
Realization and Measurements of Industrial Wireless Sensor and Actuator
Networks

Kan Yu1 and Johan Åkerberg2 and Mikael Gidlund3 and Mats Björkman1

Abstract— Industrial automation can benefit from applying
wireless sensor and actuator networks (WSAN) on cost re-
duction, mobility and flexibility. However, wireless solutions
are more prone to interferences compared to wired ones. In
order to avoid production losses and to keep the revenues at
an anticipated level, it is of utmost importance for WSANs to
meet the stringent requirements from industrial automation,
such as high reliability and real-time performance. A great
number of research efforts were taken in this field based on
simulations, but simulation results may not show sufficient
confidence. Existing implementations and products compatible
with the standards may still fail to provide reliable and real-time
communication. Therefore, in this paper we built a prototype of
industrial wireless sensor and actuator networks (IWSAN) and
implemented a protocol stack, aiming for providing reliable
and real-time communication for mission-critical industrial
applications. Afterwards, we deployed our prototype and con-
ducted measurements in real industrial environments. Our
measurement results exhibited possibility of applying IWSANs
for industrial applications and brought more evidence to our
industry.

I. INTRODUCTION

Nowadays wireless technologies for usage in industrial
automation has been an important trend. It is known that
wired industrial systems not only demand expensive cables,
but also involve costly device installation and maintenance.
As wireless technologies evolve, wireless systems have been
applied in the industrial domain at the form of industrial
wireless sensor and actuator networks (IWSAN). IWSANs
have been exhibiting its advantages over traditional wired
counterparts in cost saving and access to mobility.

Although IWSANs can bring numerous benefits to indus-
trial automation, their applicability in industrial environments
is still in the development stage. The majority of tradi-
tional wireless sensor networks (WSN) still focus on non-
deterministic communication and low power consumption.
However, for many mission-critical industrial applications,
requirements are quite different and more stringent [1],
since failures in mission-critical applications might cause
catastrophic consequences, such as severe financial losses
and safety accidents. Thus, among those requirements, high
reliability and real-time performance are of most importance.
Moreover, IWSANs are foreseen to be deployed in harsh
industrial environments, which are considered to be dusty,
humid, full of metallic equipment with high temperature

1Kan Yu and Mats Björkman are with the School of Innovation, Design
and Engineering Malardalen University, Sweden

2Johan Åkerberg is with ABB AB Corporate Research, Sweden
3Mikael Gidlund is with the Department of Electrical Engineering,

Wright State University, Sweden

and vibrations. To deal with these interferences, appropriate
strategies should be developed, such as time division mul-
tiple access (TDMA) schemes and multipath transmission
methods. Therefore, designing and realizing such IWSANs
pose numerous challenges.

In order to verify IWSAN solutions, simulation is insuffi-
cient for several reasons. Firstly, some solutions are designed
under certain assumptions which are not realistic. Secondly,
wireless channel settings in simulators are very different
from the real world. Thirdly, an IWSAN solution may be
overcomplicated to be implemented in practical resource
constrained devices. Nowadays, a great number of research
efforts based on IEEE 802.15.4 have been taken in this
area, but only a few of them are realized and verified in
practice [2][3][4][5]. However, these implementations and
realizations still either fail to concentrate on reliable and
real time communication or fail to meet industrial setups.
Moreover, several IWSAN standards were also published,
such as WirelessHART [6], ISA 100.11a [7] and WIA-PA
[8]. Up to now, there are a number of standards-compliant
products available in the market. For instance, Emerson and
Siemens released several products based on WirelessHART;
the companies like Nivis also released their products using
ISA 100.11a. However, these existing products may still fail
to meet the strict requirements from some mission-critical
industrial applications. For instance, authors in [9] deployed
commercial implementations of WirelessHART in industrial
environments and revealed that round trip time in some
locations was too long, especially for downlink transmission.

To meet the stringent requirements from industrial au-
tomation and show the possibility of applying IWSANs for
mission-critical industrial applications, we built an IWSAN
prototype including the protocol stack for reliable and real
time communication. Majority of the prototype is built
on a resource limited embedded platform, which leads to
challenges to implement the complete protocol stack. TDMA
mechanism is applied for deterministic packet delivery, and
a flooding-based routing protocol is implemented to improve
reliability and real-time performance. Then we deployed our
prototype in a real industrial environment for testing. The
measurement results showed the confidence on providing
both reliable wireless sensing and actuating for industrial
automation systems.

The rest of this paper is organized as follows: Section II we
give an overview of IWSAN. The prototype implementation
is introduced in Section III in detail. In Section Iv, the initial
measurement in a real industrial environment is described.
Finally, the paper is concluded in Section V.



Fig. 1. Example of an IWSN structure

II. OVERVIEW OF INDUSTRIAL WIRELESS SENSOR AND
ACTUATOR NETWORKS

IWSANs emerge as a new generation of WSNs to serve
for both monitoring and control for industrial purposes. In
this section, the architecture of IWSAN is described and the
requirements from industries is introduced.

A. IWSAN Architecture

Centralized management is often applied in IWSANs
instead of self-organization, since operators in the central
control room must have full knowledge of the status of all
devices in the network. A general structure of an IWSAN
is shown in Figure 1. Various types of devices are defined
in different standards. As shown in Figure 1, four types of
devices are involved: 1) Network manager: responsible for
managing the activities of the network, including scheduling,
routing and time synchronization management; 2) Access
point: to bridge the wireless part to the control system; 3)
Sensor node: responsible for monitoring various types of
status; 4) Actuator node: attached to the process plant and
perform basic functions of actuating.

In IWSANs, sensor nodes periodically send data to the
control system via access points. After the collected infor-
mation being processed, the corresponding commands are
delivered to actuator nodes for controlling. Therefore, both
uplink and downlink transmissions are equally important in
IWSANs.

B. IWSAN Requirements

Unlike traditional WSNs, industrial applications served
by IWSANs can be grouped into three categories : 1)
monitoring: different types sensors provide diagnostics and
supervision, which are updated periodically; 2) closed loop
control: industrial processes are stabilized by the controlling
the actuators based on the sensor readings; 3) interlocking
and control: many industrial control applications require
discrete signaling with different interlocks. Authors in [1]
summarized a number of industrial applications in each
categories. According to their summary, several stringent
requirements from industrial automation can be abstracted,
such as energy consumption and security. In this work, we
focus on the following requirements:

1) Reliability: In IWSANs, packets should be reliably
transferred to their destinations to assure proper functioning.
Since packets are transmitted over time-varying and error-
prone wireless medium, it is critical to guarantee to packet
losses within a tolerant range to avoid application failures.

2) Real-time: Many mission-critical industrial applica-
tions have hard deadlines. Successive outdated packet de-
livery may also lead to production outages. Moreover, it is
unnecessary to guarantee delivery of all transmissions if a
packet is outdated.

3) Network Size: According to [1], many industrial appli-
cations have very fast refresh rate, in the order of seconds
or milliseconds. Therefore, large network size of an IWSAN
can hardly be supported; otherwise, network resources are
not sufficient for all transmissions.

Therefore, in this paper, we intend to build a prototype to
fulfill those requirements mentioned above and provide more
confidence to apply IWSANs for industrial automation.

III. PROTOTYPE IMPLEMENTATION

In this section, the detailed prototype implementation is
described. Our prototype implementation is composed of a
hardware part and a software part. In the hardware part the
hardware platforms will be stated, while in the software part
the protocol stack implementation method will be presented.

A. Hardware Platform

In our prototype, two types of hardware platforms are
used to build different devices. For simplicity, we merge the
network manager and access point as one part. Since a sensor
node and an actuator node are similar regarding to wireless
communication, one hardware platform is used for both of
them. In order to monitor wireless communication behaviors,
we also built a sniffer based on the same hardware as a
sensor/actuator node. Therefore, the first platform, named the
radio board, is used to build sensors, actuators and the sniffer.
Since this hardware platform includes radio interfaces, we
also used this platform to build the radio part of the network
manager. However, due to the constrained memory resource
in the first platform, we added the second hardware platform,
named the management board, to build the upper layers of
the network manager for the complicated operation, such as
scheduling and routing calculation. The detailed information
about the hardware platforms is introduced as follows.

B. Radio board

The first platform is STM32W-SK from ST Microelec-
tronics shown in Figure 2. It integrates a 32-bit ARM Cortex
M3 microprocessor STM32W108CC. This processor has the
following important features:

• 2.4 GHz IEEE 802.15.4 transceiver and lower MAC
• 256-Kbyte Flash and 16-Kbyte RAM memory
• Normal mode link budget up to 102 dB; configurable

up to 107 dB
• -99 dBm normal RX sensitivity; configurable to -100

dBm



Fig. 2. The platform STM32W108CC

Fig. 3. The platform STM3240G

• +3 dB normal mode output power; configurable up to
+8 dBm

In our prototype, we use the external crystal and config-
ure the processor running at 24 MHz frequency for faster
processing speed and better timer accuracy. The link budget
and RX sensitivity are set to the default values. Since there
is no interface for external antenna, we have to use the on-
board ceramic antenna. In order to achieve the maximum
transmission range, we set the RF output power to be +8
dBm.

1) Management board: We noticed that STM32W108CC
only has 16KByte of SRAM. Different from a sensor or
actuator node, more functions should be implemented in
the network manager, such as network management, TDMA
scheduler, etc., so we need to add an additional platform
for those advanced functions. Therefore, the second hard-
ware platform is STM3240G also from ST Microelectronics
shown in Figure 2, which has the following important
features:

• contains a STM32F407 high-performance ARM Cortex-
M4F 32-bit microcontroller

• 16 Mbit SRAM and extensible interfaces
• RS-232 communication model

C. Interconnection of two boards

In our network manager implementation, the physical layer
and the datalink layer are implemented in the radio board.
The remaining layers of the stack including the application

Fig. 4. The prototype connection

layer and the network layer are allocated in STM3240G.
Since both boards support serial communication, we used
UART interface to interconnect two platforms. In order
to reduced the CPU load, we applied the direct memory
access (DMA) scheme for the UART communication. Due
to the limited memory size for buffering packets on the
board STM3240G and real-time communication requirement,
we set the baud rate of UART to be 921600 Bps. After
testing, the external communication across two boards has
no obvious interference to the overall performance.

1) Power supply: The platform STM32W108CC has two
methods for the power supply. One is battery powering. Since
the board has a battery holder, it can be powered by two
normal AAA batteries. The other is via USB interface. When
the radio board is used as a sensor or actuator node, in order
to achieve a longer operating time, we use an external battery
pack as the power supply and connect it with the board via a
USB cable, which is also shown in Figure 2. When this board
is used as the sniffer or the radio part of the network manager,
we used a jumper to obtain power from outside. Different
from the power supply for the board STM32W108CC, we
use an external power supply for the board STM3240G due
to the much more intensive running tasks.

2) Data collection: In order to observe the current net-
work status, we need to visualize all information from
sensors, actuators and the network manager. Due to the
centralized architecture, all information can be obtained from
the network manager. Therefore, we connect a PC to the
network manager via the UART interface, and let the network
manager forward all necessary information to the PC. Since
we use the sniffer to observe the wireless communication,
we also use the USB cable to connect the sniffer to the PC.
Finally, the prototype connection is summarized in Figure 4.

D. Protocol Stack Implementation

We use a real time operation system (RTOS)-based archi-
tecture to implement our protocol stack. This architecture
offers significant benefits such as platform independent, sys-
tem integration and performance scalability. This architecture
consists of two major components: 1) the stack core; 2) the
platform abstraction layer (PAL), which is shown in Figure
5. The stack core is the main body of the protocol which
is platform-independent. It also comprises two parts: data
engine and protocol engine. The data engine copes with data



Fig. 5. The RTOS-based architecture for the protocol stack

management, while the protocol engine takes the responsibil-
ity of both layer management and inter-layer communication.
The PAL is an abstraction of the implementation platform
including the memory management and radio transceiver. By
separating the PAL from the stack core, the stack core is
isolated from the implementation platform. Therefore, it is
efficient to port a protocol stack from one platform to another
without re-implementing the whole stack.

In our stack architecture, each layer in the stack core has
at least one dedicated thread and one dedicated mailbox.
All inter-layer interactions are through this mailbox and
is managed by the RTOS. The upper or lower layer is
distinguished by the thread priority from the RTOS. Higher
priority is assigned to lower layers. To support flexible
partitioning of different layers, global variables are avoided.
The only method for cross-layer communication is through
mailboxes from the RTOS. Four basic layers are imple-
mented in our prototype including the physical layer, datalink
layer, network layer and application layer. Since both two
boards are used in designing the network manager, another
serialization layer is added in the network manager. The
detailed information of the protocol stack implementation
is introduced as follows.

1) Operating system: The RTOS we used in both plat-
forms is PowerPac from IAR, which is designed as an
embedded OS for the development of real-time applications.
The footprint of the kernel in our prototype is approximately
3000 bytes used in ROM and 52 bytes used in RAM.
We used semaphores, mailboxes, and events for different
tasks or threads to communicate with each other with the
delay less than microsecond. We implement the PAL by re-
packaging the APIs of the PowerPac libraries according to
the specification.

2) Radio interface: To transmit and receive packet from
the radio interface, the physical layer uses the APIs of
radio library provided by ST Microelectronics. The callback
functions from the library will announce the physical layer
about the success of sending and receiving packets. To
distinguish our own packets from those of other wireless
systems, we re-defined our own physical preamble. To avoid
corrupted packets, we enabled the automatic CRC inserting

Fig. 6. Time synchronization process

and checking from the RF library.
3) Time synchronization: TDMA mechanism is applied

on the datalink layer to provide deterministic communication.
As we know that IEEE 1588 has been widely used for
time synchronization in industrial Ethernets. Although the
precision of our synchronization method is less than IEEE
1588, the complexity of our method is also much less. In
our approach, to precisely maintain the local timer for the
time synchronization, two threads are used on the datalink
layer: one is for exchanging information with other layers;
the other is for controlling the time. The duration of one
timeslot is configured to be 10 ms, which is the same as the
WirelessHART standard.

We set the network manager as the source of the slot
timer, so every node in the network tries to synchronize with
the network manager. The time synchronization process is
summarized in Figure 6. According to the figure, once an
interrupt of the slot timer in the network manager happens,
the RTOS issues a signal to the TDMA controller to activate
this thread from a waiting state. Then the TDMA controller
looks up the local scheduling decision to check if the
current slot is for transmitting. If it is, the TDMA controller
thread asks for data from the datalink layer main thread and
forwards it to the physical layer. Then the physical layer
inserts the physical preamble and sends to the radio interface
for transmission. When a node receive this packet from the
gateway, the packet is processed in a similar way. All time
differences between each model are defined in Figure 6 as
well. Therefore, the total time difference Ttotal between the
network manager and the node is:

Ttotal = Tsc + Tcp + Tpr + Trr + Trp + Tpc (1)

In order to obtain total time difference for accurate
time synchronization, we used the MAC timer from the
STM32W108CC platform. We utilized the timer values at
four points during time synchronization. When the slot timer
in the network manager triggers, we obtain Tmac11 from
the MAC time indicating the starting point of a time slot
in the gateway. Before this packet being sent to the radio
interface, we obtain Tmac12 from the MAC timer. Then we
can compute:

Tmac12 − Tmac11 = Tsc + Tcp (2)



According to Figure 6, Trr is the packet transmission time.
We assure the packet lenght is L bits. Since the data rate of
IEEE 802.15.4 is 250 Kb/s, we can obtain:

Trr = L/250 ∗ 1000 (3)

Once the packet is received by a sensor/actuator node, we
are able to obtain the timer value Tmac21 from the radio
model indicating the exact packet receiving time. When the
TDMA controller thread obtains this packet, the last timer
value Tmac22 is needed. Then we can calculate that:

Tmac22 − Tmac21 = Trp + Tpc (4)

It is obvious that the time difference Tpr cannot be
obtained. Since the RTOS is used and Tpr equals function
calling time, we skip this value during the time synchroniza-
tion. The value Tmac12 − Tmac11 is inserted into the packet
before sending out. Finally, the total time difference Ttotal

is:

Ttotal=Tmac12−Tmac11+L/250∗1000+Tmac22−Tmac21 (5)

When the receiver obtains this value, it can adjust its
own local timer to synchronize with the network manager.
Furthermore, to avoid timeslot instability, any node should
only synchronize with the parent node who is the closest one
to the network manager.

4) REALFLOW Implementation: To provide reliable and
real-time communication, we applied REALFLOW routing
protocol proposed in [10]. In order to make the REALFLOW
protocol fit for real IWSANs, we adapted this protocol with
several updates.

In the REALFLOW routing protocol, in order to explore
the network topology and establish packet forwarding paths,
list-updated messages are sent out periodically. In our imple-
mentation, we added an additional parameter sgw in a list-
updated message as the route updating sequence number.
Every time when a new list-updated message is generated
by the network manager, this value will be increased by
one, which can assist nodes with identifying a new round
of network maintenance.

After list-updated messages being propagated through the
whole network, all sensor and actuator nodes send back list-
response messages to the network manager. Before a sensor
or actuator node sends out this message, it needs to choose
its parent nodes Nparent. The maximum allowed number of
parent nodes is defined as Kmax (Kmax ≥ 1). A larger
Kmax indicates more transmission paths to the destination,
but at the cost of network resources. Therefore, there is a
trade-off between reliability and network efficiency when
choosing Kmax values.

Several important parameters are included in a list-
response message. These parameters are: 1) the selected
parent nodes Nsrc; 2) the previous forwarding node address
Afwd; 3) the next hop node addresses Nfwd. The purpose of
list-response messages is not only for network management,
but also used for routing tables generation. Routing tables in

REALFLOW are named related node lists L. With the help
of L, data can be directionally flooded from the source to its
destination in an efficient way.

During our implementation, we noticed that it is better
to deliver management packet based on unicasting, rather
than flooding, since the datalink layer acknowledgement can
be applied for retransmission. Thus, additional routing infor-
mation is needed to forward unicasting packets. In order to
make the least changes, related node lists are used for helping
management packet delivery. For uplink unicasting delivery,
when an intermediate node receives a management packet, if
the source address of this packet is seen in its related node
list, this intermediate node can just use one of its parent
node address as the next hop address. However, the previous
REALFLOW protocol lacks the support for the downlink
management packet delivery. Therefore, we added downlink
node lists Ndown in each node. We assume that there are i
number of nodes in a related node list. Ndown is defined
as {{Ascr1, Afwd1} , {Ascr2, Afwd2} , ..., {Ascri, Afwdi}},
where Ascri is the source addresses of i-th related node. So
when an intermediate node receives a packet from the node
i, it records its source address Ascri and Afwdi into Ndown.
Finally, the command forwarding procedure is summarized
in Algorithm 1, where Adst is the destination address of a
packet and Anmg is the network manager address.

Algorithm 1 Command Forwarding Procedure
1: if Adst = Anmg then
2: if Asrc ∈ L then
3: pick a address from Nparent as the next hop address
4: else
5: drop this command packet
6: end if
7: else
8: if Adst ∈ L then
9: pick a address from Ndown as the next hop address

10: else
11: drop this command packet
12: end if
13: end if

After related node lists L and downlink node lists Ndown

being respectively generated in each intermediate node, RE-
ALFLOW is able to forward both data packets and man-
agement packets. The rest of REALFLOW implementation
strictly follows the description in [10], so more details of
REALFLOW can be found in this previous work.

5) Timeslot Management: Since the TDMA scheme is
applied on the datalink layer, timeslots need to be scheduled
for all nodes for conflict-free communication. The TDMA
scheduling algorithm used in our prototype is totally based
on the previous work [11]. Once the scheduling decision
is made, the network manager needs to distribute the new
TDMA scheduling decisions to all nodes. Different from
simulation, it is a great challenge for real implementation to
deliver the scheduling decisions to all nodes in a distributed
manner and make all nodes agree on the new scheduling



decisions at the same time. Finally, we chose to apply Two-
Phase Commit (2PC) method for the scheduling decision
distribution in our prototype.

There are two phases in 2PC, commit request phase and
completion phase respectively. During the first phase, the
network manager sends scheduling request messages to all
nodes. Each scheduling request message contains the latest
scheduling decision, as well as the scheduling ID to indicate
the scheduling decision version. When a node receives a
scheduling request message, the latest TDMA scheduling
decision is obtained, but not activated. The node will reply
a scheduling response message to the network manager
to inform of the acceptance of the scheduling decision.
If the network manager fails to get responses from any
node, 2PC is considered to fail and the whole process will
restart. Once the network manager receives all responses,
it will send scheduling confirming messages to all nodes.
The scheduling confirming messages contain the time to
indicate when new scheduling being applied. After receiving
the scheduling confirming messages, all nodes will activate
the latest scheduling at the same time. In order to reduce the
complexity of 2PC, all nodes do not need to send back a final
acknowledgment to the network manager. Because all nodes
will report their scheduling ID in the list-response messages,
the network manager is able to check the correctness of the
scheduling at this point. If any node reports an outdated
scheduling version, the network manager will restart the
whole route maintenance.

IV. MEASUREMENT IN INDUSTRY

After the prototype was built, we deployed our prototype
in a real industrial environment for initial measurements. In
this section, the measurement setups are described and the
measurement results are analyzed.

A. Measurement Setup

Our measurement was conducted in a low voltage pro-
duction manufacturing workshop during working hours. This
industrial environment was full of concrete obstacles and
metallic equipment. Since our measurement was taken during
the working hours, there were a number of forklifts and
workers moving around. Moreover, there are also other wire-
less systems using the same frequency band, such as WLAN.
Before our measurement, we used Commview for WiFi to
measure the existing WiFi networks. The measurement result
is shown in Figure 7. According to the figure, we can see
a great number of industrial WiFi networks running during
that period. Our measurement used the frequency 2.47 GHz.
According to the figure, there existed a lot of interferences
from those WiFi networks.

We deployed the network manager at the center and
randomly placed 4 sensor nodes and 4 actuator nodes around
it. Each sensor node periodically sends data packets with the
length of 35 bytes to the network manager and the network
manager periodically sends data packets to all actuator node
with the same length. The refresh rate is one packet per
second. Furthermore, during our measurement, we set Kmax

Fig. 7. The existing WiFi networks during the measurement

Fig. 8. Packet delivery ratios with deadline

to be 1, 2 and 3 and measured for more than one hour each
time. Thus, more than 4000 packets are sent for each Kmax.
Due to the limited available timeslots, we set the maximum
value of Kmax as 3, otherwise, the network will become
unschedulable.

B. Measurement Results and Analysis

We measured the average packet delivery ratio (PDR) with
the deadline constraint to investigate the reliability and real-
time performance of our prototype. Since hard deadline is
required by mission-critical industrial applications, outdated
transmissions are deemed as communication failure. So only
successful uplink and downlink transmissions within the
deadline are considered. The PDR measurement for both
uplink and downlink is shown in Figure 8. According to the
measurement results, because of the TDMA and flooding
mechanism, PDRs from different configurations are higher
than 97.5%. Moreover, when the maximum allowed parent
number Kmax increases, the average PDR for both uplink
and downlink increases as well. The reason for this is
straightforward. Because when the value Kmax increases,
each node is able to more parent nodes, a packet can be
delivered to the next hop via more paths. Due to the multipath
diversity, the overall reliability can be effectively increased.
It is notable that when three parent nodes are selected, the
average PDRs for both uplink and downlink are almost
100%.

To exhibit the reason behind, we explored the types of
transmission paths from the source to the destination, shown
in Figure 9. In this figure, the blue bars represent the per-
centage of the communication via the main path, whereas the
red bars indicate the percentage of packet delivery through
alternative paths. It is notable that even when Kmax equals
one, the alternative paths still exist. Since the destination
address on the datalink layer is a broadcasting address,



Fig. 9. Statistic of transmission paths

packets do not need to strictly followed specific paths for
delivery. Intermediate nodes can be bypassed depending on
the channel conditions, which reveals the inherent advantage
of the flooding mechanism. As Kmax increases, more alter-
native paths are involved, which can explain the previous
results. However, the larger Kmax means more network
resources required. Therefore, there is a trade-off to choose
the Kmax value.

In order to further evaluate our prototype and analyze
the measurement results, we investigated the transmission
fragments regarding different Kmax values. We define a
transmission fragment to be the time duration between two
communication errors. More transmission fragments mean
that communication is more often disturbed by interferences.
For each fragment length, the accumulative number of frag-
ments is investigated. More specifically, if a fragment length
is L s, all fragments whose lengths are not longer than
L are counted. Then the statistics is shown in Figure 10.
The length 0 means no consecutive error. Only uplink is
involved in this investigation due to the lack of the error
position information for the downlink. In Figure 10, the curve
Kmax = 1 starts from the highest position, around 150,
which indicates that there are a great number of consecutive
communication failures when only one parent is allowed to
be chosen. When Kmax = 3, there are almost no burst errors.
Since consecutive errors may cause application failures, the
result indicates that by increasing Kmax value the availability
of industrial applications can be significantly improved. Ac-
cording to the figure, the number of transmission fragments
with Kmax = 1 soars between the time length 0 and 100.
It reveals that communication errors frequently occurs and
cause a great number of short communication fragments.
When Kmax increases, the changes of the curve becomes
less drastic, which shows that the industrial applications are
more prone to be stabilized by sacrificing the networking
efficiency.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we built an IWSAN prototype aiming for
meeting the stringent requirements from industrial automa-
tion systems, because there is still lack of full implemen-
tations of IWSAN to provide both reliable and real-time
communications for uplink and downlink. Two hardware
platforms were used in the prototype implementation. The

Fig. 10. Time length between two erroneous transmission

protocol stack, from the physical layer to the application
layer, is also implemented in the prototype based on a
RTOS-based architecture, including time synchronization,
REALFLOW realization and timeslot management. Finally,
we conducted an initial measurement using the prototype in
a real industrial environment. According to the measurement
results, 99% PDR can be achieved and no consecutive
errors were seen with deadline constraints by configuring
appropriate parameters. Although a few failures still exist,
oversampling is usually applied in many industrial applica-
tions so that industrial systems can be tolerant of a few com-
munication errors. Therefore, our measurement results show
great confidence in apply IWSANs for industrial mission
critical applications. In order to further test the prototype and
investigate our previous research works, more measurements
and analysis are required in the future, but we should bear
in mind that to get access to real industrial environments is
very hard due to production in restricted areas.

REFERENCES

[1] J. Åkerberg, M. Gidlund, and M. Björkman, Future research challenges
in wireless sensor and actuator networks targeting industrial automa-
tion, in IEEE 9th International Conference on Industrial Informatics
(INDIN11), July 2011.

[2] A. Gonzalez, N. Leone, M. Murdoch, P. Mazzara, and J. Oreggioni,
A wireless sensor network implementation for an industrial environ-
ment, in Argentine School of Micro-Nanoelectronics Technology and
Applications (EAMTA), 2010, Oct 2010, pp. 82-86.

[3] B. Lu, T. Habetler, R. Harley, and J. Gutierrez, Applying wireless
sensor networks in industrial plant energy management systems. part
ii. design of sensor devices, in Sensors, 2005 IEEE, Oct 2005, pp. 6.

[4] F. Salvadori, M. de Campos, R. de Figueiredo, C. Gehrke, C. Rech,
P. Sausen, M. Spohn, and A. Oliveira, Monitoring and diagnosis in
industrial systems using wireless sensor networks, in Intelligent Signal
Processing, 2007. IEEE International Symposium on, Oct 2007, pp.
1-6.

[5] H. Wang, L. Li, J. Fu, W. Bao, and T. Wang, The design and
implementation of dual-mode wireless sensor network for remote
machinery condition monitoring, in Control and Decision Conference
(CCDC), 2013 25th Chinese, May 2013, pp. 2765-2769.

[6] (2010) Hart 7 specification, http://www.hartcomm.org/.
[7] Industrial society of automation, http://www.isa.org/.
[8] Shenyang institute of automation, http://www.industrialwireless.cn/.
[9] J. Åkerberg, F. Reichenbach, M. Gidlund, and M. Björkman, Mea-

surements on an industrial wireless hart network supporting profisafe:
A case study, in Emerging Technologies Factory Automation (ETFA),
2011 IEEE 16th Conference on, Sept 2011, pp. 1-8.

[10] K. Yu, Z. Pang, M. Gidlund, J. Åkerberg, and M. Björkman, Re-
alflow: Reliable real-time flooding-based routing protocol for industrial
wireless sensor networks, International Journal of Distributed Sensor
Networks, vol. 2014, p. 17, 2014.

[11] K. Yu, M. Gidlund, J. Åkerberg, and M. Björkman, Low jitter
scheduling for industrial wireless sensor and actuator networks, in
Industrial Electronics Society, IECON 2013 - 39th Annual Conference
of the IEEE, Nov 2013, pp. 5594-5599.


