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Abstract

ABB Robotics has no methods for theoretical verification of the timing
behavior of the robot control system. The system is complex, about 2,5 million
line of code, distributed over 15 subsystems.

When changing the system, it’s hard to predict how that change will affect
the temporal behavior. The system was not designed to explicitly support
impact analysis. This has resulted in a “trial-and-error” approach regarding
temporal issues when adding new functionality. Timing related errors can be
very costly, since they might occur only under very special conditions and thus
might be hard to find.

This thesis proposes a solution to the problems. A set of tools and methods
for verifying the temporal behavior is presented.

The approach of this work is to enable the temporal analysis of the robot
controller by enabling the simulation of a model. Since no existing solutions
has been found, the development of a modelling language and a simulator is
necessary. The model is implemented by describing the robot control system
in the developed notation (ART-ML) and inserting data measured from the
control system.

The model and the simulator have been used to simulate the system and
the results from that simulation are easily comparable with the results from
the measurements. The comparison shows as expected similarities. It is not a
perfect match, but with respect to the roughness and simplicity of the created
model the results are promising.

The created model of robot control system consists of about 100 lines of
code. That is a very simple model compared to the complexity of the modelled
system. Creating a more detailed model would increase the accuracy of the
simulation. Adding more details to the model is very possible since the data
that is extracted by the measurements contains a lot of dependencies between
the tasks that can be investigated and inserted in the model.

Using these tools/methods with a more accurate model, it is possible to test
changes to the robot controller before implementing them.

This method of simulation-based timing analysis is very general and flexible.
The modelling language is capable of describing many classes of systems and
the simulator is fast, enabling simulations of complex models.
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Chapter 1

Introduction

ABB Robotics develops industrial robots and robot control systems. The con-
trol system is very complex; it contains over 60 tasks and several million lines
of code, distributed on three processors. It is not trivial to verify that a system
of this complexity work as it should.

ABB Robotics has no methods for making timing/impact analysis of changes
in their software. The customers have high demands on the robots, especially
regarding reliability. A robot that stops working is expensive, since it can stop
an entire production line.

Since it is such a complex system it is hard to know if there is room for
new/modified functionality, in terms of CPU-utilization, memory etc. The way
the developers are working today is to implement the new functionality and
perform a lot of tests to verify that the system works as expected. It is very
hard to know if the temporal behavior is correct (if there are timing problems)
before implementing and testing it. Incorrect temporal behavior can be hard to
fix due to the complexity of the system. Using this “trial-and-error” approach
is expensive in man-hours and it could take a lot of time to get the product
ready for release.

Re-designing the system could reduce the complexity and recent results from
research regarding product line architectures [18], task scheduling and monitor-
ing could be used to make the system more robust with a higher testability
and ease further development. To re-design the robot controller, i.e. to de-
velop a completely new system, is too expensive and at this time not an option.
Methods and tools to verify the temporal behavior of the system are therefore
desired.

The goal of this work is to provide these tools and methods mentioned above
and use them to verify the temporal behavior of the three prioritized tasks. To
achive the goal, the work was divided into the following projects:

• develop a task model including interrupts and all relations between the
tasks.

• populate the model with data from the requirements and measured data
from the system.
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CHAPTER 1. INTRODUCTION

• perform a response time analysis. Not only worst case but also distribu-
tions in response times and sampling periods are interesting.

• develop a tool for analyzing the model, preferable Excel-based.

• investigate the results and how the method can be used when adding new
functionality into the system. Impact and robustness analysis is especially
interesting.

These methods/tools are intended to be used to test changes in the software
of the robot controller at an early stage, before they are implemented. The
process for conducting such impact-analysis is described in figure 1.1. The
result of this work hopefully shortens the time required for the testing and
verification and thereby increases the robustness of the system.

Figure 1.1: The intended use of the tools

The process described in figure 1.1 starts with the creation of the initial
model. When this model exists, it can be used to perform impact analysis
when changes is to be implemented. The analysis can predict how the changes
will affect the temporal behavior of the system. If the analysis indicate that
there are problems with the temporal behavior in the altered system, these
problems can be investigated prior to implementation. When the changes have
been implemented, the model of the new system can be validated. By that, the
loop is closed.

This is the public version of the report. The actual names of tasks and classes
has been replaced. Any detailed descriptions of the target system has been
removed.
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Chapter 2

Theoretical Background

A Real-Time System (RTS) is a system where correct behavior is not only
dependant on what result it delivers, but also when it does it. [14] A RTS
is composed of parallel processes, tasks, that often communicate and depend
on each other. The latest time a task can deliver a result without being too
late is the deadline of the task. Real-Time Systems can be divided into two
categories, hard and soft Real-Time Systems. In a hard real-time system a
single deadline is considered a failure. In a safety-critical application such as
aerospace or military applications, where hard real-time systems are common,
a missed deadline might result in catastrophic damage. There is a need to
guarantee that there are no timing problems in such systems, i.e. i.e. their
temporal behavior is correct. A soft real-time system allows some occasional
deadline-misses, e.g. the requirements do not need to be guaranteed at all time.
An upper limit is often defined over a time period.

There exists several scheduling policies for hard real-time systems (most
common are Rate Monotonic and Earliest Deadline First, EDF, also referred
to as Deadline Monotonic) and a lot of work has been done regarding hybrid
task sets, containing both hard and soft tasks [5, 2, 3]. In the robot controller,
fixed-priority scheduling is used, i.e. all tasks are manually assigned a priority.

2.1 Fixed Priority Analysis

Fixed Priority Analysis (FPA) is a method for verifying the feasibility of a fixed
priority task set [14]. The basic idea is that if the task set is schedulable under
worst-case conditions, it will always be schedulable. The worst case condition
is when all tasks want to execute at the same time. If a deadline is missed,
FPA will show it. It tells however nothing about how probable that scenario is
or if other scenarios will result in missed deadlines as well. It only tells if the
system works under the theoretically worst-case conditions, which might never
occur. A system can be schedulable if the theoretical worst-case scenario never
can occur, but the analysis tells the opposite.

A lot of work exists regarding timing and reliability analysis, although noth-
ing found has the same focus as this thesis. Next follows a summary of what
was found during the literature studies that was conducted for this work.
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CHAPTER 2. THEORETICAL BACKGROUND

2.2 Related Work

In [11], a simulation based methodology for reliability analysis of distributed
systems is presented. A tool for this has been developed and is evaluated in a
case study. The goal of their work is to enable timing analysis on an early stage
when designing a system [11]. The simulation-based approach extends the class
of applications that can be analysed, compared to traditional analysis methods.
Simulation is extensively used in the industry, so this approach should be at-
tractive. In the simulator, a system is modelled as a set of nodes, interconnected
by buses. Each node has a set of tasks that sends and receives messages using
the buses. Behavior of tasks in the simulated system is described as sequences
of states. Two types of states exists; call states and execute states. In a call-
state, the task is using a system-service. When a task is in a call-state, it is not
pre-emptable. When a task is in an execute-state, it can be pre-empted. The
duration of an execute-state is determined by a probability distribution. The
level of abstraction in this approach can be varied to some extent, but since it
doesn’t contain a modelling language, the lower limit of the abstraction level
is quite high. The tool is evaluated in [10] by creating a model of an actual
system and simulating it.

A way of analysing task sets with stochastic execution times is presented
in [13], but they assume strictly periodic, non pre-emtable tasks, which is not
very suitable for this work, as the control system contains pre-emption as well
as aperiodic tasks.

In [12] a method is presented for using measurements to derive the worst case
execution time (WCET) of the tasks in an existing system. The following quote
from the paper describes it quite well: “The essence of the method is to derive
a system of linear equations from a limited number of timing measurements of
an instrumented version of the considered program.” [12]. The equations that
are derived describes the different execution times of the program.

A tool-suite called STRESS is presented in [4]. STRESS is developed by
Audsley et al. at the University of York. The STRESS environment is a col-
lection of tools for “analysing and simulating behavior of hard real-time safety-
critical applications” [4]. STRESS contains a modelling language where the be-
havior of the tasks in the modelled system can be described. It is also possible to
define algorithms for resource sharing and task scheduling. STRESS is primar-
ily intended as a tool for testing various scheduling and resource management
algorithms. It can also be used to study the general behavior of applications,
since it is a language-based simulator.

DRTSS is related to STRESS. DRTSS is a high level simulation framework
that “allows its users to easily construct discrete-event simulators of complex,
multi-paradigm, distributed real-time systems” [17]. The DRTSS framework is
quite different from STRESS, although they are closely related. It contains a
set of algorithms and protocols from which one can pick the appropriate ones
and build a simulator. New algorithms and protocols can be added to the
original set. It has support for searching for extremes in the timing behavior
of the simulated system. DRTSS has no language where task behavior can be
specified, so the abstraction level of the simulation is high and fixed.
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CHAPTER 2. THEORETICAL BACKGROUND

DRTSS is a part of the PERTS tool-suite, which was developed at the
University of Illinois at Urbana-Champaign. The PERTS tool-suite has been
commercialised by Tri-Pacific Software Inc.[16].
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Chapter 3

System description

The robot control system is based on VxWorks, a commercial fixed-priority
Real-Time Operating System developed by WindRiver. The tasks are non-
terminating and cyclic (i.e. each task contain a non-terminating main-loop).
They communicate through IPC-queues, shared objects and semaphores. The
tasks have priorities between 0 and 255, where 0 is the highest priority. There
are multiple processors in the system, the main computer and two others. This
work focuses on the main computer.

Figure 3.1: The task structure

3.1 System behavior

The main-computer generates the motor-references and brake-signals that the
external computer need. The external computer sends requests to the main
computer every X’th millisecond and expects a reply in the form of motor
references. This depends on three tasks: Task A, Task B and Task C, figure 3.1
[1]. Two of these tasks, Task B and task A, are high-prioritised, periodical and
frequently executing. Task C mostly executes in the beginning of each robot
movement and has lower priority. The final processing of the motor references
is done by Task A. It sends the references to the external computer. Task A
is dependent on data produced by Task B. If the queue between them gets
empty, Task A can’t deliver any references. This causes a system failure, i.e.
the robot stops and a reboot of the controller is required. Task C sends data
to Task B when a movement of the robot is requested. If the queue between
Task C and Task B gets empty, the robot stops. In this state, Task B sends
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CHAPTER 3. SYSTEM DESCRIPTION

default-references to Task A.

3.2 Limitations of the Thesis

Although the tools and methods produced by the work should be valid for
the entire system, the three tasks Task A, Task B and Task C are prioritised.
Verification of other parts of the system is to be done if there is spare time.

The accuracy of the model is not the primary result of this work, the focus
should rather be on the quality and usability of the methods and tools, although
an accurate model is desirable.
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Chapter 4

Problem analysis

4.1 The re-engineering aspect

Since this work focus on temporal verification of an existing system with hun-
dreds of man-years of work put into it, there is a need for a re-engineering of
the system, where a model is created, based on the source code. The system is
about a decade old and has evolved considerably from its initial design. Tempo-
ral analysis has never been an issue when designing or implementing the system.
An alterative to model the system by re-engineering is to create a new system
that is easier to verify. However, the cost would be extremly high, to introduce
support for temporal verification is alone not enough to motivate that.

4.2 Problems with existing analysis methods

Performing a “classic” response time analysis of this system, such as Fixed
Priority Analysis (FPA) [14], results in a very pessimistic picture of the system.
FPA is based on the fact that if a set of tasks (containing only periodical tasks
with deadlines less or equal to their periods) is schedulable under worst-case
conditions, it will always be schedulable. The worst case condition is when all
tasks in the task-set want to execute at the same time. The result from such
analysis is of a binary nature, it doesn’t give any numbers on probability of
failure, it just tell if the system is guaranteed to work or not. In this work,
the result from an FPA would be negative, telling that this system will miss
deadlines under worst-case conditions.

The task model of this system is not very suited for Fixed Priority Analysis.
The task-model doesn’t specify any deadlines for the tasks, although there are
temporal requirements on the system. These temporal requirements are not
specified in terms of task deadlines. Some tasks can have their deadlines derived
from these requirements, but not all tasks can easily be assigned a deadline. To
perform an FPA, it is necessary to know the period and worst-case execution
time of the tasks. Task C is not periodic, it executes sporadically and with very
different execution times. Using the worst case in terms of both execution time
(maximum) and inter-arrival time (minimum) is not an option in this case, it
would be extremely pessimistic.
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CHAPTER 4. PROBLEM ANALYSIS

FPA is suitable if a single missed deadline is directly catastrophic. In this
case, it is not. A missed deadline can under worst case conditions be dangerous,
for instance if the emergency stop-button is pressed or a collision is detected, it
is very important to stop the robots movement on time. However, the situations
where a missed deadline is dangerous are rare, in most cases a missed deadline
will only stop the robot and thereby stall the production.

Something that Fixed Priority Analysis can not provide but is very interest-
ing is to get numbers on probability of failure. FPA will only tell that the system
doesn’t work under worst-case conditions, it tells nothing about probabilities.
It is obvious that another method is necessary.

Two methods to achieve the goal were considered. The first approach was
based on a formal analysis, the second a simulation-based approach. The
analysis-based approach would be to extend FPA to use distributions of ex-
ecution times instead of a worst-case. The simulation-based approach was to
create a simulator, which used the model of the system as input.

4.3 The analysis-based approach

In [13] a method for timing analysis of task models with stochastic execution
times is presented, but it could not handle sporadic tasks. A solution for this
could not easily be found. Without fixed inter-arrival times (i.e. in presence of
sporadic tasks), a least common divider of the tasks inter-arrival time can not
be found. The thought occurred to use FPA to analyse every possible scenario,
i.e. every execution time and every possible inter-arrival time of all tasks in
any combination.

Testing all possible scenarios would be extremely time-consuming, even for
simple systems. For example, consider the sporadic task T . It has 3 possible
execution times and 3 possible inter-arrival times. The number of possible
execution-scenarios that exist for task T is therefore ST = 3∗3 = 9. This means
that if this is the only task in the system and the number of executed instances
is IT = 10 there exists ST

IT = 910(≈ 3.48∗109) possible execution-scenarios for
the entire run. If other tasks are included as well, each having a set of execution
scenarios, the state space grows to enormous proportions. Say for example a
system consisting of three tasks, each having 9 possible execution scenarios (3
execution times and 3 release times), at every preemption point, there are 27
possible ways the system can continue its execution, so after 10 executed (non-
preemptable) instances the state space equals 27(10) ≈ 2 ∗ 1014. If a computer
could test 106 execution scenarios every second, it would take 2 ∗ 108 seconds
to test the entire state space, i.e. over 6 years. Even if computers double their
computing capacity every 18’th month according to moore’s law, it is obvious
that it is impossible to analyze longer execution scenarios using this approach.

4.4 The simulation-based approach

The model of the system that is used in an analytical approach of temporal
verification (such as Fixed Priority Analysis) does not consider what the task
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CHAPTER 4. PROBLEM ANALYSIS

actually does (the behavior), only task parameters such as inter-arrival time,
execution time and priority. In such an approach, it is hard to include tasks
with stochastic parameters.

If the behavior of the tasks is included in the model, the system can be
analyzed with higher accuracy. The presence of a description of the behavior
can reduce the number of possible scenarios, since the behavior controls the
execution and many of the theoretically possible cases might never occur due
to the behavior of the tasks.

The behavior of the entire system is determined by running the model of
the system through a simulator. It creates a trace of the execution (i.e. a log)
from which relevant data can be extracted. The behavior of the system can
be described in different levels of abstraction. In the most detailed level, the
actual code for the tasks is the “description” of the behavior, in this case, a
perfect description. There is no point in creating such a detailed description,
it would be easier to test the the actual system. The least detailed description
of the behavior is to only specify the execution time of the task, no behavior
at all is described. This would not be a very accurate model. Obviously none
of these two extremes are suitable, but something in the middle is, where only
the most important parts of the behavior is described. It is a trade-off between
model complexity and accuracy. This approach was selected for the work,
since it allows the behavior of the tasks to be modelled without resulting in an
extremly complex model.

14



Chapter 5

The model

5.1 Demands on the modelling language

In order to create a model of the robot control system, there was a need for
a formal notation describing the system. A large quantity of work was put
into finding an existing notation for suitable for describing the system. The
demands on such a notation were defined.

The notation should have the below listed properties.

• It should be able to describe the tasks forming a complex system in dif-
ferent levels of abstraction.

• It should also be able to describe kernel-calls such as message passing and
other relationships between tasks.

• The notation should also be able to describe the execution time charac-
teristics of a task in terms of distributions rather than worst-case.

• Furthermore, the notations should be able to describe memory usage, task
priorities, deadlines and timeouts, cycle times (of periodic tasks) and allow
analysis of task release jitter, task execution times, task response times,
end-to-end response times and message-queue sizes.

• The notation should be down-to-earth and simple to use, since it is meant
to be used by developers without academic background in real time sys-
tems.

Three possible solutions was found, STRESS, DRTSS and a simulator developed
at Mälardalen University [11]. STRESS was the most suitable (although not
perfect) solution.

5.2 STRESS

“The STRESS environment is a collection of CASE tools for analysing and
simulating behavior of hard real-time safety-critical applications” [4] STRESS
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CHAPTER 5. THE MODEL

is primarily intended as tool for testing various scheduling and resource man-
agement algorithm. It can also be used to study the general behavior of appli-
cations, since it is a language-based simulator.

The tools included in STRESS are a simulator, a presentation tool and ex-
amples of the modelling language. The modelling language allows very complex
behavior to be modelled and the presentation tool presents a very nice trace
of simulation, but it crashes if the duration of the simulation exceeds about
10000 time-units. STRESS has no support for modelling distributions of ex-
ecution times or memory allocation. Attempts were made to get the source
code for STRESS, but they were unsuccessful, so it was not possible to improve
STRESS. These flaws make STRESS unsuitable.

5.3 DRTSS

DRTSS is a simulation framework that “allows its users to easily construct
discrete-event simulators of complex, multi-paradigm, distributed real-time sys-
tems” [17]. The DRTSS framework is quite different from STRESS, although
they are closely related. DRTSS has no language where task behavior can be
specified. That it something that is necessary for achieving the goals of the
work and excludes DRTSS as a possible solution.

DRTSS is a part of the PERTS tool-suite, which was developed at the
University of Illinois at Urbana-Champaign. The PERTS tool-suite has been
commercialized by Tri-Pacific Software Inc. www.tripac.com.

5.4 The anonymous simulator presented by Lind-

gren et al.

The work presented by Lindgren et al. in [11] is similar to STRESS and DRTSS.
The goal of their work is to enable timing analysis on an early stage when
designing a system. They use a simulation based approach as well. In their
approach, a system is modelled as a set of nodes, interconnected by buses.
There is no support for IPC-type message queues as used in the robot controller.
The behavior of the tasks in the simulated system is described as sequences of
states, which limits on the lowest level of abstraction. The modelling langauge
in STRESS enables more detailed/complex models to be implemented. The
focus of [11] is analysis of distributed systems and buses in a higher level of
abstraction which is not exactly the focus of this work.
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Chapter 6

The Solution

Since no existing solution was found, the decision was taken to implement a
modelling language and simulator from start. This resulted in a STRESS-
inspired modelling-language and simulator.

A language and three tools was developed:

• The modelling language ART-ML

• A compiler for ART-ML

• A simulator

• A tool for extracting data from the logs generated by the robot con-
troller/simulator

This tool-suite is capable of performing impact-analyses on a system regard-
ing its temporal behavior. By applying a change to a model of the system and
run it through the simulator, it is possible see how the change will affect the
temporal behavior. The accuracy of the simulation depends on how accurate
the model is and the simulation length.

The model can be made very accurate since it is possible to get feedback on
the accuracy. The simulator produces log-files of the same type as the control
system generates. The simulator’s output can thereby be compared with the
logs from the actual system and the model refined. When iterating this process,
the accuracy of the model increases.

The performance of the simulator is sufficient for the purpose of this work.
Simulating a model take about 0.1 - 10 times the execution length depending
on the complexity of the model and the performance of the computer.

A performance-test has been conducted where a model consisting of three
tasks, each about 10 statements of behavior was simulated. The stop-time of
the simulation at 6 ∗ 108 s, 10 minutes. It took about 9 minutes and produced
an 366 MB output-file. The computer used was a Pentium II at 400MHz,
running Microsoft Windows NT 4. In other words, it is possible to do very
long simulations, as long as there are enough disk-space. The size of the output
can be reduced if the simulator is changed to produce binary output instead of
plain text-files.
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CHAPTER 6. THE SOLUTION

6.1 The Modelling Language - ART-ML

The language ART-ML (Architecture and Real-Time behavior Modelling Lan-
guage) supports multiple processors, inter-process communication, synchroni-
sation and fixed priority scheduling. Each processor in a model can have up
to 256 tasks. There is no support for multiprocessor systems in the simulator,
even though the modelling language supports it. Implementing such support
would introduce a lot of problems that there is no time for solving in this thesis.

It was designed as a mean to describe the robot control system. It is an
imperative language, like ANSI C, Pascal and Basic. It’s designed to be syntac-
tically close to ANSI C (although simplified) since C is used for the development
at ABB Robotics and the developers are used to the syntax. It is based on the
concept of tasks. A task in the ART-ML language can be divided into two
parts, attributes and behavior. Three attributes are mandatory for a task,
Name, Task Priority and Task Type. There are two more attributes, Deadline
and Memory, but they are not mandatory.

The behavior part of the task is the “code” of the task, the model of the code
in the actual system (the robot controller). The behavior is a list of statements.
A statement can be an assignment (the language supports integer variables), a
loop, a selection or a kernel-call. ART-ML has no support for function-calls.
All expressions must end with a semi-colon “;”. If variables are used, they
need to be declared, either in the beginning of the behavior-part of the task or
on processor-level. A variable that is declared within a task is only accessible
within that task. A variable that is declared within a processor is accessible
from all tasks within that processor.

An ART-ML model of a system contains one top-level component, the “sys-
tem”. That components owns all the other components in the model, either
directly or indirect by owning components that owns other components. The
system contains one or multiple processors and other components such as mail-
boxes,variables, constants and semaphores. A processor can own other com-
ponents as well. It can not own other processors, but it owns one or multiple
tasks, semaphores, mailboxes and constants.

6.1.1 Task Model

The language supports several different ways of activating a task. Periodic
and aperiodic terminating tasks can be described, as well as non-terminating
tasks. It is possible to explicitly set a task to be activated on an incoming
message, and it is possible to assign a task a probability of activation. Such a
task is activated by a certain probability every X’th time-unit in the simulation.
Every task must have a priority, an activation method and a name. Deadline
and memory usage can also be specified, but it’s not mandatory. Interrupts are
modelled as high-prioritized tasks.
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6.1.2 Modelling the behavior

A tasks behavior can be modelled in various abstraction levels. The most
abstract model of a task is to only specify its distribution of execution times.
On the other extreme is to make a perfect model, i.e. the model have the
exact same behavior and temporal characteristics as the real task. The latter
alternative is not an option unless the task is very simple and the hardware
platform of the simulated system is very deterministic in its temporal behavior.

A level of abstraction has been chosen for the model. The execution time
distribution and the inter-process communication are described. It is possible
to add various dependencies in the model so that the execution times are de-
pendent of the message passing. It would improve the accuracy of the model
considerably.

The way task-behavior is described in ART-ML reminds of ANSI C code.
The ART-ML language is a lot simpler though, there are no pointers, functions
or arrays and ART-ML contains only integer variables. The ART-ML language
contain selection, iteration and assignments, so the language is turing-complete
[7].

The language contains a form of stochastic selection, the chance-statement.
It works just like an if-statement, but instead of evaluating an expression, it
compares a random number between 0 and 99 with the expression. With this
statement one can add stochastic selection of behavior in a task. For example,
it is possible to specify that there is a 19% chance of sending a message if a
message was received, else there is 42% chance of sending the message.

There is a statement in the language that is very important, the execute-
statement. It consumes time according to a distribution. That is the only
instruction that affects the simulation clock. The execute-statement is not
atomic, the task can be pre-empted while executing an “execute”-statement.

A rough model of a typical task can be constructed from three statements.
First a “receive” that waits for a message, next one or several “execute” that
consumes time and finally, a “send” statement that sends some data to another
mailbox.

6.1.3 Types

The modelling language is based on 7 different types, system, processor, task,
semaphore, mailbox, variable and constant, figure 6.1. The system is the top-
level component, there can only be one system in a model. The system contains
one or multiple processors (multiprocessor-support is not implemented in the
simulator), and can also contain mailboxes, semaphores and constants. The
processors can contain all types except other processors and the system-type. A
task can only contain variables and constants. A task always contains behavior,
i.e. it must have at least one instruction.

• variable i;

Declares the variable i. The variable is initially set to zero.

• constant c N;
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Declares the constant c. The constant gets that value N. A constant is
actually a variable, the simulator is not aware of the concept of constants,
the compiler transforms the into variables when writing the code. This is
why there are no constants in figure 6.1.

• semaphore s;

Declares the binary semaphore s. The semaphore is initially unlocked.

• mailbox m N;

Declares the mailbox m with the size N. A mailbox has two members,
size and maxsize. They contain the actual and maximum number of
messages in the mailbox, respectively. Both are constant, at least in the
sense that they are write-protected. The size changes it’s value since it
is updated when a send/recv occur. This typing is to protect the mailbox
from corruption from possibly (semantically) faulty behavior code in the
model. If the size member was a variable, it could be changed from the
model and cause an inconsistency in the simulator, i.e. the size member
could give a different value compared with the actual number of messages
stored in the mailbox. These two members are automatically created
when a mailbox is declared. They can be used to check if there is any
messages in a mailbox or it a mailbox is full without calling send/recv.

Figure 6.1: The system

6.1.4 Selections

There exist two different kinds of selection in the ART-ML language, the stan-
dard if-statement and a probabilistic selection statement called chance. Both
selection-statements support an else-block, but it is optional. The chance-
statement works just like the if-statement, but the selection is based on the
probability that is given as parameter, i.e. chance(10) means that it is a 10%
chance of executing the first block and 90% chance of executing an else-block.
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• if (expr)

statement;

If expr is non-zero, statement is executed.

• if (expr){

statement1;

statement2;

...

statementN;

}

statement can be a list of statements, a block, if braces are used to en-
capsulate them.

• if (expr)

statement1;

else

statement2;

If expr is non-zero, statement1 is executed, else statement2.

•

chance (expr)

$statement1$;

chance (expr)

$statement1$;

else

$statement2$;

Like the if-statement, except the condition. A random number between 1
and 100 is generated and compared with expr. If the random number is
less than the value of expr, statement1 is executed, else statement2. This
means that the value of expr is the probability (in percent) of execution of
statement. If an else is used, the probability of execution of the else-block
is therefore (100 − expr)%.

6.1.5 Iterations

ART-ML supports while and for-loops. The for-loops doesn’t follow the C-
syntax however, they are somewhat simplified. They take three arguments,
just as in ANSI C, but the arguments have different meanings. The first is the
loop-variable, the second is the starting value of the loop-variable and the third
is the maximum value.

• while(expr)

statement;

statement is executed as long as expr is non-zero.
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• while(expr){

statement1;

statement2;

...

statementN;

}

The list of statements is executed as long as expr is non-zero.

• for(i,start,stop)

statement;

statement is executed as long as i < stop. Initially i is set to start. i is
(automatically) incremented by one on each iteration. statement can be
a block encapsulated by braces.

6.1.6 Kernel calls

The functionality for message passing and synchronization and other “kernel-
calls” is located in the simulator, the compiler just output a single instructions
for each kernel-call. Six kernel-calls exists:

• sleep(T)

Make the task sleep for T us.

• semtake(S) [timeout T]

Attempt to lock the semaphore S. If the semaphore already is locked, the
executing task gets blocked. If the timeout is specified, the attempt is
aborted after T timeunits.

• semgive(s)

Unlock the semaphore S.

• send(Mbox,S) [timeout T]

Send the value of S (an immediate value or integer variable) to the mailbox
Mbox. If that mailbox if full, the executing task is blocked until there is
room for the message. If the timeout is specified, the attempt is aborted
after T timeunits.

• recv(S,Mbox) [timeout T]

Read a message from mailbox Mbox and put the value is S (a variable). If
that mailbox is empty, the executing task is blocked until a message arrive.
If the timeout is specified, the attempt is aborted after T timeunits.

• execute((P1, T1), (P2, T2), . . . , (Pn, Tn))

Execution time is consumed according to the distribution specified. One
or multiple pairs of probability/execution time can be specified. These
pairs corresponds to particular execution scenarios in the actual system.
This call tightly coupled with the simulator engine, this is described in
6.2.3.
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6.2 The Simulator

6.2.1 Interpreter vs. Virtual Machine

When designing the simulator, two different approaches were identified. The
most intuitive was to let the simulator parse the model and execute it statement
by statement. The other approach was to create a compiler that translated the
statements into simple, assembly-like, instructions and create the simulator as
a virtual machine that executes the instructions. A test was made to compare
the performance of the two approaches. Two very simple versions of the two
simulators were created. Their task was to evaluate the expression 1+2∗6/4−3.

The interpreter-based simulator did this by recursively parsing a string con-
taining the expression. It searched the string for operators. If no operator was
found, it converted the string to an integer and returned it. If one or more
operators were found, the string was split (using pointers, no data was copied),
the two parts were evaluated by a recursive call and their results combined with
the appropriate operator.

The virtual-machine based simulator had support for four instructions, add,
sub, mul and div. It had a register-bank where the result from the instructions
was put. It had a list of instruction, a program, evaluating that same expression.
It had a simple function called execute, that executed all instructions in the
list. It checked the subtype of the instruction, i.e. if the data was immediate or
located in the register-bank, applied the appropriate operation to the operands
and put the result on the specified register. The program had four instructions
with the following semantics R0 = 2∗6, R0 = R0/4, R0 = R0−3, R0 = R0+1.

Both versions was set to evaluate the expression 50000 times, the latter
version was 40 times quicker. That is a significant difference in performance,
so the choice was not hard to make. We implemented the compiler/virtual-
machine solution.

6.2.2 General behavior

The simulator reads a compiled model from file. The compiled model contains a
symbol table (a list with all identifiers, their type and any associated value) and
the code for each task, Appendix A 43. The code for the tasks is created by the
compiler and is assembly-like low level instructions. The simulator builds up a
linked data-structure, containing the complete description of the system. Next
it enters the main-loop, selects a task to execute and executes the instructions
of that task until a context-switch occurs. The main-loop is terminated when
the current time in the simulation exceeds the user-specified limit.

6.2.3 The simulator engine

The engine is based on three parts. The instruction decoder, the scheduler
and the event-processing. The instruction decoder executes the instructions.
It identifies them and calls the appropriate functions. Some of these functions
create events. An event always contains three things, type of event, id of source-
task and a timestamp telling when the event is to be activated. The events
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generated by the tasks are stored in a global datastructure. The purpose of
these events is to notify the simulator when timeouts occur in the simulation.

The scheduler decides what task that is to execute. It is also responsible for
calling the functions that creates the output.

The “execute” kernel-call, the consumption of time, is what drives the sim-
ulation forwards. First, a time-increase is selected according to the distribution
that is passed as argument. The current time is then increased with that time-
increase. If the change of the current time makes any events occur, the execution
of that task is suspended, the event is taken care of and the scheduler is called.
The next time that task is allowed to execute, it will restart the execution of
the execute-instruction, but it remembers that it has executed previously and
for how long, so the time-increase is adjusted this time.

Since an “execute” kernel call is necessary for pushing the simulation for-
wards, there must always be a task that is ready to execute and contains such
a statement. Due to this it is mandatory to have an idle-task in the simulation
that consumes time if no other task is ready.

6.3 Compiler

The compiler translates a model in ART-ML to a binary representation. The
code that describes the behavior of the tasks is compiled into assembly-like
instructions. The different identifiers are stored in a symbol table and written
to the output file together with the code.
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Measurements

7.1 Setting up the model

In order to get more familiar with the control-system documents such as “Mo-
tion Control OBM” [1] was studied, but the most efficient method of gaining
knowledge of the system was to interview the developers. Three interviews was
conducted in order to cover the area this thesis focus on.

With this knowledge, a rough model describing the behavior of the three
tasks could be defined using the ART-ML language. There were however no
data to insert in the model, there was a need to measure the distributions of
the tasks execution times.

7.2 Setting up the test system

To be able to measure the data, a robot system had to be configured. This
took a lot of time, since a lot of problems occured. At first the motion-control
test-system, moctest, was set up. After some time it was clear that the real
system had to be used instead, since moctest doesn’t contain everything that
the real system does and doesn’t have the same temporal behavior. Another
problem was that the robot-system that was used had a motor replaced, but
the controller was never configured to work with the new motor, so it was not
possible to measure anything until the old motor was put back.

An arc-weld configured robot was used for the measurements, since it was
considered the worst case in terms of processor utilization. A robot running
an arc-welding program makes a lot of small movements that require a lot of
calculations.

7.3 The system monitor

The operating system provide functions to hook user defined code to events
such as context-switches, task creation and task deletion. Developers at ABB
Robotics have used this to implement a system monitor. 7.1.

The system monitor stores relevant information about the previously exe-
cuting task, which task it was, its status (i.e. cause of task-switch), a timestamp
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Taskname "sched" "complete" Status Totalt Task_Cts

Task_Cts 619.61us 619.61 us PEND DELAY 0.00 ns 1

Shell 3.41 ms READY 619.61 us 0

| Task_Cts 852.26 us 852.26 us PEND DELAY 4.03 ms 1

Shell 1.40 ms 4.81 ms PEND 4.88 ms 0

Table 7.1: The old system monitor log.

and the number of messages in message queues. The system monitor can store
a fixed number of context switches in the memory. Currently at release 4.0.53
of the robot-system could about 16000 context-switches be stored. The amount
of free memory is the limitation. The available space is enough to store about 6
seconds of execution. Measurements of 25 seconds or more is possible in other
memory configurations.

A new function has been added to the system monitor to enable the start of
the logging at a certain location in the code. The existing method of starting
the system monitor was to call the snStart function manually from the shell.
The snTrig-function polls a certain variable, the system monitor start-flag, for
30 seconds. When the flag gets the requested value, snTrig stops the polling and
calls snStart in order to start the system monitor. If the 30 seconds pass without
the flag is set, the snTrig-function finishes. The flag that snTrig poll is system
global, it can be used wherever wanted in the system. This solution enables
repeating a measurement of a certain scenario. Due to the polling nature of the
snTrig function the system monitor doesn’t start at the exact same time when
repeating a measurement, but very close. This is due to the polling nature of
the snTrig-function (the variable is polled every millisecond) and the quite low
priority of the task that executes the snTrig-function.

The function system monitor switch hook has been modified to store infor-
mation about multiple IPC-queues. Previously only a single queue was moni-
tored. Even the queue between Task A and Task B is included, 7.2. That queue
is not a regular IPC-queue, it’s a custom FIFO buffer. A counter was added in
the FIFO-class, it holds the number of messages in the queue. The system mon-
itor monitors that counter to record the number of messages in the queue. The
amount of IPC-queues the system monitor records can be changed, currently
five queues are monitored (the queue of Task C, the two queues of Task B and
the atwo queues of Task A). The time used in system monitor switch hook is
taken from the software probe class instead of the standard OS clock so that
logfiles from the software probes and system monitor could be compared. The
clock rate used in the system monitor class had to be changed from OS clock’s
rate to the software probe class’ clock rate. The system monitor print log func-
tion that writes stored data to file had to be modified to the new behavior in
system monitor switch hook.

The overhead from system monitor switch hook is low, that is because the
system monitor doesn’t use any dynamic allocation of memory and it doesn’t
do any operations on strings. system monitor switch hook just store some in-
tegers in a static array of structs. All handling of strings are made in the
system monitor print log function, which is called afterwards when the system
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Taskname "sched" "complete" Status Tot Task_C Task_B Task_B_pri Task_A mstep

Task_C 0.758 0.758 PEND DELAY 0.000 0 0 0 1 12

Shell 3.281 READY 0.758 0 0 0 0 11

| Task_C 0.742 0.742 PEND DELAY 4.039 0 0 0 1 11

Shell 1.682 4.963 PEND 4.781 0 0 0 0 10

timer 0.054 0.054 DELAY 6.464 0 0 0 0 10

Table 7.2: The new system monitor log.

monitor has been stopped.

7.4 Software probe class

A software probe class was used to log values with very low overhead. The
probe class store a string and timestamp. It can store a values as well, integer
or float. The class has been modified to return the timestamp it put on the
event. That timestamp is used in system monitor to get the current time, a
probe call is conducted in the system monitor switch hook function. This has
a nice side effect: the task-switch is recorded in the probe-log.

To start the logging of software probes the init-function must be called
somewhere in the code. The number of probes to log is fixed, a constant is
defined in a header file and is currently set log 100 000 events. The call to the
init-function is placed next to where the system monitors start-flag is set.

7.5 Selecting probe points

Probes were placed in the tasks of interest. This introduced a probe-effect, a
call to the software probe class takes a few microseconds (below 30 s). That is
a very small compared to the execution-times of the tasks that are from 500 s
up to about 50 ms, so it should not affect the result noticeably.

The location of the probe points is of course very important to get right.
They were placed before and after each receive-operation and before each send-
operation. An probe was placed in the system monitor switch hook-function to
log context-switches. This selection of probe points results in a very detailed
log from the probes. Various statistics suitable for setting up the model can be
extracted from that log with the tool ART-ML Builder.

A software probe that is located immediately before a receive-operation
result in a receive-event, the probe immediately after a receive-operation creates
an activate-event and a probe before a send records a send-event. An activate-
event marks the start of a task instance and a receive-event marks the end of
the instance. With this data it is easy to extract the distributions of execution
times and where in the task execution the events occur (i.e. the time between
the message-passing events)
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Tools

This thesis resulted in a set of tools that enables creation, simulation and anal-
ysis of a model describing a real-time system.

The simulator imitates the behavior of the modelled system and produces an
output of the same type as the monitoring function produce when running the
real system. This way both the output from the real system and the simulator
can be analysed using the same tool, the ART-ML Builder.

The output contains data about all instances of the tasks in the model. The
data is for example execution time, time of start and time of finish. It is also
possible to see when and why an instance has been preempted.

The model that the simulator uses as input is defined in a modelling lan-
guage developed for the purpose, ART-ML, Architecture and Real Time behav-
ior Modelling Language.

A model defined in ART-ML needs to be compiled before it can be read
by the simulator, as the simulator is a virtual machine, executing assembly-like
instructions. The ART-ML Compiler was developed for that purpose.

To simplify the creation of the model, a tool called ART-ML Builder has
been developed. It analyzes the output from the system monitor or simulator
and creates excel-charts visualizing the data.

8.1 Compiler

The ART-ML Compiler was created with the sole purpose of speeding up the
simulator. Two possible ways of implementing a simulator was identified. One
virtual machine-based solution and one solution based on runtime parsing. The
latter simulator would have to evaluate expressions (such as a = 8 ∗ (b + 7)/2)
during runtime and spend a lot of time comparing strings, while the virtual-
machine solution would have a compiler that broke down expressions into simple
instructions. The virtual-machine approach was selected due to the superior
performance.

An instruction set for the virtual machine was developed, containing a subset
of the Motorola 68000-instructions [8] and a handful of special instructions that
performed operating system services such as message passing and semaphore
operations.
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The tools Lex (Flex) [15] and Yacc (Bison) [6] were used to develop the
compiler. Flex generates code for a scanner, i.e. a tool that transforms the input
file into a stream of binary codes, and Bison generates code for the parser, i.e.
the tool that checks the grammatical and syntactical correctness of the input. A
back-end was also developed. It generates the assembly-code for the simulator
and is tightly coupled with the parser. The compiler has a symbol-table, so it
can check for errors related to undeclared variables and type-mismatch errors.
If an error is found in a model, the type and location is reported.

The output of the compiler is a .cml-file, Appendix A p.43. It contains
two sections. First the symbol-table, containing name, type and value of all
identifiers in the model. An identifier is a word that is not a reserved word, so
the symbol-table contains the names of every named thing in the system, such
as variables, tasks, mailboxes etc. After the symbol table is the code-section. It
contains the code for the tasks. The code of two subsequent tasks are separated
with the name of the following task (TASK X where X is the name of the task).

8.2 Simulator

The simulator takes the symbol-table from the compiler as input and builds
a system. The system is built up by nodes (C-structs) see figure 8.1. All
nodes except System-node has a next member that links to the next node of
same type. This to make it easy to link in new nodes, search and delete.
All nodes in the system gets a unique id, a number greater than 31 cause
assembler instructions have numbers between 0 and 31, the symbol-table have
the identifier as characters but in order to speed up the simulator the use of
number identifier were chosen instead. It takes considerably longer time to
compare two strings than it does to compare two integers. In order to translate
the string to a unique id a struct called sysName is used, it copies the string to
the sysName database and assign it a numeric, unique id.

The system is built as a tree, with a System-struct as the top-node. The
symbol-table has three fields for describing a symbol, name, type and value.
The name is unique, if a processor, p1, has a variable, var1, the variables
name is p1.var1, see Appendix A p. 43. Depending on what kind of symbol is
read from the symbol-table the system builder makes a new struct and creates
all necessary linking to other structs. It all result in a structure like the one
in the figure 8.2. The top node has a semaphore, mailbox and a processor.
The mailbox has two variables (mailboxes always have two variables) and the
processor has tree tasks and two variables.

After the system is built the handle of assembler-code starts. Assembler-
code is located after the system in the symbol-table, see Appendix A p. 43. A
string containing TASK;nameOfTask mark the start of instructions belonging to
that task. Once found, all other instructions below belongs to same task until
next start. The first instruction after a start is linked to the task’s member
“code” and the rest will follow the last instruction in a linked list of assembler-
struct type. A set of instructions belonging to a task holds together by the
“nextassm” member. The last instruction will point to NULL. This lets the
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System
ID
variables
mailboxes
semaphores
processors

Processor
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next
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ID
data
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next
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waitingTask
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nextSem
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Figure 8.1: The structs forming the system.
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Figure 8.2: A fictitious system.
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Time (ms) Exec-time (ms)

0.018881029 4.176659000

0.171290936 12.814769000

0.435867897 11.962947000

0.460164241 0.371965000

Table 8.1: Execution-time of Task C

Min Max Average n n/N

0.000287265 0.000420876 (0.000360097) 131 (0.615023)

0.000577448 0.000604320 (0.000590884) 2 (0.009390)

0.004176659 1 (0.004695)

0.004797058 0.005024122 (0.004911885) 12 (0.056338)

0.005177941 0.006829881 (0.005829924) 65 (0.305164)

0.011962947 1 (0.004695)

0.012814769 1 (0.004695)

Table 8.2: Statistical distribution of task Task C

simulator know where the instruction list for the task ends. The assembler-
struct has a next-pointer that holds all instructions together regardless of what
task they belong to. All the branch instructions have special cases because they
have two destinations, one is the next instruction in line and the other is the
branch address. The labels that are inserted in the assembler-code are stored
in a label-struct. All labels are unique. and if a branch instruction points to a
label, the branch instruction inserts the pointer that the label points towards,
see Appendix A p. 48.

8.3 Log Compiler

The Log Compiler extracts and compiles data from the system monitor and
software probe logs. It compute how long time the task has executed and at
what time it occurred, see table 8.1. It will also compute a statistical distribu-
tion for each task, see table 8.2. The output from Log Compiler should be used
to build the model of the motion controller.

8.4 ART-ML Builder

The ART-ML Builder is a graphical interface for a tool collection. ART-MLs
main purpose is to visualize and simplify the work for the user. All the tools
mentioned earlier are included in the ART-ML Builder graphical interface. The
interface is intended to start the tools with the correct parameters. ART-ML
Builder can use Microsoft Excel to make diagrams of the distributions. ART-
ML Builder will then open an Excel application and create a workbook, make
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Figure 8.3: The ART-ML Builder application

one spreadsheet for execution time, response time and block time1. In each
of every worksheet the tasks will be written in columns and a diagram made
automatically for each task. See Appendix C p. 53 for more info about how to
use ART-ML Builder.

8.5 Verification of the tools

The tools needs to be very carefully tested, since the purpose of the tools is
to verify the temporal behavior of a real-time system and the validity of the
results depends not only on the accuracy of the model but also on the quality
(lack of bugs) of the tools. The compiler, simulator and ART-ML Builder are
quite complex programs and very large amounts of output are produced, at
least from ART-ML Builder and the simulator. It is very possible that a small
bug in any of the tools that has been developed could affect the result without
anyone noticing it, if the effect is small. Ensuring the non-existence of such
bugs is not trivial and there is absolutely no guarantee that these tools are
flawless. That is however a problem for every software developer, there is no
methods available that can proof the non-existence of bugs in a program. That
is however not in the scope of this thesis.

1Execution time is the actual time a task has been executing, response time is the time
from task activation to task completion and block time is the difference between response time
and execution time,i.e. the sum of the interference from higher prioritized tasks and the time
spent waiting for resources.
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The tools are of beta-quality but it is doubtful that any major undocu-
mented bug exists. There are some documented bugs. They are listed in Ap-
pendix B p. 51 and in the readme-files for the corresponding tools.

8.5.1 Compiler

A large amount of the code in the compiler is machine-generated by the tools
Flex and Bison. This have simplified the implementation of the compiler and
thereby hopefully improved the quality of the code, since a large part of its
behavior is specified in a higher level of abstraction. A mutant-based approach
was used [19] to test the compiler. A small program was created to enable this
approach. It was called the “error-generator” and was used to create alternated
copies of a model-file, i.e. it copied the file and made small alterations. Such
an altered version of the original is called a mutant. Not every alternation
of the original file is a fault; about 10-15% of the potential mutants was not
erroneous. Sets of 100 potential mutants where run through the compiler. If
the compiler found any errors, the potential mutant was marked as a mutant
(i.e. killed). The error type was inserted at the location of the error and the
mutant was moved to a certain directory. If the compiler didn’t find any errors,
the potential mutant was moved to another directory, intended for potential live
mutants. After such a batch-job, there were two directories to inspect. One
with 80-90 files marked as faulty and another with 10-20 that approved by the
compiler. All 100 files had to be inspected to see if the compiler had made any
errors. This took some time, but it was an effective way of finding errors; a lot
of bugs were discovered.

As expected, not every error was found. Some bugs in the compiler were
found when debugging the simulator as well. This was at least partially due to
the fact that the error-generator was a very simple program, it only changed
single characters at random locations. This creates errors like removing key-
words and references to undeclared symbols, but it doesn’t swap order of things
or adds extra words. With a more advanced error-generator that could do that,
more bugs would have been discovered earlier. The compiler has been used a
lot when creating the model and debugging the simulator, so it is not likely
that there are any major undocumented bugs left.

8.5.2 Simulator

A set of ART-ML models was developed, each model focusing on certain func-
tionality in the simulator. This had two purposes. Firstly, the models serve
as good examples on the language ART-ML. Secondly; they were used as test
cases. The simulator was tested with the test cases with relatively short sim-
ulation times and the result examined. Some of the models were simulated
with longer simulations times, up to 10 minutes. A 10-minute simulation of the
model took about 6 minutes to complete on a Pentium II based PC at 400 MHz
and produces hundreds of megabyte of output.

A line-by-line verification of such an output is not possible unless highly
specialised tools are developed for the purpose. Instead, a statistical verification
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method was used. The simulator CPU utilisation was calculated for the models
and compared with the value reported by the simulator. They matched exactly.
That is not a proof of correct behavior, but it is an indication of it. Statistics on
average/minimum/maximum execution time and the number of messages sent
per instance where extracted from the output-log, they also matched the model.
That was another indication of a correct implemented simulator. The simulator
has been throughfully tested, it is not likely that it has any undocumented bugs
left.

8.5.3 Log Compiler

The testing of the Log Compiler was not very difficult, as the program has a
much larger testability and much smaller state space compared to the simulator
and compiler. The testability is a measure of how hard it is to find the bugs
in a program. A program with a lot of selections has lower testability than a
program with a single path. [9] It basically reads a log-file into a data structure
and performs some statistical calculations like in table 8.2.

Since the output format is the same for both the system monitor and the
simulator, we could test it using logs from the system monitor and thereby
eliminate the simulator as source of any errors. The system monitor actually
produces two output files, the log and a file with statistics. The latter file
contains information about average execution time, the total CPU-time of the
tasks and so on. The Log Compiler produces that information based on the
log, since the simulator does not produce any statistics-file. The statistics from
system monitor was compared with the one calculated by the ART-ML Builder,
the result matched.

8.5.4 ART-ML Builder

The ART-ML Builder was also easy to test because its main function is to
start other programs. The diagrams could be tested by compare the diagrams
generated by ART-ML with the one’s manually done with Excel.
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The Model and the

Measurements of the ABB

Robotics Control System

In this work a model of the robot control system has been created. The purpose
of this was to enable analysis of how changes in the system effects the tempo-
ral behavior of system. This impact analysis is conducted using a simulator
developed for the purpose to simulate the behavior of the modelled system. A
method has been developed for using this method of impact analysis in the
development process. This impact analysis can be used to test the feasibility
of adding/changing functionality in the system prior to actual implementation.
This in return will result in a more effective development of the system since
less time will be spent on debugging.

The system version that was used in the work was 4.0.53. The work has
focused on the motor reference generation subsystem (subject-area MOC).

To create the model a notation for describing the system was necessary.
The ART-ML modelling language was developed for this purpose. The lan-
guage meets the requirements specified in 5.1 and it is developed to be able
to describe a general system, which makes the language suitable for describing
future development of the robot controller.

The ART-ML modelling language enables different abstraction levels in dif-
ferent parts of the described system. In this model, the three tasks of interrest
are modelled on a lower level of abstraction, i.e. more detailed, and the rest of
the system is described on a very high abstraction level.

In order to populate the model with data, methods and tools for measuring
and compiling data has been developed. The system monitor was an existing
tool that recorded the tasks execution times and a single message queue. New
functionality has been added; a new method of starting the monitor, the option
to monitor multiple IPC-queues, option to monitor the (non-standard) mstep-
queue.

Besides the system monitor, the code of the tasks have been instrumented
with probes. This allows measurements of when different key events occurs,
relative to activation of the tasks.
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ROBOTICS CONTROL SYSTEM

The measurements of execution times produce megabytes of data. A tool
was therefore developed in order to compile that data into execution time prob-
ability distributions. The output of the Modelbuilder tool is equivalence classes
of the task instances, based on the execution time and the number of sent
messages. Each class is labeled with a probability of occurrence based on the
number of times it has occurred in the log. The tool can also export the raw
data into Microsoft Excel sheets with scatter-diagrams showing the execution
times per task of the recorded task instances. In these diagrams it is easy to
see the equivalence classes as well as dependencies between the tasks different
execution times.

The simulator that was implemented was able to simulate the model in
about 167% of real-time speed, simulating 10 seconds of execution takes about
6 seconds on a Pentium II PC at 400 MHz. The output from the simulator was
compared with the measurements and showed strong similarities. It was not
a perfect match but very good, especially since the actual system containing
2.500.000 lines of code and the model only 200.

Since the simulator produce output of the same type as the logs from the
system monitor, it is easy to compare the model with the actual system. By
using the Modelbuilder tool, both the system monitor log and the simulator log
can be exported and compiled into Microsoft Excel-diagrams and can thereby
be compared visually. This provides a feedback when constructing or changing
the model.

The ART-ML model that has been constructed contains 7 tasks, figure
9.1, the three tasks of interest, an idle-task and three dummy tasks. Two of
the dummy tasks, others high and others low represents the other tasks in the
system on a very high abstraction level. The third dummy task represents
the external computer, it sends requests to Task A during the simulation and
demands a response within a certain time.

Figure 9.1: The priorities of the tasks in the ART-ML model

The others high-task represents the tasks with priorities higher (lower in

36



CHAPTER 9. THE MODEL AND THE MEASUREMENTS OF THE ABB

ROBOTICS CONTROL SYSTEM

VxWorks-terminology) than Task C but lower than the Task B. The other
dummy-task, others low, represents the tasks with priorities lower than Task
C.

Since thiw work focus on the three tasks Task A, Task B and Task C, they
are the only tasks in the model that have their behavior described in the model.

Task A is activated on message arrival on its mailbox. If the message is a
mstep-request, it reads an mstep from the mstep-queue, executes for about 700
s and then sends an acknowledgement to the external-computer-dummy-task.
If it is any other message, it executes for about 70 s.

Task B is activated by the simulation start. It contains two loops, the
first one is entered immediately on startup. That loop waits for the variable
sys-online to be set. That variable indicate that Task C has started and sent
messages to Task B. When it is set, the second loop is entered. The task will
stay in that loop until the end of the simulation. For each iteration, Task B
reads all messages on its command queue and then sends a certain number
of messages to Task A. That send-operation is blocking and most of the time
the target queue will be full, so Task B spends most of it’s time waiting for a
message to be read by Task A.

Task C is activated by a certain probability, a 3% chance every microsecond
i.e. about 3 activations per 100 s. When it’s activated it sends a varying number
of messages to the Task B. This is to emulate the execution of the robot control
program.

The external-computer-dummy-task EXT DUMMY is activated every X’th
ms and if sys-online is set, it sends a request to Task A. An acknowledgement
is expected from Task A, if the reply does not arrive within X ms, the task hits
its deadline. If the acknowledgement arrives within deadline, a command-type
message is sent to Task A with a certain probability.

A deadline-miss causes the task to be killed and a warning-message to be
displayed. Killing the task is not desirable in all situations, so this could be
improved by adding options for it in the simulators .cfg file, but since missing
the deadline is considered a failure in this case, such option is of limited use.

The simulator presents the average cpu-utilization in the console-window
when the simulation is complete.

When measuring the system in order to populate the model, we used the
trig command to start the system monitor on a certain system event, in this
case when the next movement starts. In the Task C class, a line has been
inserted which sets the system monitor start-flag. It is executed if a message
arriving indicating the start of a new movement. If the trig command has been
started within 30 seconds before that event, it will capture the change in value
of the flag and start the snooper.
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Conclusions and future work

In this work a set of tools and a modelling language has been developed. These
tools enable the construction of a model of the robot control system. The
model has been populated with data measured from the system and has been
run through a simulator. The results from that simulation are easily comparable
with the results from the measurements.

The approach of this work was to enable the temporal analysis of robot
controller by enable the simulation of a model. This required the development
of a modelling language and a simulator, since no existing solutions were found.
A compiler for the modelling language was necessary, since the simulator was
implemented as a virtual machine, executing low level instructions. A tool for
extraction and compilation of statistics was developed as well. The model was
implemented by describing the robot control system in the developed notation
(ART-ML) and inserting data measured from the control system.

Though there are dependencies between the tasks left to include in the
model we were able to describe the complex system of 2,5 million LOC with a
model consisting of only 200.

This method of simulation-based timing analysis is very general and flexi-
ble. The modelling language is capable of describing many classes of systems
and the simulator is fast, enabling simulations of complex models. Simula-
tion is frequently used in many industrial projects [11], the developer at ABB
Robotics will have no problem to use these simulation-based tools for further
developments of the system.

It is easy to extend the different kinds of analyzes that is conducted on the
measured data. Implementation of the new methods in the Log Compiler is
necessary, but a platform intended for analysis-functions exists, which simplify
that implementation.

Future work

• Visualisation

Create a graphical user interface for the simulator where the output is
presented (something like the presentation tool in STRESS)

• Integration
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All tools integrated in a graphical user interface. Would lower the thresh-
old for new users and make it easier and faster to use. This exists to some
extent today, but not very well implemented. An installation program for
the tools would be nice as well, since there are several different programs
that depend on each other.

• Extending the simulator

– Support for distributed systems

The simulator should be able to simulate a model containing multiple
processors, it must be possible to have different temporal behavior
for message passing between processors compared to message passing
within the same processor.

– Hidden tasks/processes

Introducing support for hidden processes within the simulation would
improve the capabilities of the simulator. A hidden process executes
as a task but is not displayed in simulation, and it must not con-
sume time. Using hidden processes it would be possible to simulate
the behavior of external processes and implementing certain system
services within the model.

– Access of task attributes within task-behavior

If the code describing task behavior can read and write tasks at-
tributes, most importantly task priority, schedulers can be imple-
mented. If support for hidden tasks exists, such a scheduler can be
implemented in the model as hidden tasks.

– Include-functionality

If system services exist within the model, implemented as hidden
processes, it would be desirable to isolate them from the tasks that
are visible in the simulation. An include-statement could be used to
merge several model-files just before compilation and thereby allow
libraries of system services and algorithms to be implemented.

– Function-calls There is currently no support for function calls in
ART-ML. Introducing such support would enable the construction
of more complex models, especially in combination with include-
functionality.

– The Execute-statement

∗ Only one pair
If an execute only contains a single 100%-chance, the percent-
age could be left out. ( i.e. execute (750) instead of exe-
cute((100,750)) )

∗ Recursive definition
To describe more complex distributions, beeing able to write
nested execute-statements would simplify things. For exam-
ple, execute( (60,200), (40,( (90,500),(10,700)))) instead of ex-
ecute( (60,200), (36,500), (4,700))
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∗ Linear distributions
Another thing that would simplify the creation of the model
would be to support linear distributions as well. This can be
combined with the ordinary distributions. For example:
execute(100-200) or
execute((95,500-600),(5,750-760)) or
execute((90,100-200),(10,((50,225),(40,230-240),(10,270-280))))

• Monitoring of simulation

Today, the simulator outputs the complete trace of the entire simulation,
there is no support for searching for extremes in the behavior as for in-
stance in DRTSS [17]. A nice solution would be to have a language to
specify “monitors” and “triggers” for a simulation and perhaps a graphical
user interface for that language. A monitor logs something continuously
and generates statistics on that certain property, while a trigger takes
some action on a certain condition, perhaps show a warning or simply
count the “instances” of that condition.

• Refine the model

– Measurements of delay on send

All kernel calls executes in zero time as the execution times of these
calls are supposed to be included in the execute-statements. The
simulator delays the messages that are sent, currently by 100 s. This
is to model the time that it takes for the real system to execute the
code between the probe and when the message is actually available
for other tasks to receive. That delay is not based on any measure-
ment, the 100 s is just an estimation. This should be measured.

– More tools for analysis of the result

A platform for this already exists. Adding more functionality to
compile statistics would ease the construction of the model.

– Define more probe-points

Cover more of the system behavior. Only a few (the most impor-
tant) paths through the tasks are instrumented with probes. Adding
probes to more paths would enable the construction of a more accu-
rate model, in terms of capturing more system states.

– A more detailed behavior-model

The model of the tasks’ behavior is rough, this could be improved.
Preferably done by someone with a lot of domain knowledge.
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Appendix A

Output from the ART-ML compiler

Compiled model out.cml
#SYMBOLS #CODE
NAME: mbox1 TASK;p1.mbox task
TYPE: Mailbox recv;p1.mbox task.v1;mbox1;-1
VALUE:0 stk;mutex;-1

submi;?R0;p1.mbox task.v1;1
NAME: mbox1.maxsize notm;?R1;?R0
TYPE: Constant cmpmi;?R1;0
VALUE:2 beq;skip0

exec;90;100;10;105
NAME: mbox1.size bra;skip else1
TYPE: Variable label;skip0
VALUE:0 exec;90;200;10;205

label;skip else1
NAME: mutex sgv;mutex
TYPE: Semaphore TASK;p1.tt task
VALUE:2 exec;75;500;25;600

prbi;?R2;80
NAME: p1 cmpmi;?R2;0
TYPE: Processor beq;skip2
VALUE:- sendi;mbox1;1;-1

bra;skip else3
NAME: p1.idle label;skip2
TYPE: Task stk;mutex;-1
VALUE:S;-1;255;0;0 sendi;mbox1;3;-1

slpi;200
NAME: p1.tt task sgv;mutex
TYPE: Task label;skip else3
VALUE:T;1500;5;1490;0 exec;50;120;50;150

TASK;p1.idle
NAME: p1.tt task.tmp label;while4
TYPE: Variable cmpii;1;1
VALUE:- bne;while stop5

exec;100;10000
NAME: p1.mbox task bra;while4
TYPE: Task label;while stop5
VALUE:M;mbox1;0;0;20000

NAME: p1.mbox task.v1
TYPE: Variable
VALUE:-
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The ART-ML language

(TERMINALS, non-termninals)

system: SYSTEM header processor processorlist ENDSYS

processor: PROCESSOR ID header task tasklist ENDPROC

processorlist: empty | processor processorlist

header: empty
| VARIABLE ID ‘;’ header
| MAILBOX ID NUM ‘;’ header
| SEMAPHORE ID NUM ‘;’ header
| CONST ID NUM ‘;’ header

tasklist: empty | task tasklist

task: TASK ID taskheader BEHAVIOUR ‘{’
header stmntlist ‘}’

taskheader: trigger prio dl mem

prio: PRIORITY NUM
dl: empty | DEADLINE NUM
mem: empty | MEMORY NUM

trigger: TRIGGER whattrigger
whattrigger:STARTUP

| MAILBOX ID
| PROBABILITY NUM
| PERIOD NUM

stmntlist: empty | stmnt stmntlist

stmnt:lexpr ‘;’
| send ‘;’
| recv ‘;’
| semtake ‘;’
| semgive ‘;’
| sleep ‘;’
| consume ‘;’
| assignment ‘;’
| block
| for
| ifelse
| while
| chance

semtake: SEMTAKE ‘(’ ID ‘)’ semtake timeout
semtake timeout: empty | TIMEOUT NUM

semgive: SEMGIVE ‘(’ ID ‘)’

sleep: SLEEP ‘(’ lexpr ‘)’

ifelse: IF ‘(’ lexpr ‘)’ stmnt ifelse2
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ifelse2: empty | ELSE stmnt

for: FOR ‘(’ ID ‘,’ expr ‘,’ expr ‘)’ stmnt

while: WHILE ‘(’ lexpr ‘)’ stmnt

assignment: ID ‘=’ lexpr

block: ‘{’ stmntlist ‘}’

chance: CHANCE ‘(’ lexpr ‘)’ stmnt chance2
chance2: empty | ELSE stmnt

consume: CONSUME ‘(’ et pair et list ‘)’
et list: empty | ‘,’ et pair et list
et pair: ‘(’ expr ‘,’ expr ‘)’

send: SEND ‘(’ ID ‘,’ lexpr ‘)’ send timeout
send timeout: empty | TIMEOUT NUM

recv: RECV ‘(’ ID ‘,’ ID ‘)’ recv timeout
recv timeout: empty | TIMEOUT NUM

bool expr:rel expr
| bool expr AND bool expr
| bool expr OR bool expr

rel expr:neg expr
| rel expr ‘>’ rel expr
| rel expr ‘<’ rel expr
| rel expr GTEQ rel expr
| rel expr LTEQ rel expr
| rel expr EQ rel expr
| rel expr NEQ rel expr

neg expr:ari expr
| ‘!’ bool expr

ari expr:term
| term ‘+’ ari expr
| term ‘-’ ari expr

term:factor
| factor ‘*’ term
| factor ‘/’ term
| ‘-’ term

factor:atom
| ‘(’ bool expr ‘)’

atom:NUM
| ID
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Compiler output language

Flags: N (negative)
Z (zero)
V (overflow)
C (carry)

Basic Instructions

Code Types Name Arguments Semantics

0 4 ADD D, S1, S2 D = S1 + S2

4 4 SUB D, S1, S2 D = S1 − S2

8 4 MUL D, S1, S2 D = S1 ∗ S2

12 4 DIV D, S1, S2 D = S1/S2

16 2 (m,i) MOVE D, S D = S

18 2 (m,i) NOT D, S D = !S

20 4 AND D, S1, S2 D = S1&&S2

24 4 OR D, S1, S2 D = S1||S2

28 4 CMP S1, S2 F lags = S1 − S2

32 7 Bxx Label PC = address of instruction
following the label (if flags match)

32 BGE Not N (S1 >= S2)

33 BGT Not (N OR Z) (S1 > S2)

34 BLE N OR Z (S1 <= S2)

35 BLT N (S1 < S2)

36 BNE Not Z (S1! = S2)

37 BRA Branch always

38 BEQ Z (S1 == S2)

39 1 ISP D, S D = (S >= 0)

40 1 ISN D, S D = (S < 0)

Special Instructions

Code Types Name Arguments Semantics

41 1 STK ID Take semaphore ID

42 1 SGV ID Release semaphore ID

43 2 (m,i) SLP S Sleep for S timeunits

45 2 (m,i) PRB D, S If (abs(rand() % 100)) < S) D = 1;
else D = 0;

47 2 (m,i) SEND ID, S Send S to mailbox ID

49 1 RECV D, ID Recieve from mailbox ID, put value in D

50 1 EXEC P1, T1, Consume time according to the
P2, T2. . . distribution decribed. . .
Pn, Tn

Subtypes

Code Name Semantics

0 MM mem[D] = mem[S1] op mem[S2]

1 MI mem[D] = mem[S1] op S2

2 IM mem[D] = S1 op mem[S2]

3 II mem[D] = S1 op S2
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Symbol membership

System

Processor Constants Semaphores Mailboxes

Processor

tcbs Constants Variables Semaphores Mailboxes

tcb

Constants Variables

Mailbox

nof mess size

?

?

? ?
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Task example

system

mailbox mbox1 2;

semaphore mutex 2;

processor p1

task mbox_task

.

.

.

task tt_task

trigger period 1500

priority 5

deadline 1490

behaviour{

variable tmp; //not used

execute((75,500),(25,600));

chance(80){

send(mbox1,1);

}else{

// 20% chance of execution

semtake(mutex); //take semaphore

send(mbox1,3);

sleep(200);

semgive(mutex);

}

execute((50,120),(50,150);

}

task idle

.

.

.

Task

p1.tt task
ID 39

?
Exec #50

75, 500

25, 600

- prbi #46
ID 38
2, 80

- cmpi #29
2, 0

- beq #37
45

- sendi #48
33, 1

- bra #38
46

�

-

stk #41
36, -1

?

Label
45

-

sendi #48
33, 3

?
slpi #44
200

?
sgv #42
36

�

Label
46

-

Exec #50

50, 120

50, 150

�NULL/END

48



Appendix A

Simulator - Internal structure

Main

buildSystem
statusInit
eventInit

Mainloop delSystem

aluExecute doEvents schedule
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Appendix B - Known Bugs

Bugs in the compiler

The problem with the execute-statement

Description

If more than four pairs of probability/execution-time are specified, the output
gets corrupted.

Why this happens

Not investigated.

Proposed solution

Fix the bug or avoid specifying more than four pairs in an execute-statement.
An execute-statement containing more than four pairs can easly be tranformed
into multiple execute statements, holding at most four pairs each. These execute
statements must be grouped within a chance-statement, so only one statement
is executed.

The compiler crash

Description

The compiler crashes if the first error is a reference to the size-member of an
undeclared mailbox.

Why this happens

Somewhere in the symbol-table functions, the result from a function-call is not
compared with NULL before using it.

Proposed solution

Know about the crash and it’s cause when compiling or fix the bug.
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Bugs in the simulator

The priority problem on send

Description

If multiple task are waiting to send to a mailbox (because it is full) and a another
task performs a receive-operation, the wrong task is activated and allowed to
send.

Why this happens

A mailbox has two wait-queues, one for tasks that are waiting to receive a
message and one for tasks that are waiting to send a message. When a task
receives a message from a mailbox, the simulator checks the “waiting-to-send”-
queue of the mailbox in order to activate any waiting task.

Today, that is a FIFO-queue, i.e. first-in-first-out, so the first task that
wanted to send is the first to be activated when there is room in the mailbox.

Proposed solution

The function “get from mbox send waitqueue” in kernel.cpp is responsible for
selecting the task in the wait-queue that shall be activated. It should select the
task with highest priority instead of the first in list. Another solution is to set
all tasks in the wait-queue to READY and clear the queue. It is then up to the
scheduler to decide what task that shall run.

Bugs in ART-ML Builder

ART-ML Builder crash when making Excel-book

Description

ART-ML Builder just crash.

Why this happens

Excel have probably a book with the same name is opened and locked.

Proposed solution

Simply close all Excel programs.
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ART-ML Builder

The ART-ML Builder is a tool suite. Its main purpose is to visualise and
simplify the work for the user. The tool suite contains the scan-, log comp-,
compiler- and simulator-executable. ART-ML Builder can make Excel-sheets
from extracted data.

How to use ART-ML Builder

ART-ML

To start extract data from system monitor-log click on the “Meas. Builder”-
button (Measurement Builder). Continue to the “Usage of Measurement Builder/Simulator
Builder” section.

To start compile/simulate your model Click on the “Comp./Sim.”-button (Com-
piler/Simulator). Continue to “Usage of the Compiler and simulator”.

To get this help press the “Help”-button at any time.

To quit ART-ML press the “Exit”-button.

Usage of the Compiler and simulator

If a new model has been created it needs to be compiled with the ART-ML
Compiler. Click on the “Compile”-button. Select the model-file to compile and
click the “OK”-button. Select a destination filename for the compiled model
(the file is used in the simulation of the system), then press the “OK”-button.
The ART-ML Compiler will start the compilation of the model.
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The ART-ML Compiler will alert if any error occurs.
Once a valid system is compiled you can start the simulation of the model. Se-
lect the time (in us) you want to simulate the system. Click on the “Simulate”-
button and select the compiled-file created by the ART-ML Compiler and a
destination filename for the log-file. The log-file is now ready to be processed
by the Simulator Builder, just press the “Sim. Builder”-button.

Usage of Measurement Builder/Simulator Builder

Click on the “Browse”-button to select the log file to use. Then click on
“Browse”-button beside the Target-field to select the file to write data to. All
tasks from the log file will appear in the Select Tasks-window. Select the one
to include in the data file. The content of the output file is the distributions of
the selected tasks execution-time, response-time and blocked-time. ART-ML
Builder will automatically suggest a name for the Excel-sheet. You can change
the name if you like. Just write in the name of the file in the Excel target-field.
Click on the “Compile info.”-button to make the output file.
Click on “Make Excelbook”-button to make diagrams of the data file.
The “Help”-button will show this help-file
The “Close”-button will close the Measurement Builder/Simulator Builder.

Note

• In the ART-ML Builder program directory you will find a config file for
ART-ML Builder (init.src). It contains paths to executables etc.

• The ART-ML Builder is written in Visual Basic (VB) and VB doesn’t
like spaces in the directory names so avoid it.

Note to developers
Application notes
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• When making Excel-sheets it’s important that log comp makes two new-
lines after each set of execution-time, response-time and blocked-time.
Otherwise it will not work properly.

• Do not put anything else than the line “Statistics” after the blocked-time
set. ART-ML Builder stops after finding that line.

Known bugs

• If Excel have a sheet opened with the same name as ART-ML Builder
tries to create it will crash.

Solution: Simply close all Excel programs.

ART-ML Compiler - Users guide

Developed as a part of the Master Thesis “Timing Analysis of a Robot Con-
troller” at ABB Robotics / Mälardalens Högskola

By Johan Andersson and Jonas Neander

This short document describes how to use the ART-ML Compiler (artmlc.exe).

The ART-ML Compiler is program that lets you check if an ART-ML-file has
correct syntax. When called with an ART-ML-file as argument, the compiler
will point out any grammar or symbol related error it might find. If the compiler
doesn’t generate any error, an output-file is generated with the name specified.
The output-file contains a low level description of the system that the ART-ML
Simulator can read.

See p. 57 for a detailed description of the compiler.

Usage:

artmlc [-debug] [-debug N] [-serie N] path outfile

artmlc filename outfile

Parses the file and tells if it has any errors, and if so, what and where. Creates
“output-file” with a binary description of the system.

artmlc -debug filename outfile

Additional information is presented

artmlc -debug N filename outfile (N is a positive integer)
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The higher N, the more information is presented. Setting N to 1 is the same
as not specifying any N at all.

artmlc -serie N filename (N is a non-negative integer)

This option is intended for debugging of the compiler. No output-file is pro-
duced since it’s not the purpose of this operating mode. The idea is that the
parser parses a considerable amount of test cases and copies each tested file to
one of two directories named test_failed and test_ok. When all files has
been parsed, one can manually check that all files in the directories have been
correctly judged.

The compiler assumes that there exist three directories named test_failed,
test_ok and testcases. It will parse N files located in the directory testcases

with the name-convention filenameX.txt where filename is the name specified
as the third argument and X an integer between 0 and N − 1. (See 8.5)

It assumes that all files between 0 and N−1 exists. If, say file qwerty33.txt
is missing when N is 50, the behavior is not defined. . . (It should stop the
parsing. . . )

After each file is parsed, the file is copied into one of the two directories
test_ok and test_failed, depending on the result of the parsing. The new
files will have the same name as the input files except the files in test_failed.
They will have an error code attached to their name to make them easier to
sort.

Directory structure and name-conventions for the -serie option:

In this example the parser is executed by typing artmlc -serie 75 mutant.

Directory Structure Directory “testcases”

Directory “test ok” Directory “test failed”
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Technical information - artmlc

Capabilities

The compiler checks for two types of errors, grammar and symbol related.
Grammar related errors are for example misspelled/missing keywords, missing
separators, commas, semicolons and so on.

The grammar checking does not distinguish between different identifiers. If
the scanner sees a word that is not a keyword, it is classified as an identifier.
The symbol-checking checks that all identifiers that are discovered have been
previously declared. A symbol related error is if a symbol is used before it’s
declared (or misspelled) or if a symbol is of the wrong type.

ART-ML

The grammar for the ART-ML-language can be found in the documents:

artmlcompiler.yacc (yacc/bison-code)
or
artml_language.doc (simplified description)

Examples of ART-ML can be found in the directory artml_examples in the
parser directory.

Implementation

The ART-ML Compiler has been developed using the tools Flex [15] and Bison
[6]. They are integrated in the Visual Studio Environment and generate C-
code based on a grammar and a set of tokens/reserved words. Flex generates
a scanner (the part that reads the source-file and generate binary tokens) and
Bison creates a parser that checks if the stream of tokens match the rules that
are set up. For more information about the tools see [15, 6].
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Measurements and simulation
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