200 is fulfilled. The test fails (the observer goes to location
fail) if the timeout expires without the activation of signals
wl ind and wl status.

With this setup, the properties to be verified by UPPAAL
are:

1) A[] not pass. This property should be falsified, indicating
that there is at least one case in which the Guard was
true and the test was verified.

2) A[] not fail. This property should be verified, indicating
that there is no case in which the Guard was true and
the Assertion was false.

It is important to remark that whenever the Guard is defined
over complex combinations of inputs, the system modeler must
define additional automata describing the system state as re-
quired. For example, for the observer of Figure 5, the modeler
had to define an automaton for detecting short and long presses
of the bottom, and an automaton for discriminating between
odd and even number of presses. The former automaton is
depicted in Figure 6, whereas the latter is shown in Figure 7.

ds_val == 1

ds_val == 0

tPress == longPressLimit

ds_val == 0
pressedLong

pressed

tPress <= longPressLimit
off

asap!

tPress = 0

asap!

long_press!

short_press!

asap!

Fig. 6. Automaton for discrimination of type of button press.

long_press?

long_press?

odd zeroeven

longPressOdd = 0

longPressOdd = 1

longPressOdd = 1,
longPressZero = 0

long_press?

Fig. 7. Automaton for detection of number of long button press.

For more complex IGA, the observer should include in-
termediate locations between location wait and location eval.
We show an example in Figure 8. Note that this automa-
ton includes two locations (preshutdown and preeval) which
represent intermediate states of the Guard. The goal of this
IGA is to test that once the Guard is reached, the work light
indicator flashes intermittently. To detect that, the observer
checks whether the work light indicator toggles value 4 or
more times within a predefined time interval to. However,
before the Guard is reached, certain preliminary states need
to be traversed, and that is the reason why extra locations are
added.

The construction of the Guard observers and the decision of
which additional automata to include is still a manual activity,



longPressOdd and shortPressOdd and gear == -1 and gearbox_reverse > 0
longPressOdd and shortPressOdd and keypos == 0 x==to

indicatorCount >= 4

wl_ind != wl_ind_old
keypos >= 2

pass

wait

eval
fail

preshutdown x<=topreeval

asap!

asap! x = 0,
indicatorCount = 0

indicatorCount++,
wl_ind_old = wl_ind

not (longPressOdd and shortPressOdd and gear == -1 and gearbox_reverse > 0)

asap!

asap!
asap!

asap!

Fig. 8. A Guard observer including more intermediate states and conditions.

which requires good understanding and expertise on the timed
automata formalism. However, given the repetitive nature of
the tests, we have noticed that some patterns appear quite
frequently and with little variation. Due to this, it can be
said that the construction of the observers is a semiautomated
process. But for improving the usability of the tool, we need
to investigate approaches that will allow full automatization.

In contrast to hard-coded script testing, model checking pro-
vides separation of concerns between the tests to be checked
and the verification engine itself. This offers different opportu-
nities but also has some associated challenges. One interesting
opportunity is that more advanced analysis techniques can be
applied, for instance for optimization and coverage analysis of
the guards. The main challenge is to ensure that the models
are correctly specified and accurately represent the designer’s
intent.

IV. CASE STUDY

This section describes a case study where Scania’s test
automation framework is used as a baseline and compared
to tests executed using Uppaal.

A. Study Object: Scania’s Test Automation Framework
Scania is using a test automation framework for its au-

tomatic regression testing that is based on a client/server
architecture. Each test script is implemented using a test script
interface. This interface is the client side. The server side
is implemented as a set of servers, and they constitute the
core functionality needed for performing the tests. One of the
servers handles the communication between a PC and the HIL.
Each entity that is readable and/or writable in the HIL has
a path. The server can support two calls: get_value and
set_value, which operate on the path.

By replacing the above mentioned server, it is possible to
instead take the values from a trace file. This is implemented
as follows:
• The server knows the number of clients connected to it.
• The server keeps a current time denoted t, where t = 0

is the start of the trace.
• The server keeps an ordered list of requested events.

When all clients have made a request, then the server

takes the closest future event, at t′, and releases the client
that made the request, and sets t = t′.

• Each call to set_value(p,v) where p is a path and
v the value it is set to, finds a time t′′ ≥ t in the trace
where the path has the value, and inserts an event at t′′.

• Each call to get_value reads the value at t and returns
it.

• Each call to sleep(s) inserts an event at t + s. This
means that the client side shall use a sleep method in the
server side.

The above implementation leads to the server synchronizing
all clients to a common time base. The test scripts being
considered are expressed as independent guarded assertions,
which means that they do not contain any stimuli, so no
set_value calls are used, only get_value calls. This
means that the clients need to poll the HIL for state changes.
If no state changes shall be missed by the test script, then the
sampling interval must be the same as the recording sampling
interval.

B. Experiment with scripts

Several of Scania’s test scripts have been transformed into
Independent Guarded Assertions (IGAs) [6]. We report the
execution time of some of these IGAs using Scania’s test
automation framework, described in Section IV-A, in Table I.
The trace is around 495 seconds long, i.e., 8 minutes and 15
seconds, and it contains stimuli for a number of different test
scripts (see [6] for details). The stimuli represent the order of
these test scripts executed one after another. The number of
times assertions that will be executed depends on how general
the IGAs can be made, and the stimuli itself. In Table I, we
see that script 1 could only perform assertions once, since it
tests the direction indiciator in the event of hazard warning
lights during engine off, and this situation only occured one
time in the stimuli, whereas for script 3 the assertions were
performed many more times. This script instead tests that the
worklight function is not activated if the function is turned off
or in a special mode and the gear is neutral or forward. This
situation occurs more often in the stimuli, and the tests can
be performed 8144 times. The sampling interval is 10 ms, so



TABLE I
EXECUTION TIMES OF IGAS EXECUTED BY SCANIA’S TEST AUTOMATION

FRAMEWORK AGAINST A TRACE FILE.

Script Start End Exec. Time # tests
1 12:52:07 12:55:55 3min 48 sec 1
2 12:56:16 12:59:55 3min 39 sec 2
3 12:19:36 12:29:02 9min 26 sec 8144
4 13:02:57 13:10:18 7min 21 sec 2778

there are 495 × 100 = 495000 samples where a test can be
performed.

The implementation of IGA can require multiple concurrent
threads, depending on the complexity of the Guard. Script
1 and 2 use only one single thread, whereas script 3 and 4
use three concurrent threads (one thread counts the number of
times a button has been pressed, one thread checks the state of
the gear selector, and the third fuses this information with other
guards into a decision whether to test or not). We see that the
execution time depends heavily on the number of threads. The
reason is the implementation of the test automation framework
server, where the threads are synchronized at each sampling
point, i.e., every 0.01 seconds, as described in Section IV-A, so
for script 1 and 2 the server can immediately decide to release
the single thread on a request for a future event, but script 3
and 4 must wait for all three threads to request a future event.

In summary, IGAs can be executed, without any adaptations,
against trace files, but the execution time depends heavily on
the implementation of the guards, and Table I shows execution
times ranging from 44% to 114% of real-time (219 sec / 495
sec and 566 sec / 495 sec, respectively).

C. Experiments with the model checker

The traces and IGAs of the previous experiment were used
for evaluating the performance of our offline analysis method.
Despite the initial difficulties for expressing the Guards as
observers, the results are very promising. Once the model is
built, the time required for evaluation of a test is around 0.25s,
which is several orders of magnitude lower than the online
method.

Even if further investigation is needed for performance
evaluations, these preliminary results show that model check-
ing is suitable for integration testing of functions. It will be
interesting to investigate the length of the traces that can be
processed, but apparently the well known problem of state
space explosion does not seem a limiting factor for this type
of analysis in automotive integration testing.

V. RELATED WORK

Offline analysis of traces for temporal logic properties is
related to several previously proposed approaches for runtime
monitoring. In [23], Delgado et al. propose a taxonomy and a
catalog of runtime software-fault monitoring tools. A partial
classification of the method proposed in this paper according to
this taxonomy would state that we describe an automata-based
asynchronous offline monitoring approach with an event-based
monitoring directive.

According to the authors of the above taxonomy and catalog
of runtime monitoring tools, the only existing method for
trace analysis with a similar classification (at the time of the
review) is Monitoring-oriented Programming (MoP) [24] (see
also [25]). However, MoP is a highly generic concept rather
than a specific method in itself. Specifically, it does not enforce
any limitations on the formalism used to express the desired
properties of the system under observation/test (as long as a
translator exists to transform the formalisms to something the
monitoring technique can make use of). Neither is it limited
to only asynchronous offline monitoring, but can also be used
synchronously offline, as well as online. It is consequently
not tailored specifically for timed-automata based properties
and temporal logic-type queries, and provides no such support
unless a translator is being developed spefically for this
purpose.

More recently, Bauer et al. [26] describe the use of runtime
verification of properties expressed in lineartime temporal
logic (LTL) or timed lineartime temporal logic (TLTL). Sulz-
mann and Zechner [27] study finite trace matching algorithms
using LTL. They use a constructive algorithm for constructing
proofs from the LTL formulas, to give more details why a
proof is matched.

In the automotive field, Zander-Nowicka et al. have used au-
tomotive validation functions for testing models used to realize
functions in a vehicle [28]. An automotive validation function
has preconditions and makes assertions if the preconditons
are true. An automotive validation function is thus a guarded
command. In their approach, several automotive validation
functions were used for testing one specific function, but in
our work we aim at concurrently testing several functions.

In summary, a lot of work has gone into using runtime
verification, and a fair share of this work has focused on offline
trace analysis and checking of temporal logic properties.
However, to the best of our knowledge, research work studying
the practical use of offline trace analysis on real systems
in industrial contexts is more scarce. The method, and the
application of the method, described in this paper contributes
to this gap in the current body of knowledge.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have investigated how model checking can
be utilized for performing integration testing of funtions in a
complete vehicle electrical system. Our work shows how to
perform offline guarded assertion analysis of recorded traces
using a model checker. We show that it is possible to auto-
matically transform the system trace, i.e., the periodic samples
of entities in the real-time model of a HIL, into a timed
automaton. Furthermore, we discuss how guarded assertions
are manually transformed into timed automata. Properties of
these automata can be checked by a model checker. In our
work, we have used UPPAAL for this purpose because of the
explicit representation of time provided by this tool, which is
very adequate for real-time requirements.

Early experimental results from the full-vehicle integration
testing at Scania indicate that this technique may result in



significantly faster run-times than executing the existing test
scripts against the system trace. Despite these promising
results, the question of whether our approach can scale up to
more complex scenarios still remains open. Extremely large
traces and complex guarded assertions may generate state
space problems. On the other hand, the offline trace analysis
is linear in the sense that the state space exploration is driven
by and inherently constrained by the recorded trace to be
analysed. Regardless, further investigation is required in order
to assess the limits of the model-checking based approach.

Regarding future work, we envision a number of directions
for future research on offline analysis of independed guarded
assertions:

• Larger-scale evaluation: While the case study presented
in this paper provides an explanation of how offline IGA
analysis works in an industrial context, and an early
evaluation of the potential benefits of the approach, it
is too limited for providing any reliable and more gen-
erally valid evidence of these effects. More rigorous and
larger scale experimentation is required for this purpose,
preferably evaluating the approach in different industrial
settings.

• Optimization-based test sequence generation: Through
the frequently executed assertions, IGAs provide a more
thorough evaluation of the system under test, but they do
not by themselves provide an increased coverage in terms
of the fraction of state space exercised during testing.
Given that an infrastructure of IGAs is in place, the
design or generation of test stimuli sequences is still
an open issue. For this purpose, optimization-based test
sequence generation (e.g., by using heuristics or meta-
heuristic techniques) can be explored. Potential objectives
for such searches may include minimization of test time,
maximizing state space coverage, finding test sequences
with the maximum diversity, or deriving test sequences
that invoke as many IGA assertions as possible.

• Appropriate representation of IGAs: While the UP-
PAAL-based approach of modeling IGAs presented in this
paper is seemingly efficient and effective for the purpose
of offline trace analysis, it may not be the most intuitive
and appropriate format for automotive system test en-
gineers to work with. Alternative formats for temporal
(and probabilistic) requirements, that are more similar
to natural language representations, have been proposed
by e.g., [29], [30]. Such representations, if translatable
to UPPAAL-automata, could make the approach more
accessible. Our first investigations on this direction have
shown the adequacy of this approach for the automotive
domain [31].

ACKNOWLEDGMENT

This work has been partially funded by VINNOVA, Sweden
innovation agency, within the FFI program projects VeriSpec
and PINT, and by the Swedish Knowledge Foundation (KKS)
within the Prospekt project SaDIES.

REFERENCES

[1] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist, “Technical debt in
test automation,” in Software Testing, Verification and Validation (ICST),
2012 IEEE Fifth International Conference on, April 2012, pp. 887–892.

[2] V. Garousi and J. Zhi, “A survey of software testing practices in canada,”
Journal of Systems and Software, vol. 86, no. 5, pp. 1354 – 1376, 2013.

[3] S. Ng, T. Murnane, K. Reed, D. Grant, and T. Chen, “A preliminary sur-
vey on software testing practices in australia,” in Software Engineering
Conference, 2004. Proceedings. 2004 Australian, 2004, pp. 116–125.

[4] G. Tassey, “The economic impacts of inadequate infrastructure for
software testing,” National Institute of Standards and Technology, Tech.
Rep. 7007, 2002.

[5] A. Kasoju, K. Petersen, and M. V. Mäntylä, “Analyzing an automotive
testing process with evidence-based software engineering,” Information
and Software Technology, vol. 55, no. 7, pp. 1237 – 1259, 2013.

[6] T. Gustafsson, M. Skoglund, A. Kobetski, and D. Sundmark, “Automo-
tive System Testing by Independent Guarded Assertions,” proceedings
of the 10th Testing: Academic and Industrial Conference - Practice and
Research Techniques (TAIC PART), April 2015.

[7] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” Inter-
national Journal on Software Tools for Technology Transfer, vol. 1, no.
1-2, pp. 134–152, 1997.

[8] A. Bertolino, E. Marchetti, and H. Muccini, “Introducing a reasonably
complete and coherent approach for model-based testing,” Electr. Notes
Theor. Comput. Sci., vol. 116, pp. 85–97, 2005.

[9] E. Bringmann and A. Krämer, “Model-based testing of automotive
systems,” in Proceedings of the 2008 International Conference
on Software Testing, Verification, and Validation, ser. ICST ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 485–493.
[Online]. Available: http://dx.doi.org/10.1109/ICST.2008.45

[10] G. Park, D. Ku, S. Lee, W.-J. Won, and W. Jung, “Test methods of the
autosar application software components,” in ICCAS-SICE, 2009, Aug
2009, pp. 2601–2606.

[11] A. Ray, I. Morschhaeuser, C. Ackermann, R. Cleaveland, C. Shel-
ton, and C. Martin, “Validating automotive control software using
instrumentation-based verification,” in Automated Software Engineering,
2009. ASE ’09. 24th IEEE/ACM International Conference on, Nov 2009,
pp. 15–25.

[12] M. Young and M. Pezze, Software Testing and Analysis: Process,
Principles and Techniques. John Wiley & Sons, 2005.

[13] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed. New
York, NY, USA: Cambridge University Press, 2008.

[14] L. M. Leventhal, B. Teasley, D. S. Rohlman, and K. Instone,
“Positive test bias in software testing among professionals: A review,”
in Selected papers from the Third International Conference on
Human-Computer Interaction, ser. EWHCI ’93. London, UK,
UK: Springer-Verlag, 1993, pp. 210–218. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646181.682601

[15] L. M. Leventhal, B. E. Teasley, and D. S. Rohlman, “Analyses
of factors related to positive test bias in software testing,” Int. J.
Hum.-Comput. Stud., vol. 41, no. 5, pp. 717–749, Nov. 1994. [Online].
Available: http://dx.doi.org/10.1006/ijhc.1994.1079

[16] A. Causevic, R. Shukla, S. Punnekkat, and D. Sundmark, “Effects of
negative testing on tdd: An industrial experiment,” in International
Conference on Agile Software Development, XP2013, H.Baumeister
and B. Weber, Eds. Springer, June 2013. [Online]. Available:
http://www.mrtc.mdh.se/index.php?choice=publications&id=3276

[17] G. Hamon, L. de Moura, and J. Rushby, “Generating efficient test sets
with a model checker,” in Software Engineering and Formal Methods,
2004. SEFM 2004. Proceedings of the Second International Conference
on, Sept 2004, pp. 261–270.

[18] P. Alvaro, A. Hutchinson, N. Conway, W. R. Marczak, and J. M.
Hellerstein, “Bloomunit: Declarative testing for distributed programs,”
in Proceedings of the Fifth International Workshop on Testing Database
Systems. ACM, 2012, p. 1.

[19] E. Triou, Z. Abbas, and S. Kothapalle, “Declarative testing: A paradigm
for testing software applications,” in Information Technology: New
Generations, 2009. ITNG’09. Sixth International Conference on. IEEE,
2009, pp. 769–773.

[20] O. Kupferman, “Sanity checks in formal verification,” in CONCUR
2006, 2006, pp. 37–51.



[21] J.-P. Katoen, “Concepts, algorithms, and tools for model checking,”
Lecture Notes of the course Mechanised Validation of Parallel Systems,
1998.

[22] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. Cam-
bridge, Massachusetts: The MIT Press, 2001.

[23] N. Delgado, A. Gates, and S. Roach, “A taxonomy and catalog of
runtime software-fault monitoring tools,” Software Engineering, IEEE
Transactions on, vol. 30, no. 12, pp. 859–872, Dec 2004.

[24] F. Chen and G. Roşu, “Towards monitoring-oriented programming: A
paradigm combining specification and implementation,” vol. 89,
no. 2, 2003, pp. 108 – 127, {RV} ’2003, Run-time
Verification (Satellite Workshop of {CAV} ’03). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1571066104810454

[25] ——, “Mop: An efficient and generic runtime verification framework,”
in Proceedings of the 22Nd Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems and Applications, ser. OOPSLA
’07. New York, NY, USA: ACM, 2007, pp. 569–588. [Online].
Available: http://doi.acm.org/10.1145/1297027.1297069

[26] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for
LTL and TLTL,” ACM Transactions on Software Engineering and
Methodology, vol. 20, no. 4, p. 14, 2011.

[27] M. Sulzmann and A. Zechner, “Constructive finite trace analysis with
linear temporal logic,” in Proceedings of the 6th International Confer-
ence on Tests and Proofs, ser. TAP’12. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 132–148.

[28] J. Zander-Nowicka, I. Schieferdecker, and A. Marrero Perez, “Automo-
tive validation functions for on-line test evaluation of hybrid real-time
systems,” in Autotestcon, 2006 IEEE, Sept 2006, pp. 799–805.

[29] S. Konrad and B. H. C. Cheng, “Real-time specification patterns,”
in Proceedings of the 27th International Conference on Software
Engineering, ser. ICSE ’05. New York, NY, USA: ACM, 2005, pp. 372–
381. [Online]. Available: http://doi.acm.org/10.1145/1062455.1062526

[30] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” Transactions on Software Engi-
neering, 2015.

[31] P. Filipovikj, M. Nyberg, and G. Rodriguez-Navas, “Reassessing the
pattern-based approach for formalizing requirements in the automotive
domain,” in Proceedings of the 22nd IEEE International Requirements
Engineering Conference (RE’14), 2014.


