
Mälardalen University Doctoral Thesis
No.191

Adaptive and Flexible
Scheduling Frameworks
for Component-Based

Real-Time Systems

Nima Khalilzad

November 2015

Department of Computer Science and Engineering
Mälardalen University

Västerås, Sweden

Copyright © Nima Khalilzad, 2015
ISSN 1651-4238
ISBN 978-91-7485-235-6
Printed by Mälardalen University, Västerås, Sweden

Populärvetenskaplig
sammanfattning

Moderna datasystem är ofta utformade för att spela en mångsidig roll. De är
därför kapabla till att köra flera mjukvarukomponenter (programvaror) sam-
tidigt. Dessa mjukvarukomponenter delar systemresurser (t.ex. processorn och
nätverket) under körning. Målet med mjukvarukomponentens körning är att
avsluta sina beräkningar som förväntat. Vissa mjukvarukomponenter har även
tidskrav vilket innebär att de inte bara kräver tillgång till systemresurser för att
köra sina beräkningar, utan de har även krav på när denna tillgång sker för att
mjukvarukomponenterna ska för rätt funktion kunna garantera att beräkningar
utförs i rätt tid. Således finns det ett behov av att snabbt dela resurser mel-
lan olika mjukvarukomponenter. Denna tidsdelning realiseras ofta genom att
reservera en tidslucka för komponenten då den är tänkt att och får använda
resursen. Reservationen måste vara tillräcklig för att mjukvarukomponenten
ska kunna köra som förväntat. Reservationen måste även tilldelas resursef-
fektivt dvs resurstid får inte slösas bort i onödan. Genom en resurseffektiv
reservation av resurser minskar komponentens fotavtryck på resursen som i sin
tur möjliggör integration av flera programvarukomponenter på samma resurs.
Denna avhandling fokuserar främst på resurseffektivitet i samband med reser-
vationerna. Två fall behandlas. (I) Komponenter som tål att missa vissa en-
staka tidskrav (så kallade mjuka realtidskomponenter): i det här fallet anpas-
sas reservationerna under körning efter komponenternas ständigt föränderliga
önskemål på reservationsstorlek. (II) Komponenter som inte kan hantera att tid-
skrav överträds (så kallade hårda realtidskomponenter): i det här fallet används
flexibla strategier som möjliggör förbättrad resurseffektivitet redan vid design
av systemet.

i

Abstract

Modern computer systems are often designed to play a multipurpose role.
Therefore, they are capable of running a number of software components (soft-
ware programs) simultaneously in parallel. These software components should
share the system resources (e.g. processor and network) such that all of them
run and finish their computations as expected. On the other hand, a number of
software components have timing requirements meaning that they should not
only access the resources, but this access should also be in a timely manner.
Thus, there is a need to timely share the resources among different software
components. The time-sharing is often realized by reserving a time-portion
of resources for each component. Such a reservation should be sufficient and
resource-efficient. It should be sufficient to preserve the timing properties of
the components. Also, the reservations should be resource-efficient to reduce
the components’ footprint on the resources which in turn allows integration
of more software components on a given hardware resource. In this thesis,
we mainly focus on the resource-efficiency of the reservations. We consider
two cases. (I) Components which can tolerate occasional timing violations
(soft real-time components): in this case we adjust the reservations during run-
time to match the reservation sizes based on the instantaneous requirements of
the components. (II) Components which cannot tolerate any timing violations
(hard real-time components): in this case we use flexible approaches which
allow us to improve the resource-efficiency at the design time.

iii

To Arefeh

Acknowledgments

First of all, I would like to offer my special thanks to my supervisors Prof.
Thomas Nolte and Dr. Moris Behnam who have been supervising me from
my master thesis. This thesis would not be possible without their support and
encouragement. Thomas has always inspired me by his positive attitude that
he brings to work, I also appreciate his incomparable support. I am particu-
larly grateful for the useful critiques of Moris which have always improved my
work. I also would like to thank Prof. Xue Liu for hosting me during my visit
at McGill University.

Next, I wish to thank my coauthors for all the heated discussions which
made the process of conducting research fun for me. Furthermore, I would like
to thank my colleagues at IDT for the good company during courses, confer-
ence trips, PhD schools and/or lunches. Also, I wish to express my appreciation
to the lecturers and professors at MDH who I have learned a lot from during
my graduate courses. I would also like to thank IDT administration staff for
their help with practical issues.

Last but not least, I would like to express my very great appreciation to
my beloved wife, Arefeh, for the endless energy and love that she brings to
my life. In addition, I wish to acknowledge my parents’ and my brother’s
unsparing support.

Nima Khalilzad
Västerås, October, 2015

This work has been supported by the Swedish Research Council (Veten-
skapsrådet) under the project ARROWS and the Swedish Foundation for
Strategic Research (SSF) via the research project PRESS.

vii

List of publications

Papers included in the PhD thesis1

Paper A Bandwidth Adaptation in Hierarchical Scheduling Using Fuzzy
Controllers, Nima Khalilzad, Moris Behnam, Giacomo Spampinato and
Thomas Nolte, In Proceedings of the 7th IEEE International Symposium
on Industrial Embedded Systems (SIES’12), June, 2012.

Paper B An Adaptive Scheduling Framework for Component-Based Real-
Time Systems, Nima Khalilzad, Moris Behnam and Thomas Nolte,
Under revision in the Journal of Systems and Software (JSS), Special
Issue on Computers, Software, and Applications - Software Engineering
in COMPSAC.

Paper C A Feedback Scheduling Framework for Component-Based Soft Real-
Time Systems, Nima Khalilzad, Fanxin Kong, Xue Liu, Moris Behnam
and Thomas Nolte, In Proceedings of the 21th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’15), April,
2015.

Paper D Adaptive Multi-Resource End-to-End Reservations for Component-
Based Distributed Real-Time Systems, Nima Khalilzad, Mohammad
Ashjaei, Luis Almeida, Moris Behnam and Thomas Nolte, In Proceed-
ings of the 13th IEEE Symposium on Embedded Systems for Real-Time
Multimedia (ESTIMedia’15), October, 2015.

1The included articles have been reformatted to comply with the PhD thesis layout.

ix

x

Paper E Exact and Approximate Supply Bound Function for Multiprocessor
Periodic Resource Model: Unsynchronized Servers, Nima Khalilzad,
Moris Behnam and Thomas Nolte, In ACM SIGBED Review special
issue on the 5th International Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems (CRTS’12), Volume 10,
Number 3, October, 2013.

Paper F On Component-Based Software Development for Multiprocessor
Real-Time Systems, Nima Khalilzad, Moris Behnam and Thomas Nolte,
In Proceedings of the 21st IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA’15),
August, 2015.

Additional papers, not included in the thesis
1. Towards Energy-Aware Placement of Real-Time Virtual Machines in a

Cloud Data Center, Nima Khalilzad, Hamid Reza Faragardi and Thomas
Nolte, In Proceedings of IEEE International Symposium on High Perfor-
mance and Smart Computing (HPSC’15), August, 2015.

2. Extended Support for Limited Preemption Fixed Priority Scheduling
for OSEK/AUTOSAR-Compliant Operating Systems, Matthias Becker,
Nima Khalilzad, Reinder J. Bril and Thomas Nolte, In Proceedings
of the 10th IEEE International Symposium on Industrial Embedded
Systems (SIES’15), June, 2015.

3. Towards Adaptive Resource Reservations for Component-Based Dis-
tributed Real-Time Systems, Nima Khalilzad, Mohammad Ashjaei, Luis
Almeida, Moris Behnam and Thomas Nolte, In ACM SIGBED Review
special issue on the 7th Workshop on Adaptive and Reconfigurable
Embedded Systems (APRES’15), Volume 12, Number 3, June, 2015.

4. Probabilistic Application Interfaces for Hierarchical Scheduling, Nima
Khalilzad, Meng Liu, Moris Behnam and Thomas Nolte, In Proceed-
ings of the IEEE Real-Time Systems Symposium (RTSS’13) Work-in-
Progress (WiP) session, December, 2013.

5. Resource Sharing among Prioritized Real-Time Applications on Multi-
processors, Sara Afshar, Nima Khalilzad, Farhang Nemati and Thomas
Nolte, In ACM SIGBED Review special issue on the 6th International

xi

Workshop on Compositional Theory and Technology for Real-Time Em-
bedded Systems (CRTS’13), Volume 12, Number 1, February, 2015.

6. Adaptive Hierarchical Scheduling Framework: Configuration and Eval-
uation, Nima Khalilzad, Moris Behnam and Thomas Nolte, In Proceed-
ings of the 18th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA’13), September, 2013.

7. Towards Energy-Aware Multiprocessor Hierarchical Scheduling of
Real-time Systems, Nima Khalilzad, Juri Lelli, Giuseppe Lipari
and Thomas Nolte, In Proceedings of the 19th IEEE International
Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’13), Work-in-Progress (WiP) session, August,
2013.

8. Multi-Level Adaptive Hierarchical Scheduling Framework for Compos-
ing Real-Time Systems, Nima Khalilzad, Moris Behnam and Thomas
Nolte, In Proceedings of the 19th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA’13), August, 2013.

9. Implementation of the Multi-Level Adaptive Hierarchical Scheduling
Framework, Nima Khalilzad, Moris Behnam and Thomas Nolte, In Pro-
ceedings of the 9th annual workshop on Operating Systems Platforms
for Embedded Real-Time applications (OSPERT’13), July, 2013.

10. Towards Implementation of Virtual-Clustered Multiprocessor Schedul-
ing in Linux, Syed Md Jakaria Abdullah, Nima Khalilzad, Moris Behnam
and Thomas Nolte, In Proceedings of the 8th IEEE International Sym-
posium on Industrial Embedded Systems (SIES’13), Work-in-Progress
(WiP) session, June, 2013.

11. Towards Adaptive Hierarchical Scheduling of Real-Time Systems, Nima
Khalilzad, Thomas Nolte, Moris Behnam and Mikael Åsberg, In Pro-
ceedings of the 16th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA’11), September, 2011.

12. Towards Adaptive Hierarchical Scheduling of Overloaded Real-Time
Systems, Nima Khalilzad, Thomas Nolte and Moris Behnam, In
Proceedings of the 6th IEEE International Symposium on Industrial
Embedded Systems (SIES’11), Work-in-Progress (WiP) session, June,
2011.

xii

13. On Adaptive Hierarchical Scheduling of Real-time Systems Using a
Feedback Controller, Nima Khalilzad, Moris Behnam, Thomas Nolte
and Mikael Åsberg, In Proceedings of the 3rd Workshop on Adaptive
and Reconfigurable Embedded Systems (APRES’11), April, 2011.

Notes for the readers

This thesis contains two parts. The first part is the introductory part (Chapter 1
to 7). The second part includes six paper (Chapter 8 to 13). The contributions
of the thesis is twofold. We present adaptive frameworks targeting soft real-
time systems in the first four papers, i.e., Chapters 8 to 11. Chapter 12 and
Chapter 13, however, present flexible frameworks targeting hard real-time sys-
tems. We recommend that readers study Chapter 4 before reading the first four
papers, and similarly Chapter 5 before reading the last two papers for getting
an overview of the frameworks. We also suggest readers to study Chapter 6
after reading all papers.

Note that we have used different notations and terminologies throughout
the included papers. Therefore, it is important to read the modeling sections of
the papers before their corresponding contribution sections.

xiii

Contents

I Thesis 1

1 Introduction 3
1.1 Outline of the thesis . 5

2 Background 7
2.1 Real-time systems . 7

2.1.1 Hard real-time tasks 7
2.1.2 Soft real-time tasks 8
2.1.3 Real-time component 8

2.2 Component-based real-time systems 8
2.2.1 Component-based scheduling frameworks 9
2.2.2 Hard real-time CBSFs 10
2.2.3 Soft real-time CBSFs 10

2.3 Model . 10
2.3.1 Resources . 11
2.3.2 Tasks and components 11
2.3.3 Scheduling scheme 12
2.3.4 Run-time adaptability versus design-time flexibility . . 12

3 Research Overview 15
3.1 Goal of the thesis . 15
3.2 Research method . 16

4 Adaptive Frameworks 19
4.1 Enforcing resource reservations 19
4.2 Tracking the resource needs 20

4.2.1 Sensing . 20

xv

xvi Contents

4.2.2 Computing . 21
4.2.3 Actuating . 21

4.3 Performance metrics . 22
4.4 Evaluation environment . 22

4.4.1 TrueTime . 22
4.4.2 Linux implementation 23

4.5 Related work . 23
4.5.1 Feedback scheduling of real-time systems 23
4.5.2 Adaptive reservations 24
4.5.3 Resource reservations on network 25
4.5.4 Resource reservations in distributed systems. 25

5 Flexible Frameworks 27
5.1 Component-based development for multiprocessor platforms . 27
5.2 The MPR model . 28

5.2.1 Unsynchronized processors 28
5.2.2 Extended MPR . 29

5.3 Related work . 30
5.3.1 Single processors . 30
5.3.2 Multiprocessors . 31

6 Conclusion 33
6.1 Summary . 33
6.2 Discussion . 34
6.3 Future work . 34

7 Overview of the Papers 37
7.1 Contributions . 37

7.1.1 Paper A . 37
7.1.2 Paper B . 38
7.1.3 Paper C . 39
7.1.4 Paper D . 40
7.1.5 Paper E . 40
7.1.6 Paper F . 41

References . 43

Contents xvii

II Included Papers 51

8 Paper A:
Bandwidth Adaptation in Hierarchical Scheduling Using Fuzzy
Controllers 53
8.1 Introduction . 55
8.2 Related work . 56
8.3 The Adaptive Hierarchical Scheduling Framework 57

8.3.1 Subsystem model . 57
8.3.2 Task model . 58
8.3.3 The budget controller 58
8.3.4 Integration of feedback loops 60
8.3.5 The overload controller 61

8.4 Fuzzy logic control . 62
8.5 Stability study . 64
8.6 Tuning the controller using evolutionary search 67
8.7 Evaluation . 70
8.8 Implementation complexity 75
8.9 Conclusion . 75
References . 77

9 Paper B:
An Adaptive Scheduling Framework for Component-Based Real-
Time Systems 81
9.1 Introduction . 83
9.2 Related work . 85

9.2.1 Hierarchical scheduling 85
9.2.2 Feedback scheduling 86
9.2.3 Implementation . 87

9.3 Framework . 87
9.3.1 Component model 88
9.3.2 Task model . 88
9.3.3 System model . 89
9.3.4 Adaptation model . 89
9.3.5 Control parameters 92
9.3.6 Estimating the future workload 94
9.3.7 Dealing with overload situations 95
9.3.8 Mode change . 96

9.4 Implementation . 99

xviii Contents

9.4.1 Communication between tasks and AdHierSched . 104
9.4.2 Configuration and run 105
9.4.3 Budget adaptation 106

9.5 Evaluations . 107
9.5.1 One component . 108
9.5.2 Varying the server period 110
9.5.3 Higher number of components 112
9.5.4 Three-level hierarchical system 112
9.5.5 Overhead . 115

9.6 Conclusion . 115
References . 117

10 Paper C:
A Feedback Scheduling Framework for Component-Based Soft
Real-Time Systems 121
10.1 Introduction . 123
10.2 Preliminaries . 124
10.3 Modeling and design of cluster controllers 127

10.3.1 Why should the cluster periods be adapted? 129
10.3.2 Modeling the cluster dynamics 132
10.3.3 System identification 132
10.3.4 Controller design . 133

10.4 Resource manager . 135
10.5 Evaluations . 140

10.5.1 Allocation heuristic 140
10.5.2 Case study . 141

10.6 Related work . 146
10.7 Conclusions . 150
References . 153

11 Paper D:
Adaptive Multi-Resource End-to-End Reservations for Component-
Based Distributed Real-Time Systems 157
11.1 Introduction . 159
11.2 Related work . 160
11.3 Model . 163
11.4 Framework . 164
11.5 Component controller module 166

11.5.1 System identification 168

Contents xix

11.5.2 Controller design . 169
11.6 Evaluations . 171

11.6.1 Simulation setup . 172
11.6.2 Case study (1): step response 173
11.6.3 Case study (2): multimedia application 174
11.6.4 Overhead . 176
11.6.5 Discussions . 178

11.7 Conclusions and future work 179
References . 181

12 Paper E:
Exact and Approximate Supply Bound Function for Multiproces-
sor Periodic Resource Model: Unsynchronized Servers 185
12.1 Introduction . 187
12.2 Related work . 189
12.3 Resource model . 190

12.3.1 Flexible interface model 190
12.3.2 Rigid interface model 191
12.3.3 Flexible interface versus rigid interface 191
12.3.4 Packed platform of a flexible interface 192
12.3.5 Balanced platform of a flexible interface 192
12.3.6 Deriving the possible platforms of a flexible interface . 192

12.4 Supply bound function . 196
12.4.1 The sbf of rigid interfaces 196
12.4.2 The sbf of flexible interfaces 197
12.4.3 The lsbf of rigid interfaces 198
12.4.4 The lsbf of flexible interfaces 200
12.4.5 Upper bound of the sbf 200

12.5 Approximate sbf of the flexible interfaces 201
12.6 Conclusion . 204
References . 205

13 Paper F:
On Component-Based Software Development for Multiprocessor
Real-Time Systems 207
13.1 Introduction . 209
13.2 System model and development approaches 210
13.3 Integration . 214

13.3.1 MPR composition 214

xx Contents

13.3.2 EPR integration . 218
13.4 Evaluations . 221

13.4.1 Abstraction overhead 222
13.4.2 Integration . 223

13.5 Related work . 226
13.6 Conclusions and future work 228
References . 229

I

Thesis

1

Chapter 1

Introduction

Complexity in the software domain has been growing rapidly. The complexity
stems from the following two reasons. Firstly, the complexity of each individ-
ual functionality expected from a modern software system has been increased.
Secondly, the number of functionalities performed by a software system has
been escalated. For instance, thanks to the computational capacity of the re-
cent hardware platforms, previously segregated software systems can now be
integrated on a shared hardware platform. While this integration gives rise to
the number of functionalities of the software system, the complexity of the in-
tegrated system is also increased. Taming this complexity in the design of soft-
ware systems is of particular interest to ensure swift developments resulting in
correct software systems. To this end, component-based software development
provides means and techniques for developing complex software systems. This
approach uses the divide and conquer principle. A complex software system
is divided into a number of simpler software components. Each component
is developed and validated separately. Finally, the components are integrated
to build the target system. This approach also promotes reusability allowing
integration of a validated component in several different systems.

When it comes to real-time systems, timing constraints of software com-
ponents have to be considered at both the component development phase as
well as the integration phase. In component-based systems, resource reserva-
tion techniques are often used to provide timing guarantees to the components
(e.g., [1, 2]). In this approach each component is entitled to a particular re-
source reservation. The timing behavior of a component can be studied regard-
less of other components which will be integrated at the integration phase. This

3

4 Chapter 1. Introduction

is because other components do not affect the current component’s reservation.
In this thesis, we use the word component to refer to run-time entities

that implement the desired software functionalities. We consider component
models in which a real-time software component comprises a set of real-time
tasks, each task performing a specific functionality. A component also has
an intra-component scheduler which coordinates task executions. The compo-
nent executions, however, are coordinated by the inter-component scheduler.
Therefore, the scheduling model is a hierarchical scheduling model. From the
real-time scheduling perspective, the component scheduling problem is equiv-
alent to the problem of creating adequate resource reservations for hosting the
components. The adequate resource reservations provide resources to the com-
ponents in such a manner that the timing requirements of the components are
respected.

Real-time tasks can either have hard deadlines where deadline misses are
absolutely unacceptable or they can have soft deadlines where occasional dead-
line misses can be tolerated. A hard real-time component is a component com-
posed of hard real-time tasks. The size of processor reservations assigned to
the hard real-time components is derived from the Worst-Case Execution Time
(WCET) of the component’s inner tasks. For instance in [3] and [4], targeting
multiprocessor platforms, the authors provided analysis frameworks in which
the reservation properties are extracted from intra-component schedulers and
task parameters. Such analyses result in pessimistic allocations. The over-
allocation is due to two reasons. Firstly, WCET is unlikely to happen in reality.
Secondly, the analysis that derives the processor reservation sizes based on the
WCET of tasks is pessimistic.

Soft real-time components are software components consisting of soft real-
time tasks. When integrating soft real-time components, pessimistic alloca-
tions are not justifiable. This is because pessimistic allocations do not permit
an efficient processor utilization. In addition, in a group of soft real-time tasks
the processor demand is subjected to large variations during run-time. For
instance, the execution time of video decoder tasks can significantly vary de-
pending on the content of the video frames. As a result, the processor demand
of a real-time component consisting of such dynamic tasks may change signifi-
cantly during run-time. Therefore, assigning a fixed-size processor reservation
(for instance based on the average processor demands) may result in an unac-
ceptable number of timing violations.

The contributions of this thesis is twofold. Firstly, we target soft real-time
components. We design frameworks in which the sizes of processor reserva-
tions allocated to the components are adjusted during run-time. The purpose

1.1 Outline of the thesis 5

of adaptations is to deal with components’ processor requirements dynamics.
We refer to these frameworks as “adaptive frameworks”. In this direction, we
provide solutions for component-based systems running on single processors,
multiprocessors as well as distributed systems. We use simulations as well as
implementations for evaluating the proposed frameworks. Secondly, targeting
hard real-time components running on multiprocessors, we focus on frame-
works that provide design-time integration flexibility. We propose modeling
and analysis methods to improve resource-efficiency of such frameworks. We
use the term “flexible frameworks” for referring to such frameworks.

1.1 Outline of the thesis
The thesis outline is as follows. In Chapter 2 we provide a brief background
of our work. We also present the assumed models (i.e., task, component and
recourse models) in this chapter. We present the research goal as well as the
research method in Chapter 3. We provide an overview of the adaptive frame-
works in Chapter 4, while Chapter 5 presents an overview of the flexible frame-
works. In Chapter 6, we summarize the contributions of this thesis and we
provide a prospect of our work. An overview of included papers is presented
in Chapter 7, while the included papers are presented in Chapters 8 to 13.

Chapter 2

Background

2.1 Real-time systems

Computational systems in which their correctness depend on both time and
function are called real-time systems. In such systems, the timing behavior
of the system is carefully analyzed to ensure its correctness. Thus, real-time
systems have timing requirements that need to be fulfilled.

In real-time systems, different functionalities are realized through concur-
rent programs which are called tasks. Tasks often perform the same func-
tionality repeatedly throughout the system’s life-time. Each instance of a task
execution is called a job. At each point in time, the number of jobs ready for
execution may be more than the number of processors. Therefore, the jobs
should be scheduled in such way that the timing requirements of the real-time
tasks are met.

2.1.1 Hard real-time tasks

A group of real-time tasks in which violation of timing requirements result in a
catastrophic consequence are called hard real-time tasks. Hence, when dealing
with such tasks, the corresponding timing analysis will ensure that there will
be absolutely zero timing violations. The task implementing the Anti-lock
Braking System (ABS) of a car is an example of a hard real-time task in which
incorrect timing may result in human losses.

7

8 Chapter 2. Background

2.1.2 Soft real-time tasks
In the context of soft real-time tasks, the violations of the timing requirement
only result in performance degradations. Although timing violations are not
desirable, occasional violations can be tolerated in such tasks. For instance,
video players are considered as soft real-time tasks. This is because in such
systems timeliness is crucial with respect to performance while incorrect tim-
ing has no catastrophic consequences such as loss of human lives.

2.1.3 Real-time component
A number of real-time tasks are often grouped together to perform a set of
functionalities. Different terminologies are used in the literature to refer to
such a group of tasks (e.g., subsystem, application, component, etc.). In this
thesis, we use the term “component” to refer to such a task group1.

2.2 Component-based real-time systems
Traditionally computational systems used to be single purpose systems. In
other words, a single hardware platform was used to perform a small set of
functionalities (tasks). However, advances in hardware technology enable the
integration of several functionalities on a single hardware [5, 6]. When com-
posing different systems on a single hardware, previously independent sys-
tems become components of the new system. In such integrated systems, it is
desirable to perform the timing analysis compositionally, i.e., the timing cor-
rectness of the system should be inferred from the timing correctness of its
components [7, 8, 9]. This approach facilitates the development process, and
it promotes the component reusability. In such a component-based system the
scheduling is often performed hierarchically [8, 9]. In this scheme, at the re-
source level, the inter-component scheduler schedules the components on the
resource. Once a component is scheduled on the resource, the intra-component
scheduler coordinates the execution of tasks on the resource. Figure 2.1 illus-
trates a component-based scheduling framework with two levels of hierarchy,
three components, three tasks per component and one resource.

In the development of component-based softwares, the following two roles
are often defined: (i) component developer; (ii) system integrator. The com-
ponent developer is responsible for developing real-time tasks and selecting an

1Except paper A in which we use the term subsystem.

2.2 Component-based real-time systems 9

Inter-component scheduler

Resource

Intra-component

scheduler

Tasks 1 Tasks 2 Tasks 3

Component 1

Intra-component

scheduler

Tasks 1 Tasks 2 Tasks 3

Component 2

Intra-component

scheduler

Tasks 1 Tasks 2 Tasks 3

Component 3

Figure 2.1: Component-based scheduling framework.

appropriate scheduling policy for them. Then, the component’s timing require-
ments are abstracted using a number of interface parameters. For instance, the
periodic resource model [7] uses two parameters (i.e. period and budget) for
abstracting component’s timing requirements. The system integrator, on the
other hand, receives a number of components and (s)he is responsible for in-
tegrating the components such that the requirements specified in the interface
parameters are respected.

2.2.1 Component-based scheduling frameworks
Component-Based Scheduling Frameworks (CBSF) provide means and tech-
niques for developing and integrating real-time components. CBSFs often uti-
lize a resource reservation scheduling technique. That is, the resource is often
partitioned in the time domain, and each component is assigned to a partition
(also known as a reservation). Note that we only target the processor resource
and the network resource in this thesis. CBSFs provide guidelines for com-
ponent developers on how to abstract the component requirements in a com-
ponent interface. The component interface indeed provides specifications of
the required resource reservation. CBSFs also provide integration techniques
based on component interfaces for the system integrators. Such techniques
ensure that the timing requirements of all integrated components are satisfied.

10 Chapter 2. Background

2.2.2 Hard real-time CBSFs
A subset of CBSFs target hard real-time components [1, 2, 10, 11]. In such
frameworks the component interfaces are often derived using the following
technique. The resource demand of the task set within the component is calcu-
lated given the WCET of tasks and the scheduling policy. Thereafter, an ade-
quate reservation is derived such that the resource demand curve of the compo-
nent always lies below the resource supply curve of the reservation. There are
three sources of pessimism in the aforementioned schedulability analysis. (i)
The over estimations in the WCETs; (ii) the pessimism that stems from the cal-
culations of the resource demand curve; (iii) the pessimism that originates from
the calculations of the resource supply curve of the reservation. The collective
pessimisms caused by (ii) and (iii) is also referred as abstraction overhead. Al-
though, the hard real-time nature of the components justifies such pessimism,
it is still desirable to improve over resource-efficiency of such frameworks by
eliminating (or mitigating) different sources of pessimism.

2.2.3 Soft real-time CBSFs
In the context of soft real-time systems, resource overallocation is not justifi-
able since occasional timing violations can be tolerated. Therefore, it is de-
sirable to provide reservations based on the actual component demands rather
than the worst-case demands. On the other hand, the resource demand of a set
of soft real-time tasks may be highly variable during run-time. For instance,
Figure 2.2 shows the distribution of processor demand percentage of a video
decoder task. Consider soft real-time components consistent of such dynamic
tasks. It is easy to see that any fixed reservation will not be able to efficiently
serve such a component. A potential solution is to use frameworks which per-
form run-time adjustments of the reservations tracking the instantaneous com-
ponent demands. For instance, such adaptive frameworks have been studied
in the context of the AQuoSA [12] and the ACTORS [13] projects for simple
component models (i.e. only one task per component).

2.3 Model
In this section we present a general model of the system used in this thesis.
We present a more detailed model in each paper. In the following chapter
(Section 3.1), using the following system model, we present the research goal
and challenges.

2.3 Model 11

30 40 50 60 70 80 90 100
0

50

100

150

200

250

processor demand (%)

Figure 2.2: The distribution of processor demand percentage of a video decoder
task [14].

2.3.1 Resources

Throughout the thesis we mainly focus on the processor resource except one
paper in which we consider distributed systems, and we focus on both proces-
sor and network resources. We consider single processors as well as multipro-
cessors. The difference between a multiprocessor resource and a distributed
system is the following. In multiprocessors different processing units are on
the same chip, while in the case of distributed systems the processing elements
are on separate chips connected using network links. We assume homogeneous
processors. We use resource reservation techniques for scheduling the compo-
nents on the resources, and we partition the resources in the time domain. Each
time partition of the resources is called a resource reservation. We assign each
component to a dedicated reservation.

2.3.2 Tasks and components

We assume periodic/sporadic task models in which a task is released within
a minimum interarrival time. The tasks are run-time entities that perform a
specific functionality. The tasks should finish their executions before their re-

12 Chapter 2. Background

spective deadlines, otherwise they violate their deadline requirements.
We assume that a component is composed of a set of tasks. The character-

istics of the components are summarized in a set of interface parameters. The
interface abstracts the timing requirements of the task set within the compo-
nent. This abstraction of requirements facilitates the integration phase. This
is because at the integration phase instead of dealing with the tasks, only the
interfaces need to be considered. Hence, the complexity is reduced. Such
a component model has received a great deal of attention in the past years
(e.g. [1, 2, 15, 3, 4, 16]). When scheduling the components, our aim is to
provide a resource-reservation compliant with the component’s interface.

2.3.3 Scheduling scheme
We assume a hierarchical scheduling scheme. The intra-component sched-
uler schedules the tasks within a component. The inter-component scheduler,
however, schedules the components. This scheduler uses reservation based
scheduling policies. From a resource provisioning point of view, the inter-
component scheduler divides the resource among the component, and the intra-
component scheduler divides the component’s share of the resource among its
tasks.

2.3.4 Run-time adaptability versus design-time flexibility
In this thesis, we present four different CBSFs in which the resource reserva-
tions are adapted during run-time. We use the term “adaptive framework” to
refer to such soft real-time CBSFs which perform run-time adaptations. Run-
time adaptations can be seen as a continual component integration process
where components submit their instantaneous requirements, and the integra-
tion mechanism adjusts the reservations accordingly.

On the other hand, we also study two hard real-time CBSFs. In these frame-
works, the run-time reservations are fixed. We use the term “flexible frame-
work” to denote design-time flexibility offered by such frameworks. Design-
time flexibility allows system integrators to adjust the resource reservations
based on the other components being integrated on the system. In an inflex-
ible framework, the component interfaces impose rigid requirements on the
properties of the reservations which does not allow any adjustment at the inte-
gration phase. For instance, assume we have a platform with two processors.
Also, assume that 51 % of each processor is already occupied. Now, we want
to integrate a new component which requires 50 % processor bandwidth. A

2.3 Model 13

flexible interface would allow creating two reservation on each processor with
the total processor bandwidth equal to 50 %. While an inflexible interface that
rigidly requires the entire bandwidth from only one processor would cause the
integration to fail in integrating the new component.

Chapter 3

Research Overview

In this chapter we present the research goal of this thesis followed by the re-
search method used for reaching the goal.

3.1 Goal of the thesis

The goal of this thesis is:

To provide adaptive, flexible and resource-efficient frameworks
for scheduling component-based real-time systems.

In the context of soft real-time systems, our goal is to adapt the reservation
sizes, during run-time, in response to (i) dynamics of the components’ resource
requirements; (ii) variations in the overall load situation. The objective of the
frameworks is to allocate a minimum amount of resources to the components
while keeping their timing violations in an acceptable range. This acceptable
range is inferred from the requirements of each particular application. Allo-
cating a minimum amount of resource would in turn allow integrating more
components on the same resource. We achieve our goal using feedback loops,
and through monitoring the behavior of the components during run-time. The
sizes of resource reservations are, then, adjusted based on the observed param-
eters (e.g. the number of timing violations).

In the context of hard real-time systems, we target multiprocessor hardware
platforms. Multiprocessor platforms add a new dimension to the scheduling

15

16 Chapter 3. Research Overview

problem. This is because run-time entities (tasks/components) can be allocated
to different processors for performing their executions. Therefore, multipro-
cessor component-based scheduling frameworks should handle the processor
allocation problem. In this context we target models that provide integration
flexibility. An integration flexible model, from the vantage point of this thesis,
allows adjusting the processor allocations, depending on the components that
are currently integrated into the system. The integration flexibility is especially
important in open systems where components can be added and removed dur-
ing run-time. Therefore, our goal is to provide resource-efficient models that
provide integration flexibility.

Following the main goal of the thesis, we have identified the following
subgoals:

1. Enabling run-time adaptations of resource reservations allocated to soft
real-time components assuming a simple hardware platform and a simple
component model.

2. Extending Subgoal 1 to a more complex component model, i.e., a multi-
level hierarchical component model.

3. Extending Subgoal 1 to more complex hardware platforms, i.e., multi-
processors and distributed hardware platforms.

4. Improving the resource-efficiency of flexible hard real-time component-
based scheduling frameworks.

The first three subgoals focus on the run-time adaptability and resource-
efficiency, while the last subgoal focuses on the design time flexibility and
resource-efficiency. Table 3.1 shows the mapping between the subgoals and
the included papers in the thesis.

3.2 Research method
In [17], Shaw has categorized the software engineering research paradigms into
a few classes. Among those classes, our research lies into the “method/means”
class. That is, a class of research in which the researcher is looking for new
architectures for particular systems. The product of our research is a “tech-
nique” [17]. That is, we propose new development approaches along with
new software architectures. Regarding the validation technique, we use imple-
mentations as well as simulations. In the following we elaborate the research
process used for achieving each subgoal separately.

3.2 Research method 17

Subgoal 1 Subgoal 2 Subgoal 3 Subgoal 4
Paper A !

Paper B !

Paper C !

Paper D !

Paper E !

Paper F !

Table 3.1: The relation between the subgoals and the included papers.

Figure 3.1 illustrates the generic research process [18] used in this thesis.
We first (step A) formulated a subgoal. In this stage we also decided on the
target system models (both software and hardware). In Step B, we designed a
theoretical framework to address specific models decided in Step A. Note that
Step A resulted in a set of hardware models, i.e., single processor, multiproces-
sor and distributed systems. Therefore, we proposed different frameworks for
each hardware morel starting from a simpler model (single processors). Next,
in Step C, we implemented the frameworks in a simulator and/or an operat-
ing system. Finally, we evaluated the results to analyze whether the subgoal is
achieved or not. Steps B, C and D were performed in a loop, i.e., we iterated
these steps until we achieved desirable results.

To achieve the first three subgoals of the thesis, our proposed frameworks
provide run-time mechanisms to adapt the resource reservations based on the
instantaneous component needs. Therefore, in step C, we implemented the
frameworks to study their run-time behavior. We used simulations in step C
of Paper A and D. While in Paper B we used Linux implementation, and in
paper C we used both simulations as well as a Linux implementation. The
particular choice of how to perform Step C was based on the convenience of
implementing the proposed framework.

Regarding the forth subgoal, in paper E, we proposed an analytical frame-
work (Step B) and we used formal proofs for validating it. In addition we
implemented the calculation of the analysis in Step C. We, then, performed
evaluations based on simulating the analysis for a set of input parameters to in-
vestigate a number of properties such as an average execution time for running
the analysis. Finally, in Paper F, we provide a new development framework.
In Step C, we implemented the analysis corresponding to the new framework,
and in Step D we evaluated the abstraction overhead.

A. Subgoal formulation
• Literature review

• What is the assumed hardware platform?

• What is the assumed system model?

B. Propose a framework
• How to model the system as a control system?

• How to model the system dynamics?

• What type of a controller to use?

• How to handle overload situations?

C. Implement

the framework
• Which simulation tools should be

used?

• How to extend current simulation

tools?

• How to implement the

framework in an operating

system?

D. Evaluate the

framework
• Is the subgoal achieved?

• How is the overall performance?

• How much extra overhead is

imposed?

Figure 3.1: The research process used in this thesis.

Chapter 4

Adaptive Frameworks

In this chapter we provide an overview of the frameworks presented from
Chapter 8 to Chapter 11. In the following sections we present the contribu-
tions related to the soft real-time components.

4.1 Enforcing resource reservations
In this thesis, we use server based scheduling to implement resource reserva-
tions. For instance we use the periodic servers [10] that are compliant with
the periodic resource model [7]. These servers provide a given amount of the
resource (denoted as the budget) every server period. Figure 4.1 illustrates the
periodic servers. The server budget is replenished periodically to its maximum.
Once the server is scheduled on the resource, its tasks may use the resource.
The budget is decreased while the server holds the resource.

The mapping between the servers and the component varies in different
chapters. In Chapter 8 and 9 we assume single processor resources, and thus
we use a one-to-one mapping between servers and components. In Chapter 10,
however, the framework is based on multiprocessor resources. In this chapter,
a component can have multiple servers each running on a separate processor.
Finally, in Chapter 11 we assume a distributed resource, and we assume that
each component can have multiple servers each running on a separate resource.
Note that in this chapter we explicitly consider network resources. Therefore,
we perform resource reservation on the networks resources as well as the pro-
cessor resources. The reservation enforcement on the network is implemented
by the underlining network protocol.

19

20 Chapter 4. Adaptive Frameworks

Time

Server release Budget

Period Period Period

Figure 4.1: Resource reservation using the periodic servers. Note that in this
figure the worst-case budget provisioning is illustrated.

4.2 Tracking the resource needs

The goal of the adaptive frameworks is to track instantaneous component re-
quirements during run-time. Figure 4.2 illustrates this goal. In the figure the
component demand is changing over the time. We illustrate three different
reservations: (i) worst-case reservation; (ii) adaptive reservation; (iii) average-
case reservation. The problem with (i) is that it overprovisions the resource,
therefore it is not resource-efficient. Reservation (iii), on the other hand, under-
provisions the resource in a number of time intervals. Thus, the component’s
inner tasks will suffer from deadline violations. The adaptive assignment tracks
the actual needs and provides an adequate amount of the resource at each time
point. We perform the tracking periodically at each adaptation point. Tracking
relies on three elements: sensing, computing and actuating.

4.2.1 Sensing

At each adaptation point, we would like to understand the state of each compo-
nent. That is, we would like to know if the component has received the resource
more than what it required, less than what it needed or the resource provision-
ing was just sufficient. To this end, we monitor a number of parameters. For
instance, we measure the amount of wasted budget, i.e. the budget that is given
to the component but not used by its inner tasks.

4.2 Tracking the resource needs 21

Time

C
o

m
p

o
n
en

t
d

em
an

d

Adaptive

Worst-case

Average

Actual demand

Figure 4.2: The goal of the adaptive frameworks is to track the actual compo-
nent demands and adjust the server parameters based on the actual demands.

4.2.2 Computing

The next step is to decide how much resource we want to reserve for the com-
ponent until the next adaptation point. We devise different techniques in each
chapter for this purpose. In Chapter 8 we use a model free control approach
using fuzzy controllers [19]. In Chapter 9 we use an ad hoc approach which
works based on estimation and compensation. It estimates the amount of next
workload based on the previous observed workloads. The reservation size is
calculated by adding the amount of backlog to the estimated workload. In
Chapter 10 and Chapter 11 we approximate the component’s workload dynam-
ics using linear models, and we use optimal controllers [20] for deriving the
reservation properties.

4.2.3 Actuating

The periodic servers are characterized using two parameters: period and bud-
get. Therefore, we have two options for performing the actuations. The reser-

22 Chapter 4. Adaptive Frameworks

vation bandwidth can be modified by manipulating either of the above param-
eters. In Chapter 8, 9 and 11 we perform actuations by modifying the amount
of budget. In Chapter 10, however, we modify both budgets and periods simul-
taneously.

4.3 Performance metrics
We take the number of deadline violations as our Quality of Service (QoS)
metric. The lower the number of deadline misses the better the performance.
The number of deadline misses is often expressed in the form of deadline miss
ratio, which is the number of missed deadlines divided by the total number of
jobs. On the other hand, we want to be resource-efficient. That is, our objec-
tive is to reach a low number of deadline misses while keeping the resource
reservation sizes to a minimum. Thus, the amount of wasted (idled) budget by
the servers is another performance metric.

4.4 Evaluation environment
We have evaluated the proposed framework using two approaches: (i)
simulation studies (ii) implementation studies. Since there was no available
framework which implements/simulates the behavior of an adaptive hierarchi-
cal scheduling framework, we had to either extend the available frameworks or
to implement a new framework. In the case of using a simulation framework,
we extended the TrueTime [21] simulator. However, for the implementation
studies we implemented a new framework from scratch. The evaluation
environment setup comprises approximately 30 % of the time spent for com-
pleting this thesis. In this section, we provide an overview of the evaluation
environments used in the thesis.

4.4.1 TrueTime
TrueTime is a simulator that uses the infrastructure available in Matlab and
Simulink. This tool is suitable for simulating the behavior of control tasks.
TrueTime supports different scheduling algorithms. When it comes to reser-
vation based algorithms, TrueTime supports the Constant Bandwidth Server
(CBS) [22] and also the hard CBS [23]. We use the hard CBS to implement
the periodic server [10]. Basically, we run an idle task inside each reservation
to mimic the behavior of periodic servers. In addition, we have added a local

4.5 Related work 23

scheduler inside the hard CBS such that the tasks attached to a hard CBS are
scheduled according to the EDF scheduling policy.

4.4.2 Linux implementation
We have implemented two schedulers inside the Linux kernel for evaluating
the two frameworks presented in Chapter 9 and 10. Both schedulers are im-
plemented as loadable kernel modules. When the real-time tasks attach them-
selves to our module, then the Linux kernel delegates the scheduling of these
tasks to our scheduler. We provide more details about this module in Chapter 9
(Paper B).

4.5 Related work
In the following we review a few adaptive frameworks related to the adaptive
frameworks of this thesis. In the literature, the term “feedback scheduling”
is often used to refer to the scheduling schemes in which the scheduling pa-
rameters are adapted using feedback control loops. We also present adaptive
frameworks that use reservation-based scheduling policies. Such frameworks
are closer to the contributions of this thesis since we use resource reservation
techniques.

4.5.1 Feedback scheduling of real-time systems
Feedback control has found its way in computing systems for helping system
designers to deal with uncertainties and dynamicity. For instance, in high-
performance computing, load is unpredictable and dynamic. Gandhi et al. used
a MIMO controller to control CPU and memory utilizations in an Apache web
server [24]. Diao et al. used a MIMO LQR controller to solve a load balancing
problem [25]. The controller equalizes the load among different resources to
improve response times as well as the throughput.

In the context of real-time scheduling, Lu et al. proposed a feedback
scheduling scheme to cope with unpredictable workloads [26]. In their frame-
work the deadline miss ratio and the system utilization is used as sensors, while
the admission control is used as an actuator. The problem of task reweighting
under multiprocessor scheduling algorithms is studied by Block et al. in [27]
and [28]. In these papers it is assumed that, tasks ask for a new processor
utilization during run-time. A number of reweighting rules for partitioned
and global scheduling algorithms are presented. Block et al. combined task

24 Chapter 4. Adaptive Frameworks

reweighting with feedback loops that estimate the weight of the next job [29].
In distributed real-time systems, utilization control is performed through rate
adaptation to provide QoS guarantees [30]. Stankovic et al. presented a frame-
work in which the service levels are adapted based on monitoring the number
of deadline misses and the processor utilizations [31]. Utilization control is
coupled with processor frequency adjustment in [32] and [33]. Targeting end-
to-end task models, DEUCON [34] employs a decentralized approach in which
task rates (periods) are adapted using MIMO model predictive controllers. The
control objective is to minimize the difference between the utilization set points
and current utilizations. The main difference of the frameworks presented in
this thesis with the aforementioned works is the following. Since we consider
component-based systems in which a component is comprised of a set of tasks,
a reservation-based scheduling policy is needed to isolate the timing behavior
of the components in run-time. While this separation of run-time behavior for
components is not supported by the above frameworks.

4.5.2 Adaptive reservations

Adaptive reservation schemes, first introduced by Abeni et al. [35], are pow-
erful approaches for controlling the amount of processor allocated to individ-
ual tasks that demonstrate dynamic processor requirement. The mathematical
model of a such scheme using CBS is derived in [36]. PI controllers are used
for controlling the bandwidth of CBS. Cucinotta et al. used stochastic con-
trollers for the same purpose [37]. Regarding adaptive reservations in which
multiple parameters are adapted, in [38] both periods and budgets of the CBS
are adapted. This framework targets legacy tasks which do not communicate
with the scheduler. Two different modules are used (i) period detector (ii) bud-
get estimator. One centralized controller is used for adapting the periods and
the budgets. In the context of the ACTORS project [13], a cascade controller
is used on top of processor reservations for adapting their bandwidths. Our
work is different from the above reservation-based approaches in the following
main aspect. We consider a more general component model in which multi-
ple tasks may be in a single component. In our model, the intra-component
scheduler coordinates the execution sequence of the tasks inside a component.
Hence, the control input used by the above frameworks is not applicable to
our model. Our general model indeed provides a higher degree of flexibility
for component developers since they can include several tasks inside one com-
ponent. This component model has been widely used by several researchers
(e.g. [1, 2, 15, 3, 4, 16]).

4.5 Related work 25

4.5.3 Resource reservations on network

In Chapter 11 we present a framework which uses resource reservation tech-
niques on network. Therefore, we review the related literature to this line of
work. A general category of the resource management in network is traffic
shapers [39]. The purpose of these shapers is to limit the amount of traffic that
a node submits to the network in a given time interval. Similar to the techniques
used in processor reservations, the traffic shapers use methods based on capac-
ity which is replenished with different policies, e.g. credit-based shaping in
Ethernet AVB. Moreover, some real-time Ethernet protocols enforce a cyclic-
based transmission and reserve windows for different classes of traffic (e.g.,
Ethernet POWERLINK [40], FTT-SE [41] and HaRTES [42]). Also, a hierar-
chical server model [43] is proposed for the Ethernet switches in the context
of the FTT-SE protocol to reserve a portion of bandwidth for different traffic
types, hence providing temporal isolation among them. An online QoS man-
agement [44] is proposed in the context of a multimedia real-time application,
which adapts the video compression parameters and the network bandwidth
reservations to provide the best possible QoS to the streams.

In order to reserve resources for streams in the network several protocols
have been proposed, where they use similar concepts. For instance, Stream
Reservation Protocol (SRP) [45] defines a set of procedures to reserve network
resources for the specific traffic streams, which are crossing through an Ether-
net Audio Video Bridging (AVB) network. The SRP protocol forces the traffic
to be registered on the AVB switches through its path, before being transmitted.

4.5.4 Resource reservations in distributed systems.

Few authors have addressed the end-to-end reservation of resources for dis-
tributed systems, including processor and network resources. A distributed
kernel framework with a resource manager in each node has been designed
and implemented to provide an end-to-end timeliness guarantee [46]. Also, a
resource management system, called D-RES [47], has been developed to han-
dle shared resources among multiple applications in distributed systems. Cu-
cinotta et al. presented a model in which a pipeline task is considered [48].
Tasks may use one of the resources available in the system to carry on their
computations. Adaptive CBS is used to track the resource demand of the tasks.
In addition, a general model, called Q-RAM [49], has been developed to man-
age the resources shared among multiple applications. The applications in this
framework have different operation levels with different qualities depending

26 Chapter 4. Adaptive Frameworks

on the available resources. However, they have to satisfy their needs such as
timeliness, reliability and data quality. The model allocates the resources to
the applications considering that the overall system utility becomes maximum
while the applications meet their minimum needs. This model has been ex-
tended in [50] for the systems with rapidly changing resource usage.

The main difference of our framework, presented in Chapter 11, with [48]
and [49], is that we consider adaptation for components which may in turn be
composed of multiple tasks. The existence of multiple tasks inside one com-
ponent makes the system dynamics model in those works inapplicable to our
setting. Besides, in our framework we explicitly consider network resources,
and we use a common network technology for evaluating our framework.

Chapter 5

Flexible Frameworks

In this chapter we present an overview of the flexible frameworks designed for
the hard real-time components. These frameworks are presented in Chapter 12
and 13.

5.1 Component-based development for multipro-
cessor platforms

The processes of developing component-based software with hard real-time
requirements is often performed in two steps: (i) component development;
(ii) component integration. The timing requirements of the component is ab-
stracted in a number of interface parameters. At the component integration
phase, only the component interfaces are considered. The component inter-
faces impose requirements on the bandwidth that needs to be assigned for
that particular component. In single processor platforms, the system integrator
needs to reserve the specified bandwidth by the component on the processor.
In multiprocessor platforms, however, a new dimension to the problem rises.
The component bandwidth may be provided by multiple processors if it is al-
lowed by the interface. The component interface may be rigid by imposing
rigid bandwidth requirements. For instance, the interface may denote that the
component requires two full processors and one partial processor with 25 %
bandwidth. In this case the following problem may happen. The system may
have a total slack bandwidth more than 225 %, however, the slack bandwidth
may be spread over four processors. On the other hand, the interface may

27

28 Chapter 5. Flexible Frameworks

be flexible, i.e., it may only specify how much total bandwidth the compo-
nent needs without imposing constraints on the exact allocations. Consider the
above example. A flexible interface will only specify that the component needs
225 % of the multiprocessor time. It is easy to see that in the former case (rigid
interface), the integration fails, while in the latter case (flexible interface) the
integration can be performed successfully.

5.2 The MPR model
The Multiprocessor Periodic Resource (MPR) model [3] provides a flexible
abstraction method for components. In this model the component interface
specifies the total bandwidth requirements as well as the maximum number
of processors that can contribute to the total bandwidth. This model provides
a great deal of flexibility at the integration phase because the total required
bandwidth can be allocated based on available slacks on the multiprocessor.
We have identified two issues with this model, and in this thesis we extend
this model in two direction. Firstly, as Lipari and Bini state in [4], this model
requires a synchronization mechanism among the processors of the multipro-
cessor platform. In Chapter 12 we present an analysis framework to address
this problem. Secondly, we observed that the MPR model may impose large
abstraction overhead. That is, the difference between the processor bandwidth
of the task set within the component and the specified bandwidth in the in-
terface may be large. Therefore, in Chapter 13, we present a new framework
which extends the MPR model to cope with this problem.

5.2.1 Unsynchronized processors

In modeling component-based real-time systems, the system model often con-
sists of two parts: resource supply model and component demand model. The
resource supply model abstracts the underlying hardware resource such that
each component has the illusion of running solo on an independent hardware.
The resource supply model represents the minimum amount of resource that a
reservation provides in a given time interval. The amount of provided resource
is often represented using a Supply Bound Function (sbf(t)). The resource
demand model, however, represents the resource demand of the tasks within
the component. Similarly, the maximum demand is often represented using a
Demand Bound Function (dbf(t)) [51]. Consequently, the schedulability test
is performed using the sbf(t), which is dependent on the resource model, and

5.2 The MPR model 29

the dbf(t) which is dependent on the scheduling policy.
The sbf function must provide the absolute worst-case resource provision-

ing. As Lipari and Bini state in [4], in multiprocessor platforms the sbf(t) de-
pends on the fact that whether different processors are synchronized together or
not. The MPR model [52] implicitly assumes that the processors are synchro-
nized. While synchronization on some hardware platforms can be expensive,
therefore, in Chapter 12 we simplify the implementation phase of the compo-
sition for the system developers by relaxing this assumption. Our proposed
frameworks works as follows. Given an MPR interface, we construct all possi-
ble combination of the distribution of the total budget on different processors.
We call each combination a possible platform. Thereafter, for each possible
platform, the overall sbf is equal to the sum of all single processor sbf of the
processors involved in the budget provisioning. The MPR sbf at each point in
time is the least of the sbf of all possible platforms.

5.2.2 Extended MPR

The schedulability of the entire component-based system is examined using
the component interfaces. In this regard, it is desirable to use the same schedu-
lability techniques used for studying the schedulability of real-time tasks, and
investigate the schedulability of the components. However, the task schedula-
bility tests cannot be directly applied to the components for which their inter-
face utilizations are more than 100 % of a single processor (i.e. one). This is
because the basic assumption in all of the schedulability tests is that the task
utilization is less than or equal to one. Therefore, components with interface
utilization more than one have to be decomposed to smaller subcomponents
with utilization less than or equal to one. The component schedulability test,
then, can be performed using the decomposed subcomponent interfaces.

In all of the proposed approaches for developing component-based real-
time systems on multiprocessors (e.g. [52, 4, 16]) the component decompo-
sition is performed after abstracting the components. In Chapter 13, we in-
vestigate an alternative approach. We first decompose components for which
their utilization is more than one. This step gives us a number of subcompo-
nents. Thereafter, we abstract the component processor requirements using the
abstraction technique proposed in [7]. We show that, using extensive simu-
lations, performing the decomposition before abstraction significantly reduces
the abstraction overhead. In Chapter 13 we present a new interface model (we
call it the extended periodic resource model) in the form of a matrix. In this
matrix, cell {i, j} (row i column j) denotes the amount of budget required by

30 Chapter 5. Flexible Frameworks

subcomponent j given that i processors will contribute in processor provision-
ing. At the integration phase, the system integrator has to select one row for
each column, i.e., one budget for each subcomponent. Easwaran et al. [52]
showed that smaller the number of processors contributing in the budget provi-
sioning (i) the more efficient the interface. To this end, at the integration phase,
the upper rows of the interface matrix are more desirable for selection. We, in
Chapter 13, present integration algorithms which receive a set of component
matrices and select a suitable row for each subcomponent.

5.3 Related work
Several component-based scheduling frameworks have been proposed in the
real-time scheduling community. The basic idea behind most of these frame-
works is to time partition the processor, and assign each partition to a single
component. In doing so, the components are isolated with respect to their tim-
ing behavior. A timing anomaly in one component will not be propagated to
the other ones. In addition, the timing behavior of systems can be studied only
by investigating the properties of the processor partitions rather than analyzing
the task parameters. Several modeling techniques have been proposed for time
partitioning the processor on single processors and multiprocessors.

5.3.1 Single processors

Since Deng and Liu [1] presented a two level hierarchical scheduling frame-
work, there has been a growing attention for using hierarchical scheduling in
complex real-time systems. Schedulability analysis for two-level frameworks
is presented by Kuo and Li [53]. For EDF-based global schedulers, a schedu-
lability analysis is presented by Lipari and Baruah [54, 55]. In addition, the
virtual processor model is presented in [56, 7]. Different schedulability anal-
yses under fixed priority scheduling [57, 58] and EDF [11, 7] are presented.
In single processors two parameters affect the amount of time provided by the
processor partition to the components. (i) the granularity of processor partition-
ing; (ii) the utilization (also referred as bandwidth) of the processor partition.
The bounded delay abstraction model, introduced in [56], specifies the band-
width and the maximum blackout time of the processor supply. The maximum
blackout time indicates the largest time interval that the processor may be un-
available. This resource model targets single processor platforms. Shin et al.
present another abstraction model for the processor supply of single proces-

5.3 Related work 31

sors, namely the Periodic Resource (PR) model [7]. The PR model specifies
period Π and budget Θ in its interface meaning that the processor becomes
available every Π time units for duration of Θ time units. In this model Π
specifies the time granularity of processor provisioning, while both Π and Θ
specify the utilization of the processor partition.

5.3.2 Multiprocessors

When it comes to multiprocessors, three parameters play roles in the amount
of the processor provisioning at each time point. In addition to the time gran-
ularity and utilization, the number of processors involved in contributing the
overall utilization influence the processor provisioning. Leontyev and Ander-
son [59] proposed a model that only specifies bandwidth w in the component
interface. In this model bwc dedicated processors are assigned to the com-
ponents and the remaining w − bwc bandwidth is provided using a periodic
server. This model provides limited flexibility at the integration stage for the
system integrator as it requires bwc dedicated processors. The MPR model [3]
extends the PR model to multiprocessor platforms. The MPR model specifies
budget Θ, period Π and number of processors m′ in its interface. The MPR
model guarantees provisioning of Θ processor time every Π time units using
maximum m′ physical processors. Xu et al. proposed the Deterministic MPR
(DMPR) model in [60]. This model is different from the MPR model in the
following aspect. The DMPR model, similar to [59], allows at most one par-
tial processor allocation. Xi et al. [61] have investigated the application of the
MPR modeling technique in the Xen virtual machine manager.

Bini et al. presented the Multi Supply Function (MSF) model in [62]
for modeling the resource supply in hierarchical scheduling on multiprocessor
platforms. The MSF is indeed a set of supply functions, one associated with
each server. The Parallel Supply Function (PSF) model [63] is also proposed
as an alternative for modeling the resource supply of hierarchical multiproces-
sor systems. This model indicates a set of supply functions where each of them
represent the minimum available supply at a certain parallelism level. Since the
MPR model offers a greater deal of abstraction compared to the MSF and the
PSF models, from a system integrator perspective, the MPR can be more suit-
able when composing real-time systems. Lipari and Bini [4] suggested a new
interface model, namely the Bounded-Delay Multipartition (BDM) model. The
BDM interface consists ofm, ∆ and [β1,...,βm] parameters which represent the
number of virtual processors, the blackout duration and the bandwidth at each
parallelism level respectively. In fact, the DBM model replaces the notion of

32 Chapter 5. Flexible Frameworks

period Π in the MPR with delay (the longest interval with no resource) ∆. The
BDM model does not require the servers to be synchronized. Nevertheless,
due to the nature of the delay based models, the BDM can be very pessimistic
which can result in low system utilization and consequently higher cost of the
system production. Besides, from an implementation point of view, periodic
servers are more straight forward to implement, and the BDM model perhaps
should be mapped to the MPR or any other periodic server based model for
the implementation. Zhu et al. have extended deferrable servers to the context
of multiprocessor platforms [64] where m deferrable servers with a common
period and different budgets are running on m processors. In this thesis we
extend the MPR model in the following two aspects: (i) we provide a more
resource efficient abstraction; (ii) we relax the synchronization assumption be-
tween different processors.

Chapter 6

Conclusion

6.1 Summary

In this thesis, we present frameworks for scheduling real-time software de-
veloped using the component-based development paradigm. The frameworks
use the resource reservation techniques for scheduling the components. We
consider two types of real-time components: (i) soft real-time components; (ii)
hard real-time components. In the former case, our adaptive frameworks match
the resource reservations according to the instantaneous component needs dur-
ing run-time. In this context, we consider single processor, multiprocessor and
distributed resource models. We use adaptation mechanisms based on fuzzy
controllers, estimation-based approach and optimal controllers.

In the context of hard real-time systems, on the other hand, we only con-
sider multiprocessor platforms. We extend the current models in the following
two directions. First, we relax the assumption of processor synchronization
by proposing a new approach to derive the worst-case resource provisioning.
Furthermore, we improve the resource efficiency of such component-based de-
velopment paradigms by proposing a new development approach. In our ap-
proach, we decompose large components into a number of smaller subcompo-
nents before abstracting their resource requirements.

33

34 Chapter 6. Conclusion

6.2 Discussion
The research presented in this thesis lies into the “method/means” class of re-
search [17]. In other words, we present new frameworks that facilitate the
software development practice for real-time software systems. Throughout the
process of designing the presented frameworks, we have made several design
decisions, e.g., we have selected particular control variables. We believe a new
line of research that considers different design decisions and compares them
against each other would be beneficial. Such line of research would lie in the
“selection” research class [17]. A particularly important challenge in designing
adaptive frameworks is the challenge of modeling system dynamics. We have
investigated fuzzy modeling and simple linear models along with off-line and
on-line parameter identification approaches in this thesis. It would be benefi-
cial to investigate using more complex non-linear models to see whether they
can provide a better performance or not.

Regarding the hard real-time frameworks, common global multiprocessor
scheduling algorithms (gEDF and gFP) allow building flexible resource ab-
straction models without the need to specify the component’s bandwidth dis-
tribution. However, the significant overhead imposed by the schedulability
analysis of such global multiprocessor scheduling algorithms, limits the appli-
cability of such flexible models. Therefore, we believe it is beneficial to devise
models (similar to what we present in Chapter 13) that allow the trade-off be-
tween the integration time flexibility and resource efficiency by considering
partitioned scheduling algorithms.

6.3 Future work
The work presented in this thesis can be extended in a number of directions.
Regarding the adaptive frameworks, the following paths can be further ex-
plored.

• In the context of a multiresource adaptive framework running on a dis-
tributed resource infrastructure, we did not investigate scenarios in which
different components compete with each other on acquiring the shared
resources. Our proposed framework can be extended to incorporate a
module which handles such scenarios.

• As mentioned in the discussions, a possible extension of our adaptive
frameworks is to investigate taking different design decisions. In this di-

6.3 Future work 35

rection, for instance, we can consider (i) more complex nonlinear models
for modeling the system dynamics; (ii) model predictive controllers for
performing adaptation.

• We only considered adaptation by the means of adjusting the resource
reservations. It would be interesting to incorporate other adaptation
means such as bandwidth borrowing and bandwidth reclamation into our
framework.

In the context of flexible frameworks, the following open directions may be
explored.

• Our development approach presented in Chapter 13 can be extended to
incorporate resource sharing into account. In this regard, new component
decomposition algorithms are perhaps needed which tries to assign tasks
sharing a resource into one subcomponent.

• We only considered EDF scheduling policy. It would be interesting to
investigate other scheduling algorithms to see whether the overhead re-
duction is still significant using our approach.

Chapter 7

Overview of the Papers

7.1 Contributions
The contributions of the thesis are presented in the form of a collection of
papers. The following papers are included in the thesis.

7.1.1 Paper A
Bandwidth Adaptation in Hierarchical Scheduling Using Fuzzy Con-
trollers, Nima Khalilzad, Moris Behnam, Giacomo Spampinato, Thomas
Nolte, In Proceedings of the 7th IEEE International Symposium on Industrial
Embedded Systems (SIES’12), June, 2012.
Abstract: In our previous work, we have introduced an adaptive hierarchical
scheduling framework as a solution for composing dynamic real-time systems,
i.e., systems where the CPU demand of their tasks are subjected to unknown
and potentially drastic changes during run-time. The framework uses the PI
controller which periodically adapts the system to the current load situation.
The conventional PI controller despite simplicity and low CPU overhead,
provides acceptable performance. However, increasing the pressure on
the controller, e.g., with an application consisting of multiple tasks with
drastically oscillating execution times, degrades the performance of the PI
controller. Therefore, in this paper we modify the structure of our adaptive
framework by replacing the PI controller with a fuzzy controller to achieve
better performance. Furthermore, we conduct a simulation-based case study
in which we compose dynamic tasks such as video decoder tasks with a set of

37

38 Chapter 7. Overview of the Papers

static tasks into a single system, and we show that the new fuzzy controller
outperforms our previous PI controller.

My contribution in this paper: I was the main driver of the work. The
co-authors contributed by discussions and reviewing the paper.

This paper addresses Subgoal 1.

7.1.2 Paper B

An Adaptive Scheduling Framework for Component-Based Real-Time
Systems, Nima Khalilzad, Moris Behnam, Thomas Nolte, This paper is
under second revision in the Journal of Systems and Software (JSS), Special
Issue on Computers, Software, and Applications - Software Engineering in
COMPSAC.
Abstract: Processor partitioning techniques have been widely used for
scheduling component-based hard real-time systems. Due to the safety critical
nature of hard real-time systems, conservative partition sizes are often re-
served for the components. A considerable capacity of the processor is wasted
using such conservative techniques. When designing a component-based
soft real-time system, however, conservative partitioning is unacceptable,
because occasional timing violations can be tolerated by such systems. In this
paper, we present a multi-level adaptive hierarchical scheduling framework
for scheduling component-based real-time systems. In our framework, for
efficiently utilizing the processor capacity, we adapt the partition sizes of soft
real-time components based on their actual needs at run-time. The adaptation
is based on on-line monitoring of the processor demand of the components.
We have implemented our framework in the Linux kernel. We present the
implementation details of our framework. Finally, we report our evaluation
results.

This paper is based on our conference paper published in RTCSA’13 and a
workshop paper published in OSPERT’13. In the above papers we presented a
multilevel hierarchical scheme for scheduling component-based systems. Our
model allows multilevel of hierarchy, i.e., a component may be composed of a
number of subcomponents. We implemented the scheme in the Linux kernel
for performing evaluations. We also measured the overhead of our scheme.

7.1 Contributions 39

My contribution in this paper: I was the main driver of the work. The
co-authors contributed by discussions and reviewing the paper.

This paper addresses Subgoal 2.

7.1.3 Paper C

A Feedback Scheduling Framework for Component-Based Soft Real-Time
Systems, Nima Khalilzad, Fanxin Kong, Xue Liu, Moris Behnam, Thomas
Nolte, In Proceedings of the 21th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’15), April, 2015.
Abstract: Component-based software systems with real-time requirements
are often scheduled using processor reservation techniques. Such techniques
have mainly evolved around hard real-time systems in which worst-case re-
source demands are considered for the reservations. In soft real-time systems,
reserving the processors based on the worst-case demands results in unneces-
sary over-allocations. In this paper, targeting soft real-time systems running
on multiprocessor platforms, we focus on components for which processor de-
mand varies during run-time. We propose a feedback scheduling framework
where processor reservations are used for scheduling components. The reser-
vation bandwidths as well as the reservation periods are adapted using MIMO
LQR controllers. We provide an allocation mechanism for distributing compo-
nents over processors. The proposed framework is implemented in the True-
Time simulation tool for system identification. We use a case study to inves-
tigate the performance of our framework in the simulation tool. Finally, the
framework is implemented in the Linux kernel for practical evaluations. The
evaluation results suggest that the framework can efficiently adapt the reserva-
tion parameters during run-time by imposing negligible overhead.

In this paper we proposed an adaptive framework for multiprocessor
platforms. We used system identification for deriving the model for dynamics
of the components.

My contribution in this paper: I was the main driver of the work. The
co-authors contributed by discussions and reviewing the paper. Fanxin helped
in the optimization formulation and optimality proof of one of the algorithms.

This paper addresses Subgoal 3.

40 Chapter 7. Overview of the Papers

7.1.4 Paper D

Adaptive Multi-Resource End-to-End Reservations for Component-Based
Distributed Real-Time Systems, Nima Khalilzad, Mohammad Ashjaei,
Luis Almeida, Moris Behnam and Thomas Nolte, In Proceedings of the
13th IEEE Symposium on Embedded Systems for Real-Time Multimedia
(ESTIMedia’15), October, 2015.
Abstract: Complexity in the real-time embedded software domain has been
growing rapidly. The component-based software development approach facili-
tates the development process of such software systems by dividing a complex
system into a number of simpler components. Resource reservation techniques
have been widely used for providing resources to real-time software compo-
nents. In this paper we target real-time components operating on a distributed
infrastructure. Furthermore, we target a class of software components which
demonstrate dynamic resource consumption behavior. A prime example of such
components is a multimedia software component. In the paper we present a
framework supporting multi-resource end-to-end resource reservations. We
reserve resource bandwidths on both processor resources as well as on the net-
work resources. The proposed framework utilizes a Multiple Input Multiple
Output (MIMO) controller which adjusts the sizes of reservations tracking the
dynamic resource demands of the software components. Finally, we present a
case study using a multimedia component to demonstrate the performance and
efficiency of our framework.

This works extends the contributions of the thesis towards distributed
systems. We use the same component model as our previous work, while we
assume the component may be spread over a distributed system.

My contribution in this paper: I was the main driver of the work. The
co-authors contributed by discussions and reviewing the paper. Mohammad
helped with modeling the network resources and developing the simulator.

This paper addresses Subgoal 3.

7.1.5 Paper E

Exact and Approximate Supply Bound Function for Multiprocessor Pe-
riodic Resource Model: Unsynchronized Servers, Nima Khalilzad, Moris
Behnam, Thomas Nolte, In ACM SIGBED Review special issue on the 5th In-
ternational Workshop on Compositional Theory and Technology for Real-Time

7.1 Contributions 41

Embedded Systems (CRTS’12), Volume 10, Number 3, October, 2013.
Abstract: The Multi Processor Periodic Resource (MPR) model has been
proposed for modeling compositional real-time systems which run on a shared
multi processor hardware. In this paper we extend the MPR model such that
the execution of virtual processors (servers) is not assumed to be synchronized
i.e., the servers can have different phases. We believe that relaxing the
server synchronization requirement provides greater deal of compatibility for
implementing such a compositional method on various hardware platforms.
We derive the resource supply bound function of the extended MPR model
using an algorithm. Furthermore, we suggest an approach to calculate an
approximate supply bound function with lower computational complexity for
systems where calculating their supply bound function is computationally
expensive.

My contribution in this paper: I was the main driver of the work. The
co-authors contributed by discussions and reviewing the paper.

This paper addresses Subgoal 4.

7.1.6 Paper F
On Component-Based Software Development for Multiprocessor Real-
Time Systems, Nima Khalilzad, Moris Behnam and Thomas Nolte, In
Proceedings of the 21st IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA’15), August, 2015.
Abstract: Component-based software development provides a modular
approach to develop complex software systems. In the context of real-time sys-
tems, it is desirable to abstract the timing properties of software components
using an interface for each component. The timing properties of the whole
system, composed of multiple components, is studied using the component
interfaces. In this paper we focus on periodic interface models. In the case
of components developed for single processor platforms, for examining the
system schedulability, the interfaces can be regarded as periodic tasks. Thus,
making it possible to use the conventional schedulability analyses for the
system level schedulability test. In the case of components developed for
multiprocessors, since interfaces may have utilization larger than 100 % of a
single processor, it is not possible to directly use the component interfaces for
the system schedulability test. Therefore, the interfaces have to be decomposed
before performing the system level schedulability test.

42 Chapter 7. Overview of the Papers

In this paper, we target the special case of partitioned EDF for scheduling
the components integrated on a multiprocessor. Therefore, the system level
schedulability test is equivalent to finding a feasible allocation of component
interfaces on the multiprocessor. We propose two algorithms for allocating
the multiprocessor periodic interfaces. In addition, we propose an orthogonal
approach for developing component-based real-time systems on multipro-
cessors in which components with utilization more than 100 % of a single
processor are divided into smaller subcomponents before abstracting their
interfaces. We show, through extensive evaluations, that our alternative
approach significantly reduces the interface overhead.

My contribution in this paper: I was the main driver of the work. The
co-authors contributed by discussions and reviewing the paper.

This paper addresses Subgoal 4.

References

[1] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In Proceedings of the 18th IEEE Real-Time Systems Sym-
posium (RTSS’97), pages 308–319, December 1997.

[2] G. Lipari and S. Baruah. A hierarchical extension to the constant band-
width server framework. In Proceedings of the 7th IEEE Real-Time Tech-
nology and Applications Symposium (RTAS’01), pages 26–35, May 2001.

[3] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework
for virtual clustering of multiprocessors. In Proceedings of the Euromi-
cro Conference on Real-Time Systems, (ECRTS’08), pages 181–190, July
2008.

[4] G. Lipari and E. Bini. A framework for hierarchical scheduling on mul-
tiprocessors: From application requirements to run-time allocation. In
Proceedings of the 31st IEEE Real-Time Systems Symposium (RTSS’10),
pages 249–258, December 2010.

[5] M. Di Natale and A.L. Sangiovanni-Vincentelli. Moving from federated
to integrated architectures in automotive: The role of standards, methods
and tools. Proceedings of the IEEE, 98(4):603–620, 2010.

[6] R. Obermaisser, C. El-Salloum, B. Huber, and H. Kopetz. From a fed-
erated to an integrated automotive architecture. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 28(7):956–
965, 2009.

[7] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proceedings of the 24th IEEE Real-Time Systems Sympo-
sium, (RTSS’03), pages 2–13, December 2003.

43

44 References

[8] I. Shin and I. Lee. Compositional real-time scheduling framework with
periodic model. ACM Transactions on Embedded Computing Systems
(TECS’08), pages 30:1–30:39, April 2008.

[9] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using EDP resource models. In Proceedings of the 28th IEEE Real-Time
Systems Symposium, (RTSS’07), pages 129–138, December 2007.

[10] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive schedul-
ing. In Proceedings of the 26th IEEE Real-Time Systems Symposium
(RTSS’05), pages 10–398, December 2005.

[11] F. Zhang and A. Burns. Analysis of hierarchical EDF pre-emptive
scheduling. In Proceedings of the 28th IEEE International Real-Time
Systems Symposium (RTSS’07), pages 423–434, December 2007.

[12] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. AQuoSA-adaptive
quality of service architecture. Software: Practice and Experience,
39(1):1–31, January 2009.

[13] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E.
Årzen, V. Romero, and C. Scordino. Resource management on multicore
systems: The ACTORS approach. Micro, IEEE, 31(3):72–81, May-June
2011.

[14] C. C. Wust, L. Steffens, W. F. J. Verhaegh, R. J. Bril, and C. Hentschel.
QoS control strategies for high-quality video processing. Real-Time Sys-
tems, pages 3–12, 2005.

[15] I. Shin and I. Lee. Compositional real-time scheduling framework. In
Proceedings of the 25th IEEE International Real-Time Systems Sympo-
sium (RTSS’04), pages 57–67, December 2004.

[16] A. Burmyakov, E. Bini, and E. Tovar. Compositional multiprocessor
scheduling: the GMPR interface. Real-Time Systems, 50(3):342–376,
2014.

[17] M. Shaw. The coming-of-age of software architecture research. In Pro-
ceedings of the 23rd international conference on Software engineering
(ICSE’01), page 656. IEEE Computer Society, 2001.

References 45

[18] G. Dodig-Crnkovic. Scientific methods in computer science. Proceedings
of the Conference for the Promotion of Research in IT at New Universities
and at University Colleges in Sweden, Skövde, Suecia, pages 126–130,
2002.

[19] K.M. Passino and S Yurkovich. Fuzzy Control. Addison-Wesley, 1998.

[20] K. J. Åstrom and R. M. Murray. Feedback Systems, An Introduction for
Scientists and Engineers. Prentice University Press, 2012.

[21] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzen. How
does control timing affect performance? analysis and simulation of tim-
ing using Jitterbug and TrueTime. Control Systems, IEEE, 23(3):16–30,
June 2003.

[22] L. Abeni and G. Buttazzo. Resource reservation in dynamic real-time
systems. Real-Time Systems, 27(2):123–167, July 2004.

[23] L. Abeni, C. Scordino, and L. Palopoli. Serving non real-time tasks in
a reservation environment. In Proceedings of the 9th Real-Time Linux
Workshop, November 2007.

[24] N. Gandhi, D.M. Tilbury, Y. Diao, J. Hellerstein, and S. Parekh. MIMO
control of an apache web server: modeling and controller design. In
Proceedings of the American Control Conference (ACC’02), volume 6,
pages 4922–4927, 2002.

[25] Y. Diao, J. L Hellerstein, A. J Storm, M. Surendra, S. Lightstone,
S. Parekh, and C. Garcia-Arellano. Using MIMO linear control for load
balancing in computing systems. In Proceedings of the 2004 American
Control Conference (ACC’04), volume 3, pages 2045–2050, 2004.

[26] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Real-Time Systems,
23:85–126, 2002.

[27] A. Block, J. H. Anderson, and U. C. Devi. Task reweighting under global
scheduling on multiprocessors. Real-Time Systems, 39(1-3):123–167,
2008.

[28] A. Block, J. H. Anderson, and G. Bishop. Fine-grained task reweight-
ing on multiprocessors. In Proceedings of the 11th IEEE International

46 References

Conference on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA’05), pages 429–435, 2005.

[29] A. Block, B. Brandenburg, J. H. Anderson, and S. Quint. An adaptive
framework for multiprocessor real-time system. In Proceedings of the
Euromicro Conference on Real-Time Systems (ECRTS’08), pages 23–33,
July 2008.

[30] J. Yao, X. Liu, X. Chen, X. Wang, and J. Li. Online decentralized adap-
tive optimal controller design of cpu utilization for distributed real-time
embedded systems. In Proceedings of the American Control Conference
(ACC’10), pages 283–288, June 2010.

[31] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son, and
C. Lu. Feedback control scheduling in distributed real-time systems. In
Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS’01),
pages 59–70, December 2001.

[32] X. Wang, X. Fu, X. Liu, and Z. Gu. PAUC: Power-aware utilization
control in distributed real-time systems. IEEE Transactions on Industrial
Informatics, 6(3):302–315, Aug 2010.

[33] X. Chen, X. W. Chang, and X. Liu. SyRaFa: Synchronous rate and fre-
quency adjustment for utilization control in distributed real-time embed-
ded systems. IEEE Transactions on Parallel and Distributed Systems,
24(5):1052–1061, May 2013.

[34] X. Wang, D. Jia, C. Lu, and X. Koutsoukos. DEUCON: Decentralized
end-to-end utilization control for distributed real-time systems. IEEE
Transactions on Parallel and Distributed Systems, 18(7):996–1009, July
2007.

[35] L. Abeni and G. Buttazzo. Adaptive bandwidth reservation for multi-
media computing. In Proceedings of the Sixth International Conference
on Real-Time Computing Systems and Applications (RTCSA’99), pages
70–77, December 1999.

[36] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a
reservation-based feedback scheduler. In Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS’2), pages 71–80, December 2002.

References 47

[37] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, and L. Abeni. Adap-
tive reservations in a linux environment. In Proceedings of the 10th
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’04), pages 238–245, May 2004.

[38] T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli. Adaptive real-time
scheduling for legacy multimedia applications. ACM Transactions on
Embedded Computing Systems, 11(4):86:1–86:23, January 2013.

[39] J. Loeser and H. Haertig. Low-latency hard real-time communication
over switched ethernet. In Proceedings of the 16th Euromicro Conference
on Real-Time Systems (ECRTS’04), June 2004.

[40] Ethernet POWERLINK Standardisation Group. EPSG Draft Standard
301 Ethernet POWERLINK Communication Profile Specification Version
1.2.0, 2013.

[41] M. Ashjaei, M. Behnam, L. Almeida, and T. Nolte. Performance analysis
of master-slave multi-hop switched ethernet networks. In Proceedings of
the 8th IEEE International Symposium on Industrial Embedded Systems
(SIES’13), June 2013.

[42] R. Santos, A Vieira, P. Pedreiras, A Oliveira, L. Almeida, R. Marau, and
T. Nolte. Flexible, efficient and robust real-time communication with
server-based Ethernet switching. In Proceedings of the 8th IEEE Inter-
national Workshop on Factory Communication Systems (WFCS’10), May
2010.

[43] R. Santos, M. Behnam, T. Nolte, P. Pedreiras, and L. Almeida. Multi-
level hierarchical scheduling in ethernet switches. In Proceedings of the
of the International Conference on Embedded Software (EMSOFT’11),
October 2011.

[44] J. Silvestre-Blanes, L. Almeida, R. Marau, and P. Pedreiras. Online
QoS management for multimedia real-time transmission in industrial net-
works. IEEE Transaction on Industrial Electronics, 58(3), March 2011.

[45] IEEE 802.1Qat, draft standard for local and metropolitan area networks
virtual bridged local area networks amendment 9: Stream reservation pro-
tocol (SRP).

48 References

[46] K. Lakshmanan and R. Rajkumar. Distributed resource kernels: OS
support for end-to-end resource isolation. In Proceedings of the IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS’08), April 2008.

[47] A. Oliveira, A. Azim, S. Fischmeister, R. Marau, and L. Almeida. D-
RES: Correct transitive distributed service sharing. In Proceedings of the
Work-in-Progress Session of the Conference on Emerging Technologies
and Factory Automation (ETFA’14), September 2014.

[48] T. Cucinotta and L. Palopoli. QoS control for pipelines of tasks using
multiple resources. IEEE Transactions on Computers, 59(3):416–430,
March 2010.

[49] R. Rajkumar, C. Lee, J. Lehoczky, and Dan Siewiorek. A resource al-
location model for QoS management. In Proceedings of the 18th IEEE
Real-Time Systems Symposium (RTSS’97), December 1997.

[50] S. Ghosh, J. Hansen, R. Rajkumar, and J. Lehoczky. Integrated resource
management and scheduling with multi-resource constraints. In Pro-
ceedings of the 25th IEEE International Real-Time Systems Symposium
(RTSS’04), December 2004.

[51] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In Proceedings of the 11th
Real-Time Systems Symposium (RTSS’90), pages 182 –190, December
1990.

[52] A. Easwaran, I. Shin, and I. Lee. Optimal virtual cluster-based multipro-
cessor scheduling. Real-Time Systems, 43(1):25–59, 2009.

[53] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for
real-time applications. In Proceedings of the 20th IEEE Real-Time Sys-
tems Symposium (RTSS’99), pages 256–267, December 1999.

[54] G. Lipari and S. K. Baruah. Efficient scheduling of real-time multi-task
applications in dynamic systems. In Proceedings of the 6th IEEE Real
Time Technology and Applications Symposium (RTAS’00), pages 166–
175, May 2000.

References 49

[55] G. Lipari, J. Carpenter, and S. Baruah. A framework for achieving
inter-application isolation in multiprogrammed, hard real-time environ-
ments. In Proceedings of the 21st IEEE Real-time Systems Symposium
(RTSS’00), pages 217–226, November 2000.

[56] A. K. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. In Proceedings of the 7th Real-Time Technology and Applications
Symposium (RTAS’01), pages 75–84, May 2001.

[57] L. Almeida and P. Pedreiras. Scheduling within temporal partitions:
response-time analysis and server design. In Proceedings of the 4th ACM
International Conference on Embedded Software (EMSOFT’04), pages
95–103, September 2004.

[58] G. Lipari and E. Bini. Resource partitioning among real-time applica-
tions. In Proceedings of the Euromicro Conference on Real-Time Systems
(ECRTS’03), pages 151–158, July 2003.

[59] H. Leontyev and J. H. Anderson. A hierarchical multiprocessor band-
width reservation scheme with timing guarantees. In Proceedings of the
20th Euromicro Conference on Real-Time Systems (ECRTS’08), pages
191–200, July 2008.

[60] M. Xu, L. T. X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and C. Gill.
Cache-aware compositional analysis of real-time multicore virtualization
platforms. In Proceedings of the 34th IEEE International Real-Time Sys-
tems Symposium (RTSS’13), pages 1–10, December 2013.

[61] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokolsky, and I. Lee.
Real-time multi-core virtual machine scheduling in xen. In Proceedings
of the International Conference on Embedded Software (EMSOFT’14),
pages 1–10, Oct 2014.

[62] E. Bini, G. Buttazzo, and M. Bertogna. The multi supply function ab-
straction for multiprocessors. In Proceedings of the 15th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, (RTCSA’09), pages 294–302, August 2009.

[63] E. Bini, M. Bertogna, and S. Baruah. Virtual multiprocessor platforms:
Specification and use. In Proceedings of the 30th IEEE Real-Time Sys-
tems Symposium, (RTSS’09), pages 437–446, December 2009.

[64] H. Zhu, S. Goddard, and M. B. Dwyer. Response time analysis of hier-
archical scheduling: The synchronized deferrable servers approach. In
32nd IEEE Real-Time Systems Symposium (RTSS’11), pages 239–248,
December 2011.

II

Included Papers

51

Chapter 8

Paper A:
Bandwidth Adaptation in
Hierarchical Scheduling
Using Fuzzy Controllers

Nima Khalilzad, Moris Behnam, Giacomo Spampinato and Thomas Nolte.
In Proceedings of the 7th IEEE International Symposium on Industrial Embed-
ded Systems (SIES’12), June, 2012.

53

Abstract

In our previous work, we have introduced an adaptive hierarchical schedul-
ing framework as a solution for composing dynamic real-time systems, i.e.,
systems where the CPU demand of their tasks are subjected to unknown and
potentially drastic changes during run-time. The framework uses the PI con-
troller which periodically adapts the system to the current load situation. The
conventional PI controller despite simplicity and low CPU overhead, provides
acceptable performance. However, increasing the pressure on the controller,
e.g., with an application consisting of multiple tasks with drastically oscillat-
ing execution times, degrades the performance of the PI controller.

Therefore, in this paper we modify the structure of our adaptive framework
by replacing the PI controller with a fuzzy controller to achieve better perfor-
mance. Furthermore, we conduct a simulation-based case study in which we
compose dynamic tasks such as video decoder tasks with a set of static tasks
into a single system, and we show that the new fuzzy controller outperforms
our previous PI controller.

8.1 Introduction 55

8.1 Introduction
The Hierarchical Scheduling Framework (HSF) is a component-based tech-
nique for scheduling complex real-time systems [1, 2]. Using such a frame-
work, each component is allocated a portion of the CPU and, in turn, it guaran-
tees that with this portion all its internal tasks will be scheduled such that their
corresponding timing constraints are respected. The CPU portions are often
specified by the component period and budget (interface parameters). The in-
terface parameters can be calculated either based on the Worst Case Execution
Time (WCET) of the tasks such as the method presented in [3] and kept fixed
during run-time, or be initiated using such a method and then be adapted during
run-time based on the current workload [4]. The dynamic resource allocation
techniques are especially efficient when the system components are composed
of dynamic tasks in which their execution times are changing significantly dur-
ing run-time. For example, when a component consists of control tasks or
video decoder tasks, since the execution time of such tasks are dynamic during
run-time, fixed resource allocation techniques are not efficient and may result
in underutilized systems and consequently the CPU resource will be wasted.

We have introduced the Adaptive Hierarchical Scheduling Framework
(AHSF) [4] as a solution for composing dynamic components. In this hierar-
chical framework we assume a fixed period for each subsystem, however, each
subsystem is equipped with a budget controller which adapts the subsystem
budget based on two feedback loops. The feedback loops are controlling the
number of deadline misses and the amount of idle time in the subsystem.
In that work, we used the well known PI controller, designed based on an
approximate system model.

In this paper we investigate a more advanced controller which does not
require any pre knowledge about the system. We introduce the following con-
tributions in this paper.

• (i) We investigate using a model-free fuzzy controller instead of conven-
tional PI controllers and we define a new control variable based on the
consumed budget after missing the deadlines instead of the number of
deadline misses.

• (ii) We study the stability of our controller using Lyapunov’s direct
method which gives boundaries on the budget controller’s gain values.

• (iii) We tune the designed fuzzy controller using a multi-criteria Genetic
Algorithm (GA).

56 Paper A

• (iv) We evaluate the performance of the proposed controller by conduct-
ing a case study and we compare the result of using the proposed con-
troller against the PI controller approach presented in [4].

The remainder of this paper is organized as follows. Related work is pre-
sented in Section 8.2. Section 8.3 describes the structure of our AHSF. In Sec-
tion 8.4 we give insight into our fuzzy budget controller. The stability study is
presented in Section 8.5. We describe the controller tuning in Section 8.6. A
simulation-based case study is presented in Section 8.7. The implementation
complexity of the proposed approach is discussed in 8.8. Finally, we conclude
the paper in Section 8.9.

8.2 Related work
The idea of closed-loop real-time scheduling emerged in late 90’s [5] and since
then there has been a growing attention in combining the real-time scheduling
theory with the well-established control techniques. The deadline miss ratio
is controlled in [6]. In [7], in addition to the deadline miss ratio, the CPU
utilization is controlled as well. In a similar context, the CPU utilization is
controlled by modifying task periods using a fuzzy controller in [8]. The idea
is also applied to scheduling of control tasks where the quality-of-control is
regulated using a feedback-feedforward method [9].

Resource reservation [10] and hierarchical scheduling [11, 12, 3, 13, 14,
15, 16] techniques have received increasingly more attention over the past two
decades since they provide temporal isolation and consequently predictabil-
ity in integrating different task models. Hierarchical scheduling is used in
scheduling of soft real-time systems in [17, 18, 19]. All aforementioned meth-
ods assign fixed CPU portions to the subsystems and therefore it makes them
inefficient when composing dynamic tasks.

Recently, there has been some work to enable the adaptability feature for re-
source reservation scheduling techniques by using feedback control techniques.
In [20] Abeni et al. have introduced an adaptive Constant Bandwidth Server
(CBS) as an extension to the CBS [21] in which the server budgets are adjusted
during run-time. Their control variable is limited to existence of one task per
server. Adaptive CPU resource management is presented in [22] where the
hard CBS scheduling algorithm is used and the server budgets are adapted
during run-time. Although in theory this approach can support existence of
multiple tasks in a server, it is evaluated by using only one task per server. In
our AHSF [4], we bring the feedback scheduling techniques in the context of

8.3 The Adaptive Hierarchical Scheduling Framework 57

resource reservation scheduling in which the servers (components) consist of
multiple tasks and they are scheduled using a real-time scheduler (hierarchi-
cal scheduling). Besides, we use periodic servers [23] instead of CBSs in our
framework, however, our work can be extended to work under other type of
servers such as CBSs with minor modifications.

8.3 The Adaptive Hierarchical Scheduling
Framework

We consider a two-level Adaptive Hierarchical Scheduling Framework (AHSF)
in which a system S consisting of N components, here denoted as subsystems
Ss ∈ S, is executed on a single processor. In the AHSF, a global scheduler
schedules subsystems, and a local scheduler in each subsystem is responsible
for scheduling its corresponding internal tasks. We use the EDF scheduling
algorithm in both global and local level in this paper, however the presented
approach can be extended easily to include other scheduling algorithms, e.g.,
fixed priority scheduling. Figure 8.1 shows the architecture of our two-level
AHSF. We use one fuzzy budget controller per subsystem to adapt its budget
according to the CPU resource demand of its tasks. In addition, there is an
overload controller which deals with overload situations, i.e., when the total
resource request of the subsystems are more than the available CPU resource.

8.3.1 Subsystem model

Each subsystem Ss is represented by its temporal interface parameters (Ts,
Bs, Ds, ζs) where Ts, Bs, Ds and ζs are subsystem period, budget, relative
deadline and criticality respectively. The relative deadline of a subsystem is
assumed to be equal to its corresponding subsystem period (Ds = Ts). Each
subsystem Ss consists of a set of ns tasks τs and a local scheduler. The criti-
cality of a subsystem ζs, which shows how critical a subsystem is in compar-
ison to other subsystems, is used only in overload situations. We assume that
subsystems are sorted according to their criticality, in the order of decreasing
criticality, and ζs = s, i.e., S1 has the highest criticality in the system while
SN has the lowest criticality.

We use periodic servers (subsystems) which works as follows. The required
CPU portion is always allocated to the subsystems every predefined period, and
in the case that there is no active task in the subsystem, it will idle its budget.

58 Paper A
S

y
st

em

CPU

Task

set

Task

set

Task

set

Subsystem1 Subsystem2 Subsystem3

Fuzzy Budget

Controller

Overload Controller

Fuzzy Budget

Controller

Fuzzy Budget

Controller

Global EDF Scheduler

Local EDF

scheduler

Local EDF

scheduler

Local EDF

scheduler

Figure 8.1: The Adaptive Hierarchical Scheduling Framework.

8.3.2 Task model
We assume the periodic soft real-time task model τi,s (Ti,s, Ci,s, Di,s), where
Ti,s, Ci,s and Di,s are period, execution time and relative deadline of task i
in subsystem Ss respectively. The relative deadline of a task is assumed to be
equal to its corresponding task period (Di,s = Ti,s). When a task misses its
deadline it can continue its execution to the end.

8.3.3 The budget controller
We use two feedback loops in the structure of our budget controller. For the
first loop controller computations, the amount of subsystem budget that is used
by tasks after missing their deadlines to finish their executions, is monitored.
Therefore, the error in this loop is defined as follows:

em(t) =
∑

τi,s∈τs

βi,s(t)

Ts
, (8.1)

8.3 The Adaptive Hierarchical Scheduling Framework 59

where βi,s(t) is the control variable of the feedback loop which is the amount
of subsystem budget of Ss used by task i after missing its deadline at sampling
time t. We call this feedback loop the “m-loop” in the rest of the paper. Note
that in [4] we measure the number of deadline misses in the “m-loop”, however,
we believe that our new control variable (Equation 8.1) provides the controller
with more precise information about the state of the system, consequently the
controller can take more effective actions in controlling the environment. It
goes without saying that Equation 8.1 can only be used if tasks are allowed to
continue executing after missing their deadlines.

In the second loop, the amount of idle time (unused budget) in each sub-
system is monitored. Therefore, the error in this loop is defined as follows:

eu(t) =
αs(t)

Ts
, (8.2)

where αs(t) is the control variable of the second feedback loop which is the
amount of idle time in subsystem Ss measured at sampling time t. Similar to
the m-loop, we call the second feedback loop the “u-loop” in the rest of the
paper. Figure 8.2 illustrates the defined control variables in subsystem S1 of
an example system. There are two tasks in S1 where τ2,1 misses its deadline
at t0, however, τ1,1 finishes its execution before its deadline. If we consider t0,
t1 and t2 as the sampling times, the value of the control variables in Figure 8.2
at the sampling times are as follows:

α1(t0) = α1(t1) = α1(t2) = q1,
β1,1(t0) = β1,1(t1) = β1,1(t2) = 0,

β2,1(t0) = 0, β2,1(t1) = x1, β2,1(t2) = x1 + x2.

The controllers of both loops are executed periodically and both error val-
ues are reset to zero at each control period. The controller periods are assumed
to be proportional to the subsystem periods. In addition to the error value, the
controller should be provided with the error difference value which is calcu-
lated as follows:

∆e(t) = e(t)− e(t− 1), (8.3)

where e(t) is the error value at sampling time t. The error is either em or eu de-
pending on the control loop, therefore, there is an error difference variable per
control loop: ∆em(t) corresponding to the m-loop and ∆eu(t) corresponding
to the u-loop. We provide the fuzzy controller with e(t) and ∆e(t), and the
controller computes a CPU portion ∆w(t) which affects the subsystem bud-
get, i.e., it might increase the subsystem budget if there are deadline misses

60 Paper A

B
1

T
1
 D

2,1

q
1

C
1,1

C
2,1

x
1

t
1
 t

2

x
2

Idle time

Time

t
0

D
1,1

Figure 8.2: The control variables in S1.

or decrease the subsystem budget if there is much unused budget. Hence, the
new subsystem budget is calculated using the controller output and subsystem
period:

B(t) = B(t− 1) + Ts∆w(t). (8.4)

The fuzzy budget controller is indeed an integral controller which adds the
controller output to the current budget. The controller output is calculated as
follows:

∆w(t) = Kfe(t), (8.5)

where Kf is the proportional gain which is extracted from the fuzzy rule-base
given e(t) and ∆e(t). The rule-base and the fuzzy logic control is explained
in detail in Section 8.4. The block diagram of the fuzzy budget controller is
illustrated in Figure 8.3.

8.3.4 Integration of feedback loops
As mentioned earlier in this section, we use two feedback loops in our frame-
work. Each loop calculates a budget change value ∆w(t), however, a mecha-
nism should be provided for integrating these two values. We design a fuzzy
multiplexer which combines the output of the control loops. The multiplexer
simply looks at the system state, if the m-loop error is large, the output of the
m-loop ∆wm(t) will have the main impact on the final output, otherwise the
final output is mainly based on the output of the u-loop ∆wu(t). The block di-
agram of the fuzzy multiplexer is shown in Figure 8.3. There are two fuzzy sets

8.3 The Adaptive Hierarchical Scheduling Framework 61
F

u
zz

if
ic

a
ti

o
n

Fuzzy

Rule-Base

Fuzzy

Inference Engine

D
ef

u
zz

if
ic

a
ti

o
nem(t)

Δem(t)

Δw(t)

F
u

zz
y

M
u

lt
ip

le
x

er

F
u

zz
if

ic
a

ti
o

n

Fuzzy

Inference Engine

D
ef

u
zz

if
ic

a
ti

o
neu(t)

Δeu(t)

Fuzzy

Rule-Base

Δwm(t)

Δwu(t)

Figure 8.3: Block diagram of the fuzzy budget controller. ∆wm(t): m-loop
output, ∆wu(t): u-loop output.

in the structure of the multiplexer: large and zero. Basically, the fuzzification
and defuzzification steps in the integration phase are very similar to the steps
presented in Section 8.4 for the budget controller, hence to avoid redundancy
we do not explain them in this section. However, it is important to highlight
that we use different fuzzy sets and a different rule-base than the budget con-
troller. The rule-base presented in Table 8.1 is used in the fuzzy multiplexer.

8.3.5 The overload controller

The overload situation can happen when the total system utilization is more
than 100 % and since the EDF scheduling algorithm is assumed, it is detected

62 Paper A

em(t)
eu(t) Zero Large
Zero ∆wu(t) ∆wm(t)
Large ∆wu(t) ∆wm(t)

Table 8.1: Fuzzy multiplexer rule-base.

by performing the following test:∑
∀Ss∈S

Bs
Ts

> 1. (8.6)

If the controller detects the overload situation, it redistributes the CPU resource
among subsystems according to their criticality values ζs. It starts from the
highest criticality subsystem S1 and provides it with required budget. There-
after, it moves to a lower criticality subsystem. The lower criticality subsystem
can at most receive a budget value which corresponds to the CPU resource
that is left after allocation to the highest criticality subsystems. This process
continues until the lowest criticality subsystem receives CPU resources, which
happens after all other subsystems have been assigned a new budget. In other
words, when the controller finds out that there are not enough resources for all
the subsystems, it tries to satisfy the high criticality subsystems by sacrificing
the lower criticality subsystems. Note that in this approach, the low criticality
subsystems might receive very small CPU portions or be completely shut down
which is unavoidable due to the limited CPU resources.

Without having an overload controller, in the overload mode high prior-
ity subsystems will receive more resources than the low priority ones. Since
we use the EDF scheduler at the global level, the shorter period subsystem
are more likely to have higher priorities. However, the shorter period subsys-
tems are often not the more important ones in the system since the periods
are usually describing the temporal requirement and not the importance of the
subsystems.

8.4 Fuzzy logic control
In this section, we explain how the control input e(t) and ∆e(t) are mapped to
the control output ∆w(t) using Fuzzy Logic Control (FLC) [24]. As illustrated
in Figure 8.3, the first step in the FLC is fuzzification in which we map the crisp

8.4 Fuzzy logic control 63

0-Is-IL Is IM IL

NL NM NS Z PS PM PL

-IM

1

e(t) / Δe(t)

Figure 8.4: Membership function (NL:Negative Large, NM:Negative Medium,
NS:Negative Small, Z:Zero, PS:Positive Small, PM: Positive Medium,
PL:Positive Large, IS : Ceiling of Small, IM : Ceiling of Medium, IL: Ceil-
ing of Large).

input error to a linguistic value. We use the membership function presented in
Figure 8.4 for the fuzzification purpose. Given an input value and using the
membership function we get a set of truth values indicating how much the
input belongs to each fuzzy set. According to the definition of the control
variables the error value is always positive, therefore only the positive side
of the membership function is needed for e(t), however, ∆e(t) can be either
negative or positive. We use the same membership function for both e(t) and
∆e(t). In the next step we apply fuzzy rules to our fuzzy inputs to get a fuzzy
control output. We use different rule-bases for each feedback loop which are
presented in Table 8.2.

We use the minimum operator as “fuzzy and” to calculate the truth value
of each fuzzy rule for the inference purpose. The final step in FLC is defuzzifi-
cation in which a linguistic control action is mapped to a crisp value. Let o(k)
and µ(k) represent the rule consequent and the truth value of the kth fuzzy rule
respectively. Finally, according to the Sugeno’s defuzzification model [25] the
proportional gain is the weighted average of all rule outputs:

Kf =

∑
o(k).µ(k)∑
µ(k)

. (8.7)

64 Paper A

e(t)
∆e(t) Z PS PM PL
NL NM / PL NM / PM NS / PS Z / Z
NM NS/PM NS / PS Z / Z PS / NS
NS NS / PS Z / Z PS / NS PM / NM
Z NZ / PM PS / Z PM / NM PL / NL
PS PS / PM PM / Z PL / NL PL / NL
PM PM / PS PL / Z PL / NL PL / NL
PL PL / Z PL / Z PL / NL PL / NL

Table 8.2: Fuzzy controller rule-base (m-loop / u-loop).

The rule consequent can be either zero gain Kz , small gain Ks, medium
gain Km or large gain Kl. We assume the zero gain is always 0. For example,
assume e(t) = ∆e(t) = Is

2 (Is is the ceiling of small fuzzy set). Then, for both
e(t) and ∆e(t), µZ = µPS = 0.5 where µZ and µPS are the truth value of the
“Zero” and “Positive Small” fuzzy sets. Therefore the output of the m-loop is:

Kf =
0× 0.5 +Ks × 0.5 +Ks × 0.5 +Km × 0.5

0.5 + 0.5 + 0.5 + 0.5
, (8.8)

and the output of the u-loop is:

Kf =
Km × 0.5 + 0× 0.5 +Km × 0.5 + 0× 0.5

0.5 + 0.5 + 0.5 + 0.5
. (8.9)

8.5 Stability study
In control systems, stability is one of the important properties which should be
studied after designing the controller. We use the direct method of the Lya-
punov’s stability analysis [26] to study the stability of our system. Assume that
y(t) is a function representing the distance of the current budget B(t) from
the equilibrium budget Beq at sampling time t. The equilibrium budget is the
budget that the subsystem neither experiences idle time nor its tasks miss their
deadlines:

y(t) = B(t)−Beq. (8.10)

We define the Lyapunov function as follows:

V (y(t)) = y(t)2. (8.11)

8.5 Stability study 65

Now, we should prove that the following conditions are satisfied.

1. V (y(t)) = 0, if the system is in its equilibrium state.

2. V (y(t)) > 0, if the system is in other states than its equilibrium.

3. V (y(t+ 1))− V (y(t)) = y2(t+ 1)− y2(t) < 0.

From the definition of our Lyapunov function, condition 1 and 2 are obviously
satisfied. Now we need to study the third condition. From the definition of y(t)
we have:

y2(t+ 1)− y2(t) = (B(t+ 1)−Beq)2 − (B(t)−Beq)2. (8.12)

Expanding 8.12 and replacing B(t+ 1) using Equation 8.4 and 8.5 we get:

y2(t+ 1)− y2(t) = K2
fT

2
s e(t)

2 + 2KfTse(t)(B(t)−Beq). (8.13)

Using Equation 8.11 we get:

y2(t+ 1)− y2(t) = K2
fT

2
s e(t)

2 + 2KfTse(t)y(t). (8.14)

Therefore, according to the third condition the following inequality should be
valid:

K2
fT

2
s e(t)

2 + 2KfTse(t)y(t) < 0, (8.15)

which yields to the following two results:

1. sign(Kf) = −sign(y(t)) because all other variables are positive.

2. |Kfe(t)| < |2y(t)
Ts
|.

Result 1 is used in design of the rule-base meaning that when the distance from
the equlibrium budget is positive and consequently we have some idle time in
the subsytem, the gain value Kf is negative, and if y is negative and there are
some deadline misses in the subsytem Kf is positive.

Figure 8.5 shows a simple scenario that two tasks exist in a subsystem. In
this case both τ1,1 and τ2,1 are missing their deadlines, and at any sampling
time t: y(t) = x1 + x2 + x3 meaning that if we add y(t) to the current bud-
get it is guaranteed that the tasks can finish their execution times before their
deadlines. However, assuming that the controller period is proportional to the
subsystem period (see Section 8.7), the controller can sample the subsystem
at either t0, t1 or t2 depending on the controller period. The control variables
β1,1 and β2,1 at these sampling times are as follows.

66 Paper A

B
1

T
1
 D

2,1

C
1,1

C
2,1

x
1

t
1
 t

2

x
3

D
1,1

x
2

t
0

Time

Figure 8.5: The control variables in subsystem S1 of a sample system.

• At t0: β1,1 = β2,1 = 0 and
∑
τi,1∈τ1 βi,1(t0) < y(t0).

• At t1: β1,1 = x1, β2,1 = 0 and
∑
τi,1∈τ1 βi,1(t1) < y(t1).

• At t2: β1,1 = x1, β2,1 = x2 + x3 and
∑
τi,1∈τ1 βi,1(t2) = y(t2).

Hence, we conclude that: ∑
τi,s∈τs

βi,s(t) ≤ y(t) (8.16)

at any sampling time t. A similar reasoning can be done for the u-loop and
its control variable αs(t). Therefore, according to Equation 8.16 and the error
definitions we derive:

e(t) ≤ y(t)

Ts
. (8.17)

From result 2 and Equation 8.17 we derive that in order for the system to be
stable, |Kf | should be less than 2. The upper bound for |Kf | can be considered
higher than 2 depending on the controller frequency. The higher the controller
frequency the greater the gain boundary, although from the stability point of
view, it is always safe for the system to fulfill |Kf | < 2 condition.

The stability analysis gives some guidelines on how to design the rule-base
and how to configure the controller. Although we do not get exact bound-
aries on the gain value Kf , the stability study provides us with approximate

8.6 Tuning the controller using evolutionary search 67

boundaries which we use in tuning of the controller. In Section 8.6 we use evo-
lutionary search to find an optimum configuration for our controller. Indeed,
confining Kf , using the stability study in this section, limits the search space
that we need to explore and speed-ups the convergence of the search.

8.6 Tuning the controller using evolutionary
search

There are many parameters in our designed fuzzy controller that need to be
tuned. For instance the fuzzy set intervals (both in the budget controller and
in the multiplexer) are crucial parameters that should be carefully chosen. In
addition, the gain values that are used in the output of the fuzzy rule-base need
tuning. We use the GA to find the optimum parameters that maximize the
performance of the controller.

There is a set of parameters associated with each control loop. For each
loop the interval of small, medium and large fuzzy sets in addition to the three
gain values: small gain Ks, medium gain Km and large gain Kl should be
tuned. To define the set intervals we only need to consider three values (see
Figure 8.4): the ceiling of the “small” set Is, the ceiling of the “medium” set
Im and the ceiling of the “large” set Il. Note that we have different sets for
each of the loops. We show the u-loop parameters using the super script u, and
if the parameter belongs to m-loop we show it using the super script m. For
example Ku

s is the small gain value corresponding to u-loop while Km
s is the

small gain value in m-loop.
The first step in using the GA is to design the structure of the so called

chromosomes. We assume that each chromosome contains the information of
all the parameters. However, we store the information indirectly to bias the
GA. We assume that the fuzzy sets are harmonic meaning that:

Il − Im = Im − Is = Is − 0 = h,

where h is the base interval size. This assumption limits the search space and
helps the GA to converge faster, however, it might prevent it to find the absolute
optimum solution. Recall from Section 8.3.4 that the fuzzy multiplexer has two
fuzzy sets. The ceiling of the “large” set is assumed to be 1.5 × h while the
ceiling of the “zero” set is 0. In addition, assuming that Kl > Km > Ks, we
can write:

• Km = Ks + d1,

68 Paper A

 Ks
m d1

m d2
m hm Ks

u d1
u d2

u hu

Figure 8.6: Structure of the chromosomes used in the GA.

• Kl = Km + d2,

where d1 and d2 are the difference of the medium gain with the small gain and
the difference of the large gain with the medium gain respectively. Figure 8.6
illustrates the structure of the chromosomes showing that they contain all the
tunable parameters.

Designing the mutation and crossover operators are the next stage in using
the GA. We use the one point crossover operator on the randomly selected
parents from the breeding pool. The mutation point is selected randomly as
well. Thereafter, we add a random value between −0.1 and 0.1 to the selected
variable. However, there are some boundaries on the variables, for instance
none of the fields can be less than zero, therefore, if the result of the mutation
is out of the valid region we immediately conduct another mutation.

The fitness function should be designed such that it directs the generations
towards more optimum generations. We have two criteria in evaluating each
chromosome. The lower the number of deadline missed tasks, the higher the
efficiency. In addition, the amount of the idle time in the subsystems should
be as low as possible. Therefore, we use a multi-objective GA approach called
Vector Evaluated GA (VEGA) [27]. In this approach there are multiple fitness
variables associated with each chromosome based on different criteria. When
we want to select a parent, first we randomly choose the effective criterion,
meaning that the chromosomes that are fit with respect to the selected criterion
have a higher chance in being selected as a parent. Thereafter, we select the
first parent and repeat the same procedure to select the second parent. After
conducting extensive simulations we came to the conclusion that the solution
converges faster when using three objectives which are based on (i) number of
deadline misses (ii) amount of idle time (iii) combination of (i) and (ii).

Algorithm 1 shows the multi-objective GA used for tuning the parameters.
It starts by generating random chromosomes and runs the simulation using their
parameters. Thereafter it finds the fitness value of the chromosomes based on
the three objectives. Afterward, the next generation is created based on the
previous generation given that fitter chromosomes have more chance in being

8.6 Tuning the controller using evolutionary search 69

Algorithm 1: Tuning the control parameters using VEGA
for i = 0 to i = populationSize do

population(i) = random();
end for
for j = 0 to i = maxGeneration do

for i = 0 to i = populationSize do
simulation(population(i));
fitnessIdle(i) =calculateFitness(idle);
fitnessDl(i) =calculateFitness(dl);
fitnessTotal(i) =calculateFitness(total);

end for
pool = population;
for k = 0 to k = populationSize/2 do

objective = randomInt(1,3);
parent1 = selectParent(objective);
objective = randomInt(1,3);
parent2 = selectParent(objective);
crossoverPoint = randomInt(1,8);
children = crossover(parent1, parent2, crossoverPoint);
population(2*i-1) = mutate(children(1));
population(2*i) = mutate(children(2));

end for
end for

selected as a parent. The functions and variables involved in the algorithm are:

• “populationSize” is the size of population.

• “population” is an array of chromosomes.

• “random()” is a function that returns a random variable between zero
and one.

• “maxGeneration” is the number of generations that the GA tries to per-
form the optimization.

• “simulation(population(i))” given task sets, execution time change pat-
terns and the variables in the chromosome of population i performs the
simulation.

70 Paper A

• “fitnessIdle(i)”, “fitnessDl(i)” and “fitnessTotal(i)” store the fitness
value of the population i based on the idle time, deadline miss and
combination of both objectives.

• “calculateFitness()” function calculates the fitness value based on the
input objective.

• “idle”, “dl” and “total” are the thee objectives that we use in the GA.

• “pool” stores the current generation which is used to generate the next
generation.

• “randomInt(a, b)” returns an integer random variable between a and b.

• “objective” stores the randomly selected objective.

• “parent1” and “parent2” are the selected parents for the crossover.

• “selectParent(objective)” randomly selects an individual from “pool”
given the input objective meaning than the individuals that are fit with
respect to the input objective have a higher chance to be selected.

• “crossover()” does the crossover operation on its input chromosomes and
given the crossover point. It returns two children.

• “crossoverPoint” stores the gene number that the crossover should be
performed on it.

• “chidden” is an array which stores the output of the crossover operators.

• “mutate()” chooses a random mutation point and performs the mutation.

8.7 Evaluation
In this section we design a case study using real task execution times measured
from running a video decoder task on a sequence of TV frames. We use the
same data as the authors of [28], which they used for evaluating their work. We
have used the TrueTime [29] simulation tool for our evaluation purposes. The
TrueTime kernel has been modified such that our AHSF has been implemented.

In this study, we assume a system consisting of three subsystems where
each of them is composed of three tasks. Subsystem S1 is composed of a
decoder task with two other tasks having fixed execution times during run-time.

8.7 Evaluation 71

0 50 100 150
0

5

10

15

20

25

30

35

40

Frame number

E
xe

cu
tio

n
tim

e
(m

s)

High quality decoder
Low quality decoder

Figure 8.7: Execution times of the decoder tasks in two quality levels decoding
the first 150 frames of the TV stream.

Subsystem S2 contains two fixed execution time tasks and a dynamic task. The
dynamic task operates in two modes: low and high, where its execution time
is doubled when it is in the high mode. We assume that this task changes its
mode each 2 seconds. The reason that we add this task to our sample system
is to increase the pressure on the budget controllers, hence their difference
with respect to the control performance can be revealed and compared easily.
Subsystem S3 has the same type of tasks as S1. The only difference between
them is that the decoder task in S1 decodes the frames in a higher quality level
than the decoder task in S3. The execution times of the decoder tasks decoding
various frames are shown in Figure 8.7. The figure illustrates that the execution
time is fluctuating depending on the content of the frames. Table 8.3 shows the
task specifications in detail. The executions times reported for the dynamic
tasks are the mean execution times.

Three types of budget allocation techniques are studied for scheduling the
described system.

• First of all we allocate a fixed budget for each subsystem using the an-
alytical approach presented in [3]. The execution time of the dynamic
tasks are assumed to be equal to the mean value of their execution times
in the budget calculation analysis.

• Secondly, we use the PI controller [4] for dynamically allocating the

72 Paper A

τi,s/Ss Ti,s/Ts Ci,s/Cs
τ1,1 40 2.4
τ2,1 30 5
τ3,1 30 4
S1 10 2.5
τ1,2 60 8
τ2,2 50 5
τ3,2 90 4
S2 15 5
τ1,3 40 2.3
τ2,3 70 7
τ3,3 80 6
S3 20 8.5

Table 8.3: Specifications of tasks and subsystems used in the case study.

budgets.

• Finally, we use the fuzzy controller introduced in this paper which allo-
cates the budgets during run-time.

The control frequency is an important parameter which should be taken into
account when designing an adaptive scheduler. Although frequently sampling
and manipulating the environment might give a good control performance, due
to the control overhead on the CPU, it is desirable to invoke the controller in
a lower frequency. A reasonable approach for setting the control period is to
set it proportional to its subsystem period. Therefore, in the PI controller, the
controller period of each subsystem is set to be equal to the corresponding
subsystem period times two. However, since the fuzzy controller has more
overhead than the PI controller, we assign longer control periods which are
equal to the subsystem periods times six.

The fuzzy controller is tuned using the first 10 seconds of the simulation
with the help of the GA presented in Section 8.6. We started with 150 indi-
viduals and stopped the GA after 50 generations. Then we picked the best
individual from the 50’th generation which was fit with respect to the third ob-
jective (see Section 8.6). Afterwards, we ran the simulations for 200 seconds
and compared the performance of the budget allocation techniques with each
other.

Figure 8.8 illustrates the budget value of the three subsystems during run-

8.7 Evaluation 73

0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

5

0

2

4

6

8

B
1/C

1,
1

0.4 0.6 0.8 1 1.2 1.4 1.6
x 10

5

0

2

4

6

8

B
2/C

2,
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

5

0

2

4

6

8

Time

B
3/C

3,
1

PI
Fixed
Fuzzy
Dynamic task

Figure 8.8: Budget adaptation in the case study.

time, which are allocated using the three techniques. The dynamic tasks are
also shown in the figure. The y-axes of the figure shows the value of subsys-
tem budgets and the value of execution times of the dynamic tasks. Since the
execution times of the dynamic tasks are changing, the subsystem budgets (in
the case that they are adaptive) are changing as well. Note that S1 has the
highest criticality in the system and ζ1 > ζ2 > ζ3. The figure clearly shows
that assigning fixed budgets using the analysis is very pessimistic and it results
in resources being wasted, although we used the mean value of the dynamic
tasks in the analysis. Therefore, if we use the maximum execution times in the
analysis, it will give even more pessimistic budgets.

Table 8.4 summarizes the performance metrics that we are interested in
after running the simulation using the three techniques. The table shows that
a fixed budget allocation is not efficient at all since the system is overloaded,
and between the PI controller and the fuzzy controller, despite the fact that
the fuzzy controller has a longer control period, the fuzzy controller is more
successful in reducing task deadline misses. The main difference between the
performance of the two controllers is in deadline miss ratio of S2, where the
fuzzy controller managed to reduce the deadline miss ratio with an additional
approximately 6 % compared to the PI controller.

In the second simulation we modify task τ1,2 in the previous sample sys-

74 Paper A

Performance metric Technique S1 S2 S3

DL misses
Fixed 7566 3027 2
PI 44 1004 77
Fuzzy 76 335 64

DL miss ratio
Fixed 29.68 % 24.08 % 0.03 %
PI 0.24 % 9.51 % 0.97 %
Fuzzy 0.41 % 3.39 % 0.81 %

idle time
Fixed 26 2661 44175
PI 2149 6003 2393
Fuzzy 2352 4304 3037

Table 8.4: Comparison of the performance of the three budget allocation ap-
proaches. DL: deadline. idle time is in millisecond.

Controller S1 S2 S3

PI 0.24 % 17.70 % 1.33 %
Fuzzy 0.41 % 3.10 % 7.58 %

Table 8.5: Deadline miss ratio in the second simulation.

tem such that the execution time of the dynamic task is tripled in the high
mode which imposes even more pressure on the budget controllers. However,
this time we do not tune our fuzzy controller and we use the previously tuned
controller to see how well it works in a scenario similar to the one that it is
tuned to work in. The deadline miss ratio for the three subsystems is presented
in Table 8.5. The table shows that the fuzzy controller is able to reduce the
deadline miss ratio with an additional approximately 14 % compared to the
performance of the PI controller in S2, however the PI controller is 6 % better
in S3. Since the system is overloaded one subsystem should be sacrificed, and
since the PI controller is slower in adaptation, it sacrifices the higher criticality
subsystem S2 and serves the lower criticality one S3. Therefore in total the
fuzzy controller successfully schedules 8 % more tasks, and taking the critical-
ities into account, the value of avoiding deadline misses in S2 is higher than
S3.

A potential drawback with the fuzzy budget controller could be its tuning.
Since the tuning process is application specific, a tuned controller for a specific
application could be less efficient for other applications. However, the simu-
lation results suggest that the fuzzy controller works fine in relatively similar

8.8 Implementation complexity 75

dynamic scenarios to the scenario that it is tuned for. In general, the closer the
tuning scenario is to the test scenario, the better the performance.

8.8 Implementation complexity

In this section we explain the implementation complexity of the different stages
in the fuzzy budget controller.

The input values e(t) and ∆e(t) can at most belong to two neighbor fuzzy
sets. The corresponding fuzzy sets can be found by a couple of “if” state-
ments. Thereafter, their membership value should be calculated. Given the set
boundaries calculating µ requires a sum operation together with a multiplica-
tion. Afterwards, the “fuzzy and” operator should be performed on the two
membership value. The “fuzzy and” operator consist of an “if” statement. At
most four “fuzzy and” operations should be performed. Finally Equation 8.7
should be executed for the defuzzification purpose. These stages are done for
both control loops.

The fuzzy multiplexer has the same stages as the budget controller, how-
ever, since the number of fuzzy sets are fewer, finding the corresponding fuzzy
set for the input value requires less computations.

The overload controller, which only gets activated in the overload situa-
tion, consist of sum and assignment operations. The controller loops through
the subsystems, assigns a new budget to them if necessary and updates the
available CPU resource. The number of iterations in the loop is equal to the
number of subsystems in the system.

As a conclusion, given that the fuzzy controller requires running in lower
frequency than the PI controller, it does not add significant overhead when it is
implement.

8.9 Conclusion

In this paper, we studied the use of a more advanced controller (fuzzy
controller) than the conventional PI controller in our adaptive hierarchical
scheduling framework for controlling the subsystem budgets during run-time.
Thereafter, we showed how the fuzzy budget controller is tuned using a
multi-objective genetic algorithm. To study the performance of the new budget
controller we conducted a case study using video decoder tasks where the
fuzzy controller outperformed the PI controller.

76 Paper A

We intend to extend our work to the context of multi-core systems where an
adaptive hierarchical framework runs on a multi-core CPU. Furthermore, since
the control overhead is one of the main issues in our adaptive framework, we
want to deeply study this issue by implementing the controllers in the Linux
kernel.

References

[1] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In Proceedings of the 18th IEEE Real-Time Systems Sym-
posium (RTSS’97), pages 308–319, December 1997.

[2] G. Lipari and S. Baruah. A hierarchical extension to the constant band-
width server framework. In Proceedings of the 7th IEEE Real-Time Tech-
nology and Applications Symposium (RTAS’01), pages 26–35, May 2001.

[3] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proceedings of the 24th IEEE Real-Time Systems Sympo-
sium, (RTSS’03), pages 2–13, December 2003.

[4] N. Khalilzad, T. Nolte, M. Behnam, and M. Åsberg. Towards adaptive
hierarchical scheduling of real-time systems. In Proceedings of the 16th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’11), pages 1–8, September 2011.

[5] J. A. Stankovic, C. Lu, S.H. Son, and G. Tao. The case for feedback
control real-time scheduling. In Proceedings of the 11th Euromicro Con-
ference on Real-Time Systems (ECRTS’99), pages 11–20, June 1999.

[6] C. Lu, J. A. Stankovic, G. Tao, and S.H. Son. Design and evaluation of a
feedback control EDF scheduling algorithm. In Proceedings of the 20th
IEEE Real-Time Systems Symposium (RTSS’99), pages 56–67, December
1999.

[7] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Real-Time Systems,
23:85–126, 2002.

77

78 References

[8] C. Basaran, M. H. Suzer, K.-D. Kang, and X. Liu. Robust fuzzy CPU uti-
lization control for dynamic workloads. Journal of Systems and Software,
pages 1192–1204, July 2010.

[9] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzen. Feedbackfeed-
forward scheduling of control tasks. Real-Time Systems, pages 25–53,
2002.

[10] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity reserves:
operating system support for multimedia applications. In Proceedings
of the International Conference on Multimedia Computing and Systems,
pages 90–99, May 1994.

[11] A. K. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. In Proceedings of the 7th Real-Time Technology and Applications
Symposium (RTAS’01), pages 75–84, May 2001.

[12] F. Zhang and A. Burns. Analysis of hierarchical EDF pre-emptive
scheduling. In Proceedings of the 28th IEEE International Real-Time
Systems Symposium (RTSS’07), pages 423–434, December 2007.

[13] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for
real-time applications. In Proceedings of the 20th IEEE Real-Time Sys-
tems Symposium (RTSS’99), pages 256–267, December 1999.

[14] L. Almeida and P. Pedreiras. Scheduling within temporal partitions:
response-time analysis and server design. In Proceedings of the 4th ACM
International Conference on Embedded Software (EMSOFT’04), pages
95–103, September 2004.

[15] G. Lipari and S. K. Baruah. Efficient scheduling of real-time multi-task
applications in dynamic systems. In Proceedings of the 6th IEEE Real
Time Technology and Applications Symposium (RTAS’00), pages 166–
175, May 2000.

[16] G. Lipari, J. Carpenter, and S. Baruah. A framework for achieving
inter-application isolation in multiprogrammed, hard real-time environ-
ments. In Proceedings of the 21st IEEE Real-time Systems Symposium
(RTSS’00), pages 217–226, November 2000.

[17] J. Regehr and J. A. Stankovic. HLS: A framework for composing soft
real-time schedulers. In Proceedings of the 22nd IEEE Real-Time Systems
Symposium (RTSS’01), pages 3–14, December 2001.

[18] P. Goyal, X. Guo, and H. M. Vin. A hierarchical CPU scheduler for multi-
media operating systems. In Proceedings of the 2nd USENIX Symposium
on OS Design and Implementation (OSDI’96), 1996.

[19] H. Leontyev and J. H. Anderson. A hierarchical multiprocessor band-
width reservation scheme with timing guarantees. In Proceedings of the
20th Euromicro Conference on Real-Time Systems (ECRTS’08), pages
191–200, July 2008.

[20] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a
reservation-based feedback scheduler. In Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS’2), pages 71–80, December 2002.

[21] L. Abeni and G. Buttazzo. Resource reservation in dynamic real-time
systems. Real-Time Systems, 27(2):123–167, July 2004.

[22] V. Romero Segovia. Adaptive CPU resource management for multicore
platforms. Licentiate thesis, September 2011.

[23] L. Sha, J. P. Lehoczky, and R. Rajkumar. Solutions for some practi-
cal problems in prioritised preemptive scheduling. In Proceedings of the
Real-Time Systems Symposium. (RTSS’86), pages 181–191, July 1986.

[24] K.M. Passino and S Yurkovich. Fuzzy Control. Addison-Wesley, 1998.

[25] M. Sugeno. Industrial applications of fuzzy control. Elsevier Science
Pub. Co., 1985.

[26] M. Gopal I. J. Nagrath. Control systems engineering. Anshan, 2008.

[27] A. Konak, D. W. Coit, and A. E. Smith. Multi-objective optimization
using genetic algorithms: A tutorial. Reliability Engineering and System
Safety, 91:992–1007, 2006.

[28] C. C. Wust, L. Steffens, W. F. J. Verhaegh, R. J. Bril, and C. Hentschel.
QoS control strategies for high-quality video processing. Real-Time Sys-
tems, pages 3–12, 2005.

[29] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzen. How
does control timing affect performance? analysis and simulation of tim-
ing using Jitterbug and TrueTime. Control Systems, IEEE, 23(3):16–30,
June 2003.

Chapter 9

Paper B:
An Adaptive Scheduling
Framework for
Component-Based
Real-Time Systems

Nima Khalilzad, Moris Behnam and Thomas Nolte.
Under revision in Journal of Systems and Software (JSS), Special Issue on
Computers, Software, and Applications - Software Engineering in COMPSAC.

81

Abstract

Processor partitioning techniques have been widely used for scheduling
component-based hard real-time systems. Due to the safety critical nature of
hard real-time systems, conservative partition sizes are often reserved for the
components. A considerable capacity of the processor is wasted using such
conservative techniques. When designing a component-based soft real-time
system, however, conservative partitioning is unacceptable, because occasional
timing violations can be tolerated by such systems.

In this paper, we present a multi-level adaptive hierarchical scheduling
framework for scheduling component-based real-time systems. In our frame-
work, for efficiently utilizing the processor capacity, we adapt the partition
sizes of soft real-time components based on their actual needs at run-time. The
adaptation is based on on-line monitoring of the processor demand of the com-
ponents. We have implemented our framework in the Linux kernel. We present
the implementation details of our framework. Finally, we report our evaluation
results.

9.1 Introduction 83

9.1 Introduction

Component-based software development is a modular approach for design-
ing and developing complex software systems. When developing real-time
systems using the component-based development paradigm, the timing cor-
rectness as well as the functional correctness of the components have to be
carefully studied. To this end, an enormous number of works have focused
on developing scheduling mechanisms for component-based real-time systems
(e.g. [1, 2]). Similar to these studies, we consider a run-time component model
in which a component is composed of a consistent set of real-time tasks and/or
subcomponents. A real-time task is a sequential program that performs a spe-
cific functionality. Processor partitioning and reservation-based scheduling are
well established techniques for scheduling component-based systems. In these
methods, the processor time is divided into a number of partitions (also re-
ferred as reservations). Each component, then, is assigned to one processor
partition [3]. The sizes of the processor partitions are determined based on the
Worst Case Execution Time (WCET) of their inner tasks. The processor par-
titioning method allows developers to study the timing behavior of the com-
ponents in isolation. The composition mechanism guarantees that the timing
properties will be preserved after the composition. Therefore, the correctness
of the entire system is inferred from the correctness of the individual compo-
nents. This compositional timing study is especially useful in open systems in
which components are added or removed during the system’s life time [1].

While the problem of composing hard real-time systems is well studied,
composition of soft real-time systems together or with hard real-time systems
has not received as much attention. The processor partitioning for soft real-time
components has to be different from that of the hard real-time components.
This is because, the conservative processor overallocations cannot be justified
due to the softness of the timing requirements. In other words, since the soft
real-time systems can tolerate occasional timing violations, we do not need to
over-allocate the processor. Furthermore, the execution time of some real-time
tasks may be unknown a priori to run-time while being highly dynamic. For
instance, a video decoder task where its execution time is depending on the
content of the input video may experience significantly large variations in its
execution time depending on which video that is being played. Therefore, new
partitioning techniques are required to address soft real-time components with
unknown and dynamic workloads.

When it comes to the structure of the component-based systems, the sys-
tem may contain multiple levels of hierarchy. For instance consider a system in

84 Paper B

which multiple Virtual Machines (VM) sharing a processor where in order to
guarantee the timing requirements of the VMs, they are allocated to processor
partitions. In addition, inside each VM there may be a number of indepen-
dent real-time components running in parallel. In order to isolate the timing
behavior of the components, the processor share of the VMs might also be par-
titioned, and each component may be assigned to a processor partition of its
parent VM. Similarly, the components may contain subcomponents which can
result in further processor partitioning.

In this paper we propose a multi-level hierarchical scheduling scheme for
composing hard and soft real-time components. We allocate static processor
partitions to the hard real-time systems, and we adapt the sizes of the partitions
allocated to the soft real-time components. More specifically we present the
following contributions in this paper:

1. We propose an adaptation mechanism for adjusting the processor parti-
tion sizes during run-time. Through on-line monitoring, we derive the
instantaneous processor demands of the components inside the proces-
sor partitions, and based on the actual demands we adjust the partition
sizes.

2. We show that the timing isolation between the soft real-time compo-
nents and the hard real-time components are preserved using our adapta-
tion technique. In other words, we show that adapting the soft real-time
partition sizes does not affect the timing behavior of the hard real-time
partitions.

3. We present our implementation method in which we used a Linux kernel
loadable module that implements our proposed adaptive framework in
the Linux kernel.

4. We evaluate the performance of our proposed framework. In the evalua-
tion, we used video decoder tasks which exhibit wide processor demand
variations.

5. We present an overhead evaluation of the scheduler and the processor
partition adapter.

The first two contributions are presented in our previous work [4]. In this paper
we present the implementation details of our framework (third contribution).
We also provide a more extensive performance and overhead evaluations than
the our previous work (forth and fifth contributions).

9.2 Related work 85

The rest of the paper is organized as follows. In Section 9.2 we review
the related work. Our adaptive framework is presented in Section 9.3. The
details of the Linux implementation is presented in Section 9.4. We present
performance evaluations in Section 9.5. We also report the additional overhead
imposed by our framework in this section. Finally, we conclude the paper in
Section 9.6.

9.2 Related work
In this section we review three lines of work related to hierarchical scheduling,
feedback scheduling and implementation of hierarchical scheduling.

9.2.1 Hierarchical scheduling

Reservation-based scheduling has been developed for scheduling component-
based real-time systems. Hierarchical scheduling through CPU reservation
emerged in 90’s [1], where the idea was to partition the CPU into a number
of partitions (CPU reservations) and assign a partition to a component. Pro-
cessor partitioning provides temporal isolation to components, consequently,
the timing behavior of each component can be studied independently. The
partitioning also paves the way for adding and removing components without
jeopardizing the timing requirements of the other components in the system.

Researchers have proposed several modeling techniques for capturing the
timing behavior of the processor partitions (e.g., [2]). Using such models, then,
the schedulability of the components can be studied. For instance, Zhang and
Burns [5] presented a schedulability analysis for hierarchical scheduling with
fixed priority at the global level and local EDF. In [3] Shin and Lee presented
the periodic resource model in which the inner components of each partition
is guaranteed to receive B units of the CPU time each P time units. We use
the periodic resource model in our adaptive scheme. When using the CPU
partitioning approach, the common assumption is that the CPU demand of the
real-time tasks (WCET) are known a priori. Given this demand, a sufficient
partition size can be calculated such that the timing requirement of real-time
tasks are not violated. However, we assume that for soft real-time tasks the
task demands and therefore the sufficient partition sizes are unknown. Thus,
our framework is different from all conventional static hierarchical frameworks
in the sense that the partition sizes are (i) not predefined at design time, but (ii)
they are dynamic at run-time.

86 Paper B

9.2.2 Feedback scheduling

Since Stankovic et al. introduced the idea of closed-loop real-time schedul-
ing [6], there has been a growing interest in adopting feedback control tech-
niques in the context of real-time scheduling. In the following we review a
few of early publications in this area. The actual execution times of tasks may
be different than their estimations. Therefore, a system can benefit from mon-
itoring real execution times and performing admission control based on real
information rather than estimations. To this end, Lu et al. [7] presented the
Feedback Control EDF (FC-EDF) in which there is a PID controller on top of
the EDF scheduler. The controller monitors the deadline miss ratio and based
on that, it adjusts the tasks requested CPU utilization values. This adjustment
affects the available CPU utilization and therefore the admission control. In the
context of controlling physical plants, it is desirable to increase the quality-of-
control. Cervin et al. presented a feedback-feedforward scheme in which by
adapting the sampling period of tasks, the quality-of-control is regulated [8].

Multimedia tasks are in particular interesting from the timing behavior per-
spective, because they demonstrate highly dynamic execution times. In order
to ensure that the multimedia tasks receive enough CPU bandwidth, resource
partitioning is used for scheduling multimedia tasks [9]. Due to the dynamic
nature of multimedia tasks, adaptive reservation techniques are devised for
dealing with this kind of tasks. Abeni et al. proposed using a PI controller on
top of Constant Bandwidth Servers (CBS) which adapts the CBS bandwidth
such that it tracks the current workload of tasks attached to the CBS. Utilizing
adaptive CBS (with a new control scheme), Palopoli et al. presented the AQu-
oSA framework [10]. In the context of the ACTORS project [11], a cascade
controller is used on top of the hard CBS scheduling algorithm for adapting
the CBS bandwidth. Our framework is different from both AQuoSA and AC-
TORS in the following. We consider component-based systems in which one
component may be composed of multiple tasks/subcomponents, whereas the
above frameworks do not support subcomponents and multiple tasks.

Finally, we studied the problem of budget adaptation using PI con-
trollers [12] and Fuzzy controllers [13]. In our aforementioned previous
work we have investigated two-level hierarchical scheduling, however, in
this paper we present a new budget adaptation scheme which supports any
arbitrary level of hierarchy. The new scheme also takes the existence of hard
real-time systems into account and we show that adapting the soft real-time
components does not harm the hard real-time components. Moreover, in
the above papers we performed simulation-based evaluations whereas in this

9.3 Framework 87

paper we evaluate our framework by implementing our multi-level adaptive
hierarchical scheduling framework in the Linux kernel and by running real
tasks.

9.2.3 Implementation

Implementation of real-time schedulers have been widely studied (e.g.,
RTLinux [14] and RTAI [15]). However, in this paper we only review a
part of the literature that focuses either on hierarchical scheduling or on
adaptive scheduling which are closely related to our Linux implementation
contribution.

Hierarchical scheduling has been implemented in many different platforms.
Behnam et al. [16] implemented hierarchical scheduling on top of the VxWorks
operating system. Inam et al. implemented hierarchical scheduling on top of
the FreeRTOS operating system [17]. ExSched [18] is a platform independent
real-time scheduler which has a hierarchical scheduling plug-in. Hierarchical
scheduling is also implemented in µC/OS-II [19]. The above implementations
do not support run-time adaptations.

Hierarchical scheduling is also used for virtualization purposes. Recursive
virtual machines are proposed in [20] where each virtual machine can directly
access the microkernel. Yang et al. presented a two-level hierarchical sched-
uler using the L4/Fiasco hypervisor [21]. In the Xen hypervisor, Lee et al.
developed a virtualization platform [22]. A virtual CPU scheduling framework
in the Quest operating system is developed by Danish et al. [23]. In [24],
the CPU reservations are used for scheduling virtual machines. The Virtual-
Box and the KVM hypervisor are scheduled using CPU reservation techniques
in [25]. The difference of our work with this line of work is that we support
on-line adaptability and multilevel hierarchies of components.

HLS [26] is a multi-level hierarchal scheduler implemented in Windows
2000 which targets composing soft real-time systems. In [27], Parmer and
West presented a hierarchical scheme for managing CPU, memory and I/O.
These frameworks are not adaptive in the sense that the resource demands are
not monitored and hence the resource reservations are fixed during run-time.

9.3 Framework
In this section, we present the background information required for understand-
ing our framework as well as the structure of our adaptive framework and our

88 Paper B

adaptation mechanism.

9.3.1 Component model
A component (Cj) consists of mj real-time tasks (τ ji) and nj subcomponents
(Cjκ), where i and κ are the index of task and subcomponent respectively, and j
indicates their parent index. We use the term inner-elements of Cj , when refer-
ring to both tasks and subcomponents of Cj . We use idling periodic servers
for providing processor time to the components. Since each component is
assigned to a single periodic server, we use the terms component and server
interchangeably in the rest of the paper. A periodic server Sj , assigned to Cj ,
receives Bj units of the processor time every Pj time units. When the inner-
elements of Cj are not active while Sj is active, the server budget is idled.
The relative importance of Cj with respect to the other components under the
same parent is denoted by ζj . This value is used when the system is over-
loaded. In such a condition, some components have to suffer from low proces-
sor time provisioning. We use the importance value for making decisions on
which component that has to be sacrificed. We consider open systems in which
tasks/subcomponents may join/leave the component during run-time. Compo-
nents can either be Hard Real-Time (HRT) or Soft Real-Time (SRT). The HRT
components receive a fixed amount of the processor time during their life-time.
In other words, the server assigned to a HRT component has a fixed budget and
a fixed period. The amount of required budget for the HRT components is
calculated using the analysis provided in [3]. The SRT components, however,
may receive different budgets from period to period. The amount of processor
time assigned to the SRT components depends on the current processor needs
of their inner-elements.

9.3.2 Task model
In this paper we assume a periodic task model. A task τ ji is released every T ji
time units. The priority, deadline and the worst-case execution time of tasks are
denoted using prji ,Dj

i and Cji , respectively. One instance of the task execution
is called a “job”. We assume that only the HRT tasks have a known worst-
case execution time, while the execution time of the SRT tasks is unknown a
priori. Therefore, we provide sufficient processor time to the HRT tasks. The
SRT tasks, however, may occasionally miss their deadlines due to insufficient
processor provisioning. In such a case, the remaining execution of the task
will be scheduled for execution after the deadline. Note that execution until

9.3 Framework 89

completion is necessary in a group of real-time tasks such as video decoders.
In such tasks, jobs often rely on the result of the previous job’s computations.

9.3.3 System model
We assume a system comprised of n+m components of which m components
are HRT and the rest are SRT. Components may be composed of subcompo-
nents hierarchically. The scheduling is also performed hierarchically. At the
global level the CPU time is distributed among the global-level components.
Each component in turn is responsible to serve the subcomponents/tasks that
are located underneath them in the hierarchy. We provide fixed processor por-
tions to the HRT components. The processor portion of the SRT components,
on the other hand, are adjusted using budget controllers based on the current
demand of the components. Figure 9.1 illustrates our system model. The set of
SRT, HRT and all components that are located at the first level of the hierarchy
are denoted using Call, Csrt and Chrt respectively.

Considering the system hierarchy, let us present two definitions that are
used in the later sections of the paper for explaining the implementation of the
scheduler.

Definition 1. Sji is an ancestor of Slκ if either i = l or by upward traversing the
parent of Sl we reach Sji . For instance, S0

1 is an ancestor of S3
5 in Figure 9.2.

Definition 2. Sji outranks Slκ if and only if an ancestor of Sl is Sj . For in-
stance, S0

2 outranks S1
3 in Figure 9.2 because S0 is an ancestor of S1

3 .

9.3.4 Adaptation model
In the following we explain our adaptation model that is used for adjusting the
processor portions provisioned to the SRT components. We assume that the
component periods are selected by the designers. For instance, in the context of
video decoding, the period may be selected based on the number of frames re-
quired to be delivered per each second. We, then, adapt the budgets at run-time.
Therefore, the component budgets are time-variant. The budgets are adapted
periodically every P Ctrl

j time units. We assume that the adaptation periods are
proportional to the period of the servers of the components: P Ctrl

j = µ × Pj ,
where µ > 1 is an integer number. Each activation of the budget adaptation is
referred as a “control event”, and it is represented using k, where k ≥ 1. The
first control event happens at time t = P Ctrl

j . The result of each control event
is a new budget for the component. Therefore, the budget is a function of the

90 Paper B

CPU

S1
S

m
S

m+1
S

m+n

Hard RT
Comp. 1

Hard RT
Comp. m

Budget
Controller

Budget
Controller

Soft RT
Comp. 1

Soft RT
Comp. n

τ1

1
S1

1
τ1

m1
S1

n1
... ...

... ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Global Scheduler

Local Scheduler

.

.

.

Local Scheduler

Local Scheduler Local Scheduler

System

Figure 9.1: Visualization of the system model.

S
0

S
1

0 S
2

0

S
3

1 S
4

1

S
5

3 S
6

3

Figure 9.2: Example tree structure (S0 represents the root scheduler).

control event Bj(k). The component bandwidth (αj(k)) is defined as follows:
αj(k) = Bj(k)/Pj . Let us define Ψ

kj
j as the kth “control period” of Cj which

9.3 Framework 91

Figure 9.3: Visualization of the control period Ψk
j and the control event kj .

represents the following time window:

Ψ
kj
j =

(
(kj − 1)P Ctrl

j , kjP
Ctrl
j

]
.

The first control period of server Sj (Ψ1
j) is the following time interval: Ψ

kj
j =

(0, P Ctrl
j]. Figure 9.3 visualizes the control event and the control period con-

cepts. In the figure, the controller period is assumed to be four times the server
period, i.e. µ = 4.

Although components may have different control events as well as control
periods, in the rest of the paper we drop index j when referring to kj and
Ψk
j for keeping the equations simple. At each control event, our goal is to

assign a sufficient budget to the component under adaptation. Let us assume
that we know how much budget is sufficient for serving the component’s inner-
elements in the next control period. We use bj(k) to denote the amount of
the sufficient budget for Ψk+1. Additionally, we need to compensate for the
amount of backlog work that is pushed from Ψk to Ψk+1. This amount is
denoted using $j(k). Basically, the backlog is the part of component load that
has missed its deadline and it has postponed to be executed after its deadline
point. Therefore, the total budget assigned for the next control period is equal
to:

Bj(k) = λ×
(
bj(k) +$j(k)

)
, (9.1)

where λ is a coefficient that scales down the total budget in a control period
to the budget of each server period. If the control period is equal to the server
period (P Ctrl

j = Pj) then λ = 1. However, in order to decrease the control
overhead we may assign a control period that is larger than the server period.
Therefore, in the general case λ = µ−1.

92 Paper B

9.3.5 Control parameters

In order to make sense of the state of components, with respect to their pro-
cessor usage, we need to monitor some scheduling parameters referred to as
“control parameters”. Recall that the periodic servers idle their budgets when
the servers are active and the inner-elements of the components are not using
the processor capacity. To this end, we choose to monitor the consumed server
budgets. The amount of server budget used by the inner-elements of the com-
ponent is referred as the actual required budget βj . When a component wastes
some part of its budget we have βj(k) < µ×Bj(k). In such a case the budget
controller may decide to assign a smaller budget for the next control period of
this component. Figure 9.4a visualizes this parameter (βj(k)). In this figure
we assumed µ = 2, therefore at time k the controller will be triggered and it
will observe that βj(k) = x1 + x2.

βj(k) can reveal the budget excess state. We also need to detect the bud-
get deficiency problem. The budget deficiency may occur due to two different
reasons: (i) the inner tasks of the component may be suffering, i.e., tasks may
be missing their deadlines (ii) the inner subcomponents may be suffering, i.e.,
the subcomponents may not receive their assigned budgets at each period. We
use two different metrics to measure the above deficiency sources. We use the
execution part of tasks that is scheduled after its deadline point to detect sit-
uation (i). Let εji denote the amount of the execution of τ ji after its deadline.
εji can be translated as the amount of budget deficiency of its parent. For in-
stance, assume that in Figure 9.4b, τ j1 is the only task in Cj and that it misses
its deadline at Dj

1, therefore the amount of consumed budget after the deadline
εj1(k) is equal to x2. In order to detect the budget deficiency due to suffering
subcomponents (situation (ii) as described above), we can monitor the amount
of assigned budget to the subcomponents. If the subcomponents do not receive
Bjκ(k) in Ψk, i.e., the sum of used budget and idled budget in Ψk is less than
Bjκ(k), then we can conclude that the subcomponent is suffering from a bud-
get deficiency. We represent the amount of unallocated budget to Cjκ using δjκ.
Note that δjκ is the amount of budget that the parent was suppose to provide to
its child, however due to the parent’s budget deficiency it is not provided.

Backlog workload ($j(k))

The backlog workload, for a component, is produced when either a task misses
its deadline or a subcomponent receives a budget less than its assigned budget.
In the former case, the task executes εji time units after its deadline. Similarly,

9.3 Framework 93

Bj
Tj

k

Ψk

Bj

x
2

x
1

β
j
(k)=x

1
+

x

2

β
j

idle

(a) Actual required budget βj(k).

Bj
Tj

k

Ψk

Bj

x
2

x
1

β
j
(k)=x

1

ε
1

j(k)=

x

2

ε
1

j

idle

D
j
1

β
j

(b) Execution after deadline miss εji (k).

Figure 9.4: Visualization of the control parameters.

when a subcomponent is suffering from a budget deficiency its inner workload
will be postponed to the next server period. If Cjκ receives δjκ less budget than
its assigned budget, then δjκ workload is postponed to the next server instance.
These workload backlogs result in pushing forward the workloads of the next
instances. In order to stop this domino effect, we choose to compensate for the
backlog workloads at each control event. Therefore, we can derive the amount
of backlog workload of Cj from Ψk that should be compensated in Ψk+1:

$j(k) =
∑
i∈Sj

εji (k) +
∑
κ∈Sj

δjκ(k). (9.2)

94 Paper B

Using the unassigned budgets for calculating the backlog of the subcomponents
allows our approach to be easily applicable for any arbitrary number of levels
of hierarchy in the system.

When $j(k) > 0 and βj(k) < µ×B(k − 1)

Components’ inner-elements may be suffering from a budget deficiency while
the component is idling some budget in the same control period. The follow-
ing two reasons may give rise to the above situation: (i) when the server period
is not aligned with the period of the inner-elements; (ii) when the component
workload is first decreased and then increased. In either of the above situa-
tions the component’s budget has to be increased for the next control period.
Therefore, at each control event, we first calculate the backlog workload using
Equation 9.2. Afterwards, if $j(k) > 0, then the actual required budget is
overwritten: βj(k) = µ×Bj(k) +$j(k). The above action means that in the
case that backlog exists, the required budget was $j(k) units more than the
assigned budget. Since we use the series of actual required budgets for predict-
ing the future workloads, overwriting βj(k) gives a signal to the controller to
increase the budget for the next control periods.

9.3.6 Estimating the future workload

Our budget adaptation mechanism, presented in Equation 9.1, is based on the
assumption that the workload of the next control period is known a priori.
However, before running the components we do not have information about
its future workload. To this end, inspired by the AQuoSA framework [10], we
use a workload predictor in our framework. The workload predictor estimates
the workload of the next control period based on the observed previous work-
loads. We use the past observed workloads for estimating the next workload
of Cj . We model the CPU demand of the tasks using the Autoregressive (AR)
model, therefore considering h previous βj(k) we have:

bj(k) =

k−1∑
k−h

wkβj(k) + ek, (9.3)

where wk is the weight of observation k and ek is a Gaussian white noise.

9.3 Framework 95

9.3.7 Dealing with overload situations
In some control periods, the system may become overloaded; that is, the sum
of the suggested component utilizations may become more than the schedula-
bility threshold provided by the parent component. For instance, assume we
use EDF at the root level, the schedulability threshold is one. If the sum of
the utilization of the components at the root level, based on the new budget
suggestions becomes more than one, then the system becomes overloaded. In
the overload situations, the schedulability of the HRT components will not be
guaranteed anymore. To this end, we detect overload situations, and we take
measures to prevent the overload situations.

We use the following procedure to detect and to prevent the overloads. We
first measure the available budget for the component avjκ(k) by excluding the
bandwidth of the other components from the bandwidth of its parent αj(k):

avjκ(k) = αj(k)−
∑

q∈Cj∧q 6=κ

αq(k).

Thereafter, the maximum possible budget is calculated by only excluding the
bandwidth of the higher importance components from the parent’s bandwidth:

majκ(k) = αj(k)−
∑

q∈Cj∧ζq>ζκ

αq(k).

Finally, the component’s new budget newjκ(k) is derived using Equation 9.1.
Based on the values of newjκ(k), avjκ(k) andmajκ(k) the following three cases
can happen:

1. newjκ(k) ≤ avjκ(k): in this case we have enough bandwidth, therefore,
the controller assigns the new budget to Cκ: Bjκ(k) = newjκ(k).

2. avjκ(k) < newjκ(k) ≤ majκ(k): in this case we do not have
enough bandwidth, however, we can make enough room for the
component by stealing bandwidth from the lower importance
components. Therefore, the controller assigns the new budget to
the component (Bjκ(k) = newjκ(k)) but it needs to compensate
∆B(k) = Bjκ(k) − avjκ(k) by taking the bandwidth from lower
importance components. The budget stealing process is done in the
reverse order of the component importances, i.e., we start from the
lowest importance component, if it does not have enough bandwidth for
compensating the stolen bandwidth, then we take all of its bandwidth

96 Paper B

and we move to the second lowest importance component to compensate
for the remaining stolen bandwidth. This process continues until ∆B(k)
is completely compensated.

3. newjκ(k) > majκ(k): in this case, the suggested budget cannot be as-
signed, however, we can assign the maximum possible budget and shut
down all lower importance components. The controller assigns majκ(k)
to the component (Bjκ(k) = majκ(k)) and similar to case (2) it compen-
sates ∆B(k) by stealing budget from the lower importance components.

In the following we provide an example for further elaborating on our strategy
in dealing with overload situations.

Example 1. Assume a system composed of three SRT components C1, C2 and
C3 where ζ1 > ζ2 > ζ3, P1 = P2 = P3 = 10, B1(k − 1) = 5, B2(k − 1) = 3
and B3(k − 1) = 2. At control event k the controller decides to increase the
budget of C2 to four. Therefore, we have: new2(k) = 4, av2(k) = 3 and
ma2(k) = 5. In this situation, the controller assigns B2(k) = new2(k) = 4
and decreases ∆B(k) = 1 from B3(k), hence, we will have B1(k) = 5,
B2(k) = 4 and B3(k) = 1.

9.3.8 Mode change
We provided timing isolation between the HRT and SRT components by (i)
using a reservation-based scheduling technique namely periodic servers; (ii)
preventing overload situations using the above technique. In the following
we point out a scenario in which the timing isolation may be violated despite
using the above two strategies. The timing isolation violation may jeopardize
the schedulability of the HRT components.

Example 2. Assume a system composed of the following three components.
One HRT component (C1) and two SRT components (C2 and C3) with the same
period P1 = P2 = P3 = 10. The schedule of this system is depicted in
Figure 9.5. The initial budgets are as follows: B1 = 5, B2 = 3 and B3 = 2.
An adaptation takes place at time tM and the controller decides to change the
budgets as follows: B2 = 2 and B3 = 3. As a result of this adaptation, B1

which is an HRT component does not receive its five budget units in time. This
example shows that the timing isolation may be violated if adaptation is not
done carefully at right moments.

The above problem is similar to that one of the multi-mode real-time sys-
tems in which a system is schedulable in two modes while it is unschedulable

9.3 Framework 97

t
M

T

B
2

B
3

B
1

Figure 9.5: Mode change hazard.

during the transition. In the following we propose two solutions for solving
this problem.

Using only one SRT component at the root level

A simple way to avoid this problem is to have only one SRT node at the root
level (Cs) and make sure that Bs ≤ U ′×Ps where U ′ is the maximum proces-
sor utilization that is available for the SRT components. Assuming EDF at the
root level we have:

U ′ = 1−
∑
j∈Chrt

αj ,

where Chrt is the set of all HRT components at the root level of the hierarchy.

A mode change protocol

In the multi-mode real-time literature [28] two types of protocols are proposed
for a safe mode change in which the schedulability of the transition is guaran-
teed (i) synchronous protocols (ii) asynchronous protocols. The synchronous
protocols do not allow release of the new-mode tasks until the old-mode tasks
have finished their executions. This type of protocols is not desirable for our
system because our aim is to increase the system performance, while the re-
lease delays will introduce some utilization loss. The asynchronous protocols,
on the other hand, only provide a test for the schedulability of the transition
phase. We propose a protocol which introduces a delay for increasing the
budgets and we prove that it can guarantee the schedulability of the transition
phase.

98 Paper B

For a safe mode change the first condition is to have the system schedulable
both in the old-mode and in the new-mode. Assuming that we use EDF as our
global scheduler, we must have:

∀ k
∑
j∈Call

Bj(k)

Pj
≤ 1.

However, since the utilization of the HRT components is fixed we can exclude
it and only check the condition for the utilization of the SRT components.
Therefore:

Condition 1.
∀ k

∑
j∈Csrt

Bj(k)

Pj
≤ U ′.

Let us assume that the mode change happens at tM , then we should show
that in all time windows (t0, t1] where t1 − t0 = L and t0 < tM < t1, the
following condition holds:

Condition 2.
dbf(Csrt, L) ≤ U ′ × L,

where dbf returns the maximum processor demand of its input component set
during its input time window. Given that we know the budgets in each mode,
we can find an upper bound for dbf:

dbf(Csrt, L) ≤ L×
∑

j∈Csrt ∧ k∈(t0,t1]

max
(
Bj(k)

)
Pj

.

Consequently, it is sufficient to show:

∑
j∈Csrt ∧ k∈(t0,t1]

max
(
Bj(k)

)
Pj

≤ U ′.

Since we use periodic servers it is safe to evaluate time windows with the fol-
lowing length range:

0 ≤ L ≤ LCM(Csrt),

where LCM returns the least common multiple of the periods of its input com-
ponent set. The LCM might be a large number, therefore similar to [29] we can

9.4 Implementation 99

find a smaller range for L. However, this problem is out of the scope of this
paper. According to Condition 2 the maximum processor demand in the tran-
sition phase depends on the maximum of the budget in the two modes. In the
following we introduce our mode change protocol. Since we avoid overload
situations using the mechanism explained earlier in this section, Condition 1 is
always fulfilled. Therefore, in designing the mode change protocol we should
address Condition 2. Note that the above conditions are barely used for ex-
plaining the rational behind our mode change protocol and they are not meant
to be checked at run-time.

The Decrease, Wait, Increase (DWI) protocol: At each mode change
there are two types of changes: (i) the budget of some components should be
increased (Cinc) (ii) the budget of some other components should be decreased
(Cdec). The budget decreases are performed immediately. Afterwards, we wait
for the LCM of Csrt periods. Finally, the budget increases are performed. Note
that in contrast to the synchronous mode change protocols, the DWI protocol
does not delay the release of the servers and it only delays the budget increases.

Lemma 1. The DWI protocol fulfills Condition 2.

Proof. We prove the lemma by contradiction. Assume that the system is
changing its mode from mode one with budget Bj to mode two with budget
B′j , and also assume that Condition 2 does not hold, hence:

∃ W
∣∣∣W ≤ LCM(Csrt) ∧

∑
j∈Csrt∧k∈W

max
(
Bj(k)

)
Pj

> U ′.

Given that Condition 1 holds in both modes:

∃ W , i , j , k
∣∣∣W ≤ LCM(Csrt) ∧ Bdecj (k) = Bj ∧ Binci (k) = B′i,

however, according to the DWI protocol there is at least LCM(Csrt) time units
distance between Bj and B′i and they can not happen in the sameW . Hence,
Lemma 1 is proved.

9.4 Implementation
We have implemented our framework in the Linux kernel. In this section we
present the implementation details of our Linux kernel loadable module, called

100 Paper B

Adaptive Hierarchical Scheduling (AdHierSched) module1. Our aim was
to implement the framework without modifying the Linux kernel. Therefore,
we used a similar idea to [18] in which the kernel loadable modules are used
for performing real-time scheduling. Basically, the module plays a middleware
role between real-time tasks and the Linux kernel. The module has full con-
trol on releasing, running and stopping the real-time tasks. When a task has
to run, AdHierSched inserts it into the Linux run queue and changes its
state to running. However, when it wants to stop a task, it removes the task
from the Linux run queue and the task goes to the sleep state. Consequently,
we keep at most one real-time task (priority 0 to 99) in the Linux run queue
at any point in time. Regardless of the selected Linux real-time scheduling
class, the schedule() system call will always select the single real-time
task that is in the Linux run queue if it exists. Otherwise, background tasks
(i.e., non-real-time tasks) get a chance to execute. Figure 9.6 puts the role of
the AdHierSched module into perspective by illustrating its relation with
the Linux run queue.

We use the low-resolution timers available in kernel/timer.c for
managing the time triggered scheduling events. We use one timer per task
for handling the task releases. We also use two timers per server for server
release and budget depletion events. AdHierSched does not have a release
queue and instead it delegates the job of the release queue to the Linux timer
list. Since the Linux timer list is implemented using the red-black trees, when
the number of timers increases, retrieving and inserting them are still efficient
(O(logn)). The timers are inserted using the setup timer on stack and
mod timer system calls, and removed using the del timer system call.
We use the jiffies variable available in the kernel which return the current
time for converting the relative scheduling parameters to absolute parameters.

The AdHierSched module uses a task descriptor as well as a server
descriptor for storing parameters corresponding to the tasks and servers.
The task descriptor is presented in Code Snippet 2. The period timer
member (line 17) is used for periodically release of the tasks. We set the
period timer to the next release of the task when the task finishes its
current job. Each AdHierSched task points to a Linux task (line 16). Tasks
may be attached to a periodic server (line 18). We use two members for storing
the adaptation related parameters: dl miss in line 7 and dl miss amount
in line 15. The timestamp member is used for measuring the duration of
the scheduling events such as the duration that tasks are assigned to the CPU.

1The source code is available at:
http://www.idt.mdh.se/˜adhiersched.

9.4 Implementation 101

AdHierSched Run Queue

AdHierSched Scheduler

Linux Run Queue

AdHierSched Module

L
in

ux
 K

er
ne

l
Real-Time Tasks

Linux Scheduler

Figure 9.6: AdHierSched module.

The server descriptor is presented in Code Snippet 3. We store a pointer
variable pointing to the scheduling elements, i.e. tasks and servers, that are
inside the server (children member in line 3). The control period
field in line 7 stores the period of the budget adaptation (P Ctrl). We store the
remaining budget in current budget. The fields from line 14 to line 16
are used for the budget adaptation purpose. The servers have their own ready
queues (line 18). At each point in time, the ready queue contains the child tasks
and servers that are ready to run. The period timer is used for periodical
release of the servers. The budget timer is used for handling the budget

102 Paper B

Code Snippet 2: Task descriptor.
1: struct Task {
2: struct list head head;
3: int id;
4: int priority;
5: int state;
6: int cnt; /* job number */
7: int dl miss; /* number of deadline misses */
8: int missing dl flag;
9: unsigned long period;

10: unsigned long release time;
11: unsigned long exec time;
12: unsigned long relative deadline;
13: unsigned long abs deadline;
14: unsigned long timestamp;
15: unsigned long dl miss amount;
16: struct task struct *linux task;
17: struct timer list period timer;
18: struct Server *parent;};

depletion events.
We have implemented two types of timer handlers corresponding to the

release events and the budget depletion event. Each type is implemented in a
separate function. We have defined a generic type called “scheduling element”
which covers both tasks and servers. The element is the building block of our
ready queue. The ready queues store the scheduling elements in the order of
their priority. The ready queue is implemented as a linked list through the
list head structure available in the Linux kernel. We have implemented
two functions for inserting/deleting an element to/from queue:

• insert queue(queue, element)

• delete queue(element)

When the scheduling policy is fixed priority, the insert queue function
inserts the new elements based on their priorities. On the other hand, when
the scheduling policy is EDF, the insertion to the ready queue is based on the
abs deadline of the scheduling elements. Note that we use multiple ready

9.4 Implementation 103

Code Snippet 3: Server descriptor.
1: struct Server {
2: struct list head head;
3: Children children;
4: int id;
5: int priority;
6: int cnt; /* number of jobs */
7: int control period;
8: int importance; /* ζ*/
9: unsigned long budget;

10: unsigned long period;
11: unsigned long relative deadline;
12: unsigned long abs deadline;
13: unsigned long current budget;
14: unsigned long consumed budget;
15: unsigned long extra req budget;
16: unsigned long total budget;
17: unsigned long timestamp;
18: struct Queue *ready queue;
19: struct timer list period timer;
20: struct timer list budget timer;
21: struct Server *parent; };

queues (one queue per server). Let qji represent the total number of elements
that belong to Cji . The complexity of the insertion to the queue is O(qji).

At each scheduling event at most two insertions are required. If the newly
released element can preempt the already running element, then we need to
stop the running task and the active server. Both the task and the server are
inserted into their corresponding ready queues (two insertions). On the other
hand, if the released element cannot preempt the running element, then we only
need to insert the newly released element into its corresponding ready queue.
Retrieving elements from the queues is done with constant time complexity.
Let dmax represent the maximum depth of the system model, i.e. the hierarchy
depth. Retrieving the running task at each scheduling event is done with com-
plexity of O(dmax). Assuming that qmax represents the maximum number of
elements in all components, then the complexity of the entire scheduling event
is O(qmaxdmax).

104 Paper B

9.4.1 Communication between tasks and AdHierSched

We use a device file as a communication medium between the tasks and
AdHierSched. A number of API functions are provided by AdHierSched.
The API functions use the ioctl() system call for the communication pur-
pose. When the message is delivered to the AdHierSched module, it relays
the message to the message’s corresponding function. Table 9.1 presents
the list of provided API functions. In the following we explain some of
the API functions. We believe the names of the rest of the functions are
self explanatory. All of the defined servers and tasks are released when
AdHierSched receives a run() message. In doing so, all scheduling
elements are released synchronously. The stop() function first stops
inserting new timers to the timer list, i.e. it stops the release events. Secondly,
it calls the wake up process() system call for all of the tasks that are
still running. In other words, when the stop() function is called, the
AdHierSched module no longer operates and Linux takes the complete
responsibility of scheduling the real-time tasks. Jobs need to report their
execution end to AdHierSched. Therefore, at the end of job executions the
task finish job(task id) function should be called. This call indeed
changes the task status to sleep until the next release of the task. Note that it is
possible to add/remove tasks and servers through the API functions while the
module is running.

run()
stop()

create task()
detach task(task id)
release task(task id)

task finish job(task id)
detach server(server id)
release server(server id)

attach task to mod(task id)
create server(queue type, server type)

attach server to server(server id, server id2)
attach task to server(server id, task id, server type)

set task param(task id, period, deadline, exec time, priority)
set server param(server id, period, deadline, budget, priority, server type)

Table 9.1: List of provided API functions by AdHierSched library.

9.4 Implementation 105

9.4.2 Configuration and run
The API functions make it possible to configure the system such that the
component structures as well as the system structure is implemented. In
other words, we can create components, attach tasks to the components
and attach subcomponents to the parent components. Once the system
design is done, we need to attach Linux tasks to AdHierSched using the
attach task to mod(task id) API function. A sample task structure
is presented in Code Snippet 4.

Code Snippet 4: Sample task structure.
1: int main(int argc, char* argv[]){
2: task id = atoi(argv[1]);
3: attach task to mod(task id);
4: while i < job no do
5: /* periodic job */
6: task finish job(task id);
7: end while
8: detach task(task id);
9: return 0; }

As mentioned earlier, we call the run() function for starting the module.
When AdHierSched receives a run() call, it releases all servers and tasks
and then tries to run them. Among all released scheduling elements at the root
level of the hierarchy, the one that has the highest priority or shortest dead-
line (depending on the global level scheduling policy) will be assigned to the
CPU. If a component is assigned to the CPU, it will try to run an element from
its local ready queue. If from the component’s ready queue a subcomponent
receives the CPU, the local ready queue running operation continues until the
scheduler decides to run a task. As soon as server Sji becomes active, we insert
its corresponding budget depletion timer (budget timer) to be invoked at
time tdep, where:

tdep = jiffies +Bji (k),

where Bji (k) is the current budget of Cji . When the jiffies is equal to tdep,
the budget depletion timer handler is invoked. The handler deactivates its cor-
responding server (Sji) and all of its child servers. If Sji is an ancestor (see
Definition 1) of the active server, we also stop the active server. After deac-
tivating the servers, we need to check the running task to see if its server is

106 Paper B

deactivated or not. In case that its parent server is deactivated, the running task
is also stopped. Finally, the timer handler runs the first element that is in the
ready queue of Sj (the parent of the server whose budget is depleted). When a
server is stopped (either because of its parent budget depletion or because of a
preemption), its remaining budget is updated. We have the following schedul-
ing events in the system.

• task and server release

• server budget depletion

• task finishing its job

• task and servers leaving the system

Since AdHierSched implements hierarchical scheduling, we use a ready
queue per component. Additionally, we have a global ready queue in which
the root level elements are placed. Each scheduling element belongs to a ready
queue. When an element causes a scheduling event, the event takes place at its
corresponding ready queue. At task release events, we first compare the active
ready queue with the ready queue of the released task. If the active ready queue
is different than the one that the task belongs to, then the released task waits
until its parent component is activated. When a server is released, it should
wait unless one of the following conditions hold in which the released server
is allowed to preempt the active server or the running task.

• The server’s parent is active and the released server can preempt (due to
a higher priority/earlier deadline) the running/active scheduling element.

• The released server outranks (see Definition 2) the active server.

9.4.3 Budget adaptation

We have implemented a function for performing the budget adaptations. This
function is called at certain server release events (depending on the control
period P Ctrl). When calling the budget adapter function, the pointer to the caller
server structure is passed to the function. The control variable βj(k) is stored in
the consumed budget field. On the other hand, the extra req budget
fields stores accumulation of both δjκ and εji variables.

9.5 Evaluations 107

9.5 Evaluations

In this section, we present our evaluations. We used an Intel Core i5-3570 pro-
cessor clocked at 3.40 GHz in which only CPU 0 is active. Our hardware is
equipped with 8 GB of memory. In addition, Ubuntu 12.04.4 with Linux ker-
nel version 3.13.7 is used in the evaluations. The scheduler resolution (system
tick) is set to one millisecond. The weight values of the workload predictor
(Equation 9.3) are all set to 1/h, where h is the number of observed actual
required budgets. We set ek = 1/2 × std(βj(k), h) where std returns the
standard deviation of its h previous βj(k). Since the controller has low over-
head (see Section 9.5.5) we set µ = 1. We first design a sample component.
We, then, use this component to perform the evaluations. We have evaluated
our framework in different settings. First, we studied the performance under
different history length settings (h). We, then, studied the performance un-
der different server period settings. Afterwards, we studied the scalability by
varying the number of components. Finally, we created a three-level hierar-
chical system, and we evaluated the effect of hierarchy depth assuming both
adaptive and fixed budget allocations. The experiment duration was 100s in all
settings. We use the following three evaluation metrics in this section. (i) The
task deadline miss ratio, that is, the number of jobs which have missed their
deadline divided by the total number of released jobs. (ii) Control overhead,
which is, the accumulative time spent executing the budget controller func-
tion. (iii) Overall overhead, that is, the accumulative time spent on running the
hierarchical scheduler as well as the budget controller function.

Component 1 (Vision component). We consider a SRT component C1 consist-
ing of three tasks: τ1

1 , τ1
2 and τ1

3 . τ1
1 and τ1

2 are video decoder tasks while τ1
3 is

a static task. This component could, for instance, represent a vision component
of a robot which analyses two video streams each related to a different camera
(τ1

1 and τ1
2). This component also has a task (τ1

3) which performs a fixed num-
ber of instructions on the result of decoded frames at each period. We assume
that the tasks within the component are scheduled using the EDF scheduling
policy. The execution time of τ1

3 was 5ms. The execution time distribution of
τ1
1 and τ1

2 is presented in Figure 9.7. We assume T 1
1 = 80ms, T 1

2 = 40ms and
T 1

3 = 100ms.

108 Paper B

0 5 10 15 20 25 30 35
0

50

100

150

200

250

Execution time

Execution time distributio of τ
1
1

0 5 10 15 20 25 30 35
0

50

100

150

200

250

Execution time

Execution time distributio of τ
2
1

Figure 9.7: The distribution of the execution times of the decoder tasks of the
vision component.

9.5.1 One component

We used Component 1 for evaluating the budget adapter module. We created
a periodic server with period equal to 50ms, and we let the budget controller
adapt the budget during run-time. We have performed the evaluations using dif-
ferent history lengths (h). Figure 9.8 shows the budget adaptations for different
values of h. The figure shows that when using small values of h, the budget
adapter responds to transient demand changes faster than the adapters that use
large values of h. In particular, when we have a drop in the workload in the
beginning of the experiment (after the first second), it is easy to observe that
lower values of h provide faster responses. However, faster responses to the
transient workload changes does not necessarily correspond to lower deadline
miss ratio. We show the deadline miss ratio as well as the control overhead cor-
responding to different values of h in Figure 9.9. This figure shows that there
is a significant reduction in the deadline miss ratio when increasing h from 5
to 10, while further increments do not have a significant effect on the deadline

9.5 Evaluations 109

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
20

25

30

35

40

45

50

Time (ms)

B
ud

ge
t

B(k), h=5
B(k), h=10
B(k), h=15

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
20

25

30

35

40

45

50

Time (ms)

B
ud

ge
t

B(k), h=20
B(k), h=25
B(k), h=30

Figure 9.8: The evolution of the assigned budget corresponding to different
values of h.

miss ratio. This may be due to the fact than the estimator with h = 5 is too
sensitive to transient changes in the load. As a result, when the load is reduced
transiently, the estimator decreases the budget. Thereafter, when the load is
increased again, the controller will need a number of sampling periods to in-
crease the budget to a sufficient amount which results in a number of deadline
violations. On the other hand, the control overhead is linearly increased with
h. Therefore, considering both the deadline miss ratio and the overhead, we
select h = 10 for the rest of the experiments.

For a group of soft real-time tasks, missing the deadline point may be ac-
ceptable given that the tasks finish their job execution close enough to their
deadline points. We use the notion of job tardiness (Θi) [30] which shows
the distance of a job deadline point and the end of its execution. If a task τi
misses its deadline, then we have Θi < 0, while Θi ≥ 0 means that the task
has finished its execution in time. Figure 9.10 shows the tardiness of the tasks
within the vision component related to the above experiment. Let min(Θj

i)

represent a function which returns the minimum observed value of Θj
i . We had

min(Θ1
1) = −89ms, min(Θ1

2) = −75ms, and min(Θ1
3) = −105ms. There-

110 Paper B

5 10 15 20 25 30 35 40
0

2

4

h

D
ea

dl
in

e
m

is
s

ra
tio

 (
%

)

5 10 15 20 25 30 35 40
0

0.5

1

1.5

h

O
ve

rh
ea

d
(m

s)

Figure 9.9: The deadline miss ratio and the control overhead for different val-
ues of h.

fore, given the period of the video decoder tasks (T 1
1 = 80ms, T 1

2 = 40ms),
both tasks were at most two frames behind their schedule.

9.5.2 Varying the server period

In a new set of experiments, we studied the effect of varying the server pe-
riod on the system performance. Figure 9.11 illustrates the effect of increasing
server period on the following three variables: (i) deadline miss ratio; (ii) the
overhead imposed to the system by the budget controller, (iii) the overall over-
head including the scheduling overhead and the control overhead. Our conclu-
sion from this experiment is as follows. The deadline miss ratio is sensitive to
the server period, and the controller cannot compensate for poor period assign-
ments. Besides, although a short server period imposes slightly higher over-
head than the large server periods, the deadline miss ratio rises significantly
with the increase of the period. Therefore, the system designers should care-
fully study the performance of the components under different server periods.

9.5 Evaluations 111

0 1 2 3 4 5

x 10
4

0

50

100

Time (ms)

θ 11 (
m

s)

0 1 2 3 4 5

x 10
4

0

50

100

Time (ms)

θ 21 (
m

s)

0 1 2 3 4 5

x 10
4

0

50

100

Time (ms)

θ 31 (
m

s)

Figure 9.10: Tardiness of the three tasks inside the vision component assuming
h = 10.

40 45 50 55 60
0

5

10

Server period (P
1
)

D
ea

dl
in

e
m

is
s

ra
tio

 (
%

)

40 45 50 55 60
0

1

2

Server period (P
1
)C

on
tr

ol
le

r
ov

er
he

ad
 (

m
s)

40 45 50 55 60
0

50

100

Server period (P
1
)

O
ve

ra
l o

ve
rh

ea
d

(m
s)

Figure 9.11: Deadline miss ratio, budget controller overhead and overall over-
head against server period variations.

112 Paper B

9.5.3 Higher number of components

We conducted another set of experiments to study the scalability of our frame-
work. In these experiments we varied the number of components from one to
four. In other words, we conducted four experiments. In the first experiment
we used one component, in the second experiment we used two components,
and similarly in the third and forth experiments we used three and four compo-
nents. We used the same component as the previous experiments. However, we
scaled down the execution times in order to be able to integrate four compo-
nents on the processor. We assigned the following periods to the server of the
components: P1 = 35ms,P2 = 40ms,P3 = 45ms,P4 = 50ms. We assumed
the following importance order for the components: ζ1 > ζ2 > ζ3 > ζ4.

Figure 9.12 shows the deadline miss ratio experienced by the components
in the above four experiments. In all of the experiments C1 experienced the
lowest deadline miss ratio. This is because C1 has the highest importance
among all other components. Therefore, in overload situations, this compo-
nent is favored over the other components. Figure 9.13 shows the control over-
head, the overall overhead, and the number of overload situations observed in
the above experiments. The overall overhead reflects the accumulative value
of control overhead and the scheduling overhead imposed by using our frame-
work. Note that when we had four components, the control overhead is in-
creased because of the following two reasons: (i) the number of invocations
of the budget controller is increased due to the additional component; (ii) the
overload controller is executed several times. Moreover, since the system is
overloaded, the lowest importance component experienced the most deadline
violations among all components.

9.5.4 Three-level hierarchical system

We considered a system composed of four components. The structure of this
system and its specification is presented in Figure 9.14 and Table 9.2 respec-
tively. Note that we use one server per each component i.e., Sji contains Cji .
The period and initial budget values reported in the table are all in milliseconds.
We assumed the following importance order for the components ζ2

3 > ζ2
4 .

Therefore, in overload situations the controller will steal bandwidth from C2
4

and give it to C2
3.

In this experiment we created an overload situation to evaluate our frame-
work in such a situation. First we ran the system with enabled budget con-
troller. In this setting C2

3 experienced 2.65 % deadline miss ratio, while C2
4

9.5 Evaluations 113

1 2 3 4
0

5

10

15

20

Number of components

D
ea

dl
in

e
m

is
s

ra
tio

 (
%

)

Component 1
Component 2
Component 3
Component 4

Figure 9.12: The deadline miss ratio of corresponding to the four experiments
with one to four components.

1 2 3 4
0

10

20

Number of components

O
ve

rh
ea

d
(m

s)

1 2 3 4
0

100

200

Number of componentsO
ve

ra
ll

ov
er

he
ad

 (
m

s)

1 2 3 4
0

500

1000

Number of components

N
um

be
r

of
 o

ve
rl

oa
ds

Figure 9.13: The control overhead, overall overhead, and the number of over-
load situations corresponding to the four experiments.

114 Paper B

EDF scheduler

Processor

FP scheduler

𝜏1
1 𝜏2

1

Component 1

EDF scheduler

EDF scheduler

𝜏1
3 𝜏2

3 𝜏3
3

Component 3
2

EDF scheduler

𝜏1
4 𝜏2

4 𝜏3
4

Component 4
2

Component 2

Figure 9.14: The structure of the assumed system.

Hard-Soft Type Pj − T ji Bj(0)
S1 HRT server - 100 39
τ1
1 HRT task static 200 31
τ1
2 HRT task static 400 31
S2 SRT server - 10 6
S3 SRT server - 35 8
τ3
1 SRT task decoder 80 -
τ3
2 SRT task decoder 40 -
τ3
3 SRT task static 100 -
S4 SRT server - 40 10
τ4
1 SRT task decoder 35 -
τ4
2 SRT task decoder 40 -
τ4
3 SRT task static 100 -

Table 9.2: Specification of servers and tasks used in the evaluation of the three-
level hierarchical example.

9.6 Conclusion 115

experienced 53.92 % deadline miss ratio.
In a new experiment, we used the average assigned budgets by the con-

troller in the above setting, and we assigned fixed budgets to the components.
The result was 1.71 % deadline miss ratio for C3 while the tasks within C4

missed all of their deadlines. This is due to the fact that in the beginning of
the experiment the jobs miss their deadlines and a backlog was created. Since
the backlog was never compensated, the workload kept accumulating and all
jobs finished after their deadlines. This experiment reveals that assigning fixed
budgets may significantly degrade the performance of the system.

9.5.5 Overhead

The maximum observed control overhead throughout our experiments cor-
responds to the cases where we had four components (Subsection 9.5.3
and 9.5.4). In the case of two-level components approximately 0.01 % of
the experiment time was spent on executing the budget controller function.
Considering the overall overhead, 0.16 % of the experiment time was spent
on executing the adaptive hierarchical scheduling framework code. Note that
our measurements excluded the Linux scheduler overhead that is responsible
to assign the real-time tasks to the CPU. Therefore, we did not include the
context switch related overhead. Basically, we measured the overhead that
AdHierSched adds to the scheduler. We measured the overhead using
time stamps that monitored the execution length of the timer handlers and the
task finish job(task id) API function.

The scheduling overhead (excluding the budget controller) observed in the
four component three-level hierarchical experiment was 0.03 % more than the
scheduling overhead of the four component two-level experiment. This ob-
servation suggests that increasing the hierarchy depth increases the scheduling
overhead, however, the overhead increase is insignificant.

9.6 Conclusion
In this paper we presented a multi-level adaptive hierarchical scheduling frame-
work for scheduling real-time systems developed using the component-based
software development paradigm. In our framework, we assign adaptive CPU
partition sizes to soft real-time components based on feedbacks from their
workload status. We showed that by imposing a negligible overhead (less than
0.2 % of the CPU time in a system consisting of four components) we are able

116 Paper B

to serve real-time components such that they reach an acceptable deadline miss
ratio. In addition, we presented the implementation details of our Linux ker-
nel loadable module, called AdHierSched, which implements our adaptive
framework in the Linux kernel.

Although we are not currently considering I/O operations, we would like
to investigate the implications of modeling them in our adaptive framework.
For instance, we can model the I/O requests as critical sections and we can use
available semaphore based protocols such as SIRAP [31] and HSRP [32]. We
also want to study the use of more sophisticated workload estimator modules
in our framework to examine whether we could better serve the components by
more accurate workload estimations.

References

[1] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In Proceedings of the 18th IEEE Real-Time Systems Sym-
posium (RTSS’97), pages 308–319, December 1997.

[2] A. K. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. In Proceedings of the 7th Real-Time Technology and Applications
Symposium (RTAS’01), pages 75–84, May 2001.

[3] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proceedings of the 24th IEEE Real-Time Systems Sympo-
sium, (RTSS’03), pages 2–13, December 2003.

[4] N. Khalilzad, M. Behnam, and T. Nolte. Multi-level adaptive hierarchical
scheduling framework for composing real-time systems. In Proceedings
of the 19th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’13), pages 320–329, Au-
gust 2013.

[5] F. Zhang and A. Burns. Analysis of hierarchical EDF pre-emptive
scheduling. In Proceedings of the 28th IEEE International Real-Time
Systems Symposium (RTSS’07), pages 423–434, December 2007.

[6] J. A. Stankovic, C. Lu, S.H. Son, and G. Tao. The case for feedback
control real-time scheduling. In Proceedings of the 11th Euromicro Con-
ference on Real-Time Systems (ECRTS’99), pages 11–20, June 1999.

[7] C. Lu, J. A. Stankovic, G. Tao, and S.H. Son. Design and evaluation of a
feedback control EDF scheduling algorithm. In Proceedings of the 20th
IEEE Real-Time Systems Symposium (RTSS’99), pages 56–67, December
1999.

117

118 References

[8] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzen. Feedbackfeed-
forward scheduling of control tasks. Real-Time Systems, pages 25–53,
2002.

[9] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Proceedings of the 19th IEEE Real-Time Systems
Symposium (RTSS’98), pages 4–13, December 1998.

[10] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. AQuoSA-adaptive
quality of service architecture. Software: Practice and Experience,
39(1):1–31, January 2009.

[11] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E.
Årzen, V. Romero, and C. Scordino. Resource management on multicore
systems: The ACTORS approach. Micro, IEEE, 31(3):72–81, May-June
2011.

[12] N. Khalilzad, T. Nolte, M. Behnam, and M. Åsberg. Towards adaptive
hierarchical scheduling of real-time systems. In Proceedings of the 16th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’11), pages 1–8, September 2011.

[13] N. Khalilzad, M. Behnam, G. Spampinato, and T. Nolte. Bandwidth adap-
tation in hierarchical scheduling using fuzzy controllers. In Proceedings
of the 7th IEEE International Symposium on Industrial Embedded Sys-
tems (SIES’12), pages 148–157, June 2012.

[14] M. Barabanov and V. Yodaiken. Real-time linux. Linux journal, 23,
March 1996.

[15] P. Mantegazza, E. L. Dozio, and S. Papacharalambous. RTAI: Real Time
Application Interface. Linux Journal, 2000(72es), April 2000.

[16] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril. Towards hi-
erarchical scheduling on top of VxWorks. In Proceedings of the 4th
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT’08), pages 63–72, July 2008.

[17] R. Inam, J. Maki-Turja, M. Sjodin, M. Ashjaei, and S. Afshar. Support for
hierarchical scheduling in FreeRTOS. In Proceedings of the 16th IEEE
International Conference on Emerging Technologies Factory Automation
(ETFA’11), pages 1–10, September 2011.

References 119

[18] M. Åsberg, T. Nolte, S. Kato, and R. Rajkumar. ExSched: An external
CPU scheduler framework for real-time systems. In Proceedings of the
18th IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA’12), pages 240–249, August
2012.

[19] M. Van Den Heuvel, R. J. Bril, J. J. Lukkien, and M. Behnam. Extend-
ing a HSF-enabled open-source real-time operating system with resource
sharing. In Proceedings of the 6th International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications (OSPERT’10),
pages 71–81, July 2010.

[20] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson.
Microkernels meet recursive virtual machines. In Proceedings of the 2nd
USENIX symposium on Operating systems design and implementation
(OSDI’96), pages 137–151, 1996.

[21] J. Yang, H. Kim, S. Park, C. Hong, and I. Shin. Implementation of compo-
sitional scheduling framework on virtualization. SIGBED Rev, 8:30–37,
2011.

[22] J. Lee, S. Xi, S. Chen, L. T. Phan, C. Gill, I. Lee, C. Lu, and O. Sokolsky.
Realizing compositional scheduling through virtualization. In Proceed-
ings of the 18th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS’12), pages 13–22, April 2012.

[23] M. Danish, Y. Li, and R. West. Virtual-CPU scheduling in the quest op-
erating system. In Proceedings of the 17th IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS’11), pages 169–179,
April 2011.

[24] T. Cucinotta, G. Anastasi, and L. Abeni. Respecting temporal constraints
in virtualised services. In Proceedings of the 33rd Annual IEEE Interna-
tional Computer Software and Applications Conference (COMPSAC’09),
volume 2, pages 73–78, July 2009.

[25] M. Åsberg, N. Forsberg, T. Nolte, and S. Kato. Towards real-time
scheduling of virtual machines without kernel modifications. In Proceed-
ings of the 16th IEEE International Conference on Emerging Technol-
ogy and Factory Automation (ETFA’11), Work-in-Progress (WiP) session,
pages 1–4, September 2011.

[26] J. Regehr and J. A. Stankovic. HLS: A framework for composing soft
real-time schedulers. In Proceedings of the 22nd IEEE Real-Time Systems
Symposium (RTSS’01), pages 3–14, December 2001.

[27] G. Parmer and R. West. HIRES: A system for predictable hierarchical re-
source management. In Proceedings of the 17th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS’11), pages 180–
190, April 2011.

[28] J. Real and A. Crespo. Mode change protocols for real-time systems: A
survey and a new proposal. Real-Time Systems, 26(2):161–197, 2004.

[29] B. Andersson. Uniprocessor EDF scheduling with mode change. Tech-
nical report, Polytechnic Institute of Porto (ISEP-IPP), January 2008.

[30] A. Srinivasan and J. H. Anderson. Efficient scheduling of soft real-time
applications on multiprocessors. In Proceedings of the 15th Euromicro
Conference on Real-Time Systems (ECRTS’03), pages 51–59, July 2003.

[31] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A synchronization
protocol for hierarchical resource sharing in real-time open systems. In
Proceedings of the 7th ACM & IEEE international conference on Embed-
ded software (EMSOFT’07), pages 279–288, 2007.

[32] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed prior-
ity pre-emptive systems. In Proceedings of the 27th IEEE International
Real-Time Systems Symposium (RTSS’06), pages 257–270, December
2006.

Chapter 10

Paper C:
A Feedback Scheduling
Framework for
Component-Based Soft
Real-Time Systems

Nima Khalilzad, Fanxin Kong, Xue Liu, Moris Behnam and Thomas Nolte.
In Proceedings of the 21th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’15), April, 2015.

121

Abstract

Component-based software systems with real-time requirements are often
scheduled using processor reservation techniques. Such techniques have
mainly evolved around hard real-time systems in which worst-case resource
demands are considered for the reservations. In soft real-time systems, reserv-
ing the processors based on the worst-case demands results in unnecessary
over-allocations.

In this paper, targeting soft real-time systems running on multiprocessor
platforms, we focus on components for which processor demand varies dur-
ing run-time. We propose a feedback scheduling framework where processor
reservations are used for scheduling components. The reservation bandwidths
as well as the reservation periods are adapted using MIMO LQR controllers.
We provide an allocation mechanism for distributing components over proces-
sors. The proposed framework is implemented in the TrueTime simulation tool
for system identification. We use a case study to investigate the performance of
our framework in the simulation tool. Finally, the framework is implemented in
the Linux kernel for practical evaluations. The evaluation results suggest that
the framework can efficiently adapt the reservation parameters during run-time
by imposing negligible overhead.

10.1 Introduction 123

10.1 Introduction

Multiprocessors are becoming increasingly more widespread computing plat-
forms. Thanks to the computational capacity of the multiprocessors, previously
segregated software systems can now be integrated on a shared hardware plat-
form. Component-Based Software Engineering (CBSE) provides a modular
approach for designing and developing complex software systems. CBSE pro-
vides means and techniques for integration of independently developed soft-
ware components.

When it comes to real-time systems, timing constraints of software com-
ponents have to be considered at the integration phase. We consider compo-
nent models in which a real-time software component corresponds to a set of
real-time tasks. A component also has an intra-component scheduler which
coordinates task executions. Processor reservation and hierarchical scheduling
techniques are often used to provide timing guarantees to the components in
component-based systems (e.g., [1, 2]). Therefore, from the real-time schedul-
ing perspective, the problem of component integration is reduced to creating
adequate processor reservations for hosting the components.

Real-time tasks can either have hard deadlines where deadline misses are
absolutely unacceptable or soft deadlines where occasional deadline misses
can be tolerated. A hard real-time component is a component with hard real-
time tasks. The size of processor reservations assigned to the hard real-time
components is derived from the Worst-Case Execution Time (WCET) of the
component’s inner tasks. For instance in [3] and [4], targeting multiprocessor
platforms, the authors provided analysis frameworks in which the reservation
properties are extracted from intra-component schedulers and task parameters.
Such analyses result in pessimistic allocations. The over-allocation is due to
two reasons. Firstly, WCET is unlikely to happen in reality. Secondly, the
analysis that derives the processor reservation sizes based on the WCET of
tasks is pessimistic. Soft real-time components are software components con-
sisting of soft real-time tasks. When integrating soft real-time components,
pessimistic allocations are not justifiable. This is because pessimistic alloca-
tions do not permit an efficient processor utilization. In addition, in a group
of soft real-time tasks the processor demand is subjected to large variations
during run-time. For instance, the execution time of video decoder tasks can
significantly vary depending on the content of the video frames. As a result, the
processor demand of a real-time component consisting of such dynamic tasks
may change significantly during run-time. Therefore, assigning a fixed-size
processor reservation (for instance based on the average processor demands)

124 Paper C

results in an unacceptable number of timing violations.
Adaptive reservation techniques are widely used in single-processor

platforms for scheduling soft real-time tasks with dynamic execution times
(e.g., [5, 6]). In this paper, however, we focus on soft real-time components
integrated on multiprocessor platforms. In our model, the components may be
spread over multiple processors. As a result, the component’s inner tasks are
scheduled using a multiprocessor global scheduling algorithm. We propose
a feedback scheduling framework which is built upon adaptive reservations.
In our framework, the component demand is monitored during run-time. The
processors reservations hosting the component are, then, adjusted according to
the current demand. The processor allocations are also reconfigured to cope
with the current state of the components. More specifically, in this paper, we
present the following contributions: (i) a feedback scheduling scheme that uses
Multiple Input Multiple Output (MIMO) controllers to regulate both period
and budget of the periodic servers simultaneously (ii) an approximate model
of the reservation dynamics through system identification (iii) a component
allocation heuristic that maps software components to the processors and eval-
uating it against the optimal solution (iv) optimal compression algorithms that
provide compressed bandwidths in overload situations (v) simulation-based
evaluation of our MIMO controllers in TrueTime (vi) implementation and
evaluation of our framework in the Linux kernel.

10.2 Preliminaries

System model. We assume a multiprocessor platform consisting of M identi-
cal processors. n components are running on the multiprocessor platform. We
consider an open system in which components are allowed to join and/or leave
the platform. As a result, n varies in run-time. The set of components which
are active in the system at any given time t is denoted using Γ(t).

We target a component-based software development model in which the
following two roles are defined: (i) component developer (ii) system integra-
tor. The component developer is responsible for developing real-time tasks
and selecting an appropriate scheduling policy for them. Then, the component
requirements are abstracted using a number of interface parameters. When
it comes to components with hard real-time requirements, a component in-
terface represents the minimum amount of resource needed for guaranteeing
the schedulability of the component. Such an interface is calculated using
the WCET of the component’s inner tasks. In our framework, however, we

10.2 Preliminaries 125

are targeting soft real-time components with dynamic workloads. Therefore,
a component interface expresses an interval in which the processor demand
of the component may vary during run-time. Basically, instead of the worst-
case resource demands, the aggregate behavior of all tasks with respect to the
processor requirement is expressed in the component interface. The system
integrator, on the other hand, receives a number of components and he/she is
responsible for integrating the components such that the requirements speci-
fied in the interface parameters are respected. The integrators’ responsibility
involves (i) identifying an approximate model of the component’s resource re-
quirements within its operating region (ii) designing controllers that adapt the
resource provisions to the components during run-time. In this paper, we focus
on the component integration.
Component model. Component Cj consists of a number of real-time tasks,
where j ∈ [1, n] is the index of the particular component. The components
also have an intra-component scheduler which is responsible for scheduling
component’s inner task. The relative importance of components with respect
to the other components that are composed together on one platform is repre-
sented by ζj . The importance value is used when the system is overloaded. In
such a situation, the components that can better contribute to the overall value
of the system are preferred to the ones that have less impact on the total system
value. Components can be assigned to one or more processors. We use pe-
riod and bandwidth for specifying processor requirements of components. The
bandwidth indicates the processor portion that a component requires, while the
period indicates the granularity of the CPU provisioning. The component de-
velopers specify the operating range of their components, that is, a processor
demand interval that the component will operate at run-time. The bandwidth
requirement is denoted using ᾱj and σαj , where ᾱj is the operating bandwidth
and σαj indicates the amount of deviation from the operating bandwidth. Sim-
ilarly, the period requirement is specified using an operating period T̄j and
its deviation σTj . The component interface < ᾱj , T̄j , σαj , σTj , ζj >
denotes that the component will require a bandwidth between ᾱj − σαj/2
and ᾱj + σαj/2. Similarly, the period may be changed from T̄j − σTj/2 to
T̄j + σTj/2. The system integrator develops a model in the operating range of
the component that is used for adaptation purposes. Note that ᾱj and T̄j do not
need to be exact values, rather they are estimations of the component’s proces-
sor requirements. We will adapt the resource provisioning to the components
during run-time to compensate for the resource requirement estimation errors.
Task model. Our scheme supports periodic/sporadic task models τi<pi, ci(l),
Di>, where i is the index of the particular task, pi is the task period or the

126 Paper C

minimum inter-arrival time, ci(l) is the execution cost of the lth instance of the
task andDi is the task deadline. Each instance of task execution is called a job.
Note that the execution cost of tasks is time-varying and may be different from
job to job. Throughout the paper and for simplicity we use an implicit deadline
periodic task model, i.e. pi = Di. We do not assume any predefined execution
cost ci(l) for tasks, however, we assume a task is not allowed to run in parallel,
hence ∀t ci(l) ≤ pi. The jobs of a task are executed sequentially, i.e., each job
of a task is only allowed to run if all of the previous jobs of the same task have
finished their executions. When tasks miss their deadlines, they continue their
execution until the end. The goal of our framework is to provide a predictable
Quality of Service (QoS) to the tasks, while efficiently utilizing the processor
capacity. We use the number of deadline violations as a metric for measuring
the QoS.
Virtual clusters and virtual processors. The computation capacity of the
multiprocessor platform becomes available to the components through Virtual
Clusters (VC). A particular VC i, denoted by Πi, is a set of Virtual Processors
(VP) Πi = {πi,1, πi,2, · · · }, where πi,j is the jth VP of Πi. A VP is cre-
ated by partitioning a single physical processor in time. We use idling periodic
servers compatible with the periodic resource model [7] for partitioning a sin-
gle physical processor. When the server is active while there is no ready task to
run, the idling servers idle their budget. The deadline of servers implementing
the VPs is assumed to be equal to their corresponding periods. πi,j receives
qi,j units of the physical processor time every Ti time units, where qi,j ≤ Ti.
The periods of all VPs belonging to Πi is equal to Ti. The bandwidth of a
VP is defined as ρi,j = qi,j/Ti. We assume Πi can have at most one VP on
any given physical processor. Πi receives Bi time units every Ti units, where
Bi =

∑
j∈[1...M] qi,j . In this summation, we assume qi,j = 0 for the case

where the VC has less than M VPs and πi,j does not exist. The bandwidth of
Πi is defined as the following: αi = Bi/Ti. We have n VCs hosting n com-
ponents at each point in time, i.e., the number of VCs in the system is equal to
the number of components n.

Multiple VPs that belong to distinct VCs may share a physical processor.
We use the partitioned EDF scheduling algorithm for scheduling the VPs. For
scheduling the tasks within the components, however, we use a global multi-
processor scheduler. In other words, when a VC is spread over multiple proces-
sors, tasks within the VC may migrate from a processor to another processor.
The intra-cluster scheduler (task scheduler) can be either global fixed-priority
or global EDF. Considering the two levels of scheduling, our scheme can be
seen as a two-level hierarchical scheduling framework.

10.3 Modeling and design of cluster controllers 127

Operational modes. We consider the following two mutually exclusive op-
erating modes for the system: normal mode and overload mode. In the nor-
mal mode the components can receive their desired processor bandwidths be-
cause the total required processor is less than the available processor time, i.e.,∑
i∈Γ αi ≤ M . In the normal mode we use a number of independent MIMO

controllers to regulate the bandwidths and the periods of the VCs. In the over-
load mode, however, the total required bandwidth is larger than the available
processor capacity. In this mode the system will suffer, i.e., real-time tasks
will inevitably miss their deadlines. Our goal, in the overload mode, is to dis-
tribute the total bandwidth among components in such a way that the overall
value of the system is maximized. Therefore, utilizing the importance value of
the components (ζi for each component Ci), we use a centralized controller to
distribute the total bandwidth among components. If a system operates in the
overload mode most of the time, then the system is poorly designed and the in-
tegrator should remove some of the components to reduce the load. We assume
that the overload mode happens transiently, and the system mostly operates in
the normal mode.
Overview of the framework. Figure 10.1 depicts the architecture of our adap-
tive framework. The framework is comprised of two types of elements: (1)
cluster controllers (2) a resource manager. The cluster controllers monitor the
state of the VCs and adapt their bandwidths and periods to deal with compo-
nents’ dynamic resource requirements. The cluster controllers are designed
using control theory. Section 10.3 describes the cluster controllers in detail.
The resource manager, on the other hand, is responsible for allocating compo-
nents on the processors. The resource manager receives n VCs and it allocates
each VC on a number of VPc. The resource manager adds, removes and adjusts
VPs dynamically to respond to the needs of the VCs. Section 10.4 addresses
the design of the resource manager.

10.3 Modeling and design of cluster controllers

In this section we focus on adapting the parameters of a single VC serving
a component. Therefore, for simplicity, we drop index i when referring to
parameters associated with Πi. Throughout this section we assume that the
system is in the normal mode. The cluster dynamics are sampled and adapted
periodically. The sampling time is denoted using k. The time distance of two
consecutive samples is referred as a sampling interval and its length is denoted
using Ψ.

128 Paper C

Resource Manager

...

Multiprocessor

P
ro

ce
ss

o
r

1

P
ro

ce
ss

o
r

M

𝜋1,1 ⋯ 𝜋𝑛,1
⋮ ⋱ ⋮

𝜋1,𝑀 ⋯ 𝜋𝑛,𝑀

Cluster (1)

MIMO LQR Cluster

Controller

𝛽
𝑘

−
𝜇
(𝑘
)

Ψ

𝛾
(𝑘
)

T
(k

+
1
)

α
(k

+
1
)

Π
1 (𝛼

1 ,𝑇
1)

Cluster (n)

MIMO LQR Cluster

Controller

𝛽
𝑘

−
𝜇
(𝑘
)

Ψ

𝛾
(𝑘
)

T
(k

+
1
)

α
(k

+
1
)

Π
𝑛
(𝛼

𝑛
,𝑇
𝑛
)

+
-

𝑟1

+
-

𝑟2

+
-

𝑟2

+
-

𝑟1

...

Figure 10.1: The architecture of our adaptive component-based scheduling
framework.

10.3 Modeling and design of cluster controllers 129

In control theory, control inputs are variables that are used for manipulating
the plant. We consider the VCs as our plant. Our objective is to make sure
that the VCs provide sufficient processor capacities to the components at each
point in time. Therefore, we choose T and α as our control inputs. We use the
parameters expressed in the component’s interface as the operating points and
we take the distance from the operating points as our control inputs. Therefore
we have:

u(k) =

[
α(k)− ᾱ
T (k)− T̄

]
,

where u(k) is the control input at sampling time k. We construct our model
around the operating points of the system. The reason behind using the oper-
ating points is that, the plant’s behavior can be approximated in the vicinity of
these points using a linear model.

10.3.1 Why should the cluster periods be adapted?

At first glance it might appear that changing the VC bandwidths through adapt-
ing their budgets might be sufficient. However, there are a number of good
reasons for adapting the VC periods as well. Let’s first discuss the problems
associated with two extremes of period assignment, i.e., extremely short pe-
riods and extremely large periods. As the VC period decreases, the number
of preemptions in a given time interval increases. Therefore, considering the
overhead penalty associated with preemptions, it is desirable to assign periods
as large as possible. Extremely large periods, on the other hand, impose in-
significant overhead. However, when tasks are faster than their VPs, the VP
bandwidths have to be significantly larger than the task set’s processor utiliza-
tion, because the budget provisioning may not be aligned with the task execu-
tions. We refer to this problem as the alignment problem which is illustrated in
Figure 10.2. The importance of the granularity of a resource partition is also
studied in [8]. In addition, in case of sporadic task models, the tasks may occa-
sionally use their minimum inter-arrival times. Hence, assigning the VC period
based on the minimum inter-arrival times will impose unnecessary overhead to
the system.
Measurable variables. For controlling the VC parameters, we need a num-
ber of variables that can describe the dynamics of the VCs. We should choose
parameters that (i) can be easily measured (ii) be an indication of the work-
load and task frequencies. In fact, we consider the changes in workload as a
disturbance and our control objective is to compensate for it.

130 Paper C

T
q

Idle time In time executions

Late executions

Virtual processor releaseTask release

Time
t

2
t

1
t

0
t

3
t

4
t

5

Figure 10.2: Alignment problem: VP’s period is not aligned with the task
period. Task is released at time t2 while the VP is inactive. The task has to
wait until the next VP release which is after task’s deadline. Therefore, the
task misses its deadline while the VP budget is idled.

The cluster Π is assigned B(k) time units every T (k) time units. It idles
β(k) time units of its budget due to unavailability of workload and utilizes
the rest of its budget (B(k) − β(k)). Tasks inside the VC either finish their
executions before their deadlines or after them. The part of task’s execution
time executed after task’s deadline is called a late execution. The part of the
VC budget consumed by the late executions is denoted by µ(k). At any sam-
pling time k, the cluster controller can measure β(k) and µ(k). Note that β(k)
and µ(k) are respectively the aggregate values of the idled budget and the late
executions happened in a sampling interval. These parameters are illustrated
in Figure 10.3a and Figure 10.3b. The number of jobs that have missed their
deadlines is another variable that can be monitored by the cluster controller.
The number of deadline misses happened between sampling times k− 1 and k
is denoted by γ(k).
State variables. We intend to use a linear model for modeling the dynam-
ics between the inputs and the state variables. Thus, we are interested in
variables that their changes, with respect to the changes of the inputs, are as
close as possible to linear. Since both β(k) and µ(k) are saturated at zero
we use the following linear combination of them as our first state variable:
x1(k) = (β(k) − µ(k))/Ψ. Note that this state variable is normalized by the
sampling length Ψ. The processor resource over-allocation (x1(k) > 0) and
under-allocation (x1(k) < 0) to the components is revealed by x1(k). How-
ever, when the idle time is equal to the late execution time (β(k) = µ(k)),
or when the late execution time is significantly smaller than the idle time
(µ(k) � β(k)), components may suffer from deadline misses while x1(k)

10.3 Modeling and design of cluster controllers 131

k
T

B

Idle time (β)
In time executions

(a) Idle time (β).

B k
T

Late execution (μ)

D1

Idle time (β)

(b) Late execution (µ).

Figure 10.3: Visualization of the measurable variables.

is not revealing the state of the VCs. To address this problem, we choose to
further monitor the number of deadline misses happened in a sampling inter-
val. Thus, the second state variable is: x2(k) = γ(k). This variable can further
express the state of VCs when x1(k) is not expressive. In summary, we use the
following state variables:

x(k) =

[
x1(k)

x2(k)

]
=

[
β(k)−µ(k)

Ψ

γ(k)

]
.

Suppose that α∗(k) and T ∗(k) are a bandwidth and a period in which x1(k) =
r1 and x2(k) = r2, where r1 and r2 are desired values of x1(k) and x2(k)
respectively. Assuming that T (k) = T ∗(k) if α(k) > α∗(k) the VC will waste
some of its budget, hence x1(k) > 0. If α(k) < α∗(k) the VC will suffer from
a budget deficiency and x1(k) < 0, x2(k) > 0. Assuming that α(k) = α∗(k),
if T (k) > T ∗(k) the VC will suffer from the alignment problem, therefore
x1(k), x2(k) > 0. If T (k) < T ∗(k), the VC will impose some overhead due
to short periods and x2(k) < 0. Note that in order to detect this case, i.e.,
T (k) < T ∗(k) we have to set r2 to a small number greater than zero. As
discussed above, the designed state variables reveal the internal states of the
VCs.

132 Paper C

10.3.2 Modeling the cluster dynamics
We are interested in deriving a model which captures the relation between the
control inputs and the state variables. Throughout our experiments we ob-
served that this relation is not linear due to (i) queuing effects of u on x (ii)
saturation of x. The queuing effect is due to task scheduling. For instance, in-
creasing the VC bandwidth does not necessarily reduce the number of deadline
misses. This is because some tasks may have backlogs from the previous sam-
pling interval. Therefore, increasing the bandwidth will allow them to execute
in the next sampling interval. Saturation of x happens due to the nature of our
system. For example, at most all of jobs of all tasks within the VC can miss
their deadlines. Therefore, in such a condition that all jobs miss their dead-
lines, decreasing the bandwidth will not have any influence in the number of
deadline misses. Despite the non-linearity nature of our system, linear models
often work well for nonlinear systems specially when the purpose is to regulate
the system output based on a number of control inputs [9]. We use the so called
“black box” approach for modeling the relation between u and x. We employ
the Auto-Regressive with eXogenous variables (ARX) model to describe the
relation between the state variables and the inputs. Therefore, the state space
system model is as follows:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k),
(10.1)

where A, B and C are 2 × 2 matrices, u(k) is the control input, y(k) is the
system output, and for simplicity we assume C = I (I is the identity matrix).
Matrix A indicates the dependency between the next value of outputs to their
previous values. Matrix B, however, expresses the functional dependency be-
tween the control inputs and the system outputs.

10.3.3 System identification
We use system identification for identifying matrices A and B of the model pre-
sented in Eq. 10.1. System identification uses statistical tools to estimate the
model parameters. The identification processor is as follows. First the compo-
nents are executed on the target hardware platform. The control inputs (u) are
modified throughout the execution of the components and the system outputs
(y) are noted. Finally, parameter estimation is performed given u and y. Simi-
lar to WCET analysis which is hardware dependent, the identified parameters
may depend on the characteristics of the target hardware platform.

10.3 Modeling and design of cluster controllers 133

The system outputs y(k) can be highly variable due to stochastics of work-
load needed to be processed during a sampling interval. This effect can make it
difficult to model the relation between the control inputs u(k) and the outputs
y(k). The amount of workload submitted during each sampling interval de-
pends on (i) number of job releases (ii) execution time of each job (iii) amount
of backlog, i.e., job executions that are released in the previous sampling in-
terval but not completed in the same sampling interval. The effect of the num-
ber of job releases can be counteracted by choosing an appropriate sampling
length. For instance, if a component consists of periodic tasks, we can use the
least common multiple of tasks to counteracted for the problem of number of
releases. The sampling length should be large enough to accommodate multi-
ple job releases. However, sampling infrequently may result in slow responses
to changes. On the other hand, sampling too frequently may impose consid-
erable overhead to the system. Therefore, choosing an appropriate sampling
length is of paramount importance that requires careful study and investiga-
tions.

We use the Root Mean Square Error (RMSE) for evaluating our identified
model parameters1. RMSE is scale dependent, therefore we use it for compar-
ing different models representing same data. When comparing two models, the
one that has smaller RMSE is better. We also evaluate the variability explained
by the model using R2. In general, models that their R2 > 0.8 are considered
to be an acceptable fit to the system [9]. Models that their R2 is closer to one
better explain the identified system. We use sine functions for changing inputs
to excite the system and observe the outputs. First we excite the system by
only altering α. Then we alter T while keeping α unchanged. Finally, we use
all samples for system identification. The model parameters (A and B) are es-
timated using least squares. Note that since the periodic servers provide timing
isolation, system identification for each component can be done independently.
The identified system model will still be applicable after integration with other
components because the processor provision to the component will not be af-
fected by other components in the normal mode. Recall that in this section we
assume that the system is in the normal mode.

10.3.4 Controller design
Linear-Quadratic Regulators (LQR) let us to trade-off between control speed
and over reaction. In contrast to the well-know PID controllers in which the

1The model evaluation metrics used in this paper (i.e., RMSE and R2) are explained in Chapter
2.4.4 of [9].

134 Paper C

gain values are directly quantified by designers, the LQR controllers allow de-
signers to focus on the cost of control actions as well as control errors. In
general, we prefer unaggressive control actions which provides slow reactions
to sudden changes to avoid overreacting to transient stochastics. We define er-
ror e(k) as: e(k) = r− y(k) = r− x(k), where r is the reference value for the
output (r = [r1r2]T). The dynamics of the control system based on e(k) is as
follows:

e(k + 1) = r− Ax(k)− Bu(k)

= Ae(k)− Bu(k) + (I− A)r.
Instead of directly using the model presented in Eq. 10.1, we use the system
model based on error for the controller design. In addition to e(k), we also use
integral states: eI(k + 1) = eI(k) + e(k), where ∀k ≤ 0 we have eI(k) = 0.
Hence, the augmented state space model is:[

e(k + 1)

eI(k + 1)

]
=

[
A 0
I I

][
e(k)

eI(k)

]
+

[
−B
0

]
u(k) +

[
I− A

0

]
r.

We use dynamic feedback, that is:

u(k) = −K

[
e(k)

eI(k)

]
= −

[
KP KI

] [e(k)

eI(k)

]
,

where KP and KI are 2 × 2 matrices. By substituting the control law in the
state space model we obtain the following closed-loop system model:[

e(k + 1)

eI(k + 1)

]
=

([
A 0
I I

]
−

[
−B
0

] [
KP KI

])
[

e(k)

eI(k)

]
+

[
I− A

0

]
r.

In LQR control design we are looking for gain values (KP and KI) that mini-
mize the following quadratic cost function:

J =

∞∑
k=1

[e(k)eI(k)]
TQ

[
e(k)

eI(k)

]
+ u(k)TRu(k),

where Q specifies the cost of error and R quantifies the cost of control ac-
tion. The responsibility of the system integrator is to choose suitable error and
control cost matrices.

10.4 Resource manager 135

10.4 Resource manager
Thus far, we have considered adapting the parameters of a single VC. In this
section we consider the whole system. The resource manager has the follow-
ing responsibilities. (1) Admission control based on the minimum resource re-
quirements; (2) cluster compression, when the average resource requirements
can not be met; (3) allocation of the VCs to processors, i.e., mapping the VCs
to the VPs; (4) adjusting the parameters of VPs and dealing with overloads. In
the rest of this section the above responsibilities are explained in detail. At each
sampling point k, the resource manager allocates the suggested parameters by
the cluster controllers to the VCs. In this section we focus on a single sampling
point. Therefore, for simplicity, we drop sampling time k when referring to the
output of the cluster controllers.
Admission. The resource manager creates {Π1, · · · , Πn} for hosting {C1, · · · ,
Cn}. The system integrator is allowed to admit components such that the sum
of components’ minimum bandwidth, specified in the component interfaces, is
less the available multiprocessor bandwidth:

∑
i∈[1...n] ᾱi − σαi/2 ≤ M . In

doing so, we can guarantee minimum ᾱi−σαi/2 resource provisioning for Ci.
Cluster compression. The resource manager performs an allocation based on
the operating bandwidths ᾱi specified in the component interfaces. Since the
admission is done based on the minimum required bandwidths, it is possible to
have

∑
i∈[1...n] ᾱi > M . In such a case, the resource manager first performs

a cluster bandwidth compression, that is, compressing the cluster bandwidths
such that the total required bandwidth is less than or equal to M . The VCs
will receive partial bandwidths after the compression. α′i and λi denote the
compressed bandwidth and the compression factor of Πi respectively, where
λiαi = α′i. Our objective is to maximize

∑n
i=1 λiζi when performing the

compressions. In doing so, components which have less impact on the total
value of the system will be subjected to more compressions. Let ᾱi−σαi/2 =
φi and ζi

αi
= ∆i. The compression problem is formulated as the following:

Maximize:
∑n

i=1
α′i∆i, (10.2a)

Subject to: αi ≥ α′i ≥ φi ∀i ∈ [1 . . . n], (10.2b)∑n

i=1
α′i ≤M. (10.2c)

We use Algorithm 5, which has polynomial time complexity (O(n2)), for solv-
ing the cluster compression problem. The algorithm treats VCs in the order
of ∆i. Each VC receives at least φi. In addition, it receives αj − φj band-

136 Paper C

width if the remaining multiprocessor capacity (M) is sufficient. Otherwise,
the remaining capacity is added to the VC’s bandwidth.

Theorem 2. Algorithm 5 is optimal, i.e., the compression factors produced by
this algorithm maximizes the total system value.

The formal proof of the above theorem is presented in the appendix.

Algorithm 5: Cluster compression algorithm.
Require: {∆1, . . . ,∆n} and {φ1, . . . , φn}.
Ensure: {α′1, . . . , α′n}.

1: G = {∆1, . . . ,∆n};
2: ∀i, α′i = φi;
3: M = M −

∑
i φi;

4: while G 6= ∅ AND M > 0 do
5: ∆j = max(G);
6: α′j = φj + min(M, αj − φj);
7: G = G−∆j ;
8: M = M− α′j + φj ;
9: end while

Allocation. The resource manager performs allocations assuming that the
overall required bandwidth is less than or equal to the multiprocessor band-
width. The allocation algorithm creates at most M VPs for each VC such that
all VPs collectively provide Bi units of the processor time to Πi. We use the
partitioned EDF algorithm for scheduling the VPs. The allocation algorithm
has three objectives. First of all, the number of VPs should be minimized. This
is because when components are split, their inner tasks will migrate between
the processors. Hence, the components will require extra bandwidth to com-
pensate for the migration overhead. In addition, we favor balanced allocations
that is, fairly distribution of the slack time over all processors. The reason
behind preferring balanced distributions is to give the cluster controllers more
freedom to adapt the VC bandwidths. When a processor is overloaded, more
important components can steal bandwidth from the less important ones that
coexist with them on the same processor. Hence, we favor an allocation ap-
proach that co-allocates more important components with less important ones.
This approach gives more freedom to the more important components to adapt
their bandwidth in the overload situations. Hence, the third objective of the al-
location algorithm is to achieve a balanced importance distribution. Thus, the

10.4 Resource manager 137

allocation problem formulation is as follows:

Maximize: w1

(
nM −

∑n

i=1

∑M

j=1
fi,j

)
+ w2z2 + w3z3, (10.3a)

Subject to: z2 ≤
∑n

i=1
ρi,j ∀j ∈ [1 . . .M], (10.3b)

z3 ≤
∑n

i=1

ρi,j
αi

ζi ∀j ∈ [1 . . .M], (10.3c)∑n

i=1
ρi,j ≤ 1 ∀j ∈ [1 . . .M], (10.3d)∑M

j=1
ρi,j = αi ∀i ∈ [1 . . . n], (10.3e)

ρi,j
αi
≤ fi,j ∀i ∈ [1 . . . n],∀j ∈ [1 . . .M], (10.3f)

fi,j ∈ {0, 1}, ρi,j ∈ Z≥0, (10.3g)

where z2 and z3 correspond to load balancing, and importance balancing ob-
jectives respectively. z2 represents the maximum load assigned to one proces-
sor. While, z3 represents the maximum importance available on one processor.
w1, w2 and w3 are the weights of the three aforementioned objectives. fi,j is
equal to one when πi,j exists, i.e. ρi,j > 0. Note that the allocation algorithm
assumes that

∑n
i=1 αi ≤M .

The optimization problem formulation presented in Eq. 10.3 is a mixed
integer linear programming problem. The complexity of solving this problem
is exponential in the number of processors and the number of components.
Hence, solving it for large n × M may become intractable. Therefore, we
present an allocation heuristic to partition components in polynomial time. The
allocation heuristic is presented in Algorithm 6. Let vi = ζiαi denote the value
of Ci. In the algorithm {α}, {v} and {ρ} represent the set of VC bandwidths,
values and VP bandwidths respectively. First we sort the VCs based on their
values. The result bandwidth set is descending in value, i.e., vi ≥ vi+1. Then
we try to allocate each VC to a processor without splitting it. We use the worst
fit allocation, i.e., among all candidate processors that can accommodate the
current VC, we choose the one that after allocation it will leave the largest
slack time. If the allocation fails, then we split the VC, i.e., we create a number
of VPs for the VC. For splitting, we start with a processor that has the largest
slack time. We allocate all of the slack time to Πi and move to a processor with
the next largest slack. This process continues until all of the bandwidth of the
VC is assigned.
Adjusting VCs. When a cluster controller suggests a new bandwidth and a new

138 Paper C

Algorithm 6: Heuristic algorithm for allocating the VCs on processors.
Require: set of cluster bandwidths {α} and component values {v}.
Ensure: matrix of virtual processor bandwidths {ρ}.

1: sort the active components (Γ) based on their values {v}
2: for i ∈ Γ do
3: if WorstFit(αi, {ρ}) = false then
4: Split(αi, {ρ})
5: end if
6: end for

period for a VC, the resource manager is responsible to adjust the parameters
of the VPs associated with that VC. First of all, the resource manager checks
if the suggested values are within the operating range of the component. If the
values are beyond the operating region, the resource manager overwrites the
suggested values with the boundary of the operating region that is closer to the
suggested values. The suggested period is assigned to all of the corresponding
VPs. However, the suggested bandwidth is distributed among them. Our goal
in distributing the total bandwidth among the VPs is to minimize the number
of VPs that are assigned to the VC. This is because in the system identification
step the components are identified independently using a minimum number of
processors. Hence, we start from the largest slack processor and we allocate its
slack bandwidth to the VC. If the VC still needs more bandwidth we move to
the second largest slack processor. This process continues until the suggested
bandwidth is assigned to the VC.

Dealing with overloads. Assume that the cluster controller of Πi wants to
adapt its bandwidth to αnewi . If the slack time on all processors is not enough
to accommodate Πi with its new bandwidth we have to perform a bandwidth
compression. We prefer performing the compression without conducting clus-
ter reallocations. This is because reallocation may force VP migrations which
in turn incur overhead costs. In this situation, each VP affected by the com-
pression will receive a portion of its original bandwidth: ρ′i,j = λi,jρi,j , where
λi,j is the compression factor of πi,j and ρ′i,j is the overload bandwidth of πi,j .
Our objective is to maximize

∑M
j=1

∑n
i=1 λi,jζi. Let ζi

ρi,j
= ∆i,j . The VP

10.4 Resource manager 139

s

1

i

n

1

j

M

b𝛼𝑖 , 𝜙𝑖 , 0 1,0,0

..

.

..

.

..

.

..

.

𝜌′𝑖,𝑗

1,0,−Δ𝑖,𝑗

Figure 10.4: The maximum flow formulation of the VP compression algo-
rithm. Node S and b represent the source and the sink nodes respectively.
The labels on the edges represent the capacity, demand and cost respectively
(ui,j , di,j , κi,j).

bandwidth compression is formulated as the following optimization problem:

Maximize:
∑M

j=1

∑n

i=1
ρ′i,j∆i,j , (10.4a)

Subject to: αi ≥
∑M

j=1
ρ′i,j ≥ φi ∀i ∈ [1 . . . n], (10.4b)∑n

i=1
ρ′i,j ≤ 1 ∀j ∈ [1 . . .M]. (10.4c)

This problem can be mapped to the “maximum flow minimum cost with edge
demands” problem. LetH = (V,E) be a directed graph with cost κi,j , demand
di,j and capacity ui,j associated with every edge (i, j) ∈ E. Figure 10.4 illus-
trates our model. The edges connecting the source to the n nodes correspond-
ing to the components have a capacity equal to the component bandwidth, a
demand equal to the minimum bandwidth of the component and a cost equal
to zero. These edges apply the constraint expressed in Eq. 10.4b. The edges
connecting the n component nodes to the M processor nodes have a capacity
equal to one (maximum bandwidth of a processor), a demand equal to zero and
a cost equal to−∆i,j . The edges connecting theM processor nodes to the sink
have a capacity equal to one (to apply the constraint of Eq. 10.4c), a demand
and a cost equal to zero. We use the cycle canceling algorithm for solving this
problem in polynomial time [10]. Once the problem is solved, the flows of the
edges that connect the n component nodes to theM processors will be selected
as the compressed VP bandwidths (ρ′i,j).

Since the component’s bandwidth requirements may change during run-

140 Paper C

time and new virtual processors may be created, the initial allocation might
become inefficient after some time. Hence, once in a while, the components
need to be reallocated. However, in this paper we do not address this problem
and we leave it for the future work. We provide some guidelines for selecting
the sampling length, operating regions and importance values in the appendix.
Mode change. In our scheme, the cluster parameters are adapted during run-
time. This phenomena is referred as mode change in the multi-mode real-time
system literature. A potential problem that can happen in mode changes is
that, even if the schedulability condition is satisfied before and after the mode
change, the system is not necessarily schedulable during the transient mode.
Since in this paper we focus only on soft real-time components in which occa-
sional deadline misses can be tolerated, we intentionally neglect this problem.
However, if hard real-time components coexist with soft real-time components,
the transient overloads can be avoided by introducing a mode change delay
similar to [11], and the rest of our method can be directly applied.

10.5 Evaluations
In this section we first evaluate the allocation heuristic. We, then, present a
case study consisting of two components. The components are identified using
our simulation tool. Thereafter, the performance of the closed-loop system is
evaluated both in the simulation tool as well as in our Linux implementation.

10.5.1 Allocation heuristic

We have evaluated the allocation heuristic against the optimal solution. In our
evaluations we assumed M = 4. We set the total system utilization to two. We
changed the number of components from four to 14. For each n we generated
100 random systems. The total utilization was divided among n components
using the UUnifast algorithm [12]. Finally, the average achieved objective for
each n is reported in Figure 10.6. We have compared five algorithms in the
evaluation: (i) optimal load balancing algorithm (ii) optimal importance bal-
ancing algorithm (iii) optimal split algorithm (iv) optimal combined objective
algorithm (v) our heuristic. We used the CVX solver for solving the optimal
algorithms. Each graph in Figure 10.6 illustrates a certain objective achieved
by the five algorithms. In all of our evaluations we assumed w1 = 1/4(n− 1),
w2 = 4/

∑n
i=1 αi and w3 = 4/

∑n
i=1 αiζi. The figures show that (1) except

the optimal combined objective, all other algorithms have poor performance

10.5 Evaluations 141

0 2 4 6 8 10 12 14

10
−2

10
−1

10
0

10
1

Number of components

T
im

e
(s

ec
on

ds
)

Optimal
Heuristic

Figure 10.5: Execution time of the allocation algorithms. Note that y-axis is in
logarithmic scale.

with respect to some objective, (2) our heuristic outperforms the combined op-
timal algorithm in the split objective, while the combined optimal algorithm
outperforms the heuristic in the rest of the algorithms, (3) our heuristic out-
performs all optimal algorithms that consider only one of the three objectives.
Figure 10.5 illustrates the execution time of our heuristic allocation against
the optimal solution. Each point in the figure is the average of 100 random
systems. As shown in the figure, the execution time of the optimal algorithm
increases exponentially when increasing the number of components, while the
heuristic has approximately constant execution time.

10.5.2 Case study
We have modified the TrueTime [13] simulation tool such that two level hier-
archical scheduling is implemented2. For system identification and controller
design we used our modified TrueTime simulator. We first present two ex-
ample components. Thereafter, using the examples we explain our modeling
approach. Note that a simulation based system identification is only valid if
the task execution times are gathered from running tasks on the target hard-
ware platform.

2The source code of our modified version is available at: https://github.com/
nimazad/TrueTime-HSF.

142 Paper C

4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of components

L
o

a
d

 o
b

je
c
ti

v
e

Combined opt.
Load balancing opt.
Importance balancing opt.
Split opt.
Heuristic

4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of components

Im
p

o
rt

a
n

c
e
 o

b
je

c
ti

v
e

Combined opt.
Load balancing opt.
Importance balancing opt.
Split opt.
Heuristic

4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of components

S
p

li
t

o
b

je
c
ti

v
e

Combined opt.
Load balancing opt.
Importance balancing opt.
Split opt.
Heuristic

4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of components

C
o

m
b

in
e
d

 o
b

je
c
ti

v
e

Combined opt.
Load balancing opt.
Importance balancing opt.
Split opt.
Heuristic

Figure 10.6: Four different objectives achieved by the five allocation algo-
rithms.

−0.1 −0.05 0 0.05 0.1

200

400

Distribution of e
1
(k)

0.4

0.6

0.8

α(
k)

0 1 2 3 4 5 6
x 10

5

0

50

100

T
(k

)

Time (ms)

(a) Static component.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

100

200

Distribution of e

1
(k)

0.4
0.6

0.8

W
or

kl
oa

d

0.4
0.6

0.8

α(
k)

0 1 2 3 4 5 6
x 10

5

0

50

100

T
(k

)

Time (ms)

(b) Dynamic component.

Figure 10.7: Distribution of e1, workload variation and parameter adaptations.

10.5 Evaluations 143

Component 1 (Static component). Consider a component consisting of three
periodic tasks with the following periods {p1 = 40, p2 = 50, p3 = 100} and
the following execution times {c1 = 12, c2 = 10, c3 = 5}.

Component 2 (Dynamic component). Assume a component consisting of three
periodic tasks with the following periods {p1 = 40, p2 = 50, p3 = 100}. τ1
and τ2 are video decoder tasks that decode their input video stream. Therefore,
their execution time is highly variable. τ3 is a static task, i.e. its execution time
is fixed (c3 = 5). Average bandwidth consumed by the video decoder tasks
τ1 and τ2 are 0.29 and 0.25 respectively. This component could, for instance,
represent a robotic vision system consisting of two cameras where one real-
time task is assigned for decoding video streams captured from each camera.
The third task, however, is performing analysis over the decoded streams by
executing a predefined number of instructions. The execution time distribution
of τ1 and τ2, and the workload distribution of this component is illustrated
in Figure 10.8a.

Let us consider the parameter identification for Component 1, we assumed
the task parameters were not available. Instead of the task parameters, the
component designer had provided the following interface: <ᾱ=0.65, T̄=90,
σα=0.15, σT=100>. Therefore, we changed the bandwidth of the VC in the
following region [ᾱ− σα/2, ᾱ+ σα/2] while ∀k T (k)=40. In another exper-
iment we changed T (k) in the following region [T̄ − σT /2, T̄ + σT /2] while
keeping α(k)=58. The simulation duration was 10 minutes of the tasks’ execu-
tions. The sampling length was assumed to be 400. We performed parameter
estimations over the observed data. The value of matrices A and B are reported
in Table 10.2. Evaluating the result model on the training data (i.e., same data
which was used for parameter estimation), we found the following properties:
R2=0.91 RMSE=4.63. In another experiment we altered both α(k) and T (k)
at the same time to assess how much our model can explain the new dataset.
As a result we hadR2=0.92 and RMSE=5.37. The identified model parameters
were used to design a MIMO LQR controller for adapting the VC parameters.

For the dynamic component we used the following interface: <ᾱ=0.72,
T̄=90, σα=0.26, σT=50>. We followed the same steps (with the same sam-
pling length) as the static component case. The value of matrices A and B are
reported in Table 10.2. Evaluating the result model on the training data we
had R2=0.95, RMSE=4.53. Evaluating the model on a test dataset in which
both bandwidth and period were changed simultaneously we had: R2=0.98,
RMSE=1.23. In summary, we conclude that the identified model parameters,
for both static and dynamic component, can explain the training dataset as well

144 Paper C

as the test dataset to an acceptable extend (see Section 10.3.3 for more details
on R2 and RMSE).

Afterwards, we considered Component 1 which its parameters were already
identified. We set R=diag(10, 10) and Q=diag(1, 1, 0.1, 0.1). The value of the
result gain matrix is reported in Table 10.2. We ran the closed-loop system
using the obtained gain matrix. The reference values were r=[0.02, 1]T . Fig-
ure 10.7a illustrates the probability distribution of e1 as well as the bandwidth
and period adaptation for the cluster that is serving the static component. Since
the task parameters were not changed, the controller stabilized α(k) and T (k)
in almost constant values. The average number of deadline misses in this ex-
periment was 1.25 which is very close to the set reference value. The standard
deviation of e2 was 1.66. In another experiment we designed a LQR controller
for Component 2 which was identified previously. We set the same R and Q
matrices as the static component example. The value of the result gain matrix
is reported in Table 10.2. The reference values were r=[0.06, 1]T . The VC
parameter adaptations are illustrated in Figure 10.7b. The depicted workload
variation in the figure is collected independently running the component with
the full processor capacity. Since the task execution times were changed, the
cluster parameters were also adapted based on the current demand at each time
point.
Linux experiments. We have implemented our adaptive framework in the
Linux kernel. Inspired by [14], we used kernel loadable modules to implement
our scheme3. In the rest of this section, we present the results of our Linux eval-
uations. We used Intel Core i5-3550 processor clocked at 3.3 GHz. Our load-
able module can utilize all four cores on this processor. However, for imposing
overload situations, we limited the number of available processors to two. The
cluster controllers and the resource manager are developed as user space tasks.
The controller tasks were attached to a different VC than the component VCs.
We considered the two components that we have designed cluster controllers
for them using our simulations. The resource manager created two clusters Π1

and Π2 for hosting the static component and the dynamic component respec-
tively. Cluster Π3 was also created for hosting the cluster controller tasks. The
bandwidth of Π3 was equal to 0.05 and it was constant throughout the experi-
ment. All task parameters described in the definition of the components were
assigned in milliseconds. We ran the experiment for 10 minutes. Figure 10.8c
illustrates the adaptations for this experiment. The observed distribution of e2

is slightly different than the simulations. The difference is due to the fact that

3The source code is available at: http://nimazad.github.io/FS-CBRTS.

10.5 Evaluations 145

the simulation does not take into account the overhead of scheduling, adapta-
tion and operating system related interferences. The average observed e2 was
−0.12 for Π1 and −0.07 for Π2.
Adaptation overhead. We created a periodic task associated with each cluster
which was ran within Π3. The period of these tasks was equal to 400 (sampling
length). The LQR controller as well as the resource manager functionalities
are implemented in these tasks. In the above experiment the maximum ob-
served execution time for the controller task of Π1 and Π2 were 0.101ms and
0.081ms respectively. Given that we had two processors available, each adap-
tive cluster cost approximately 0.01 % of the multiprocessor time. The total
adaptation overhead is proportional to the number of adaptive components.

In another set of experiments, to impose overload situations, we created a
dummy cluster (Π4) and assign the following bandwidth to this cluster: α4 =
0.42. With the existence of Π4, it was not possible to perform reservations
based on the worst-case demands anymore. The importance of the clusters
were set as follows: ζ1 = 200, ζ2 = 300, ζ3 = 2000 and ζ4 = 3000. There-
fore, the resource manager created two VPs for Π1 in the beginning of the
experiment. Splitting this VC imposes migration overhead to Π1. We con-
sidered three different setups: (1) adaptation was turned off for the both VCs
while we assigned ᾱ and T̄ to the VCs; (2) both VCs were adapted; (3) we used
the average assigned bandwidth and period observed in the second setup and
repeated the experiment with those values. We ran the experiment for 10 min-
utes. The average observed e1, e2 and their standard deviations are reported
in Table 10.1. Note that e1 < 0 means that the cluster was idling its band-
width more than the reference value (r1) and e2 < 0 means that the number
of deadline misses observed at each sampling time was more than one. The
results presented in Table 10.1 show that fixed allocation based on the operat-
ing points specified in the component interface was inefficient. Note that the
operating points are based on the average workloads. When both VCs were
adapted, the VP compression was performed 32 times, whereas cluster adapta-
tion was performed 1500 times. Therefore, the additional overhead due to the
compressions was insignificant. Since Π1 has the lowest importance, the com-
pression did not provide extra bandwidth to it. In the adaptive case, the average
bandwidth and period assigned for Π1 and Π2 were 0.61, 50.65, 0.76 and 74.41
respectively. Hence, in average, there was 0.16 slack bandwidth in the system
which permits the admission control to admit new components if required. In
the third setup, we used the average bandwidths and periods assigned by the
cluster controller in setup 2, and we assigned them as fixed values to the VCs.
The average number of deadline misses as well as the standard deviation of the

146 Paper C

deadline misses for Π2 in comparison to the second setup were increased. In
addition, in the second setup 3 % of the VC bandwidth was wasted, whereas
in the third setup 8 % of the VC bandwidth was idled. The results suggest that
adaptation helps when the workload is subjected to unpredictable disturbances
such as migration overhead and execution time variations.

Π1 Π2

Exp. ē1 σe1 ē2 σe2 ē1 σe1 ē2 σe2
1 0.16 0.04 -3.19 1.64 1.00 0.36 -12.94 9.87
2 0.17 0.04 0.31 1.96 0.54 0.07 -0.17 2.17
3 0.62 0.008 0.18 0.91 0.53 0.13 -0.30 3.85

Table 10.1: Mean and standard deviation of e1 and e2 for the three setups.

Step response experiment. Figure 10.8b illustrates the response of the static
component to a step workload change. The experiment was performed using
the same setup as described above. For this experiment the execution time
of τ1 was set to 10 before time 2 × 105ms. Afterwards, it was increased to
14. This execution time change caused a 10 % change in the workload. Note
that the reference value for x1(k) was 0.02. Therefore, the cluster controller
provided more bandwidth than the workload. In addition, the cluster controller
had to compensate for the workload disturbances such as context switches and
scheduling overheads.

10.6 Related work
Feedback control has found its way in computing systems for helping system
designers to deal with uncertainties and dynamicity. For instance, in high-
performance computing load is unpredictable and dynamic. A MIMO con-
troller is used to control CPU and memory utilizations in an Apache web
server [15]. In [16] a MIMO LQR controller is used to solve a load balanc-
ing problem. The controller equalizes the load among different resources to
improve response times as well as the throughput.

In the context of real-time scheduling, Lu et al. proposed a feedback
scheduling scheme to cope with unpredictable workloads [17]. In their frame-
work the deadline miss ratio and the system utilization is used as sensors, while
the admission control is used as an actuator. The problem of task reweighting
under multiprocessor scheduling algorithms is studied in [18] and [19]. In

10.6 Related work 147

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

Processor utilization

Distributio of ω
1

Distributio of ω
2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

Processor utilization

Workload distributio

(a) Execution times distribution of τ1 and
τ2, and workload distribution of the dy-
namic component.

0 1 2 3 4
x 10

5

0.2

0.4

0.6

0.8

α(
k)

0 1 2 3 4
x 10

5

20

40

60

80

100

Time (ms)

T
(k

)

Bandwidth

Workload

(b) Response of the static component to a
step workload.

−0.2 −0.1 0 0.1 0.2
0

100

200

300

Distribution of e

1
 (static)

Distribution of e
1
 (dynamic)

0.4

0.6

0.8

α(
k)

0 1 2 3 4 5 6
x 10

5

0

50

100

T
(k

)

Time (ms)

Static component
Dynamic component

Dynamic component
Static component

(c) Distribution of e1, bandwidth adaptation and period adap-
tation for the two component clusters.

Figure 10.9: Evaluation results (a) running the two sample component (b) for
the step workload change.

148 Paper C

Static

A

[
0.3711 −0.5503

0.1798 1.106

]

B

[
0.8887 −0.0413

−0.2952 0.0160

]

K

[
−0.0390 0.6150 −0.0832 0.0260

−0.3985 −1.2376 −0.0311 −0.0949

]

Dynamic

A

[
0.7035 −0.4138

0.0582 1.033

]

B

[
0.8443 −0.0336

−0.2421 0.0138

]

K

[
−0.3506 1.1139 −0.0871 0.0090

−0.0850 −0.7983 −0.0117 −0.0992

]

Table 10.2: The value of different matrices corresponding to the case study.

these papers it is assumed that, tasks ask for a new processor utilization during
run-time. A number of reweighting rules for partitioned and global scheduling
algorithms are presented. In [20] task reweighting is combined with feedback
loops that estimate the weight of the next job. In distributed real-time systems,
utilization control is performed through rate adaptation to provide quality of
service guarantees [21]. In [22] service levels are adapted based on monitor-
ing the number of deadline misses and the processor utilizations. Utilization
control is coupled with processor frequency adjustment in [23] and [24]. Tar-
geting end-to-end task models, DEUCON [25] employs a decentralized ap-
proach in which task rates (periods) are adapted using MIMO model predic-
tive controllers. The control objective is to minimize the difference between
the utilization set points and current utilizations. The main difference of our
paper with the aforementioned works is the following. Since we consider
component-based systems in which a component is comprised of a set of tasks,
a reservation-based scheduling policy is needed to isolate the timing behavior
of the components in run-time. While this separation of run-time behavior for
components is not supported by the above frameworks.

Adaptive reservation schemes, first introduced in [5], are powerful ap-
proaches for controlling the amount of processor allocated to individual tasks
that demonstrate dynamic processor requirement. The mathematical model of

10.6 Related work 149

a such scheme using Constant Bandwidth Servers (CBS) is derived in [26]. PI
controllers are used for controlling the bandwidth of CBS. In [27] stochastic
controllers are used for the same purpose. Regarding adaptive reservations in
which multiple parameters are adapted, in [28] both periods and budgets of
the CBS are adapted. This framework targets legacy tasks which do not com-
municate with the scheduler. Two different components are used (i) period
detector (ii) budget estimator. One centralized controller is used for adapting
the periods and the budgets. In the context of the ACTORS project [29], a
cascade controller is used on top of CPU reservations for adapting their band-
widths. Our work is different from the above reservation-based approaches in
the following main aspects. (i) Except ACTORS, all aforementioned frame-
works target single processors. While we target multiprocessors. In contrast to
ACTORS, our framework allows spreading VCs (components) over multiple
physical processors. This feature allows running components which their uti-
lization is more than one, i.e., component that can not be executed using only
one processor. (ii) In the above schemes (including ACTORS) the distance be-
tween the task finishing time and its corresponding CBS deadline is used as the
sensor. However, we consider a more general component model in which mul-
tiple tasks may be in a single component. In our model, the intra-component
scheduler coordinates the execution sequence of the tasks inside a component.
Hence, the control input used by the above frameworks is not applicable to our
model. (iii) Except [28], the other frameworks only adapt reservation budgets,
while we adapt the period and budget simultaneity. Our framework is different
from [28] in aspect (i) and (ii). In addition, in contrast to [28], we consider
software components that are developed using API functions that inform the
scheduler when the tasks start executing, finish execution and wait until their
next period.

Finally, we proposed adaptive reservation schemes for hierarchical real-
time systems in [30, 31]. In our previous works we have addressed single pro-
cessors while in this paper we consider multiprocessor platforms. Considering
multiprocessors resulted in introducing a mechanism for distributing compo-
nents over the processors. Moreover, we adapt both period and budget of the
reservations using MIMO controllers, whereas we only investigated adapting
the budgets in the aforementioned publications. In addition, in this paper, we
solved the problem of bandwidth distribution in overload situations optimally.

150 Paper C

10.7 Conclusions

We proposed a feedback scheduling framework for component-based soft real-
time systems. We targeted software components consisting of multiple real-
time tasks which exhibit significant processor demand variation during run-
time. Our framework uses processor reservations for providing processor time
to the components. A component may be distributed over several processors.
Hence, the intra-component tasks are scheduled using a global multiprocessor
scheduler. First we showed that it is important to adapt both period and band-
width of the reservations. We, then, used a case study and evaluated our MIMO
LQR controllers in the TrueTime simulation tool. Finally, we implemented our
framework in the Linux kernel and evaluated the case study in practice. The
evaluations show that our framework can efficiently adapt the reservations to
deal with the workload disturbances.

In the future, we will investigate the problem of reallocating components
systematically by introducing a new metric to understand when it is necessary
to perform reallocations. We are also contemplating the elimination of the sys-
tem identification step by utilizing an adaptive control scheme that can develop
the plant model during run-time.

Appendix

Guidelines for parameter selections. Our adaptive framework spares engi-
neers from conducting the WCET analysis. However, the component devel-
opers and the system integrator have to carefully design some parameters for
maximizing the performance of the framework. Here we provide some guide-
lines for some of the parameters.

The system integrators have to study the dynamics of the components using
different sampling lengths. The choice of the sampling length affects the accu-
racy of the identified models. This is because, the observed system dynamics
are different for different sampling lengths. The larger the sampling length,
the smoother the output. However, a too large samplings length results in slow
reactions to the changes.

The operating regions of the components are provided by the component
developers. These parameters have to be selected based on the task parame-
ters as well as experimental studies. For instance, the operating point of the
component period depends on the period of the tasks within the component.
While, the bandwidth can be extracted by running the component and profiling

10.7 Conclusions 151

its processor usage. Throughout the system identification step, the observed
state space values have to be stored. In doing so, the system integrators can
plot the feasible combinations of the state space values. The desired set points
are, then, selected from the feasible set. For instance, the system integrator
may choose a very small r2. However, the price for having a too small r2 of-
ten is to select a large r1 which essentially means that we have to waste some
bandwidth in order to achieve a very small number of deadline misses.

Our model of the component importance is quiet flexible. Here we consider
two type of systems. (1) Systems in which the contribution of each component
to the overall value of the system is clear for the integrator; (2) systems in which
the relative importance is relevant, e.g., Ci is always prioritized over Cj in all
overload conditions. For type (1), it is easy to assign the importance values.
For instance if C1 contributes 10 % to the total system value, we can assign
ζ1 = 10 provided that

∑n
i=1 ζi = 100. For type (2), the system integrator

should first sort the components based on their desired priority at run-time.
Assume that components are sorted based on their desired run-time overload
priority, i.e., for i ∈ [1, . . . , n], Ci has to be prioritized to Ci+1. The process of
importance assignment starts from Cn. The designer assigns a small number to
this component. Cn−1, then, we will have the following condition:

ζn−1 > ζn
ᾱn−1 + σαn−1

ᾱn − σαn
.

This condition is because the compression algorithm takes the size of the com-
ponents into account when compressing the components. In this approach, Ci
will have n− i conditions for its importance. To summarize we have:

ζi > max
i+1<j<n

(
ζj
ᾱi + σαi
ᾱj − σαj

)
.

Proof of Theorem 2:

Proof. We prove using the Lagrangian duality [32]. The Lagrangian is

L =
∑

i
δi∆i − θ(

∑
i
δi −M)−

∑
i
χi(δi − αi) +

∑
i
χ
i
(δi − φi)

where θ, χi, χi are Lagrange multipliers. The Karush-Kuhn-Tucker (KKT)

152 Paper C

conditions are:

∆i − θ − χi + χ
i

= 0, (10.5)

χi(δi − αi) = 0, χi ≥ 0, (10.6)
χ
i
(δi − φi) = 0, χ

i
≥ 0, (10.7)∑

i
δi = M, θ ≥ 0. (10.8)

In the following, we prove that the solution by Algorithm 5 satisfies the KKT
conditions. After Algorithm 5, the set G is partitioned into three subsets as
follows: S1 = {i|δi∈S1

= φi}, S2 = {i|δi∈S2
∈ (φi, αi)}, S3 = {i|δi∈S3

=
αi}. Set ∆left = max{∆i∈S1},∆right = min{∆i∈S3}. From the search-
ing process by the while loop in Algorithm 5, we know that: (i)∆left <
∆right, (ii)∆i∈S1

≤ ∆left, (iii)∆left < ∆i∈S2
< ∆right, (iv)∆i∈S3

≥
∆right. For i ∈ S2, χi = χ

i
= 0; so, by Eq. (10.5), we have: θ = ∆i,

∆left < θ < ∆right. For i ∈ S1, χi = 0; so, by Eq. (10.5), we have:

χ
i

= θ −∆i > θ −∆left ≥ 0.

For i ∈ S3, χ
i

= 0; so, by Eq. (10.5), we have:

χi = ∆i − θ > ∆right − θ ≥ 0.

Therefore, all KKT conditions are satisfied and the solution is optimal.

References

[1] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In Proceedings of the 18th IEEE Real-Time Systems Sym-
posium (RTSS’97), pages 308–319, December 1997.

[2] G. Lipari and S. Baruah. A hierarchical extension to the constant band-
width server framework. In Proceedings of the 7th IEEE Real-Time Tech-
nology and Applications Symposium (RTAS’01), pages 26–35, May 2001.

[3] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework
for virtual clustering of multiprocessors. In Proceedings of the Euromi-
cro Conference on Real-Time Systems, (ECRTS’08), pages 181–190, July
2008.

[4] G. Lipari and E. Bini. A framework for hierarchical scheduling on mul-
tiprocessors: From application requirements to run-time allocation. In
Proceedings of the 31st IEEE Real-Time Systems Symposium (RTSS’10),
pages 249–258, December 2010.

[5] L. Abeni and G. Buttazzo. Adaptive bandwidth reservation for multi-
media computing. In Proceedings of the Sixth International Conference
on Real-Time Computing Systems and Applications (RTCSA’99), pages
70–77, December 1999.

[6] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. AQuoSA-adaptive
quality of service architecture. Software: Practice and Experience,
39(1):1–31, January 2009.

[7] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proceedings of the 24th IEEE Real-Time Systems Sympo-
sium, (RTSS’03), pages 2–13, December 2003.

153

154 References

[8] A. K. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. In Proceedings of the 7th Real-Time Technology and Applications
Symposium (RTAS’01), pages 75–84, May 2001.

[9] J. L. Hellerstein, Y. Diao, S. Parekh, and Dawn M. Tilbury. Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[10] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1993.

[11] L. Santinelli, G. Buttazzo, and E. Bini. Multi-moded resource reser-
vations. In Proceedings of the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’11), pages 37–46, April
2011.

[12] E. Bini and G. Buttazzo. Biasing effects in schedulability measures. In
Proceedings of the 16th Euromicro Conference on Real-Time Systems
(ECRTS’04), pages 196–203, June 2004.

[13] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzen. How
does control timing affect performance? analysis and simulation of tim-
ing using Jitterbug and TrueTime. Control Systems, IEEE, 23(3):16–30,
June 2003.

[14] M. Åsberg, T. Nolte, S. Kato, and R. Rajkumar. ExSched: An external
CPU scheduler framework for real-time systems. In Proceedings of the
18th IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications (RTCSA’12), pages 240–249, August
2012.

[15] N. Gandhi, D.M. Tilbury, Y. Diao, J. Hellerstein, and S. Parekh. MIMO
control of an apache web server: modeling and controller design. In
Proceedings of the American Control Conference (ACC’02), volume 6,
pages 4922–4927, 2002.

[16] Y. Diao, J. L Hellerstein, A. J Storm, M. Surendra, S. Lightstone,
S. Parekh, and C. Garcia-Arellano. Using MIMO linear control for load
balancing in computing systems. In Proceedings of the 2004 American
Control Conference (ACC’04), volume 3, pages 2045–2050, 2004.

References 155

[17] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback control real-time
scheduling: Framework, modeling, and algorithms. Real-Time Systems,
23:85–126, 2002.

[18] A. Block, J. H. Anderson, and U. C. Devi. Task reweighting under global
scheduling on multiprocessors. Real-Time Systems, 39(1-3):123–167,
2008.

[19] A. Block, J. H. Anderson, and G. Bishop. Fine-grained task reweight-
ing on multiprocessors. In Proceedings of the 11th IEEE International
Conference on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA’05), pages 429–435, 2005.

[20] A. Block, B. Brandenburg, J. H. Anderson, and S. Quint. An adaptive
framework for multiprocessor real-time system. In Proceedings of the
Euromicro Conference on Real-Time Systems (ECRTS’08), pages 23–33,
July 2008.

[21] J. Yao, X. Liu, X. Chen, X. Wang, and J. Li. Online decentralized adap-
tive optimal controller design of cpu utilization for distributed real-time
embedded systems. In Proceedings of the American Control Conference
(ACC’10), pages 283–288, June 2010.

[22] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son, and
C. Lu. Feedback control scheduling in distributed real-time systems. In
Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS’01),
pages 59–70, December 2001.

[23] X. Wang, X. Fu, X. Liu, and Z. Gu. PAUC: Power-aware utilization
control in distributed real-time systems. IEEE Transactions on Industrial
Informatics, 6(3):302–315, Aug 2010.

[24] X. Chen, X. W. Chang, and X. Liu. SyRaFa: Synchronous rate and fre-
quency adjustment for utilization control in distributed real-time embed-
ded systems. IEEE Transactions on Parallel and Distributed Systems,
24(5):1052–1061, May 2013.

[25] X. Wang, D. Jia, C. Lu, and X. Koutsoukos. DEUCON: Decentralized
end-to-end utilization control for distributed real-time systems. IEEE
Transactions on Parallel and Distributed Systems, 18(7):996–1009, July
2007.

[26] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of a
reservation-based feedback scheduler. In Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS’2), pages 71–80, December 2002.

[27] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, and L. Abeni. Adap-
tive reservations in a linux environment. In Proceedings of the 10th
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’04), pages 238–245, May 2004.

[28] T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli. Adaptive real-time
scheduling for legacy multimedia applications. ACM Transactions on
Embedded Computing Systems, 11(4):86:1–86:23, January 2013.

[29] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E.
Årzen, V. Romero, and C. Scordino. Resource management on multicore
systems: The ACTORS approach. Micro, IEEE, 31(3):72–81, May-June
2011.

[30] N. Khalilzad, M. Behnam, and T. Nolte. Multi-level adaptive hierarchical
scheduling framework for composing real-time systems. In Proceedings
of the 19th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’13), pages 320–329, Au-
gust 2013.

[31] N. Khalilzad, M. Behnam, G. Spampinato, and T. Nolte. Bandwidth adap-
tation in hierarchical scheduling using fuzzy controllers. In Proceedings
of the 7th IEEE International Symposium on Industrial Embedded Sys-
tems (SIES’12), pages 148–157, June 2012.

[32] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004.

Chapter 11

Paper D:
Adaptive Multi-Resource
End-to-End Reservations for
Component-Based
Distributed Real-Time
Systems

Nima Khalilzad, Mohammad Ashjaei, Luis Almeida, Moris Behnam and
Thomas Nolte.
In Proceedings of the 13th IEEE Symposium on Embedded Systems for
Real-Time Multimedia (ESTIMedia’15), October, 2015.

157

Abstract

Complexity in the real-time embedded software domain has been growing
rapidly. The component-based software development approach facilitates the
development process of such software systems by dividing a complex system
into a number of simpler components. Resource reservation techniques have
been widely used for providing resources to real-time software components.
In this paper we target real-time components operating on a distributed in-
frastructure. Furthermore, we target a class of software components which
demonstrate dynamic resource consumption behavior. A prime example of
such components is a multimedia software component. In the paper we present
a framework supporting multi-resource end-to-end resource reservations. We
reserve resource bandwidths on both processor resources as well as on the net-
work resources. The proposed framework utilizes a Multiple Input Multiple
Output (MIMO) controller which adjusts the sizes of reservations tracking the
dynamic resource demands of the software components. Finally, we present a
case study using a multimedia component to demonstrate the performance and
efficiency of our framework.

11.1 Introduction 159

11.1 Introduction

Complex distributed systems are currently disseminated over a large range
of application domains, particularly inherent in cyber-physical/embedded sys-
tems. These systems are typically subject to several non-functional constraints,
stretching from resource limitations to timeliness, including safety and other
constraints. Taming complexity in their design is particularly important to en-
sure a swift development and a correct result.

To this end, component-based software engineering is particularly well
suited, providing a modular approach that allows independent development of
system components which are integrated at the final stage of the development.
Combining such an approach with resource reservation techniques, compo-
nents can be encapsulated in reservations that match their requirements [1, 2,
3]. Moreover, reservations enforce mutual isolation, particularly temporal iso-
lation. Thus, components that run inside adequate reservations can be proved
correct independently of other components possibly running in the system.

However, beyond correctness, current design trends aim at resource effi-
ciency, reducing the component footprint over the set of needed resources, par-
ticularly computing and communication resources, and changing the resource
requirements at run time according to instantaneous needs. In this scope, dy-
namic reservations can provide a suitable solution to guarantee a continued
adequate match between the varying resource requirements and the provided
reservations. Dynamic reservation schemes are of particular interest in the
multimedia applications in which the instantaneous resource requirements are
highly dynamic. Unfortunately, dynamic reservations have been mostly studied
for single resource systems (e.g. [4, 5]). Distributed dynamic reservations taken
in a holistic way, particularly considering processor and network resources in
an integrated fashion, have not received much attention. These, however, are
necessary for common multimedia systems ranging from area surveillance to
process monitoring and even safety driver assistance.

This paper aims at contributing with a solution to such a problem, mak-
ing use of dynamic resource reservations on processor and network resources,
coupled by dynamic component requirements. We provide a solution which
allows for matching of dynamic requirements with the resource reservations,
reducing typical overprovisioning of static designs and thus resource usage. In
turn, since more resource capacity will be potentially available, the system ser-
vice will also be improved, e.g. allowing for serving more components and/or
with more quality.

In this paper, we consider a component model in which each component

160 Paper D

contains multiple tasks spread over a distributed system that communicate
through the network using messages. We consider an end-to-end soft real-time
model. We reserve a fraction of the processor as well as network resources
needed by the component to satisfy its timing requirements. We refer to this
reservation scheme as multi-resource end-to-end reservations. Furthermore,
we continually monitor the actual resource usages of the components, and we
adjust the reservation sizes to match their instantaneous resource requirements.
In particular, we present the following contributions in this paper:

• we present a new framework featuring multi-resource end-to-end reser-
vations in which the reservation sizes are adaptive;

• we design a Multiple Input Multiple Output (MIMO) Linear Quadratic
Regulator (LQR), which adjusts the reservation sizes during run-time;

• we present an on-line system identification method based on Recursive
Least Squares (RLS), which identifies the dynamics of the resource re-
quirements;

• we present a surveillance case study in which three processor nodes are
used, connected through an Ethernet switch.

The rest of the paper is organized as follows. In the next section we review
the related work regarding reservation techniques on processors, networks and
distributed systems. Section 11.3 presents our modeling approach with respect
to the resources and components. The architecture of our framework is pre-
sented in Section 11.4. We present the control design as well as the system
identification method in Section 11.5. We present a surveillance component
case study in Section 11.6. Finally, we conclude the paper in Section 11.7
where we also describe the future directions.

11.2 Related work
In the following, we review the reservation techniques inherent in three dif-
ferent areas, processor resources, network resources, and end-to-end resources
in distributed systems. We also review two groups of works: (i) static reser-
vations, and (ii) dynamic reservations. From a modeling perspective, several
resource models have been proposed for modeling resource reservation tech-
niques. For instance, the Periodic Resource (PR) model [1] uses a period and a
budget for characterizing a reservation. A reservation is guaranteed to receive

11.2 Related work 161

a specific budget during each time interval equal to the period. The budget
is reduced while the resource is assigned to a particular component, and it is
replenished at the start of the period.
Resource reservations on processors. A number of resource reservation mod-
els are realized on the processor resources. For instance, the Constant Band-
width Servers (CBS) [6] are implemented in the Linux kernel [7], or the PR
model is implemented in VxWorks [8]. When the tasks have dynamic resource
demands, it is desirable to adapt the reservation parameters to deal with the re-
source demand changes. Adaptive CBS is promoted in the AQuoSA project [4]
for dynamic tasks such as video decoders. The ACTORS projects [9] uses
adaptive CBS on multiprocessor platforms. In [5], the budget of periodic
servers are adapted tracking the processor demand of the components. In this
work the model is hierarchical, i.e., the periodic servers may contain multiple
tasks as well as multiple child periodic servers.
Resource reservations on network. The same modeling concepts as in pro-
cessors have been applied on the network resources. A general category of the
resource management in network is traffic shapers [10]. The purpose of these
shapers is to limit the amount of traffic that a node submits to the network in
a given time interval. Similar to the techniques used by processor servers, the
traffic shapers use methods based on capacity which is replenished with differ-
ent policies, e.g. credit-based shaping in Ethernet AVB [11]. Moreover, some
real-time Ethernet protocols enforce a cyclic-based transmission and reserve
windows for different classes of traffic (e.g., Ethernet POWERLINK [12], FTT-
SE [13] and HaRTES [14]). Also, a hierarchical server model [15] is proposed
for the Ethernet switches in the context of the FTT-SE protocol to reserve a
portion of bandwidth for different traffic types, hence providing temporal iso-
lation among them. An online QoS management [16] is proposed in the context
of a multimedia real-time application, which adapts the video compression pa-
rameters and the network bandwidth reservations to provide the best possible
QoS to the streams. Our end-to-end reservation framework can use the above
network technologies for reserving the network resources.
Registering resource reservations on network. In order to reserve resources
for streams in the network several protocols have been proposed, where they
use similar concepts. For instance, Stream Reservation Protocol (SRP) [17]
defines a set of procedures to reserve network resources for the specific traffic
streams, which are crossing through an Ethernet Audio Video Bridging (AVB)
network. The SRP protocol forces the traffic to be registered on the AVB
switches through its path, before being transmitted. Furthermore, a Resource
ReSerVation Protocol (RSVP) [18] was proposed to reserve resources for a

162 Paper D

stream with a specific Quality of Service (QoS) requirement. This protocol
operates using an admission control, which checks whether there are enough
resources to supply the requested QoS requirement. In both protocols, the
mechanism performs by sending a request through the network and checking
in each node the availability of resources. These protocols provide a support
for communicating new reservations in adaptive reservation schemes such as
ours.
Resource reservations in distributed systems. Few authors have addressed
the end-to-end reservation of resources for distributed systems, including pro-
cessor and network resources. A distributed kernel framework with a resource
manager in each node has been designed and implemented to provide an end-
to-end timeliness guarantee [19]. Also, a resource management system, called
D-RES [20], has been developed to handle shared resources among multiple
applications in distributed systems. A very close work related to ours is the one
presented in [21] in which a pipeline task is considered. Tasks may use one of
the resources available in the system to carry on their computations. Adaptive
CBS is used to track the resource demand of the tasks. In addition, a gen-
eral model, called Q-RAM [22], has been developed to manage the resources
shared among multiple applications. The applications in this framework have
different operation levels with different qualities depending on the available
resources. However, they have to satisfy their needs such as timeliness, reli-
ability and data quality. The model allocates the resources to the applications
considering that the overall system utility becomes maximum while the appli-
cations meet their minimum needs. This model has been extended in [23] for
the systems with rapidly changing resource usage.

The main difference of our work with [21] and [22] is that we consider
adaptation for components which may in turn be composed of multiple tasks.
The existence of multiple tasks inside one component makes the system dy-
namics model in those works inapplicable to our setting. Therefore, we use an
on-line model identification method for estimating the parameters of the model.
Besides, we perform the adaptations in an integrated fashion for all resources
of the component using MIMO controllers. This is because the MIMO control
approach allows us to simultaneously adapt the bandwidths of all reservations
considering the possible coupling among them. Finally, in our framework we
explicitly consider network resources, and we present the result of our case
study in which we used a common network technology.
Adaptive distributed systems. Feedback scheduling techniques have been
used in the context of distributed systems. In particular a line of work in this
context focuses on keeping the utilization of the processors below their schedu-

11.3 Model 163

lability threshold. For instance Stankovic et al. have studied this problem for
independent tasks [24]. On the other hand, the following two frameworks are
proposed for end-to-end task models: EUCON [25] and DEUCON [26]. While
EUCON uses a centralized controller, DEUCON employs a decentralized ap-
proach in which task rates (periods) are adapted using model predictive con-
trollers. The main difference of our paper with the aforementioned works is the
following. Since we consider component-based systems in which a component
is comprised of a set of end-to-end tasks, a reservation-based scheduling policy
is needed to isolate the timing behavior of the components in run-time. This
separation of run-time behavior for components is not supported by the above
frameworks. Besides, we explicitly consider network resources in our frame-
work, while the above frameworks only focus on the processor resources.

11.3 Model
We assume a Distributed Resource (DR) infrastructure with M resources. We
use rh to denote the hth resource in the system. The set of resources is denoted
by R = {r1, . . . , rM}. We consider two types of resources: (i) network re-
sources; (ii) processor resources. We assume that N real-time components are
placed on the DR infrastructure. Each component uses a subset of all resources.
Component and task model. We assume that a real-time component C(ι) is
composed of a set of tasks: C(ι) = {τ (ι)

1 , τ
(ι)
2 , . . . }, where τ (ι)

i represent the
ith task of C(ι). We assume an end-to-end sporadic task model in which a
task τ (ι)

i requires a subset of available resources (processor and/or network)
for completing its execution. τ (ι)

i begins its execution on a processor resource
(source processor), and it finishes its execution on a processor resource (desti-
nation processor). The set of all resources consumed by τ (ι)

i is denoted using
R(ι)
i , whereR(ι)

i ⊂ R. τ (ι)
i is characterized with a minimum inter-arrival time

p
(ι)
i and an end-to-end soft deadline d(ι)

i . p(ι)
i refers to the release of the task on

the source processor, while d(ι)
i indicates its relative deadline on the destination

processor. τ (ι)
i is composed of a set of subtasks each consuming a resource. We

use τ(ι)
i,j to refer to the jth subtask of τ (ι)

i . Note that we also use the term sub-
task for the chunks of the end-to-end tasks that consume the network resources
(network subtasks). In this model, a message is a set of network subtasks. τ(ι)

i,j

is characterized with a Resource Consumption Time (RCT) c(ι)i,j which indicates
execution/transmission time of the subtask. We assume that the RCTs (i) are
not known a priori to run-time; (ii) are changing during run-time. The quality

164 Paper D

of service experienced by tasks depends on the number of deadline violations.
The objective of our adaptive framework is to minimize the number of deadline
violations without significant resource overprovisioning. To this end, we use a
controller module in our framework to track the resource requirements of the
components and adjust the reservation budgets accordingly.
Virtual DR. Recall that each component is assigned to a subset of available
resources denoted byR(ι). We use resource reservation polices for partitioning
the bandwidth of the resources. For all rh ∈ R(ι), C(ι) receives a fraction of
the bandwidth of rh. We refer to the subset of partially available resources for
a component as a virtual DR, and we use Γ(ι) for denoting it. The specification
of the virtual DR allocated to C(ι) is denoted using:

Γ(ι) =
〈

Π(ι), {Θ(ι)
1 ,Θ

(ι)
2 , . . . ,Θ

(ι)

M(ι)}
〉
,

where Π(ι) is the period of the resource reservations, Θ
(ι)
h denotes the budget of

rh reserved for C(ι) and M (ι) is the number of resources used by C(ι). Without
loss of generality, to avoid a conflict in resource indexing, we consider M (ι) =
M . The above abstraction means that C(ι) is guaranteed to receive at least
Θ

(ι)
h time units of resource rh every Π(ι). The reserved bandwidth of Γ(ι) on

resource rh is defined as:

α
(ι)
h =

Θ
(ι)
h

Π(ι)
.

Note that such a periodic resource abstraction model is supported by sev-
eral processor and network scheduling schemes. For instance, on the proces-
sor resource we can use Constant Bandwidth Servers (CBS) [6] or Periodic
Servers (PS) [1]. While for the network resource we can use a hierarchical
server model [15] or the periodic model presented for the FTT-SE [13] and
HaRTES [27] architectures.

11.4 Framework
In this section we present the scheduling scheme of our framework. We also
provide an overview of our adaptation mechanism.
Resource scheduler. We assume a resource scheduler per each physical re-
source. The schedulers (i) enforce resource reservations; (ii) schedule sub-
tasks; (iii) and communicate with the respective controller modules to inform
them about the state of the reservations. Although resources are scheduled lo-
cally, our end-to-end reservation scheme guarantees a predictable system wide

11.4 Framework 165

resource provisioning for the end-to-end tasks. We use a hierarchical schedul-
ing scheme in which scheduling is performed at two levels. In the higher level
the resource scheduler schedules the reservations. Within each reservation,
however, it is the responsibility of the subtask-scheduler to schedule different
subtasks belonging to that reservation.
Controller module. We use a controller module per component which is
responsible to adjust the reserved bandwidths for the component. The con-
troller monitors the actual resource usages of the component on its allocated re-
sources. This monitoring is performed through communications with the local
schedulers. Once the controller decides a new set of reservation bandwidths,
it communicates the new requirements to the local resource schedulers. The
controller samples and adapts the system periodically. The sampling time is
denoted by k. The time distance between two consecutive samples is referred
as a sampling interval. We place the controller on a processor resource, and
we reserve a portion of that processor resource for the controller executions
as well as on the network resources that support the communication with the
resource schedulers. These control reservations are static and attached to each
component.

Since the reservation sizes are adapted during run-time, resources may tem-
porarily become overloaded. In other words, the overall reserved bandwidth on
a resource may pass beyond its schedulability threshold. In such a situation, the
components can be prioritized based on their importance in their contribution
to the overall goal of the system. If a component’s bandwidth gets compressed
on one of its resources, then it may be efficient to compress its bandwidth on
the remaining component resources as well. Therefore, the framework should
follow a protocol in overload situations. The overload management mecha-
nism is out of the scope of this paper, and we leave incorporating an overload
manager module to our framework for the future work. In this paper we intend
to answer the following question:

“Given a component with requirements that vary dynamically on differ-
ent resources, how can we define dynamic reservations that track the evolving
requirements while satisfying resource constraint?”
Example. In the following we present an example for elaborating our frame-
work. In our example we assume a distributed system consisting of six re-
sources {r1, . . . , r6}. r1, r4 and r5 are processor resources while r2, r3 and
r6 are network resources. We assume that a surveillance component has been
placed on this distributed system. Two cameras are attached to r1 and r5. We
have two end-to-end tasks: τ (1)

1 and τ (1)
2 . The video frames are preprocessed

in their source processors by the first subtasks of the two tasks. Thereafter,

166 Paper D

𝒓𝟐 𝒓𝟑

𝜏1,1
(1)

𝜏2,4
(1)

𝜏2,1
(1)

𝜏1,4
(1)

Controller

𝒓𝟏 𝒓𝟒

Processor resource

Network resource

Path of a message

𝜏1,2
(1)

𝜏1,3
(1)

𝜏2,3
(1)

𝜏2,2
(1)𝒓𝟔

𝒓𝟓

Figure 11.1: Surveillance component example. r1 and r5 have two cameras
attached. The lines connecting the resources represent logical connections.
The network resources are explicitly visualized as boxes.

the video frames are sent to r4 which hosts the final subtasks. We model this
surveillance system as a component placed on the distributed infrastructure:

C(1) =
{
τ

(1)
1 , τ

(1)
2

}
.

τ
(1)
1 is composed of four subtasks: τ

(1)
1,1 ,τ

(1)
1,2 ,τ

(1)
1,3 and τ

(1)
1,4 . τ

(1)
1,1 represents the

video encoder subtask placed on r1, while τ(1)
1,4 is the decoder and display sub-

task on r4. τ(1)
1,2 and τ

(1)
1,3 represent the message that consumes r2 and r3 on its

path from r1 to r4. Similarly τ
(1)
2 is composed of four subtasks: τ

(1)
2,1 ,τ

(1)
2,2 ,τ

(1)
2,3

and τ
(1)
2,4 consuming r5, r6, r3 and r4. The resource reservations of C(1) is rep-

resented using the following interface:

Γ(1) =
〈

Π(1), {Θ(1)
1 ,Θ

(1)
2 ,Θ

(1)
3 ,Θ

(1)
4 ,Θ

(1)
5 ,Θ

(1)
6 }
〉
.

Note that C(1) may be sharing the resources with other components.

11.5 Component controller module
The objective of our framework is to satisfy the quality of service require-
ments of the tasks within the components. We consider meeting the end-to-end

11.5 Component controller module 167

deadlines as a measure of the quality of service satisfaction. Our secondary ob-
jective is to allocate the resources efficiently. That is, the deadlines should be
respected without significant resource overallocations. To this end, we design
a feedback based controller module in this section.

We use a control theoretic approach, similar to [28], for designing the com-
ponent controller module. In such an approach, to control the plant, we define
controlled variables, i.e., measurable variables that indicate the state of the
plant, and control inputs, i.e., variables that allow us to manipulate the plant.
Note that our plant is the set of resources that are used by the component. The
component controller samples and adapts the plant periodically. In our frame-
work, we consider one component controller per component. In the rest of this
section, for notational convenience, we drop the component index (ι) when
referring to the parameters associated with C(ι).

Let αh(k) indicate the reserved bandwidth on rh during sampling point
k − 1 and k. The component utilizes a portion of the reserved bandwidth. Let
α′h(k) denote the amount of consumed bandwidth during sampling point k− 1
and k, where 0 ≤ α′(k) ≤ α(k). The amount of wasted bandwidth on rh
is: yh(k) = αh(k) − α′h(k), where we consider yh(k) the hth output of our
control system. Hence, the vector of system outputs is:

y(k) = [y1(k) . . . yM (k)]T .

We selected the assigned bandwidth as our control inputs: uh(k) =
αh(k) − ᾱh, where ᾱh is the operating bandwidth of the component on
rh. This parameter is provided by component developers. For instance it
can be an estimate of the average required bandwidth on rh. Note that this
parameter does not need to be exact since we use a feedback loop to adjust the
bandwidths. The vector of the control inputs is defined as follows:

u(k) = [u1(k) . . . uM (k)]T .

At each sampling time, the goal of the component controller is to find a con-
trol input vector u(k) such that y(k) = yref , where yref = [yref1 . . . yref

N(ι)],
and yrefh is the desired value of yh(k). We assign this parameter to a small
positive value to provide some slack bandwidth for the component. This is
because yh(k) becomes saturated at zero, thus when yh(k) = 0 it is not pos-
sible to infer whether the component requires more bandwidth or it is satisfied
with the current bandwidth. To reach the goal of the component controller, we
use an on-line system identification method along with an optimal controller.
Figure 11.2 illustrates the architecture of our control system. In the follow-
ing we explain the details of the system identification method as well as the

168 Paper D

Virtual DR
MIMO LQR

Controller

𝒚(𝑘)

𝒖(k+1)

+

-

𝒚𝑟𝑒𝑓

RLS based model

identification

Figure 11.2: The architecture of the control system.

controller design. Note that, although we do not monitor the end-to-end re-
sponse times, we can indirectly control the response times using our control
inputs u(k). This is because by manipulating the bandwidth of a resource we
can affect the response time of subtasks on that particular resource. Since we
manipulate the bandwidth of all resources serving the end-to-end tasks, we can
affect the end-to-end response times.

We need to model the relation between the control inputs u(k) and system
output y(k). We use the following auto-regressive MIMO model for modeling
this relation:

y(k + 1) = Ay(k) + Bu(k) + εεε(k + 1), (11.1)

where A and B are M × M matrices, u(k) is the control input, y(k) is the
system output, {εεε(k + 1)} is a sequence of M-dimensional random vectors
with zero mean representing the disturbance. A represents the dependency
between the next wasted bandwidth and the current wasted bandwidth, whereas
B represents the dependency between the current assigned bandwidth and the
next wasted bandwidth. We explain our approach for deriving these matrices in
the following subsection. Note that although the plant is non-linear by nature,
linear models often work well for nonlinear systems [29].

11.5.1 System identification
In the above system model (Equation 11.1) matrices A and B are unknown.
Since the load situation of the components may change during run-time, the
above two matrices have to be tuned to improve the accuracy of the model.
Therefore, we tune these matrices on-line at each sampling point. This self-
learning technique enables the controller to learn the couplings among differ-

11.5 Component controller module 169

ent system outputs/control inputs which may emerge during run-time. In this
subsection we assume that A and B are also functions of the sampling time, i.e.
A(k) and B(k). Let us rewrite the system model in the following form:

y(k + 1) = X(k)φφφ(k) + εεε(k + 1), (11.2)

where
φφφ(k) =

[
(u)T (k) (y)T (k)

]T
,

X(k) =
[
B(k) A(k)

]
.

We identify X(k) during run-time by observing the system outputs, and
by making a correction action. We use the Recursive Least Squares (RLS)
method [30]. In this method the estimated value of matrix X(k), denoted by
X̂(k), is calculated using the following equations:

X̂(k + 1) = X̂(k) +
εεε(k + 1)(φφφ)T (k)P(k − 1)

λ+ (φφφ)T (k)P(k − 1)φφφ(k)
,

εεε(k + 1) = y(k + 1)− X̂(k)φφφ(k),

P−1(k) = P−1(k − 1) +
(

1 + (λ− 1)
(φφφ)T (k)P(k − 1)φφφ(k)

[(φφφ)T (k)φφφ(k)]2

)
φφφ(k)(φφφ)T (k),

(11.3)

where εεε(k+ 1) is the estimation error vector, P(k) is the covariance vector and
λ is the forgetting factor [30].

11.5.2 Controller design
In the following, given that the system model is identified, we design an LQR
controller which provides optimal control actions (u∗(k)) at each sampling
point k. Note that the LQR controller works after the RLS system identifier.
Therefore, in this subsection we assume that the model parameters are already
estimated, and we use Â and B̂ to indicate the estimated values of A and B. We
define error eP(k) as:

eP(k) = yref − y(k). (11.4)

The dynamics of the control system based on eP(k) is as follows:

eP(k + 1) = yref − Ây(k)− B̂u(k)

= ÂeP(k)− B̂u(k) + (I− Â)yref − εεε(k + 1).

170 Paper D

Instead of directly using the model presented in Equation 11.1, we use the
system model based on error for the controller design. In addition to eP(k), we
also use integral errors:

eI(k + 1) = eI(k) + eP(k),

where ∀k ≤ 0 we have eI(k) = 0. Hence, the augmented system model is:

e(k + 1) = Ĥe(k) + Ŝu(k) + L̂− εεε(k + 1), (11.5)

where

e(k) =

[
eP(k)

eI(k)

]
, Ĥ =

[
Â 0
I I

]
,

Ŝ =

[
−B̂
0

]
, L̂ =

[
I− Â

0

]
yref .

For our notational convenience we assume Ψ̂ΨΨ = [Ŝ Ĥ], and we rewrite the
above equation:

e(k + 1) = Ψ̂ΨΨ
[
u(k)T e(k)T

]T
+ L̂− εεε(k + 1). (11.6)

We define the objective function as:

J = E
{∣∣∣∣∣∣W(e(k + 1))

∣∣∣∣∣∣2 +
∣∣∣∣∣∣Q(u(k)− u(k − 1))

∣∣∣∣∣∣2}, (11.7)

where W and Q represent the cost of control error and the cost of control ac-
tion, respectively. These two matrices allow the system designers to prioritize
among different resources by assigning larger cost values to more important
resources in case such a logical prioritization is needed. We derive the optimal
control action by explicitly capturing the dependency of J on u(k), and by as-
signing the derivative of J with respect to u(k) equal to zero [28]. The optimal
control action is:

u∗(k + 1) =
(

(WŜ)TWŜ + QTQ
)−1[

(WŜ)TW

(L− Ψ̂ΨΨφ̃φφ(k + 1)) + QTQ(u)T (k)
]
, (11.8)

where
φ̃φφ(k + 1) = [0, (e)T (k)]T .

At each sampling time k the controller module takes the following actions:

11.6 Evaluations 171

1. It reads the system output vector y(k) provided by the local resource
schedulers.

2. It updates its model of the plant’s dynamics using Equation 11.3. The
result system model is used in the next step.

3. It calculates the new control input vector u∗(k) using Equation 11.8.

4. It sends the new reservation bandwidths to the local resource schedulers.

The fact that we selected the wasted resource bandwidth as our system out-
put (y) offers the following advantages: (i) the adaptation scheme is indepen-
dent of the number of tasks within the components; (ii) the adaptation scheme
is independent of the assumed task model. In other words, the above adaptation
scheme works under other task models, e.g. models in which a task can branch
within its path from the source to different destinations. Nevertheless, in our
evaluations we have only considered the task model presented in Section 11.3.

11.6 Evaluations
In order to perform the evaluations we have used a simulation tool, that is called
SEtSim and presented in [31]. SEtSim was initially developed to support dif-
ferent real-time network protocols, such as the HaRTES architecture [27]. It
was also recently extended to support AVB networks [32]. In this work, we
modified the tool such that it supports our end-to-end task model as well as our
multi-resource end-to-end reservation scheme. We consider the surveillance
component case study presented in Figure 11.1. This is representative of typi-
cal network-based surveillance systems in which the bandwidth taken by each
camera varies according to the scenario being captured, e.g., variable people
walking, variable number of cars or other vehicles, and also where the cameras
can be switched on and off on-line. We used a specific network technology
for scheduling the network resource as well as a server-based scheduling pol-
icy for scheduling the processor resources. Both reservation mechanisms are
compliant with the periodic abstraction model assumed in this paper (see sec-
tion 11.3). We present two simulations in this section. In the first simulation,
we studied the response of our controller module to a step load change. That
is, we used fixed RCTs times until a certain point in time. Thereafter, we in-
creased the RCTs to larger numbers. In the second simulation, on the other
hand, we used RCTs gathered from a real multimedia application to evaluate
the performance of the controller module in a real scenario.

172 Paper D

Link 1 Syn Window Asyn Window

Elementary Cycle (EC)

Link 2

Link 3

Guard Win

Syn Window

Syn Window

Asyn Window

Asyn Window

Figure 11.3: The EC partitioning in the HaRTES architecture.

11.6.1 Simulation setup
In the following we explain the details of the resource reservation techniques
as well as other parameters that are the same for the two case studies.

We used CBS [6] with hard replenishments on the processor resources.
The hard CBS scheme works as follows. The server budget is periodically
replenished to its maximum at each server release (Π(ι)). The tasks within the
server are only allowed to run if the remaining budget is positive. The server
budget is reduced while an active task belonging to the server is consuming the
processor time. The tasks must stop as soon as the server budget is depleted.

The task parameters were set as follows. The periods of the two end-to-end
task (p1 and p2) were set to 40ms. Therefore, their first subtasks, i.e. τ1,1
and τ2,1, were released periodically with the same period. We assumed that
d1 = d2 = 40ms. The messages are activated at the end of the execution of
the sender subtasks, i.e. τ1,1 and τ2,1. The final subtasks, i.e. τ1,4 and τ2,4,
were activated when they received their corresponding messages. We also set
the reservation replenishment period (Π) to 40ms. We used different RCTs for
the two case studies.

We used the HaRTES architecture [27] to connect the processor nodes. Al-
though we used a specific network technology in this evaluation, other network
technologies that provide a resource management mechanism can be used in
our framework. The HaRTES architecture uses modified Ethernet switches, so
called HaRTES switches, which separate traffic in two classes, synchronous
and asynchronous (Figure 11.3). The former is scheduled by the switch while
the latter is shaped by the switch. Both the synchronous scheduling and the
traffic shaping use the temporal resolution dictated by a pre-configured Ele-
mentary Cycle (EC). Within each EC, the traffic of each kind is confined to
respective windows that vary dynamically in each network link according to
the traffic needs (Figure 11.3).

In the case study, the messages are activated by the first subtasks, i.e. τ1,1

11.6 Evaluations 173

HaRTES

Node 2

Node 1

Node 3

r1
r5

r4

r2 r3
r6

m1 m2

Figure 11.4: The architecture of the case study from a network perspective.
Figure 11.1 shows the resource perspective of the same system. Message one
(m1) denotes the following set of subtasks {τ1,2, τ1,3}, while message 2 (m2)
represents {τ2,2, τ2,3}.

and τ2,1. Depending on the RCTs of the subtasks, the activation of the mes-
sages can be different. Therefore, we considered the messages as asynchronous
traffic. A network perspective of the case study is shown in Figure 11.4. The
network parameters are set as follows. The network bandwidth capacity is set
to 100Mbps. The EC size is selected to 40ms. The bandwidth reservations
for the transmission of the messages (αh(k)) are done within the asynchronous
window and changed by the controller during run-time depending on the load
and bandwidth usage (resources r2, r3 and r6). The processor nodes (Node 1
and Node 3 in Figure 11.4) generate two messages, respectively, denoted by
m1 and m2 in the figure. The destination of the messages is Node 2, where
the processing of the data is performed. We used fixed priority scheduling
for scheduling subtasks within each resource reservation. We assumed that τ1
(also its subtasks) has a higher priority than τ2.

Regarding the controller parameters, we set the sampling interval to
200ms. Also, we set Q = 0.1 × I and W = tri(0.1, 0.1, 0.1, 0.1, 0.1, 0.1) + I
to give a smaller weight for the integral errors. Note that tri returns
a lower triangular matrix of its input vector. Based on the discussion
presented in Section 11.5, we assigned the following reference vector:
yref = [0.08 0.10 0.15 0.08 0.08 0.10]T .

11.6.2 Case study (1): step response
Table 11.1 shows the RCTs used in this case study before and after a step
change in the RCTs. We changed the RCTs 4s after the beginning of the sim-
ulations (i.e., after 100 task instances), and we ran the simulations for 10s.

174 Paper D

Before step After step
c1,1, c1,4, c2,1, c2,1 4ms 10ms

c1,2, c2,2 2ms 5ms

c1,3, c2,3 4ms 10ms

Table 11.1: The RCTs used in case study (1).

Figure 11.5 shows the consumed bandwidth α′h, assigned bandwidth αh, and
the control error (Equation 11.4) for each resource separately. Although the
RTCs are fixed throughout the first 10 samples, the controller modifies the as-
signed bandwidths. This is because in the beginning of the simulations the
controller needs to adjust its model. Let ε̄εε denote the average observed value of
εεε(k) (Equation 11.3). We observed the following average differences between
the estimated system outputs and the real system outputs:

ε̄εε = 10−4 × [−74; 49; 54; −107; −75; 48],

which shows that the RLS approach has been successful in identifying the sys-
tem model.

The task response times are illustrated in Figure 11.6. During the transient
period of load adjustment, a few instances of the end-to-end tasks missed their
deadlines. τ1 missed 20 deadlines, while τ2 missed 44 deadlines. Recall that
τ2 had a lower priority than τ1, hence it was scheduled later on the shared
resources (still within the component reservations). In addition, since after the
step load a backlog was built, it took a while until the response times became
stable again.

11.6.3 Case study (2): multimedia application
In this simulation, in order to have realistic evaluation of our framework, we
used RCTs gathered from running multimedia tasks on a real hardware plat-
form [33]. We also considered 10 % high priority interfering workload on all of
the resources to simulate existence of other components. Figure 11.7 presents
the evolution of the used bandwidths, assigned bandwidths and control errors
on all resources during the 100s experiment (i.e., 500 control samples). The
figure shows that the controller manages to successfully track the evolution of
the workload. Figure 11.8 illustrates the response times of the two end-to-end
tasks. Since τ2 has a lower priority than τ1, it has larger response times, and
it occasionally violates its deadline. In total, τ1 missed 4 deadlines, while τ2

11.6 Evaluations 175

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

r
1

Sampling time (k)

α’

1

α
1

e
1

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

r
2

Sampling time (k)

α’

2

α
2

e
2

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

r
3

Sampling time (k)

α’

3

α
3

e
3

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

r
4

Sampling time (k)

α’

4

α
4

e
4

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

r
5

Sampling time (k)

α’

5

α
5

e
5

20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

r
6

Sampling time (k)

α’

6

α
6

e
6

Figure 11.5: α′h, αh and eh of the six resources during case study (1).

missed 40 deadlines. We observed:

ε̄εε = 10−4 × [5; 1; −9; 15; 2; 16].

Let αααavg denote the vector of average assigned bandwidths throughout the ex-
periment. We had:

αααavg = [0.1977; 0.2600; 0.6378; 0.3686; 0.2030; 0.2174].

In a new experiment, we used the above observed average bandwidths
αααavg , and we assigned them as fixed bandwidths to the component. In to-
tal, the number of deadline misses for τ2 was 46, while τ1 missed all of its

176 Paper D

0 100 200 300 400 500 600
0

200

400

τ
1

Instance number

Response time
Deadline

0 100 200 300 400 500 600
0

200

400

τ
2

Instance number

Response time
Deadline

Figure 11.6: End-to-end response times of τ1 and τ2 in case study (1).

deadlines. This is because the first instance of τ1,1 finished in the 6th reser-
vation period. This phenomenon caused a large backlog for τ1. On the other
hand, since α2 was not enough for sending multiple messages, τ1 never recov-
ered from this backlog. The average response time for τ1 was 248ms. This
experiment shows that given a certain resource efficiency level (i.e. reservation
bandwidth) our adaptive framework works significantly better than the static
design approach. In should be noted that the static design approach requires
bandwidth estimations prior to the run-time.

11.6.4 Overhead
Our adaptive framework performs adaptations at the cost of imposing two types
of overhead: (i) communication overhead; (ii) computation overhead. The con-
troller requires the bandwidth usage information (y(k)) during run-time to ad-
just the bandwidth for each network resource. This information is gathered by
the resource scheduler in the nodes and switches per link, and it is transmitted
to the controller by means of messages. Therefore, besides the data messages
transmitted through the network, the controller messages are sent through the
same links. For this particular information a specific bandwidth is reserved in
the network, that is isolated from the data message bandwidth. For instance, in
the HaRTES architecture, the data messages are transmitted within the asyn-
chronous window, while the control messages are transmitted within the syn-

11.6 Evaluations 177

100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

r
1

Sampling time (k)

α’

1

α
1

e
1

100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

r
2

Sampling time (k)

α’

2

α
2

e
2

100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

r
3

Sampling time (k)

α’

3

α
3

e
3

100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

r
4

Sampling time (k)

α’

4

α
4

e
4

100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

r
5

Sampling time (k)

α’

5

α
5

e
5

100 200 300 400 500

0

0.2

0.4

0.6

0.8

1

r
6

Sampling time (k)

α’

6

α
6

e
6

Figure 11.7: α′h, αh and eh of the six resources during case study (2).

chronous window. Note that the controller is performed periodically, thus the
control messages can be transmitted periodically as a set of synchronous mes-
sages. For this purpose we can send messages with the size equal to 500 Bytes
(40µs) every reservation period (40ms) which imposes 0.1 % overhead on the
network. The number of control messages can be reduced by devising a decen-
tralized control scheme similar to [34], where we can decompose the system
model presented in Equation 11.1. However, we leave investigating this ap-
proach for the future work.

Furthermore, the controller performs computations to first update its model
of the system using the RLS technique (Equation 11.3), and to calculate the
control input u(k) (Equation 11.8). For the purpose of the above case study,

178 Paper D

0 500 1000 1500 2000 2500
0

50

100

τ
1

Instance number

Response time
Deadline

0 500 1000 1500 2000 2500
0

50

100

τ
2

Instance number

Response time
Deadline

Figure 11.8: End-to-end response times of τ1 and τ2 in case study (2).

we implemented the two functions in Matlab, and we ran them on our machine
featuring an Intel Core i7-4600U processor with 12 GB RAM. The RLS iden-
tification took in average 373µs, while the LQR computations took in average
240µs. Therefore, given the sampling period, the controller module imposed
around 0.31 % computation overhead. Note that the above values are measured
running Matlab code on a Windows operating system. Therefore, an efficient
implementation executed on a real-time operating system will potentially im-
pose lower overhead. In general, overhead is proportional to the total number
of resources used by the component M (ι).

11.6.5 Discussions
We conclude from the above case studies that our controller module manages
to fulfill the objectives described in Section 11.5, that are (i) to serve the com-
ponents with negligible deadline violations; (ii) to allocate the resources ef-
ficiently by matching the reservation bandwidths to the instantaneous needs
during run-time (instead of overprovisioning the resources). Considering the
network resources in the evaluation, we changed the reservations within the
asynchronous window sizes in the EC during run-time. This allows other com-
ponents in the asynchronous window to utilize more bandwidth. Also, we can
reduce the size of the asynchronous window if it is not used by the compo-
nents within this window. In doing so, the size of the other window, i.e., the

11.7 Conclusions and future work 179

synchronous window can be increased. Therefore, more resource is available
for the components that use the synchronous window in the EC. The same
argument applies for the processor resources. The component allows other
components that share the resources with itself to utilize larger bandwidths by
keeping its reservation size low.

11.7 Conclusions and future work
In this paper we designed an adaptive framework for scheduling component-
based distributed real-time systems. In our framework we enforce end-to-end
reservations across all of the resources needed by the end-to-end tasks within
the components. The sizes of the reservations are adjusted during run-time to
cope with dynamic resource needs. We showed, using two case studies, that
our framework reduces the number of deadline violations to a negligible level,
while keeping the reservation sizes close the actual demands.

In the future we will propose a protocol to manage overload situations in
which the overall resource reservation on a resource is beyond its schedulability
threshold. In addition, we will investigate a decentralized control approach to
see whether we can reduce the communication overhead of the controller while
keeping its performance at an acceptable level.

References

[1] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proceedings of the 24th IEEE Real-Time Systems Sympo-
sium, (RTSS’03), pages 2–13, December 2003.

[2] G. Lipari and S. Baruah. A hierarchical extension to the constant band-
width server framework. In Proceedings of the 7th IEEE Real-Time Tech-
nology and Applications Symposium (RTAS’01), pages 26–35, May 2001.

[3] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In Proceedings of the 18th IEEE Real-Time Systems Sym-
posium (RTSS’97), pages 308–319, December 1997.

[4] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. AQuoSA-adaptive
quality of service architecture. Software: Practice and Experience,
39(1):1–31, January 2009.

[5] N. Khalilzad, M. Behnam, and T. Nolte. Multi-level adaptive hierarchical
scheduling framework for composing real-time systems. In Proceedings
of the 19th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’13), pages 320–329, Au-
gust 2013.

[6] L. Abeni and G. Buttazzo. Integrating multimedia applications in hard
real-time systems. In Proceedings of the 19th IEEE Real-Time Systems
Symposium (RTSS’98), pages 4–13, December 1998.

[7] D. Faggioli, M. Trimarchi, F. Checconi, M. Bertogna, and A. Mancina.
An implementation of the earliest deadline first algorithm in Linux. In
Proceedings of the ACM symposium on Applied Computing (SAC’09),
pages 1984–1989, March 2009.

181

182 References

[8] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril. Towards hi-
erarchical scheduling on top of VxWorks. In Proceedings of the 4th
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT’08), pages 63–72, July 2008.

[9] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G. Fohler, K.-E.
Årzen, V. Romero, and C. Scordino. Resource management on multicore
systems: The ACTORS approach. Micro, IEEE, 31(3):72–81, May-June
2011.

[10] J. Loeser and H. Haertig. Low-latency hard real-time communication
over switched ethernet. In Proceedings of the 16th Euromicro Conference
on Real-Time Systems (ECRTS’04), June 2004.

[11] IEEE. IEEE Std. 802.1qav, ieee standard for local and metropolitan area
networks, virtual bridged local areanetworks, amendment 12: Forwarding
and queuing enhancements for time-sensitive streams. Technical report,
IEEE, 2011.

[12] Ethernet POWERLINK Standardisation Group. EPSG Draft Standard
301 Ethernet POWERLINK Communication Profile Specification Version
1.2.0, 2013.

[13] M. Ashjaei, M. Behnam, L. Almeida, and T. Nolte. Performance analysis
of master-slave multi-hop switched ethernet networks. In Proceedings of
the 8th IEEE International Symposium on Industrial Embedded Systems
(SIES’13), June 2013.

[14] R. Santos, A Vieira, P. Pedreiras, A Oliveira, L. Almeida, R. Marau, and
T. Nolte. Flexible, efficient and robust real-time communication with
server-based Ethernet switching. In Proceedings of the 8th IEEE Inter-
national Workshop on Factory Communication Systems (WFCS’10), May
2010.

[15] R. Santos, M. Behnam, T. Nolte, P. Pedreiras, and L. Almeida. Multi-
level hierarchical scheduling in ethernet switches. In Proceedings of the
of the International Conference on Embedded Software (EMSOFT’11),
October 2011.

[16] J. Silvestre-Blanes, L. Almeida, R. Marau, and P. Pedreiras. Online
QoS management for multimedia real-time transmission in industrial net-
works. IEEE Transaction on Industrial Electronics, 58(3), March 2011.

References 183

[17] IEEE 802.1Qat, draft standard for local and metropolitan area networks
virtual bridged local area networks amendment 9: Stream reservation pro-
tocol (SRP).

[18] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. Rsvp: a
new resource reservation protocol. IEEE Communications Magazine,
40(5):116–127, May 2002.

[19] K. Lakshmanan and R. Rajkumar. Distributed resource kernels: OS
support for end-to-end resource isolation. In Proceedings of the IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS’08), April 2008.

[20] A. Oliveira, A. Azim, S. Fischmeister, R. Marau, and L. Almeida. D-
RES: Correct transitive distributed service sharing. In Proceedings of the
Work-in-Progress Session of the Conference on Emerging Technologies
and Factory Automation (ETFA’14), September 2014.

[21] T. Cucinotta and L. Palopoli. QoS control for pipelines of tasks using
multiple resources. IEEE Transactions on Computers, 59(3):416–430,
March 2010.

[22] R. Rajkumar, C. Lee, J. Lehoczky, and Dan Siewiorek. A resource al-
location model for QoS management. In Proceedings of the 18th IEEE
Real-Time Systems Symposium (RTSS’97), December 1997.

[23] S. Ghosh, J. Hansen, R. Rajkumar, and J. Lehoczky. Integrated resource
management and scheduling with multi-resource constraints. In Pro-
ceedings of the 25th IEEE International Real-Time Systems Symposium
(RTSS’04), December 2004.

[24] J. A. Stankovic, T. He, T. Abdelzaher, M. Marley, G. Tao, S. Son, and
C. Lu. Feedback control scheduling in distributed real-time systems. In
Proceedings of the 22nd IEEE Real-Time Systems Symposium (RTSS’01),
pages 59–70, December 2001.

[25] C. Lu, X. Wang, and X. Koutsoukos. Feedback utilization control in
distributed real-time systems with end-to-end tasks. IEEE Transactions
on Parallel and Distributed Systems, 16(6):550–561, June 2005.

[26] X. Wang, D. Jia, C. Lu, and X. Koutsoukos. DEUCON: Decentralized
end-to-end utilization control for distributed real-time systems. IEEE

Transactions on Parallel and Distributed Systems, 18(7):996–1009, July
2007.

[27] M. Ashjaei, M. Behnam, P. Pedreiras, R. J. Bril, L. Almeida, and T. Nolte.
Reduced buffering solution for multi-hop HaRTES switched Ethernet net-
works. In The 20th IEEE International Conference on embedded and
Real-Time Computing Systems and Applications, August 2014.

[28] X. Liu, X. Zhu, P. Padala, Z. Wang, and S. Singhal. Optimal multi-
variate control for differentiated services on a shared hosting platform.
In Proceedings of the 46th IEEE Conference on Decision and Control
(CDC’07), pages 3792–3799, December 2007.

[29] J. L. Hellerstein, Y. Diao, S. Parekh, and Dawn M. Tilbury. Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[30] K. J. Åström and B. Wittenmark. Adaptive control. Addison-Wesley,
Reading, Mass., 2. ed. edition, 1995.

[31] M. Ashjaei, M. Behnam, and T. Nolte. The design and implementation
of a simulator for switched ethernet networks. In 3rd International Work-
shop on Analysis Tools and Methodologies for Embedded and Real-time
Systems, July 2012.

[32] M. Ashjaei, M. Behnam, and T. Nolte. SEtSim: A modular simulation
tool for switched Ethernet networks. Technical report, September 2014.

[33] C. C. Wust, L. Steffens, W. F. J. Verhaegh, R. J. Bril, and C. Hentschel.
QoS control strategies for high-quality video processing. Real-Time Sys-
tems, pages 3–12, 2005.

[34] J. Yao, X. Liu, X. Chen, X. Wang, and J. Li. Online decentralized adap-
tive optimal controller design of cpu utilization for distributed real-time
embedded systems. In Proceedings of the American Control Conference
(ACC’10), pages 283–288, June 2010.

Chapter 12

Paper E:
Exact and Approximate
Supply Bound Function for
Multiprocessor Periodic
Resource Model:
Unsynchronized Servers

Nima Khalilzad, Moris Behnam and Thomas Nolte.
In ACM SIGBED Review special issue on the 5th International Workshop
on Compositional Theory and Technology for Real-Time Embedded Systems
(CRTS’12), Volume 10, Number 3, October, 2013.

185

Abstract

The Multiprocessor Periodic Resource (MPR) model has been proposed for
modeling compositional real-time systems which run on a shared multiproces-
sor hardware. In this paper we extend the MPR model such that the execu-
tion of virtual processors (servers) is not assumed to be synchronized i.e., the
servers can have different phases. We believe that relaxing the server synchro-
nization requirement provides greater deal of compatibility for implementing
such a compositional method on various hardware platforms. We derive the
resource supply bound function of the extended MPR model using an algo-
rithm. Furthermore, we suggest an approach to calculate an approximate sup-
ply bound function with lower computational complexity for systems where
calculating their supply bound function is computationally expensive.

12.1 Introduction 187

12.1 Introduction

In order to deal with increasing complexity of real-time systems, hierarchi-
cal scheduling techniques have been proposed and investigated for scheduling
complex real-time systems consisting of multiple real-time components (ap-
plications) on a shared underlying hardware platform. Using such techniques
components are developed independently and their timing behaviors are stud-
ied in isolation, while the correctness of the system is inferred from the cor-
rectness of its components. In the mean time, following the trend of servers
and PCs, embedded real-time systems are subjected to the paradigm shift from
single processor to multiprocessor hardware platforms. Therefore, there is a
need for new techniques that can enable hierarchical scheduling on multipro-
cessor platforms which allow us to compose real-time systems and run them
on a multiprocessor hardware. Recently, many studies have been conducted on
this subject and a variety of models have been proposed.

In modeling hierarchical real-time systems, single processors alike mul-
tiprocessors, the system model often consists of two parts: resource supply
model and task demand model. The resource supply model abstracts the under-
lying hardware resource such that each application has the illusion of running
solo on an independent hardware, this virtual hardware is often called a server.
The resource supply model represents the minimum amount of resource that
a server provides in a given time interval. The amount of provided resource
is often represented using a Supply Bound Function (sbf(t)). The resource
demand model, however, represents the resource demand of real-time tasks.
Similarly, the maximum demand is often represented using a Demand Bound
Function (dbf(t)) [1]. Consequently, the schedulability test is performed using
the sbf(t), which is dependent on the resource model, and the dbf(t) which is
dependent on the scheduling policy.

When it comes to multiprocessor platforms, the resource supply model can
either be flexible and represent the collectively provided resource of a set of
processors [2], or it can be more detailed and represent the exact amount of
provided resource by each processor. In the former case, as Lipari and Bini
state in [3], the sbf(t) depends on the fact that whether different servers (on
different processors) are synchronized together or not. A number of works
on multiprocessor hierarchical scheduling assume that the servers are synchro-
nized [2, 4], while in this paper alike [3], we assume that the servers are not
synchronized. Indeed synchronization on some hardware platforms can be ex-
pensive, therefore, we simplify the implementation phase of the composition
for the system developers by relaxing this assumption. Figure 12.1 illustrates

188 Paper E

the supply bound function of a multiprocessor periodic resource model for two
cases: synchronized servers and unsynchronized servers (the specifications are
explained later in Example 1). The figure shows that when the servers are not
synchronized the supply bound function at some points in time is lower than
the synchronized servers case. The figure indicates that the schedulability anal-
ysis that is based on the assumption of having synchronized servers is not valid
when this assumption is relaxed.

In this paper, we focus on the supply bound function of the multiprocessor
periodic resource model, and we present an approach to calculate the sbf(t)
of the flexible resource model that Easwaran et al. presented in [2] with no
assumptions on the server synchronization. Our approach is based on mapping
the flexible model to a model that represents the exact amount of the con-
tributed budget by each processor to the total budget, and then we derive the
sbf(t) for the new model. Furthermore, we present an approach for approxi-
mating the sbf(t) which has lower computational complexity than calculating
the actual sbf(t).

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

16

t

sbf: synchronized servers

sbf: unsynchronized servers

Figure 12.1: The sbf(t) of synchronized and unsynchronized servers

The rest of the paper is organized as follows. We first review the related
work in Section 12.2, then we present the resource model in Section 12.3.
The algorithm for calculating the exact supply bound function is presented in
Section 12.4. Thereafter, we present the approximate supply bound function in
Section ??. Finally, we conclude the paper in Section 12.6.

12.2 Related work 189

12.2 Related work

Hierarchial scheduling was first proposed as a method for composing real-time
systems on single processor hardware platforms. Enabling independent devel-
opment of real-time systems, Deng and Liu proposed hierarchical scheduling
in [5]. Schedulability analysis under global fixed priority scheduling is pre-
sented in [6]. Mok et al. presented the bounded-delay model for single pro-
cessor hardware platforms in [7]. Shin and Lee presented the periodic resource
model for single processors in [8].

Virtual clustered-based multiprocessor scheduling [2], which is the exten-
sion of the periodic resource model for multiprocessor platforms, provides a
flexible mechanism for scheduling hierarchical systems. In this approach the
resource supply is abstracted using a Multiprocessor Periodic Resource (MPR)
interface. The MPR interface consists of P , Q andm parameters which denote
the total budget Q is provided in each period P using m virtual processors.
This model provides a great deal of run-time flexibility since the budget dis-
tribution among m processors is performed during run-time depending on the
load of processors. This flexibility can be exploited by the scheduler to serve
the real-time tasks in an efficient way. It is shown in [2] that the minimum sup-
ply bound happens in the case where the total required budget is evenly divided
among all processors and each processor’s budget is equal to Q

m . Therefore, the
supply bound function is derived based on this worst-case budget distribution
setting (this setting is called the worst-case platform in [3]).

The main problem with the MPR interface is that it has an implicit assump-
tion of the synchronization among virtual processors. It has been shown in [3]
that the worst-case platform does not exist if the virtual processors are not syn-
chronized. Therefore, Lipari and Bini suggested a new interface model, namely
the Bounded-Delay Multipartition (BDM) model to overcome this problem.
The BDM interface consists of m, ∆ and [β1,...,βm] parameters which repre-
sent the number of virtual processors, the length of the longest interval with no
resource and the bandwidth at each parallelism level respectively. In fact, the
DBM model replaces the notion of period P in the MPR with delay (the longest
interval with no resource) ∆. The BDM model does not require the servers to
be synchronized. Nevertheless, due to the nature of the delay based models,
the BDM can be very pessimistic which can result in low system run-time uti-
lization and consequently higher cost of the system production. Besides, from
an implementation point of view, periodic servers are more straight forward to
implement, and the BDM model perhaps should be mapped to the MPR or any
other periodic server based model for the implementation.

190 Paper E

Bini et al. presented the Multi Supply Function (MSF) model in [9] for
modeling the resource supply in hierarchial scheduling on multiprocessor plat-
forms. The MSF is indeed a set of supply functions one associated with each
server. The Parallel Supply Function (PSF) model [10] is also proposed as
an alternative for modeling the resource supply of hierarchial multiprocessor
systems. This model indicates a set of supply functions where each of them
represent the minimum available supply at a certain parallelism level (from 1
to m). Since the MPR model offers greater deal of abstraction than the MSF
and the PSF model, from a system integrator perspective, the MPR can be more
suitable when composing real-time systems.

Zhu et al. have extended deferable servers to the context of multiprocessor
platforms [4] where m deferable servers with a common period and differ-
ent budgets are running on m processors. Analogous to the MPR model, the
servers are assumed to be synchronized in this work.

Targeting soft real-time tasks, Leontyev and Anderson have presented a
multi-level scheme for scheduling real-time tasks and they showed that under
their scheme, the deadline tardiness of the tasks is bounded [11]. In contrast
with other hierarchical schemes, in this work there is no loss in overall utiliza-
tion moving down through the levels of hierarchy.

12.3 Resource model
We present the resource model for a processor cluster in this section. On a mul-
tiprocessor platform consisting of a total of n processors, a processor cluster is
a set of m processors where 1 ≤ m ≤ n. The processor clusters can be either
physically or virtually mapped to the physical processors [2].

We present two types of resource interface models for the processor clus-
ters: flexible and rigid. While the flexible model is the main focus in this paper,
the reason behind introducing the rigid interface is that we use it to derive the
supply bound function of the flexible interfaces.

12.3.1 Flexible interface model

Our flexible resource interface model is equivalent to the one that Easwaran et
al. introduced in [2]. In this model resources are specified by the following
tuple: Γ = 〈m,P,Q〉, which denotes that the multiprocessor cluster consisting
of m processors in total provides Q units of budget every P period to its corre-
sponding consumers. From a run-time point of view, this model is very flexible

12.3 Resource model 191

in the sense that the scheduler can decide how the total budget should be dis-
tributed among the processors in the cluster, in other words, each processor is
free to provide as much resource as it wants, as long as the collective provided
budget is equal to Q every P time units.

12.3.2 Rigid interface model
In contrast to the flexible interface model, in the rigid interface model each pro-
cessor in the cluster is required to provide a specific amount of resource to its
corresponding consumers. The rigid interface model is represented as follows:
ψ = 〈m,P, [q1, ..., qm]〉, where qi represents the exact amount of the budget
of processor i (1 ≤ i ≤ m). Without loss of generality we assume that all qi
are stored non-increasingly i.e. ∀i qi ≥ qi+1. In this model, the total provided
budget is calculated by accumulating the budget of all processors in the cluster:∑m
i=1 qi. We use the following notation to refer to the budget distribution of a

known platform (ψ): qψi where 1 ≤ i ≤ m. Similarly QΓ represents the total
available budget of the flexible interface Γ. Note that in this model processor i,
regardless of the budget of other processors in the cluster, is obliged to provide
qi budget each period and it does not need to be synchronized with the other
processors in its cluster.

We overload the word “platform” in the rest of the paper to refer to a rigid
processor cluster interface ψ. Since the total budget can be distributed among
processors in many ways, a single flexible interface Γ can be mapped to many
platforms. We call the set of all possible platforms derived from a flexible
interface Γ the possible platforms of Γ and we represent this set as follows

ΨΓ =
{
∀ψ :

∑m
i=1 q

ψ
i = QΓ

}
.

Note that when Q is not integer, we solve the mapping problem for bQc and
then we add Q−bQc to q1. Therefore, we assume that in the rigid model there
exist at most one real budget (q1), while the rest of the processors have integer
budgets. The restriction that only a single processor will have real budget,
limits the set of possible rigid interfaces that can be derived from a flexible
interface.

12.3.3 Flexible interface versus rigid interface
So far we have introduced two interface models which can be used for com-
posing real-time components on a multiprocessor hardware. When using rigid

192 Paper E

models, each component has its own qψi and the system integrator has to find
a way to allocate qi to the physical processors. This problem is a bin packing
like problem which is known to be difficult to be solved. In addition, when
adding or removing components, the allocation should be repeated.

On the other hand, when using a flexible interface we do not face this allo-
cation problem and the scheduler is free to decide the allocations in any fashion
at run-time. This property makes the flexible interfaces more suitable for com-
positional analysis in the sense that the integration phase is done without the
need to consider the physical allocation of the components. However, calculat-
ing the supply bound function when using flexible interfaces, as we discuss in
this paper, requires more computations than using rigid interfaces.

Therefore, there is a downside to both of the models and choosing either of
them is a design decision which should be made by the system designers.

12.3.4 Packed platform of a flexible interface
The packed platform (ψp) of a flexible interface Γ is a member of ΨΓ in which
the total budget Q is packed onto the minimum number of processors. A
packed platform consists of h = bQP c full budgets (qi = P), one budget
equal to mod (Q,P), and m − h empty budgets (qi = 0). For example
the corresponding packed platform of the flexible interface Γ = 〈4, 8, 18〉 is
ψp = 〈3, 8, [8, 8, 2, 0]〉.

12.3.5 Balanced platform of a flexible interface
The balanced platform (ψb) of a flexible interface Γ is a member of ΨΓ in
which the total budget is evenly divided among all processors in the cluster.
Therefore, the balanced platform consists of k = mod (Q,m) budgets equal
to bQmc+1 andm−k budgets equal to bQmc. For instance the balanced platform
of Γ = 〈4, 8, 18〉 is ψb = 〈4, 8, [5, 5, 4, 4]〉.

12.3.6 Deriving the possible platforms of a flexible interface
The problem of deriving the possible platforms of a flexible interface is anal-
ogous to the well know integer partitioning problem in number theory [12],
where the problem is to find all possible ways that an integer number x can
be written as a sum of some integer numbers which are called the partitions of
x. However, in our problem we have two additional constraints which are the
maximum number of partitions (m) and the maximum value of each partition

12.3 Resource model 193

(P). Hence, we can not directly use the algorithms presented for deriving the
partitions of integer numbers. Therefore, the problem is to find all possible
ways of writing Q as sum of ` integer numbers (qi) where ` ≤ m, and each
partition value is less than or equal to P . Recall that for avoiding redundant
platforms we enforce the following requirement ∀i qi ≥ qi+1, which is due to
the fact that redundant platforms have equivalent sbf(t) and therefore are not
of our interest.

In the rest of this section we present an algorithm for deriving the possible
platforms of a given flexible interface. We start from the balanced platform and
construct a tree where the root is ψb and new nodes are created by transferring
a unit of the budget from one processor to another one. We present some
definitions before presenting the algorithm.

Budget donor candidate is a processor that if its budget is reduced by one
the remaining budget set is still ordered (non-increasingly). Any given platform
has a budget donor candidate set (Dψ) that is found using Algorithm 7. The
algorithm loops through all budgets and selects the ones that are compatible
with donating a unit of budget. insert is a function that inserts a new entry
(i) to its input set (here Dψ).

Algorithm 7: Deriving the budget donor candidate set
1: function donors(ψ)
2: for i = 2;i < m;i+ + do
3: if qi > 0 & qi > qi+1 then
4: insert(Dψ, i);
5: end if
6: end for
7: if qm > 0 then
8: insert(Dψ,m);
9: end if

10: end function

Budget receiver candidate is a processor that if its budget is increased
by one the remaining budget set is still ordered (non-increasingly). There is a
budget receiver set associated with each budget donor of platforms (Rψd) which
is derived using Algorithm 8. The algorithm only loops through the budgets
that are at the left hand side of the budget donor d, and finds the processors that
are compatible with receiving a unit of budget.

Budget donation operation is an operation in which one unit of a budget

194 Paper E

Algorithm 8: Deriving the budget receiver candidate set of a given bud-
get donor (d)

1: function receivers(ψ, d)
2: for i = 2;i < d;i+ + do
3: if qi < P & qi < qi−1 then
4: insert(Rψd , i);
5: end if
6: end for
7: if q1 < P then
8: insert(Rψd , 1);
9: end if

10: end function

donor’s budget qd is transferred to a budget receiver budget qr.
In order to derive ΨΓ, we start off by running the budget donation opera-

tion onψb, for all combinations of the donors and their corresponding receivers.
Thereafter, we repeat this step for all children of ψb and create the next level
of the tree. The procedure continues until we reach ψp, which is the packed
platform, and since the budget donation operation can not be performed on the
packed platform the algorithm stops branching. The pseudocode of this proce-
dure is presented in Algorithm 9. isNew is a function that looks for its input
platform (ψ′) in its input set (ΨΓ) and returns true if it fails to find the platform.
The budget donation operation takes place in line 7 and 8 of the algorithm, and
in line 11 (when we find a new platform) we do a recursive call passing the
recently found platform. Since the budget donation operation transfers only
one unit of the budget at each step, and we run this operation on all combi-
nations of donors and their corresponding receivers, we are guaranteed to i)
reach ψp which is the termination condition of our recursive algorithm ii) find
all possible platforms between ψb and ψp.

Since we start from ψb where

=bQm c+1︷ ︸︸ ︷
q1, ..., qk,

=bQm c︷ ︸︸ ︷
qk+1, ..., qm

and we want to reach ψp where

=P︷ ︸︸ ︷
q1, ..., qh,

= mod (Q,P)︷︸︸︷
qh+1 ,

=0︷ ︸︸ ︷
qh+2, ..., qm

12.3 Resource model 195

Algorithm 9: Deriving possible platforms of a flexible interface
1: function platforms(ψ, ψp)
2: Dψ = donors(ψ);
3: for all d ∈ Dψ do
4: Rψd = receivers(ψ, d);
5: for all r ∈ Rψd do
6: ψ′ = ψ;
7: ψ′.qd = qd − 1;
8: ψ′.qr = qr + 1;
9: if ψ′ 6= ψp & isNew(ψ′,ΨΓ) then

10: insert(ψ′, ΨΓ);
11: platforms(ψ′, ψp);
12: return ψ′;
13: end if
14: end for
15: end for
16: end function

therefore qh+1 to qm in ψb should be moved to a place between q1 and qh. In
this process each qi can at most move i − 1 steps to the left, and the longest
depth happens when the donor processor and the receiver processors at all steps
are neighbors (d = r+ 1). Therefore, the longest depth (κ) is calculated by the
following equation

κ =

m∑
i=h+1

qi × (i− 1), (12.1)

where m is the number of processors, h = bQP c, and qi are the budgets of ψb.
The total number of possible platforms is exponential in κ. Note that κ is de-
rived without considering that i) all qi are sorted non-increasingly ii) redundant
nodes are not allowed to branch. Therefore, in practice the longest depth is less
than or equal to κ. However, since the growth rate of the algorithm is exponen-
tial it is considered as a high complexity problem which might be intractable
for some configurations of m, P and Q. A sample trace of the algorithm for
the flexible interface Γ = 〈3, 8, 6〉 is presented in Figure 12.2. The redundant
nodes are presented as gray nodes which are eliminated using the isNew func-
tion. The figure illustrates the necessity of eliminating redundant nodes since
they are a considerable number of the total nodes.

196 Paper E

2,2,2

3,2,1

3,3,0

4,2,0

5,1,0

6,0,0

4,2,0

5,1,0

6,0,0

4,1,1

5,1,0

6,0,0

4,2,0

5,1,0

6,0,0

Figure 12.2: possible rigid platforms of Γ = 〈3, 8, 6〉

12.4 Supply bound function
The Supply Bound Function (sbf(t)) represents the minimum amount of the
resources that servers provide to their task set in a given time interval t. In this
section we derive the supply bound function of both the flexible and the rigid
interface models. For simplifying the presentation we drop t when referring to
the supply bound function in the rest of the text.

12.4.1 The sbf of rigid interfaces

The sbf of a rigid interface sbfψ can be seen as sum of m servers’ sbfs with
the period equal to P and given budgets qi. Therefore, using the same equation
that is presented in [8] for calculating the sbf we have:

sbfψ(t) =

m∑
i=1

(⌊ t− (P − qψi)

P

⌋
× qψi + εi(t)

)
, (12.2)

12.4 Supply bound function 197

where

εi(t) = max
(
t− 2(P − qψi)− p×

⌊ t− (P − qψi)

P

⌋
, 0
)
. (12.3)

12.4.2 The sbf of flexible interfaces
In order to calculate the minimum supply provision of a flexible interface
(sbfΓ) we need to derive the worst-case platform which provides the least
amount of resources among all possible platforms. However, as Lipari and
Bini state in [3], the worst-case platform does not exist for the flexible inter-
faces. Although the balanced rigid platform is the worst-case platform when
we assume that the virtual processors are synchronized [2], when the assump-
tion is relaxed it is not the worst-case platform anymore. Therefore, a potential
solution for calculating the sbf of flexible interfaces is to take the following
steps:

1. Derive ΨΓ using Algorithm 9.

2. From the definition of the supply bound function, sbfΓ at each time
point is the minimum of all sbfψ at that time:

sbfΓ(t) = min
{
sbfψ(t)

}
, ∀ψ ∈ ΨΓ. (12.4)

As we discussed in the previous section, the complexity of step one is expo-
nential, hence this solution might be intractable for some flexible interfaces.
Therefore, in the rest of this section we take some actions in reducing the com-
plexity of step one by removing the platforms that are not contributing in calcu-
lating the sbfΓ. Indeed, we are looking for the platforms where sbfψ crosses
sbfψb at least at one time point, or mathematically:

∀ψ ∃t : sbfψ(t) < sbfψb(t).

Example 1. Consider the following flexible interface Γ1 = 〈2, 8, 8〉, the sbf of
all possible platforms is shown in Figure 12.3 (redrawn from [3]). Among all
possible platforms of Γ1, only sbfψ1 and sbfψ2 are crossing sbfψb . Therefore,
in the proposed approach for calculating sbfΓ, it is sufficient to only derive ψ1

and ψ2 in step 1, and proceed with the second step. Roughly speaking, we
present an approach to exclude the platforms where the lower bound of their
sbf is higher than the upper bound of sbfψb (ψ3 and ψp in this example).

198 Paper E

0 2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

t

sbfΨ

sbfΨp (Ψ
p
 = 〈 2,8,[8, 0]〉)

sbfΨ3 (Ψ
3
 = 〈 2,8,[7, 1]〉)

sbfΨ2 (Ψ
2
 = 〈 2,8,[6, 2]〉)

sbfΨ1 (Ψ
1
 = 〈 2,8,[5, 3]〉)

sbfΨb (Ψ
b
 = 〈 2,8,[4, 4]〉)

Figure 12.3: The sbf of all possible platforms of Γ1 = 〈2, 8, 8〉

To this end, we first show how to calculate the lower bound (lsbf) and up-
per bound (usbf) of the supply bound function, afterwards we derive a subset
of ΨΓ which is sufficient for calculating the sbfΓ.

12.4.3 The lsbf of rigid interfaces
Analogous to the presented approach for calculating the sbfψ , linear lower
bound for a rigid interface lsbfψ can be calculated by accumulating the lin-
ear lower bound of m independent servers’ lsbf with a given period (P) and
budget (qi). According to [8], the lsbf is calculated as follows

lsbf(t) =
qi
P

(
t− 2(p− qi)

)
, (12.5)

therefore the lsbf of ψ is

lsbfψ(t) =

m∑
i=1

qψi
P

(
t− 2(p− qψi)

)
= α(t−∆ψ), (12.6)

12.4 Supply bound function 199

where
α =

Q

P
, (12.7)

and

∆ψ = 2
(
P −

∑m
i=1 (qψi)

2

Q

)
. (12.8)

Note that we overload ∆ in the rest of the paper and it does not refer to the
delay in the bounded delay model anymore. α of all platforms in ΨΓ are equal,
however, their ∆ can differ.

Lemma 3. The budget donation operation always outputs a platform in which
its ∆ is less than the ∆ of its input platform (∆ψchild < ∆ψparent).

Proof. Assuming that qψ
parent

i and qψ
child

i represent the budget distributions
of the input and output platform of the budget donation operation respectively,
based on Equation 12.8 we should show:

m∑
i=1

(qψi
child

)2 −
m∑
i=1

(qψi
parent

)2 > 0. (12.9)

Since all budgets except qd (q of the budget donor) and qr (q of the budget
receiver) are equal we can write:

(qd − 1)2 + (qr + 1)2 − q2
d − q2

r > 0, (12.10)

qr > qd − 1, (12.11)

which is true since r < d and the budgets are sorted non-increasingly.

Lemma 4. The lsbf of the balanced platform (lsbfψb) is lower than any
other possible platforms’ lsbf.

Proof. According to Lemma 3, and given that ψb is the root of Algorithm 9

∆ψb > ∆ψb
′

(12.12)

where ψb′ represent any non-balanced platform derived from Algorithm 9,
which according to 12.6 yields to:

lsbfψb(t) < lsbfψb
′
(t). (12.13)

200 Paper E

12.4.4 The lsbf of flexible interfaces
According to Lemma 4, the lsbf of a flexible interface (lsbfΓ) is calculated
by deriving the corresponding balanced platform and calculating lsbfψb ,

lsbfΓ(t) = lsbfψb(t) = α(t−∆ψb). (12.14)

12.4.5 Upper bound of the sbf
In this section we present an upper bound for the sbf which is used for ex-
cluding the irrelevant platforms in calculating the sbfΓ. The upper bound of
the supply bound function (usbf) for independent servers on single processors
with a common period P and given budget qi according to [13] is as follows:

usbf(t) =
qi
P

(
t− (P − qi)

)
. (12.15)

Therefore, usbfψ(t) is:

usbfψ(t) =

m∑
i=1

qψi
P

(
t− (P − qψi)

)
= α(t− θψ), (12.16)

where

θψ = P −
∑m
i=1 (qψi)

2

Q
. (12.17)

Lemma 5. In calculating the sbfΓ for flexible interfaces it is sufficient to con-
sider the following subset of ΨΓ:

Ψθ =
{
∀ψ ∈ ΨΓ : ∆ψ ≥ θψb

}
.

Proof. Recall step two in calculating sbfΓ, since we are using the min func-
tion to calculate sbfΓ at each time point, the platforms where their sbf are
absolutely more than sbfψb do not affect the min function. Therefore, we
want to exclude the platforms that fulfill the following condition:

∀t : sbfψ(t) > sbfψb(t), (12.18)

or
∀t : sbfψ(t) ≥ usbfψb(t), (12.19)

which yields to excluding the following set:

∀ψ : ∀t : lsbfψ(t) ≥ usbfψb(t), (12.20)

therefore Ψθ is of our interest in calculating sbfΓ.

12.5 Approximate sbf of the flexible interfaces 201

Based on Lemma 5, Algorithm 9 can be altered such that the stop condition
(ψ′ = ψp) is replaced by the following condition:

∆ψ < θψb , (12.21)

and using Equation 12.8 we have:

m∑
i=1

(qψi)2 ≥ Q(P − θψb

2
), (12.22)

therefore, the condition at line 9 in Algorithm 9 (ψ′ = ψp) should be replaced
by Inequality 12.22. Thereafter, we need to consider all output platforms of the
altered algorithm for calculating the sbfΓ:

sbfΓ(t) = min
{
sbfψ

}
∀ψ ∈ Ψθ. (12.23)

For instance lets take the flexible interface Γ1 = 〈2, 8, 8〉 presented in
Example 1. For this example we have: θψb = 4, hence the stop condi-
tion is:

∑m
i=1(qψi)2 ≥ 48. Therefore, ψ3

(∑m
i=1(qψ3

i)2 = 50
)

and ψp(∑m
i=1(q

ψp
i)2 = 64

)
do not need to be considered for calculating the sbfΓ:

sbfΓ1(t) = min
{
sbfψb(t), sbfψ1(t), sbfψ2(t)

}
.

12.5 Approximate sbf of the flexible interfaces
According to 12.23, we can reduce the number platforms that have to be in-
vestigated when calculating the sbfΓ, however, this subset (Ψθ) may still in-
clude too many platforms that makes the computations intractable. In this sec-
tion we propose an approach to derive an approximate supply bound function
for the flexible interfaces (asbf). In this approach we consider λ such that
θψb ≤ λ ≤ ∆ψb and we replace θψb with λ in Equation 12.22 to get a new
termination condition for branching (ψ′ = ψp) in Algorithm 9:

m∑
i=1

(qψi)
2 ≥ Q(P − λ

2
). (12.24)

Therefore, in this approach we consider the following subset of ΨΓ:

202 Paper E

0 10 20

0

10

20

sbf(t)Ψb

lsbf(t)Ψb

usbf(t)Ψb

Z(t)

∆λθ

Figure 12.4: The sbf, the lsbf and the usbf of a balanced platform

Ψλ =
{
∀ψ ∈ ΨΓ : ∆ψ ≥ λ

}
.

This new condition confines the search space, therefore we can get an approx-
imate sbf investigating a lower number of platforms. Using λ we cut the tree
in earlier branches than the original algorithm, therefore, the time complexity
of the algorithm is reduced. Figure 12.4 illustrates the relation between the ac-
tual upper bound and the approximate upper bound (Z(t)). For calculating the
sbfΓ we exclude the platforms where the sbf is located at the left hand side
of usbfψb , however, for calculating the asbfΓ we exclude all the platforms
where the sbf is located at the left hand side of Z(t).

The approximate sbf is:

asbfΓ(t) = min
{
sbfψ(t), Z(t)

}
∀ψ ∈ Ψλ, (12.25)

where
Z(t) = α(t− λ), (12.26)

because according to Lemma 3, all other platforms that we are not considering
in the min function have smaller ∆ which means their lsbf (and consequently

12.5 Approximate sbf of the flexible interfaces 203

Γ 〈8, 16, 40〉 〈4, 64, 80〉
ΨΓ 6360 4089
Ψθ 5650(' 88%ΨΓ) 3652(' 89%ΨΓ)
ψλ1 2259(' 35%ΨΓ) 2245(' 54%ΨΓ)
ψλ2 507(' 7%ΨΓ) 938(' 22%ΨΓ)

Table 12.1: ΨΓ, Ψθ and Ψλ for sample flexible interfaces (λ1 = 0.5(θ + ∆)
and λ2 = 0.75(θ + ∆)).

their sbf) are more than Z(t) at all time points. Note that the min operation in
Equitation 12.25 is critical in ensuring that the approximation is safe.

Recall Example 1, if we assign λ = 6, the termination condition is∑m
i=1(qψi)2 ≥ 40, therefore, for calculating asbfΓ1 we only need to consider

ψb and ψ1 together with the following line Z1(t) = (t− 6). Hence, we have:

asbfΓ1(t) = min
{
sbf(t)ψb , sbf(t)ψ1 , Z1(t)

}
.

Table 12.1 shows two flexible interfaces and corresponding number of rigid
interfaces that should be investigated in order to calculate the sbfΓ and the
asbfΓ. In these two examples, more than 10% of the possible platforms are
irrelevant in calculating sbfΓ, and when calculating asbfΓ the more the num-
ber of the platforms included in the min function, the higher the accuracy of
the approximation.

The number of possible platforms of a flexible interface is positively cor-
related with P and m because when increasing them, there are more possi-
bilities for the total budget to be distributed on different processors. How-
ever, increasing Q does not necessarily increases the number of possible plat-
forms. For instance when Q = m × P , we have ψb = ψp and the num-
ber of possible platforms is one. Figure 12.5 shows the relation between Q
and the number of possible platforms for the flexible interface Γ = 〈5, 16, Q〉
(Q ∈ [1,m × P]). The figure indicates that the number of possible platforms
increases until Q = m×P

2 , and decreases afterwards. The trend is analogous
for all flexible interfaces, which can be explained by the longest depth (κ)
presented in Equation 12.1, where increasing Q has two consequences: i) in-
creases qi in ψb which increases κ ii) increases h (h = bQP c) and therefore
decreases κ. Hence, depending on the dominate factor, the number of possible
platforms may either be positively or negatively correlated with Q. From the
figure we observe that the dominant factor is (i) until Q = m×P

2 and thereafter

204 Paper E

0 10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

Q

nu
m

be
r

of
 p

la
tfo

rm
s

ΨΓ

Ψθ

Ψλ
1

Ψλ
2

Figure 12.5: Number of platforms in ΨΓ, Ψθ and Ψλ for Γ = 〈5, 16, Q〉 (λ1 =
0.5(θ + ∆) and λ2 = 0.75(θ + ∆)).

it is (ii), therefore the difference between the number of platforms in calculat-
ing asbf and sbf is more significant in platforms where Q is around m×P

2 .

12.6 Conclusion
In this paper we presented an approach for calculating the supply bound
function of multiprocessor periodic resource interfaces when the servers are
not synchronized. Being independent from server synchronization makes the
model compatible with all types of hardware platforms (even with the ones
where synchronization is expensive). Furthermore, due to the exponential
complexity of calculating the actual supply bound function, we proposed an
approach for calculating an approximate supply bound function with lower
computational complexity.

The next step in our work is to evaluate the difference between using ac-
tual and approximate supply bound functions using an extensive number of
randomly generated systems. We also intend to compare the periodic resource
interface with the bounded delay interface. Finally we will look into the pre-
sented algorithm for mapping the flexible interface to the rigid interface(s) and
try to further reduce its complexity using some heuristics.

References

[1] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. In Proceedings of the 11th
Real-Time Systems Symposium (RTSS’90), pages 182 –190, December
1990.

[2] A. Easwaran, I. Shin, and I. Lee. Optimal virtual cluster-based multipro-
cessor scheduling. Real-Time Systems, 43(1):25–59, 2009.

[3] G. Lipari and E. Bini. A framework for hierarchical scheduling on mul-
tiprocessors: From application requirements to run-time allocation. In
Proceedings of the 31st IEEE Real-Time Systems Symposium (RTSS’10),
pages 249–258, December 2010.

[4] H. Zhu, S. Goddard, and M. B. Dwyer. Response time analysis of hier-
archical scheduling: The synchronized deferrable servers approach. In
32nd IEEE Real-Time Systems Symposium (RTSS’11), pages 239–248,
December 2011.

[5] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in an open
environment. In Proceedings of the 18th IEEE Real-Time Systems Sym-
posium (RTSS’97), pages 308–319, December 1997.

[6] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environment for
real-time applications. In Proceedings of the 20th IEEE Real-Time Sys-
tems Symposium (RTSS’99), pages 256–267, December 1999.

[7] A. K. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. In Proceedings of the 7th Real-Time Technology and Applications
Symposium (RTAS’01), pages 75–84, May 2001.

205

[8] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proceedings of the 24th IEEE Real-Time Systems Sympo-
sium, (RTSS’03), pages 2–13, December 2003.

[9] E. Bini, G. Buttazzo, and M. Bertogna. The multi supply function ab-
straction for multiprocessors. In Proceedings of the 15th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, (RTCSA’09), pages 294–302, August 2009.

[10] E. Bini, M. Bertogna, and S. Baruah. Virtual multiprocessor platforms:
Specification and use. In Proceedings of the 30th IEEE Real-Time Sys-
tems Symposium, (RTSS’09), pages 437–446, December 2009.

[11] H. Leontyev and J. H. Anderson. A hierarchical multiprocessor band-
width reservation scheme with timing guarantees. In Proceedings of the
20th Euromicro Conference on Real-Time Systems (ECRTS’08), pages
191–200, July 2008.

[12] H. S. Wilf. Lectures on Integer Partitions, July 2000. Available at http:
//www.math.upenn.edu/˜wilf/PIMS/PIMSLectures.pdf.

[13] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using EDP resource models. In Proceedings of the 28th IEEE Real-Time
Systems Symposium, (RTSS’07), pages 129–138, December 2007.

Chapter 13

Paper F:
On Component-Based
Software Development for
Multiprocessor Real-Time
Systems

Nima Khalilzad, Moris Behnam and Thomas Nolte.
In Proceedings of the 21st IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA’15), August 2015.

207

Abstract

Component-based software development provides a modular approach to de-
velop complex software systems. In the context of real-time systems, it is desir-
able to abstract the timing properties of software components using an interface
for each component. The timing properties of the whole system, composed of
multiple components, is studied using the component interfaces. In this paper
we focus on periodic interface models. In the case of components developed
for single processor platforms, for examining the system schedulability, the in-
terfaces can be regarded as periodic tasks. Thus, making it possible to use the
conventional schedulability analyses for the system level schedulability test.
In the case of components developed for multiprocessors, since interfaces may
have utilization larger than 100 % of a single processor, it is not possible to
directly use the component interfaces for the system schedulability test. There-
fore, the interfaces have to be decomposed before performing the system level
schedulability test.

In this paper, we target the special case of partitioned EDF for scheduling
the components integrated on a multiprocessor. Therefore, the system level
schedulability test is equivalent to finding a feasible allocation of component
interfaces on the multiprocessor. We propose two algorithms for allocating the
multiprocessor periodic interfaces. In addition, we propose an orthogonal ap-
proach for developing component-based real-time systems on multiprocessors
in which components with utilization more than 100 % of a single processor
are divided into smaller subcomponents before abstracting their interfaces. We
show, through extensive evaluations, that our alternative approach significantly
reduces the interface overhead.

13.1 Introduction 209

13.1 Introduction

Multiprocessor platforms provide a great amount of computational capacity on
a single hardware. Therefore, it is possible to design and run large software sys-
tems on a single chip. Component-based software development facilitates the
development process of large software systems. We consider component mod-
els in which a real-time software component is composed of multiple real-time
tasks. In this approach, software components are developed independently,
possibly by different teams, and later integrated. In the real-time systems arena,
component-based development approaches (e.g. [1, 2]) often follow a two step
process. Firstly, the processor demand of the tasks within each component is
abstracted. This step produces component interfaces. Secondly, the compo-
nents are integrated and their schedulability is studied using the component in-
terfaces. Abstracting the requirements of components comes at a price. There
is often a gap between the processor utilization of the component interfaces
and the utilization of the task set within components. This gap (henceforward
referred as the abstraction overhead) results in a processor utilization efficiency
loss. Efficient utilization of the processor resource is particularly important in
resource constrained embedded systems. To this end, it is important to study
the abstraction overhead of different approaches to understand their practical
applicability.

In this paper we focus on a periodic interface model, namely the Multipro-
cessor Periodic Resource (MPR) model [3]. The reason behind focusing on the
periodic models is that they can easily be implemented in practice. The schedu-
lability of systems, composed of multiple components, is investigated through
studying the MPR interfaces. It is desirable to use the same schedulability tech-
niques used for studying the schedulability of real-time tasks, and investigate
the schedulability of the components. However, the task schedulability tests
cannot be directly applied to the components for which their interface utiliza-
tions are more than 100 % of a single processor (i.e. one). This is because
the basic assumption in all of the schedulability tests is that the task utilization
is less than or equal to one. Therefore, components with interface utilization
more than one have to be decomposed to smaller subcomponents with utiliza-
tion less than or equal to one. The component schedulability test, then, can be
performed using the decomposed subcomponent interfaces. In this paper we
use the partitioned Earliest Deadline First (pEDF) [4] algorithm for scheduling
the components. We propose two algorithms which perform decomposition
and allocation simultaneously, each algorithm following a different objective.

In all of the proposed approaches for developing component-based real-

210 Paper F

time systems on multiprocessors (e.g. [3, 5, 2]) the component decomposition
is performed after abstracting the components. In this paper, we investigate
an alternative approach. We first decompose components for which their uti-
lization is more than one. Thereafter, we abstract the component processor re-
quirements using an abstraction technique proposed in [6]. We show that, using
extensive simulations, performing the decomposition before abstraction signif-
icantly reduces the abstraction overhead. Also, we provide three integration
algorithms for components abstracted using our approach, i.e., decomposed
before the abstraction. Finally, using extensive simulations, we compare the
number of processors required for integrating the components developed using
the two alternative approaches. We compare the performance of the proposed
integration algorithms within each approach.
Contributions. In this paper we study the complete process of component-
based development approaches for real-time systems (focusing only on timing
properties) from component abstraction to the system integration using peri-
odic interfaces. We present the following contributions. (i) We propose two
integration algorithms for integrating components abstracted using the MPR
model. (ii) We propose a new approach in which component decomposition
is performed before abstraction. We propose a new interface model as well
as three integration algorithms for this new approach. (iii) We present the re-
sult of our extensive simulations comparing the approach based on the MPR
abstraction model with our alternative approach.

13.2 System model and development approaches

System and task model. We assume a multiprocessor platform with m ho-
mogeneous processors. n components are composed on the multiprocessor
platform. The slack bandwidth of the jth processor is denoted using Sj . We
assume a constrained deadline periodic task model in which the kth task τk
is characterized using period Tk ∈ N+, deadline Dk ∈ N+ and Worst-Case
Execution Time (WCET) Ck ∈ N+ (Ck ≤ Dk ≤ Tk). We assume that the
tasks are independent, i.e., except the processor resource, they do not share any
other resources.
Scheduling scheme. We assume a hierarchical scheduling scheme in which
the scheduling is performed in two levels. At the global level components
are scheduled using a component-scheduler. In this paper we use pEDF for
scheduling the components. Within the components, however, a task-scheduler
coordinates the execution of the tasks. In the case that a component is assigned

13.2 System model and development approaches 211

to one processor we use EDF as the task-scheduler. When a component is
spread over multiple processors, we use global EDF (gEDF) [4] as the task-
scheduler. From a resource provisioning vantage point, the multiprocessor re-
source is partitioned in the time domain. Each component is assigned to a
multiprocessor partition which indeed provisions a fraction of the multiproces-
sor resource to the component. The components, then, distribute their fraction
of the resource among their inner tasks.
Component-based system development. Component-based development ap-
proaches often consider the following two roles for the system development:
(i) component developer (ii) system integrator. The component developers de-
velop a task set, and they select a suitable task-scheduler. They also calculate
the component interface based on the task set and the task-scheduling algo-
rithm. The component interface indicates the amount and the specifications of
the required processor resource fraction. This approach enables independent
development of components by different development teams. The system inte-
grator, on the other hand, receives a set of component interfaces. The system
integrators use the component interfaces to examine the schedulability of the
system. If the component requires a processor fraction more than one, then
the integrator divides the component into a number of subcomponents. This
step is referred as the transformation of interfaces into interface-tasks in the
previous approaches (e.g. [3, 2]). The reason behind performing this transfor-
mation is that it is desirable to use the conventional task schedulability analyses
for examining the schedulability of the system. The basic assumption in such
analyses is that the utilization of tasks is less than or equal to one. Therefore,
in order to perform schedulability test using the interfaces, we require inter-
faces in which their utilization is less than or equal to one. We use the word
“decomposition” to refer to the step in which a large component is divided
into a number of smaller subcomponents. After the decomposition step, the
interfaces of the subcomponents can be used for performing the schedulability
test.
Component model. We assume that component Ci is composed of a set of
tasks denoted by Ti. We use UTi to denote the task set utilization of Ci. The
components are assigned to the processors at the integration phase. We use
ρi,j to denote the amount of the utilization of Ci that is allocated on the jth

processor. In this paper we target components for which their utilizations are
more than one UTi > 1, i.e. they require more than one processor for per-
forming their computations. The following two alternative approaches can be
used when dealing with such components. (i) First Abstraction, then Decom-
position (FAD): in this approach the component developers first abstract the

212 Paper F

resource requirements of the entire component. The system integrators have
to divide the component into a number of subcomponents at the integration
phase.(ii) First Decomposition, then Abstraction (FDA): the component devel-
opers first divide the component into a number of subcomponents such that
all subcomponents have utilization less than or equal to one. The subcompo-
nent interfaces are then derived by the component developers.We use Ci,r to
denote the rth subcomponent of component i. Similar to the components, we
use ρi,r,j to denote the amount of the utilization of Ci,r that is allocated on the
jth processor. In the following we explore the above two alternatives and we
compare the implications of using each approach.
The FAD approach. In this approach the processor requirements of a com-
ponent is abstracted using a single interface. The interface essentially indi-
cates the fraction of the multiprocessor capacity required by the component.
In doing so, it is assumed that the tasks within one component are allowed to
migrate among processors, i.e., they are scheduled using a global multiproces-
sor scheduling policy. For instance, in the approach proposed by Easwaran et
al. [3], the MPR model is used for abstracting the processor requirements of
the components. In this model the interface of the ith component is denoted
by Γ

m′i
i < Πi,Θi > where Πi ∈ N+, Θi ∈ N+ and m′i ∈ N+ characterize

the period, total budget and the parallelism level of the component. The paral-
lelism level indicates the maximum number of processors that can contribute
in providing the total budget to Ci. The MPR interface imposes the following
constraints by definition: 1 ≤ m′i ≤ m and Θi ≤ m′i × Πi. The fraction of
the required multiprocessor, i.e the interface utilization, is denoted using:

U
Γ
m′i
i

=
Θi

Πi
.

This model provides a great deal of flexibility at the integration phase. This is
because the total utilization can be provided using any m′i processors. There-
fore, the integrators can use the processors’ slack status to decide on how to
perform the decomposition. For instance, assume that we have two processors
with the following slacks S1 = S2 = 0.55. Suppose that a new component
is being integrated with U

Γ
m′i
i

= 1.1 and m′i = 2. The only decomposition

that can deem the system schedulable, is to divide the component into two sub-
components each with utilization equal to 0.55. The only problem with this
model is that it incurs a considerable amount of abstraction overhead (see Sec-
tion 13.4). Therefore, in the following we investigate an alternative approach
in which we allow the system integrators to trade-off the integration flexibility
with the abstraction overhead.

13.2 System model and development approaches 213

The FDA approach. In this approach the component developers are responsi-
ble to decompose the components, for which their utilization is more than one,
into a number of subcomponents. The system integrator, then, can directly use
the subcomponent interfaces to examine the schedulability of the system. We
use the Periodic Resource (PR) [6] model for abstracting the processor require-
ments of the subcomponents. The PR model can be seen as a special case of
the MPR model where m′i = 1. Note that the fact that m′i = 1 allows us to
use a different analysis (i.e. single processor EDF schedulability) for deriving
the subcomponent interfaces. The FDA approach does not provide any flexi-
bility at the integration phase. This is because the utilization required by one
subcomponent has to be provided using exactly one processor (m′i = 1). For
instance, assume that, similar to the previous example, we have two proces-
sors with the following slacks S1 = S2 = 0.55. The component developer
has decomposed its large component into two subcomponents with utilizations
equal to 0.65 and 0.45. Although the total component utilization is equal to
the overall processor slack, it is not possible for the integrator to deem the
system schedulable. This is because the decomposition is already performed
before the abstraction, and the integrator has to perform the integration using
the provided subcomponents.

The fact that the FDA approach does not provide flexibility at the integra-
tion phase may result in processor utilization loss. In order to mitigate this
problem, we propose an altered modeling approach. In the new approach, af-
ter decomposing the large components, the component developer uses the PR
model to abstract subcomponents’ processor requirements. In addition, assum-
ing that it may be impossible to fit one subcomponent in one processor at the
integration phase, the component developer derives the MPR model for the
subcomponents assuming m′ ∈ [2,m]. We refer to this model as the Extended
Periodic Resource (EPR) model in the rest of the paper. In the EPR model the
component interfaces are denoted using the following matrix:

Ωi =

Γ1
i,1 Γ1

i,2 · · · Γ1
i,pi

Γ2
i,1 Γ2

i,2 · · · Γ2
i,pi

...
...

. . .
...

Γmi,1 Γmi,2 · · · Γmi,pi

 ,

where Γji,r denotes the MPR interface of Ci,k given that its parallelism is equal
to j. pi represents the total number of subcomponents of Ci. pi depends on
the decomposition algorithm which is addressed later in this section. The bud-

214 Paper F

get and the period of Γji,r is denoted using Θj
i,r and Πj

i,r respectively. Ωi
allows integrators to select an interface which has a suitable parallelism level
considering the processor slacks. If the slacks are scattered throughout the pro-
cessors, then it may be beneficial to use an interface with a large parallelism
level. However, this additional flexibility comes at a price. As it is shown
in [3], increasing the parallelism level increases the utilization of the MPR in-
terfaces. We use ∆j

i,k to denote the difference of the utilization required by
subcomponent Ci,k in parallelism level j and j − 1, i.e.:

∆j
i,k =

Θj
i,r

Πj
i,r

−
Θj−1
i,r

Πj−1
i,r

,

where ∀j < 1 Θj
i,k = 0. Informally speaking, ∆j

i,k denotes the amount of
penalty that needs to be paid for gaining an additional level of flexibility.

The component decomposition algorithm takes one component Ci and de-
composes it into a set of subcomponents {Ci,1, . . . , Ci,pi}. We use the fol-
lowing three bin packing heuristics for component decomposition: First Fit
(FF), Best Fit (BF) and Worst Fit (WF) [4]. In the case of the WF heuristic,
we assume that we have dUTie available processors (i.e. pi = dUTie). If the
decomposition fails, then we add a new processor and reperform the decompo-
sition.

13.3 Integration
In this section we present a number of algorithms for integrating components
with MPR interfaces as well as components with EPR interfaces. The input
to the integration problem is a set of component interfaces. A solution to the
integration problem is a set of processor allocations such that (i) the sum of all
allocations on each processor is less than or equal to one since we use pEDF
for scheduling components; (ii) the constraints specified in the component in-
terfaces are met. In the following we explain the integration algorithms corre-
sponding to each interface model in detail.

13.3.1 MPR composition
In the following we formally define the integration problem of the FAD ap-
proach in which the components are abstracted using the MPR interface model.
This problem is similar to that of what is found in the problem of bin packing

13.3 Integration 215

with fragmentable items. In this variation of the bin packing problem, a num-
ber of items have to be packed into a set of bins. It is possible to divide items
into smaller chunks. The item division does not incur any overhead, i.e., the
sizes of the items do not increase by dividing them. The objective is to min-
imize the number of fragments when placing the items into the bins. In [7]
Bertrand et al. proved that this variation of the bin packing problem is strongly
NP-complete. In our MPR integration problem the items are the MPR inter-
faces and the processors are the bins. However, our problem is slightly more
complex than the above bin packing problem in the following aspects. Instead
of minimizing the number of fragments, our objective is to find an allocation
in which the number of fragments of all items is less than or equal to their cor-
responding parallelism level m′i. In the following we present a mathematical
formulation of the constraints of the MPR integration problem:∑n

i=1
ρi,j ≤ 1 ∀j ∈ [1 . . .m], (13.1a)∑m

j=1
ρi,j = U

Γ
m′i
i

∀i ∈ [1 . . . n], (13.1b)∑m

j=1
fi,j ≤ m′i ∀i ∈ [1 . . . n],∀j ∈ [1 . . .m], (13.1c)

fi,j ∈ {0, 1}, ρi,j ∈ Z≥0, (13.1d)

where ρi,j is the amount of U
Γ
m′i
i

allocated on processor j. fi,j is equal to one

when ρi,j > 0, i.e., Γ
m′i
i is partially allocated to processor j.

The FAD approach postpones the decomposition to the integration phase.
Therefore, we provide two algorithms in which decomposition and allocation is
performed simultaneously. In these algorithms each component is treated sep-
arately. The component decomposition is performed based on the current sta-
tus of the slack utilizations on the multiprocessor. We present two algorithms
referred as compact integration and balanced integration. In the compact inte-
gration algorithm, the objective at each step is to (i) use a minimum number of
the processors (ii) use processors that already have other components assigned
on them. The compact integration algorithm is presented in Algorithm. 10.
We first sort processors based on increasing slacks. The next step is to find
the first m′′i processors which can accommodate the current component, where
m′′i ≤ m′i. Line 2 returns the index of the first processor in the set that can
accommodate the component. Once the processors are sorted it is easy to find
m′′i . Function findFirstProcessors(m′i, U

Γ
m′i
i

) loops through the pro-

cessors starting from the first processors. At each iteration, the following sum

216 Paper F

Algorithm 10: MPR compact integration.
Require: Γi
Ensure: matrix of processor allocations {ρ} or failure.

1: sortProcessorsIncreasingSlack();
2: j = findFirstProcessors(m′i, U

Γ
m′i
i

);

3: if j < 0 then
4: return FALSE;
5: end if
6: U = U

Γ
m′i
i

;{Unallocated utilization}
7: while U > 0 and j ≤ m do
8: ρi,j = max(Sj ,U);
9: U -= ρi,j ;

10: j++;
11: end while
12: if U = 0 then
13: return {ρ};
14: else
15: return FALSE;
16: end if

is calculated:
∑j+m′i
j Sj . If the above sum is more than the utilization of the

current component being integrated Ci, then findFirstProcessors re-
turns the current processor index j. If this function fails to find the candidate
set of processors, then it returns −1 and the algorithm returns failure. Oth-
erwise, the algorithm starts filling each processor until either the processor is
full or the component is completely allocated. This algorithm is called for all
components. The while loop Lines 7 to 11 has at most m iterations. There-
fore, since sorting the processors and finding the first processor can be done
in polynomial time, the entire algorithm runs in polynomial time. The exact
complexity, however, depends on the particular implementations of the sort
algorithm.

We present an alternative algorithm for integrating components with MPR
interfaces in Algorithm 11. This algorithm is referred as balanced integration.
The objective in this approach is to evenly distribute the slack at each step.
The algorithm first sorts the processors based on decreasing slack. Thereafter,
it finds the first m′′i processors that can fit the components, where m′′i ≤ m′i.
Once the m′′i target processors are selected, the algorithm calculates the tar-

13.3 Integration 217

Algorithm 11: MPR balanced integration.
Require: Γi.
Ensure: matrix of processor allocations {ρ} or failure.

1: sortProcessorsDecreasingSlack();
2: j = findFirstProcessors(m′i, U

Γ
m′i
i

);

3: if j < 0 then
4: return FALSE;
5: end if
6: ST =

∑j+m′i
i=j Si;

7: U = U
Γ
m′i
i

;{Unallocated utilization}
8: while U > 0 and j ≤ m do
9: ρi,j = max(Sj − ST ,U);

10: U -= ρi,j ;
11: j++;
12: end while
13: if U = 0 then
14: return {ρ};
15: else
16: return FALSE;
17: end if

get slack ST on each processor. Finally, it fills each processor until its target
slack is reached. Similar to the compact integration algorithm, the balanced
integration algorithm also runs in polynomial time.

We present an example for elaborating the above two algorithms. Assume
that we want to integrate two components with the following interface
utilizations: UΓ2

1
= 1.5 and UΓ2

2
= 1.2. Assuming that we start with

C1, the compact integration algorithm decomposes the interface into two
subcomponents with utilizations equal to one and 0.5. The result of this step
is illustrated in Figure 13.1a. Thereafter, C2 is integrated. At this stage the
findFirstProcessors function returns processor 2 because C2 fits in the
slack utilization of processor two and three. C2 is decomposed into two sub-
components with utilizations equal to 0.5 and 0.7 (Figure 13.1b). On the other
hand, the balanced integration divides C1 into two identical subcomponents
with utilizations equal to 0.75, and it allocates them on the first two processors.
The result of this step is illustrated in Figure 13.1c. When integrating C2, the
findFirstProcessors function returns three because the overall slack

218 Paper F

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Component 1

(a) Algorithm 10: after integrating C1.

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Component 1 Component 2

(b) Algorithm 10: after integrating C2.

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Component 1

(c) Algorithm 11: after integrating C1.

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Component 1 Component 2

(d) Algorithm 11: after integrating C2.

Figure 13.1: The steps of the two MPR integration algorithms.

on processors {1,2} and {2,3} is not enough for integrating C2. The algorithm,
then, divides C2 into two subcomponents with identical utilizations 0.6, and
allocates them on the third and forth processors (Figure 13.1d). As illustrated
in Figure 13.1, the balanced integration algorithm resulted in fragmented
slacks, while the compact integration resulted in one entirely free processor
and one partially free processor.

13.3.2 EPR integration
In the following we formally define the integration problem of the FDA ap-
proach in which the components are abstracted using the EPR interface model.
This problem is analogous to the problem of bin packing with size-increasing
fragmentation. In this variation of the bin packing problem the items are al-
lowed to be fragmented while fragmenting an item is associated with a cost.
Menakerman and Rom [8] showed that this problem is also NP-hard. The EPR
integration problem is more complex because instead of a fixed fragmentation
cost, the fragmentation cost varies for different subcomponents. For compo-
nents with parallelism level equal to one, the integration algorithm only has
to allocate subcomponents on the multiprocessor. This problem is equivalent
to partitioning implicit deadline periodic tasks on multiprocessors. However,
if the allocation fails, the integration algorithm can fragment a subcomponent
while adding a fragmentation cost. The fragmentation cost for Γji,r is denoted

13.3 Integration 219

using ∆j
i,r. Since we treat each subcomponent separately, solving the EPR

integration problem for one component is equivalent to solving this problem
for all components in the systems. For notational convenience, we drop the
component index when referring to the EPR interfaces in the rest of this sec-
tion. Let qr be the parallelism level of subcomponent Cr, and let Q be the set
of parallelism levels Q = {q1, . . . , qp}. Also, assume that the total number of
subcomponents is represented using n′. The EPR integration problem is to find
Q and allocations such that:∑n′

r=1
ρr,j ≤ 1 ∀j ∈ [1 . . .m], (13.2a)∑m

j=1
ρr,j = UΓ

qr
r

∀r ∈ [1 . . . n′], (13.2b)∑m

j=1
fr,j ≤ qr ∀r ∈ [1 . . . n′],∀j ∈ [1 . . .m], (13.2c)

fr,j ∈ {0, 1}, ρr,j ∈ Z≥0, (13.2d)

The EPR integration algorithm is presented in Algorithm 12. First the subcom-
ponents are sorted based on decreasing first parallelism utilizations (m′r = 1).
The algorithm assigns the parallelism levels of all subcomponents to one in
Line 2. The isfeasible(Q) function is called in Line 4. This function
performs the following utilization test based on the current parallelism levels,
i.e. Q: ∑n′

r=1
UΓ

qr
r
≤ m. (13.3)

The algorithm loops through all subcomponents in Line 5. In Line 6, the al-
gorithm calls the allocate function. The following two cases may happen:
(i) parallelism level equal to one; (ii) parallelism level more than one. In the
case of parallelism level equal to one, the allocation is similar to allocating im-
plicit deadline periodic tasks on multiprocessors. We use different versions
of the allocation function, each version implementing a different bin pack-
ing heuristic. In the evaluations we present the result of using the following
three heuristics: FF, BF and WF. In the case of parallelism more than one,
however, we use the MPR integration algorithms for allocating the subcom-
ponents on the multiprocessor. If the allocation fails, then the algorithm calls
the IncreaseFlexibility(Q) function. This function selects one sub-
component, and it increments its parallelism level. It selects the subcomponent
which has the smallest ∆qr

r . In other words, it selects a subcomponent that
provides one extra level of flexibility with a minimum overhead penalty. Since
the IncreaseFlexibility function only increases the parallelism levels,

220 Paper F

Algorithm 12: EPR integration.
Require: An EPR interface Ωi.
Ensure: matrix of processor allocations {ρ} or failure.

1: sortInterfaces(); {Based on UΓ1
r
}

2: ∀r ∈ [1, n′] qr ← 1;
3: FLAG← FALSE;
4: while FLAG = FALSE and isfeasible(Q) do
5: for r = 1; r < n′; k++ do
6: FLAG← allocate(Γqrk);
7: if FLAG = FALSE then
8: Q ← IncreaseFlexibility(Q);
9: break;

10: end if
11: end for
12: end while
13: return FLAG;

in the worst-case the algorithm tries n′×m differentQ. However, in our eval-
uations, we observed that the isfeasible function detects the infeasibility
in the early stages and it terminates the algorithm. For each Q, the algorithm
calls an allocation heuristic which runs in polynomial time. Thus, the EPR
integration algorithm runs in polynomial time.

We present an example to further elaborate the EPR integration algorithm.
Suppose we want to integrate five subcomponents with the following utilization
for their first parallelism level: UΓ1

1
= UΓ1

2
= 0.7, UΓ1

3
= UΓ1

4
= 0.6 and

UΓ1
5

= 0.5. Also, assume that the second parallelism utilizations are as follows:
UΓ2

1
= UΓ2

2
= 0.9, UΓ2

3
= UΓ2

4
= 0.85 and UΓ2

5
= 0.8. We call Algorithm 12

for all subcomponents, starting from C1. C1 to C4 are allocated to processor
one to four respectively. The result of integrating the first four subcomponents
is illustrated in Figure 13.2a. When integrating C5, the allocation cannot be
performed using the first level parallelism. Therefore, the algorithm calls the
IncreaseFlexibility function, and it increases the parallelism level of
C5 to two. Thereafter, C5 is divided into two chunks and it is allocated on the
third and forth processors (Figure 13.2b).

13.4 Evaluations 221

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Subcomp. 1

Subcomp. 4
Subcomp. 2 Subcomp. 3

(a) Algorithm 12: after integrating
C1, C2, C3 and C4.

Proc. 1 Proc. 2 Proc. 3 Proc. 4

Subcomp. 1

Subcomp. 4
Subcomp. 2
Subcomp. 5

Subcomp. 3

(b) Algorithm 12: after integrating
C5.

Figure 13.2: The steps of the EPR integration algorithm.

13.4 Evaluations
In this section we present two types of evaluations. In the first set of evalua-
tions our aim is to compare the abstraction overhead of the MPR model against
the abstraction overhead of the EPR model. We used the interface calculation
method presented in [3] to calculate optimal MPR interfaces. Note that the
optimal MPR interfaces have the minimum possible parallelism level. The ab-
straction overhead of Ci abstracted using the MPR model is calculated using
the following equation:

OΓ

i = 100×
U

Γ
m′i
i

− UTi
UTi

, (13.4)

where OΓ
i represents the percentage of abstraction overhead of Ci abstracted

using the MPR model. In addition, for the EPR model, we calculate the ab-
straction overhead only for parallelism level equal to one because the EPR
integration algorithm tries to use the first level parallelisms. We have:

OΩ

i = 100×

pi∑
r=1

Γ1
i,r − UTi

UTi
, (13.5)

where OΩ
i represents the percentage of the first parallelism level abstraction

overhead of Ci abstracted using the EPR model. In the second set of simula-
tions we intend to answer the following question: “given a set of components,
which combination of the abstraction models and integration techniques re-
quires the lowest number of processors for composing the component set”?
Simulation setup. We generated components with specific task set utiliza-
tions. Each task is assigned to a random period between 100 and 200. The

222 Paper F

utilization of τi is selected randomly using a uniform distribution between zero
and the maximum allowed task utilization. Except one evaluation in which we
varied the maximum allowed task utilization, in the rest of the experiments this
parameter was set to 0.9. The execution time of tasks is derived by multiply-
ing the period and the utilization. We assigned deadlines equal to the periods
for all evaluations. For generating task sets with a target utilization, we kept
generating tasks until the remainder utilization was less than the maximum al-
lowed task utilization 0.9. Then we generated the last task with the remainder
utilization. Except one evaluation in which we varied the component periods,
we set Πi = 50 for components in the rest of the evaluations.

13.4.1 Abstraction overhead

We evaluated the influence of increasing task set utilization on the interface
overhead. In this experiment, we generated components with task set utiliza-
tions from 1.5 to 8 with step size 0.1. For each utilization, we generated 1000
random task sets. Figure 13.3a shows the result of our evaluation. Note that in
this figure the y-axis shows the abstraction overhead. Using the same data, we
plotted the relation between the number of tasks and the interface overhead in
Figure 13.3b. These results show that (i) in average OΩ

i is significantly lower
the OΓ

i ; (ii) OΓ
i increases with respect to the task set utilization. Recall that

we use gEDF for the MPR interfaces and we use single processor EDF for the
first level EPR interfaces. The reason behind the above result is the following.
Firstly, the fixed-job priority algorithms (e.g. gEDF) are not optimal for multi-
processors while EDF is optimal for single processors. Secondly, the analysis
used for deriving the MPR interfaces are based on sufficient schedulability tests
in global algorithms. For the class of partitioned algorithms, however, the ex-
act schedulability tests are available. Therefore, the first parallelism level EPR
interface calculation is based on the exact tests.

In order to evaluate the impact of the interface period on the interface over-
head, we performed another experiment. In this experiment we fixed the task
set utilization to 1.2, and we generated random tasks as explained above. We
varied the component period from 10 to 200 with step size equal to 10. We gen-
erated 10000 task sets for each period. The result is illustrated in Figure 13.3c.
This figure suggests that increasing the interface period has a larger impact on
the EPR interfaces than on the MPR interfaces. However, even for a very large
interface period, the EPR interfaces still incur smaller overhead than the MPR
interfaces.

We performed another experiment to evaluate the impact of individual task

13.4 Evaluations 223

utilizations on the interface overhead. In other words, we wanted to under-
stand whether or not heavyweight tasks and lightweight tasks have different
impact on the interface overhead. We fixed the task set utilization to 2.5, and
we varied the maximum task utilization from 0.3 to 0.9. We generated 1000
random components for each maximum task utilization. The results, presented
in Figure 13.3d, show that (i) the MPR interfaces are more sensitive to the task
utilizations; (ii) components with heavyweight tasks incur more abstraction
overhead.

13.4.2 Integration
In this part we generated random systems composed of a number of compo-
nents. Each component is generated randomly using the method explained
above. For each system we had a target task set utilization. The task set utiliza-
tion of each componentUTi was selected randomly using a uniform distribution
between 1.5 and 3. We kept generating new components until the remaining
system utilization was less than 1.5 in which we generated a component with
the remaining utilization. Note that by target utilization we refer to the task set
utilizations as the interfaces were not derived at the system generation phase.
We generated systems with target utilization from 5 to 10. We generated 10000
random systems for each target utilization. Once we generated a system, we
calculated the MPR and EPR interfaces. We then ran the integration algorithms
presented in the previous section. We ran the compact (CP) and the balanced
(BL) algorithms for the MPR integration. Note that in the legends of the fig-
ures we use the abbreviation, i.e., CP and BL. For the EPR integration, on the
other hand, we examined different combinations of decompositions and inte-
gration algorithms. Since we used the FF, BF and WF algorithms, there are
nine possible combinations. We denote each combination by combining the
decomposition algorithm with the integration algorithm in the legend of the
figures. For instance, FFBF means that we used FF for the decomposition and
BF for the integration.

In the next evaluation, we studied the performance of the two integration
algorithms comparing the number of required processors by each algorithm
against the minimum number of processors. We define the ratio of extra re-
quired processors by algorithm A as follows:

RA = 100× # required processors by A−ΨMPR

ΨMPR
, (13.6)

where ΨMPR is the minimum number of processors required for integrating a set

224 Paper F

of MPR interfaces, and it is calculated using the following equation:

ΨMPR =
⌈ n∑
i=1

U
Γ
m′i
i

⌉
.

Figure 13.3e presents RBL and RCP . Each point in the figure is represent-
ing the average of 10000 samples. This figure illustrates that both algorithms
perform very closely to an optimal algorithm. This shows that the flexibility
provided by the MPR interfaces has been exploited well by the two algorithms.
Also, the CP algorithm performs better than the BL algorithm.

Let us define a new metric for evaluating the performance of different ap-
proaches. We define the ratio of extra required processors by approach A as
follows:

R′A = 100× # required processors by A−ΨT

ΨT
, (13.7)

where ΨT represents the minimum number of processors required based on the
overall task set utilizations, and it is calculated using the following equation:

ΨT =
⌈ n∑
i=1

UTi

⌉
.

Note that we overloaded symbol A, and it refers to a combination of the ab-
straction and integration techniques in the FDA approach. Since we have 11
combinations in total, and to keep the figures readable, we present the MPR
integration algorithms with three EPR algorithms in one single figure. Fig-
ure 13.3f presents R′A against the task set utilization for the case where we
used FF decomposition. Similarly, Figure 13.3g and Figure 13.3h present the
cases in which we used BF and WF decompositions respectively. We took the
best algorithms of the above three figures and we plotted them in Figure 13.3i
to make the comparison easier. This figure shows that the BFBF combination
provided the best result among the studied combination of the algorithms, al-
though it has a very close performance to BFFF. The two algorithms based on
WF decomposition considered in this figure performed better than the two al-
gorithms that are based on FF decomposition. The best MPR algorithm (i.e.
CP) required 19.26 processors in average when the collective task set utiliza-
tion was equal to 10. While, the best EPR algorithm combination (i.e. BFBF)
required 13.87 processors in average for the same collective task set utilization.
In other words, the FDA approach, in average, incurred 53.92 % less overhead
than the FAD approach for this particular target task set utilization.

13.4 Evaluations 225

2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

180

200

Task set utilization

In
te

rf
ac

e
ov

er
he

ad

MPR
EPR

(a) Interface overhead
(OΓ

i and OΩ
i) against task

set utilization. The step
size was set to 0.1.

5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

Number of tasks

In
te

rf
ac

e
ov

er
he

ad

MPR
EPR

(b) Interface overhead
against the number of
tasks.

50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Π
i

In
te

rf
ac

e
ov

er
he

ad

MPR
EPR

(c) Interface overhead
against Πi. The step size
was set to 10.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

200

Mazimum task utilization

In
te

rf
ac

e
ov

er
he

ad

MPR
EPR

(d) Max task utilization
against interface over-
head. The step size was
set to 0.1.

5 6 7 8 9 10
0.5

1

1.5

2

R
B

L

5 6 7 8 9 10
0

0.005

0.01

0.015

Task set utilization

R
C

P

(e) RBL and RCL (Equa-
tion 13.6) versus task set
utilization.

5 6 7 8 9 10
30

35

40

45

50

55

60

65

70

75

80

Task set utilization

R
’A

CP

BL

FFFF

FFBF

FFWF

(f)R′A versus task set uti-
lization using the FF de-
composition algorithm.

5 6 7 8 9 10
20

30

40

50

60

70

80

Task set utilization

R
’A

CP

BL

BFFF

BFBF

BFWF

(g) R′A versus task set
utilization using the BF
decomposition algorithm.

5 6 7 8 9 10
20

30

40

50

60

70

80

Task set utilization

R
’A

CP

BL

WFFF

WFBF

WFWF

(h) R′A versus task set
utilization using the WF
decomposition algorithm.

5 6 7 8 9 10
26

27

28

29

30

31

32

33

34

35

Task set utilization

R
’A

FFFF

FFBF

BFFF

BFBF

WFFF

WFBF

(i)R′A versus task set uti-
lization for the best six al-
gorithms.

Figure 13.3: Evaluation of the interface overheads as well as integration algo-
rithms. In all figures, the y-axis indicates the percentage of imposed overhead.

226 Paper F

13.5 Related work

Component-based development approaches have been the subject of several
studies in the real-time time scheduling community. The basic idea behind
most of these approaches is to abstract the processor requirements of the com-
ponents, composed of multiple real-time tasks, in an interface. The schedu-
lability of the real-time systems, composed of multiple components, are ex-
amined using the component interfaces. These approaches are also referred
to as hierarchical scheduling frameworks since the component scheduling and
task scheduling are performed in two different levels. For realization of such
component based systems, the processors can be time partitioned, while each
partition is assigned to a single component. The processor partitions have to
be compliant with the requirements specified in the component interfaces. In
doing so, the components are isolated from each other with respect to their
timing behavior. A timing anomaly in one component will not be propagated
to the other components. Several modeling techniques have been proposed for
abstracting the processor requirements of the components. In the following we
review a subset of such modeling techniques related to our work.
Single processor platforms. The bounded delay abstraction, introduced in [9],
specifies the bandwidth along with the maximum blackout time of the proces-
sor supply. The maximum blackout time indicates the largest time interval that
the processor may be unavailable. The component schedulability test under
fixed-priority scheduling and EDF, based on the bounded delay model, is pre-
sented in [10]. Shin et al. [6] presented another abstraction model for the pro-
cessor supply of single processors, namely the Periodic Resource (PR) model.
The PR model specifies a budget and a replenishment period in its interface.
Easwaran et al. [11] proposed using a deadline in the component interface to
minimize the abstraction overhead. In the case of single processor compo-
nents abstracted using a periodic model, the component integration problem is
equivalent to the task scheduling problem. Therefore, the schedulability analy-
ses previously developed for examining the schedulability of the periodic tasks,
can be directly applied to the components assuming that the component budget
is equal to the task execution time.
Multiprocessor platforms. With the advent of multiprocessors, it became
possible to develop components that require more than one processor for their
computations. Therefore, researchers proposed abstraction techniques that can
abstract the processor demand of such components. Bini et al. presented the
Multi Supply Function (MSF) model in [12] for modeling the resource supply
of multiprocessor platforms. The Parallel Supply Function (PSF) model [13]

13.5 Related work 227

is also proposed as an alternative for modeling the resource supply of hierar-
chical multiprocessor systems. This model indicates a set of supply functions
where each of them represent the minimum available supply at a certain par-
allelism level (from 1 to m). Leontyev and Anderson [14] proposed a model
that only specifies bandwidth w in the component interface. In this model
bwc of a dedicated processor is assigned to the components and the remaining
w − bwc bandwidth is provided using a periodic server. This model provides
limited flexibility at the integration stage for the system integrator as it requires
bwc dedicated processors. Lipari and Bini proposed the Bounded Delay Multi-
partition (BDM) abstraction model in [5]. This model specifies the maximum
blackout time and a bandwidth for each parallelism level in its interface. They
also provided an algorithm for allocating the interfaces on multiprocessors. In
our work, we addressed periodic interface models. In addition, we proposed a
new approach in which component decomposition is performed before inter-
face abstraction.
Periodic interface models for multiprocessor platforms. Zhu et al. [15]
presented an approach in which a Deferrable Server (DS) is attached to each
processor. They provided response time analysis for tasks assigned to the DSs
which can migrate across the multiprocessor platform. In this work, the au-
thors assumed that there can exist at most one DS per processor. Thus, their
approach is not suitable for complex systems composed of several components.
Shin et al. proposed the MPR model [1]. The MPR model specifies a budget, a
replenishment period and a parallelism level in its interface. Easwaran et al. [3]
proposed an optimal component scheduling algorithm for the MPR interfaces
assuming that all components have identical periods. Xu et al. proposed the
Deterministic MPR (DMPR) model in [16]. This model is different from the
MPR model in the following aspect. The DMPR model, similar to [14], al-
lows at most one partial processor allocation. Xi et al. [17] have investigated
the application of the MPR modeling technique in the Xen virtual machine
manager. The authors have also reported some benefits of using partitioned
task-scheduling over global task-scheduling. On the other hand, the General-
ized MPR (GMPR) model [2] specifies a budget for each parallelism level in
the interfaces. This additional information in the interface make it possible to
reduce the abstraction overhead.

Our work is different from the aforementioned works in the following as-
pects. (i) All of the aforementioned approaches perform component decompo-
sition after the abstraction phase, while in this paper we presented an approach
for performing the decomposition before the abstraction. Recall that, in or-
der to examine the schedulability of the systems using the task schedulability

228 Paper F

analyses, the components with utilization more than 100 % of a single proces-
sor have to be decomposed to a number of smaller components. (ii) We have
quantitatively studied the overhead of using the MPR model considering the
whole compositional development processes, i.e., both component abstraction
and system integration.

13.6 Conclusions and future work
In this paper we investigated two alternative approaches for developing real-
time software components on multiprocessor platforms. The two approaches
vary in the following aspect. The first approach abstracts the component in-
terfaces before decomposing them at the integration phase. The second one,
however, first decomposes the components and then abstracts their interfaces.
Through extensive simulations, we showed that the second approach utilizes
the processor resource significantly better than the first approach. For instance,
we showed that given a total task set utilization equal to 10, the second ap-
proach in average incurs around 53 % less overhead compared to the first ap-
proach.

In the future, we intend to propose an integration algorithm for the GMPR
interface model, and we propose to evaluate the GMPR model against the two
approaches presented in this paper. We only considered pEDF for scheduling
the components in this paper. It is interesting to consider other algorithms in-
cluding global scheduling algorithms for component-scheduling, and to com-
pare their performances against the partitioned component-scheduling algo-
rithms. Finally, we would like to incorporate resource sharing in our approach
and compare the abstraction overhead of our approach with the current state-
of-the-art (e.g. [18]).

References

[1] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework
for virtual clustering of multiprocessors. In Proceedings of the Euromi-
cro Conference on Real-Time Systems, (ECRTS’08), pages 181–190, July
2008.

[2] A. Burmyakov, E. Bini, and E. Tovar. Compositional multiprocessor
scheduling: the GMPR interface. Real-Time Systems, 50(3):342–376,
2014.

[3] A. Easwaran, I. Shin, and I. Lee. Optimal virtual cluster-based multipro-
cessor scheduling. Real-Time Systems, 43(1):25–59, 2009.

[4] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling prob-
lems and algorithms. Handbook on Scheduling Algorithms, Methods, and
Models, 2004.

[5] G. Lipari and E. Bini. A framework for hierarchical scheduling on mul-
tiprocessors: From application requirements to run-time allocation. In
Proceedings of the 31st IEEE Real-Time Systems Symposium (RTSS’10),
pages 249–258, December 2010.

[6] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proceedings of the 24th IEEE Real-Time Systems Sympo-
sium, (RTSS’03), pages 2–13, December 2003.

[7] B. Lecun, T. Mautor, F. Quessette, and M. Weisser. Bin packing with
fragmentable items: Presentation and approximations, January 2013.

[8] N. Menakerman and R. Rom. Bin packing with item fragmentation. Al-
gorithms and Data Structures, 2125:313–324, 2001.

229

230 References

[9] A. K. Mok, X. Feng, and D. Chen. Resource partition for real-time sys-
tems. In Proceedings of the 7th Real-Time Technology and Applications
Symposium (RTAS’01), pages 75–84, May 2001.

[10] I. Shin and I. Lee. Compositional real-time scheduling framework. In
Proceedings of the 25th IEEE International Real-Time Systems Sympo-
sium (RTSS’04), pages 57–67, December 2004.

[11] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework
using EDP resource models. In Proceedings of the 28th IEEE Real-Time
Systems Symposium, (RTSS’07), pages 129–138, December 2007.

[12] E. Bini, G. Buttazzo, and M. Bertogna. The multi supply function ab-
straction for multiprocessors. In Proceedings of the 15th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications, (RTCSA’09), pages 294–302, August 2009.

[13] E. Bini, M. Bertogna, and S. Baruah. Virtual multiprocessor platforms:
Specification and use. In Proceedings of the 30th IEEE Real-Time Sys-
tems Symposium, (RTSS’09), pages 437–446, December 2009.

[14] H. Leontyev and J. H. Anderson. A hierarchical multiprocessor band-
width reservation scheme with timing guarantees. In Proceedings of the
20th Euromicro Conference on Real-Time Systems (ECRTS’08), pages
191–200, July 2008.

[15] H. Zhu, S. Goddard, and M. B. Dwyer. Response time analysis of hier-
archical scheduling: The synchronized deferrable servers approach. In
32nd IEEE Real-Time Systems Symposium (RTSS’11), pages 239–248,
December 2011.

[16] M. Xu, L. T. X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and C. Gill.
Cache-aware compositional analysis of real-time multicore virtualization
platforms. In Proceedings of the 34th IEEE International Real-Time Sys-
tems Symposium (RTSS’13), pages 1–10, December 2013.

[17] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokolsky, and I. Lee.
Real-time multi-core virtual machine scheduling in xen. In Proceedings
of the International Conference on Embedded Software (EMSOFT’14),
pages 1–10, Oct 2014.

[18] F. Nemati, M. Behnam, and T. Nolte. Independently-developed real-time
systems on multi-cores with shared resources. In Proceedings of the 23rd
EUROMICRO Conference on Real-Time Systems (ECRTS’11), July 2011.

