
Using Design of Experiments to Optimise a
Decision of Sufficient Testing

Mahnaz Malekzadeh1, Iain Bate1,2, Sasikumar Punnekkat1
1Mälardalen Real-Time Research Centre, Mälardalen University, Västerås, Sweden

2Department of Computer Science, University of York, York, UK
{mahnaz.malekzadeh, sasikumar.punnekkat}@mdh.se, iain.bate@york.ac.uk

Abstract—Testing of safety-critical embedded systems is an
important and costly endeavor. To date researchers and practi-
tioners have been mainly focusing on the design and application
of diverse testing strategies, but leaving the test stopping criteria
as an ad hoc decision and an open research issue. In our previous
work, we proposed a convergence algorithm that informs the
tester when the current testing strategy does not seem to be
revealing new insight into the worst-case timing properties of
tasks and hence should be stopped. This algorithm was shown
to be successful but its trial and error tuning of parameters
was an issue. In this paper, we use the Design of Experiment
(DOE) approach to optimise the algorithm’s performance and to
improve its scalability. During our experimental evaluations the
optimised algorithm showed improved performance by achieving
relatively the same results with 42% less testing cost as compared
to our previous work. The algorithm also has better scalability
and opens up a new path towards achieving cost effective non-
functional testing of real-time embedded systems.

I. INTRODUCTION

Embedded systems are often used in safety-critical appli-
cations where failures can lead to catastrophic damage to
people or environment. Testing is an extremely important
part of the development and certification process but is also
one of the most expensive parts. Therefore, testers have to
determine whether there is any benefit in running the current
testing strategy further. Currently this is at best a qualitative
decision. Such a decision also plays an important role in
the As Low As Reasonably Practicable (ALARP) principle
which is an underpinning concept in most safety standards.
According to the ALARP principle, risk-tolerability depends
on practicability of further risk-reduction which is a cost-
benefit analysis, i.e., it must be feasible to demonstrate that the
cost of reducing the risk further would outweigh the benefit
gained.

We addressed this decision challenge quantitatively in our
previous work [1] for the important problem of estimating the
Worst-Case Response Time (WCRT) of Real-Time Systems
(RTS) [2], i.e., a convergence algorithm was proposed based
on the ALARP principle to decide when to stop testing the
RTS as it was unlikely that significant new information would
be obtained. The algorithms checked whether High WaterMark
(HWM), i.e., the Maximum Observed Response Time (MORT)
is increasing at a sufficiently fast rate as well as the distribution
of response times is varying significantly.

The convergence algorithm had a set of parameters, here
called controllable factors, which were informally tuned using

limited trial and improvement experiments. The contributions
of this paper are as follows:
• To use the Design of Experiments (DOE) approach to

optimise the algorithm through tuning the controllable
factors such that a better decision of when to stop testing
is made and the analysis itself is more scalable.

• To present an evaluation that shows the optimisation
does in fact improve the algorithm’s performance and
scalability.

The remainder of this paper is structured as follows. Section
II describes the background, system model and the simulation
environment. The convergence algorithm is stated in III.
Section IV includes a motivational example followed by the
problem formulation in Section V. Then, the DOE approach,
the experimental results and evaluations are presented in
Section VI and VII respectively. Section VIII finally draws
the conclusions.

II. BACKGROUND

In this section, firstly, the worst-case timing problem of RTS
is described to show in what sense our algorithm helps to
address it compared to the traditional Response-Time Analysis
(RTA) [3] techniques. Secondly, the system model and the
simulation environment for which the algorithm has been
applied and evaluated are described.
A. Worst-Case Timing Properties Problem

There are diverse testing strategies being used to discover
defects in embedded software systems [4], [5], [6]. However,
they do not answer the question of when to stop testing, more
specifically, in a quantified way. Our previous work addressed
this challenge for the worst-case timing properties of RTS.

The reason to focus on WCRT problem is that the traditional
RTA techniques are incapable of capturing features inhab-
iting complex real-time embedded systems, thus, resulting
in inaccurate WCRT analysis. They are based on simplified
assumptions of systems and compute an absolute WCRT
provided that the load on a system is bounded and the exact
WCET of each task within the system is determined. However,
such a deterministic RTA does not apply in a real system
with complex control flow behaviour of tasks due to dynamic
calls, dynamic jumps [7] and explicit, implicit dependencies,
e.g., complex transactions in an engine control system [8]
and global state shared variables in robots’ control system [9]
respectively. Furthermore, RTA techniques rely on the exact



WCET estimation which itself is hard due to the advanced
hardware features, temporal and execution dependencies be-
tween tasks [7], etc. In contrary, our convergence algorithm
based on testing allows us not to depend on an abstract system
model nor the exact WCET estimation which makes it suitable
for real complex embedded systems.
B. System Model

The system model comprises a set of applications. Each
application Θi is modeled as a task graph. Each task graph
consists of a number of tasks and the communication between
them. So, an application is modeled as a directed acyclic graph
Θi = (Ai, Bi) where Ai denotes the set of tasks and Bi ⊂ Ai
× Ai represents the set of communications between tasks.
Task j in application Θi is indicated by τij ∈ Ai and has
a release period hj . The time difference between completion
and release time of a task is called its response time.
C. Simulation Environment

For evaluations, a task set simulator is used which allows
a ground truth to be established and also allows careful
control of the task set characteristics, including complexity.
Two ground truths are available for comparison: static analysis
which in this particular situation gives an exact safe result [10],
and a HWM but with significantly longer simulation. Longer
simulation is possible due to the nature of the simulator, how-
ever, such increased testing would be prohibitively expensive
in a real system.

The simulator executes a randomly generated task set for
a given duration (SimDur). Before the simulation starts, a
random number of tasks are generated each with a Best Case
Execution Time (BCET) and WCET. For all the tasks, except
the control scheduling tasks, a period is randomly chosen
within the range [MinPeriod, MaxPeriod]. Then, the deadlines
of the tasks are set to be equal to the periods. Each time a
task is released it is given a random execution time, according
to a normal distribution, in the range [BCET, WCET]. The
tasks are scheduled based on the Deadline Monotonic Priority
Ordering (DMPO), i.e., the shorter the deadline, the higher
the priority. Then, a scheduler controls which tasks are in the
delay and run queues, and which task is currently executing.

III. CONVERGENCE ALGORITHM

Our earlier proposed convergence algorithm decides when
to stop testing the RTS as no significant new information will
be determined without clairvoyance. To accomplish its task,
the algorithm relies on, firstly, HWM to examine whether
the response times are increasing at a sufficiently fast rate.
The HWM test helps to avoid doing expensive probabilistic
technique too much. Secondly, the algorithm uses Kullback-
Leibler DIVergence (KLDIV) test [11] to check whether the
distribution models of response times are being refined.

The convergence algorithm is presented in Algorithm 1 with
the following controllable factors: α, λ, i, δ and NumSet.
As it is shown the response times of a task set and the
proposed Stopping Point (SP) by the convergence algorithm
form the input and the output of the algorithm respectively.

The response time distributions are generated running the
simulator for time SimDur. The factor NumSet defines how
many data sets containing the WCRT distributions to be
generated. The factor λ is to assort response times into the
equally-sized bins to foil the outliers effect and to improve
scalability, i.e., instead of saving every single response time,
the frequencies of the response times falling in the range [s,
s + BinSize] are recorded which occupy much less memory
space.

For each task, the algorithm takes two overlapping data sets
depicted by X and Y such that Y is a superset of X (Line
6), i.e., to gradually examine test data for convergence and
to avoid further cost as soon as the convergence occurs. It,
then, checks whether the HWM is increasing (Line 7) and if
it has not been increased for i successive analysis iterations
(Line 12), it goes for KL DIV test, otherwise, the HWM test
is reset (Line 8). The criteria for KL DIV test being passed is
that the test result falls below the δ threshold (Line 15). The
algorithm stops further analysis provided that both the HWM
and KL DIV tests are passed, otherwise, the HWM test is reset
(Line 23) and further dataset would be analysed (Line 25).

It is worth highlighting that the higher priority tasks in the
task set tend to converge sooner than the lower priority tasks.
However, the algorithm stops only if the latest task within the
task set converges (Line 30, 31). The latter provides the higher
priority, thus, safety-critical tasks better WCRT analysis, e.g.,
our results in Section VII-B show that MORT at SP for the
highest priority tasks is almost equal to LM (within at most
0.01%), offering acceptable estimates of worst-case timing
properties observed during the simulation.

IV. MOTIVATIONAL EXAMPLE

In our previous work, the controllable factors of the al-
gorithm were tuned based on the Trial and Improvement
(TI) approach. However, there might be other tunings to the
controllable factors which result in the improved performance
and scalability. To check our hypothesis we applied two
different tunings depicted by tuning1 and tuning2 on the
same low priority, thus, risk tolerable task within a randomly
chosen task set. Table I summarizes the results and shows that
the tuning1 has about 13 times higher cost and 1.5 times more
occupied space compared to tuning2, however, the MORT in
tuning1 is about 1% higher than the MORT in tuning2. Low
priority of the task causes tolerability against risks making
an ALARP judgement feasible, i.e., according to the ALARP
principle 1% improved WCRT analysis in tuning1 does not
justify 13 and 1.5 times more testing cost and computational
space respectively. So, it can be concluded that the algorithm in
tuning2 makes a better ALARP decision rather than tuning1.

This example underlines the need for more careful formal-
ization of the problem and detailed scientific methodology for
tuning the parameters.

V. PROBLEM FORMULATION

As stated earlier, we used DOE to optimise our convergence
algorithm. The DOE approach has the following inputs and



Algorithm 1: The Convergence Algorithm
Input: ResponseT imes
Output: AlgorithmStoppingPoint

1 BinSize←MaxPeriod/λ;
2 foreach Task ∈ {TaskSet} do
3 X = 1;
4 Y = 1;
5 while Y <= NumSet do
6 Y ← α ∗X;
7 if (CurrentMORT > OldMORT ) then
8 HWMCounter ← 0;
9 end

10 else if (CurrentMORT <= OldMORT ) then
11 HWMCounter ← HWMCounter + 1;
12 if (HWMCounter >= i);
13 then
14 run KL DIV test;
15 if (KLDIV <= δ);
16 then
17 save current task stopping point coordinates:

Task(CurrentTime, CurrentMORT);
18 break;
19 end
20 end
21 end
22 else
23 HWMCounter ← 0;
24 end
25 X ← X + 1;
26 OldMORT ← CurrentMORT ;
27 end
28 end
29 foreach Point ∈ {TaskSet(CurrentTime, CurrentMORT)} do
30 LatestConvergence←Maximum(CurrentT ime);
31 Return Task(Maximum(CurrentTime ), MORT);
32 end

TABLE I
ALGORITHM PERFORMANCE

Tunings SPMORT SP Testing Cost (∗109) Space (∗106) LM
tuning1 80459 1792 283 81699
tuning2 79332 137 182 81699

outputs to eventually draws the final tunings.
The inputs to the DOE approach are the following control-

lable factors from Algorithm 1:
• α: With the feasible range [2, NumSet) forms Y in each

analysis iteration. However, its range is limited to [2, 6] as
bigger values result in bigger Y, i.e., unnecessary test data
may being analyzed whilst the convergence has already
occurred. In other words, small α values help to identify
the convergence as soon as possible.

• λ: With the feasible range [1, MaxPeriod] defines the
number of bins. The smaller the λ, the more scalable
the algorithm becomes. However, very small λ values
threaten the accuracy of the distribution models. So, λ is
set such that it results in both acceptably accurate dis-
tributions and scalable algorithm. Accordingly, its range
is limited to [200, 1200] as higher values notoriously
degrade scalability and lower values endanger accuracy
of the distributions.

• i: With the feasible range [1, ∞) defines the number of

HWM tests to be done before KL DIV test. The range
is chosen to be [10, 90] for performance and scalability
reasons, i.e., the lower bound is set to 10 as smaller values
may weaken the test and the higher bound is set to 90 as
bigger values may make the test too greedy to be useful.

• δ: With the feasible range [0, 1] where 0 presents the
absence of difference between two distributions. The
smaller δ, the less difference exists between the two
distributions, thus, limiting its range to [0.000001, 0.1].

• NumSet: With the feasible range [2, SimulationTime/t]
defines the number of data sets to be generated by the
simulator where t specifies how frequent the data is
logged. The smaller the NumSet, the more scalable the
algorithm becomes. The range is set to be [8000, 10000]
as lower values of NumSet causes bigger t and logging
data less frequent which is in odds with the principle
of ALARP, i.e., less data sets including more, possibly
unnecessary, test data.

The outputs of the DOE approach are the following response
metrics which measure the performance and scalability of the
convergence algorithm and assess the relative quality of each
each combination of values of factors, called candidate.
• Machieve: Closeness of the algorithm MORT at SP (SP-

MORT) to the last MORT (LM) observed during simu-
lation assuming that virtually infinite test data resources
are available. SPMORT has to be reasonably close to LM
when the algorithm stops, thus, giving candidates with
smaller Machieve higher rank.

Machieve =
LM − SPMORT

LM
(1)

Ideally, LM has to be equal to WCRT from static analysis.
However, in practice, it is not scalable especially for a low
priority task. It is also less important as we want to make
an ALARP decision.

• Malarp: Closeness of SPMORT to a quantified MORT
called ALARP MORT (AM). Ideal is that the algorithm
stops later than AM but not far from it. By stopping
too soon before AM, SPMORT becomes far from LM
and by stopping too late after AM, it may result in
higher cost without gaining useful new findings as it
has already fallen within the ALARP region, e.g., in this
paper SPMORT within 5% of LM defines the ALARP
region. Candidates with smaller Malarp are ranked higher
while candidates causing the algorithm stops before AM
are discarded.

Malarp =
SPMORT −AM

SPMORT
(2)

• Mcost: The cost of testing in terms of the time has been
spent to generate and to analyse test data.

Mcost =
TestingT imeatSP

TestingT imeatLM
(3)



• Mspace: Computational memory space; i.e., how much
space the generated test data occupies.

Mspace = SizeofDataSets (4)

The metrics Machieve and Malarp relate to the algorithm
performance while Mspace addresses scalability. Mcost relates
to both performance and scalability.
• Med: Measures the overall quality of a candidate based on

the response metrics {Machieve, Malarp, Mcost, Mspace}.
Assume there are n controllable factors and m response
metrics denoted by X1 − Xn and M1 − Mm respec-
tively. A candidate consisting a set of tunings Cκ =
{Xκ1, ..., Xκn} experimentally maps to a set of response
metrics RMκ = {Mκ1, ...,Mκm}. An ideal candidate
Cideal results in Mi = 0 for each Mi ∈ RMideal.
However, such an ideal candidate does not necessarily
exist. Med for each candidate is defined based on the
Euclidean Distance (ED) between two points Cκ and
Cideal such that the candidates closer to Cideal get a
higher rank.

Med =

m∑
i=1

wi(siMi)
2 (5)

Weighting value depicted by wi is introduced such that
larger value shows greater importance of its associated
metric. A scaling factor si normalizes each metric ab-
solute value such that siMi locates in the range [0, 1].
MedMax presents the worst candidate for a given set of
weightings.

MedMax =

m∑
i=1

wi (6)

si is defined as 1/max(Mi) where max(Mi) is the largest
value of metric Mi observed during all experiments.
In this work, we set RM = {Machieve,Malarp,Mcost},
i.e., the response metrics measuring the performance are
the most important ones. Mspace, in the second place,
helps to find the more scalable candidates. For each
Mi ∈ RM , the associated wi is set to 1 to give them
the equal importance. All Med values fall in the range [0,√

3] where 0 and
√

3 (calculated by Equation 6) show the
theoretically ideal and the worst candidates respectively.

VI. DOE APPROACH

The DOE approach is to optimise the controllable factors
such that the performance and scalability of the convergence
algorithm are improved. There are totally five controllable
factors involved in the optimisation which may lead to com-
binatorial explosion if being optimised in an inappropriate
fashion, e.g., assume we are interested in assessing the quality
of four points called levels for each factor within its range.
Then, totally 45 = 1024 combinations of these levels across all
the factors have to be assessed. If each candidate is assessed
by running three simulations, it means 3072 simulations in
total, which may be prohibitively expensive. DOE, however,
is based upon a three-phase method to systematically explore

each factor’s range. Firstly, it analyses the variance of LMs
with respect to SimDur and determines SimDur such that the
scalability is improved. Secondly, it allows insignificant factors
with minor or no effect on the performance to be identified
and discarded in an earlier phase called factor screening before
digging deeper the most significant factors. This helps to avoid
the combinatorial explosion and to enhance the scalability. The
three-phase DOE is as follows.
• Phase 1: Choice of simulation duration

This phase determines the simulation duration (SimDur)
through the analysis of variance such that the LM of
each task within a task set sufficiently becomes sta-
ble to represent the long-term behaviour. We evaluate
each candidate through simulation where smaller SimDur
improves scalability. Thus, it is important to determine
SimDur such that it favours not only stability of the LMs
but also scalability.

• Phase 2: Factor Screening
This phase identifies the minimal set of controllable
factors or factor pairs which are the most influential
predictors of the convergence algorithm response metrics
using the ANOVA method [5]. The ANOVA method
determines which set of factors and their interactions are
significant at a given confidence level. The insignificant
factors identified by the ANOVA are discarded to avoid
combinatorial explosion and to improve scalability.

• Phase 3: Factor tunings
This phase is to derive a set of tunings associated with the
best quality candidate by sampling each significant fac-
tor’s range at high resolution. The high resolution phase
is feasible as levels with polynomial experimental cost
growth can be increased while controllable factors with
exponential experimental cost growth has been already
dropped by the factor screening phase.

Our analysis results of the three-phase DOE approach are
presented in Section VII.

VII. EXPERIMENTAL RESULTS AND EVALUATIONS

This section, firstly, presents our experimental results from
the three-phase DOE approach and the derived optimisation
solution. Secondly, it includes evaluation of the DOE tunings
compared to the TI tunings showing improved performance
and scalability by the DOE approach over the TI method.

A. Three-Phase DOE Results

• Phase 1: Choice of simulation duration
Let us denote the task set LMs observed during time t
by LMt and assume that LM for each task eventually
converges to WCRT calculated by the static analysis
(StaticWCRT), i.e., LMt → StaticWCRT while t
→ ∞. If at time k, LMk becomes sufficiently close to
StaticWCRT, e.g., within η% of LM∞, we conclude that
LMks are stabilised and any further variation would be
due to the experimental error. In this paper, LMs become
stable at SimDur = 1013 with η equal to 5 for a set of 10
tasks.



TABLE II
PHASE2: p-values FOR p = {α, λ, δ, i, NumSet} AND RM = {Machieve,

Malarp, Mcost, Mspace}

Metrics Machieve Malarp Mcost Mspace

α 0.0028 0.0034 0.0001 0.5791
λ 0.0029 0.0032 0.0003 0
δ 0.0024 0.0039 0 0.5811
i 0.4575 0.4142 0.9805 0.665

NumSet 0.6039 0.5614 0.6952 0.0031
αλ 0.003 0.003 0.0046 0.5204
αδ 0.0029 0.0031 0.0012 0.1815
αi 0.4297 0.4481 0.9303 0.5201

αNumSet 0.5846 0.5798 0.7069 0.7382
λδ 0.0028 0.0033 0.0002 0.5378
λi 0.4316 0.4483 0.4783 0.5236

λNumSet 0.5901 0.5747 0.5613 0.0129
δi 0.4016 0.4744 0.1848 0.6486

δNumSet 0.5565 0.599 0.3649 0.0736
iNumSet 0.9702 0.9882 0.9238 0.2752

• Phase 2: Factor Screening
This phase includes experiments designed by the full
factorial DOE [12] method, thus, including all possible
combinations of the factors and their levels. To run the
experiments the task set simulator described in II-C is
used. Let us assume there are p controllable factors at q
evenly-spaced levels. As we have no priori knowledge
about a specific region which may offer good quality
candidates, the entire range of each factor is explored
and the response metrics for each candidate are derived.
Then, the ANOVA method is applied to see to what
extent each factor influencing the response metrics. In
particular, we are interested in p-values [13] derived
by ANOVA which are significant with 95% confidence
(p < 0.05). The confidence level depends on the ap-
plication requirements. However, 95% is generally a
good and widely-used choice unless there are forcing
reasons to favour an alternative value [13]. To reduce the
experimental noise which may unfairly rate a candidate
in a single experiment, s multiple experiment instances
called repetitions are performed for each candidate. Each
of the s repetitions is instantiated by a different pseudo-
random number generator seed in the simulator to drive
stochastic behaviour.
Our optimisation problem includes p = 5, q = 2 (low
and high bounds of each factor’s range) and s = 3,
resulting in 25 ∗ 3 = 96 experiments. Table II shows the
factors’ p-values achieved by applying the ANOVA at
95% confidence level. The results show factors α, λ, δ
and their interactions have significant influence on RM =
{Machieve, Malarp, Mcost}. The factors λ, NumSet and
their interaction are influential on Mspace. The factor i has
no significant effect on any response metric. Eventually,
p = {α, λ, δ} includes the significant factors influencing
performance. The factor NumSet, influential on Mspace,
and i with no significant effect are discarded. Then, each

TABLE III
PHASE2: RANGE ADJUSTMENT BASED ON Med

Factors α λ δ i NumSet
Initial Range [2, 6] [200, 1400] [0.00001, 0.1] [10, 90] [8000, 10000]
Phase 2 Adj. [2, 4] [200, 1400] [0.05, 0.1] 30 8000

significant factor’s range is adjusted through candidate
quality assessment based on Med. It is observed that the
high quality candidates are associated with low value of
α and high value of δ whilst they get either low or high
values of λ. Insignificant factors i and NumSet are set
based on the candidates with the lowest Mspace; i.e., 30
and 8000 respectively. The adjusted ranges in FS phase
are shown in Table III.

• Phase 3: Factor tunings
This phase consists of two sub-phases in which q is
gradually increased to conform to the ALARP principle
and to favour scalability. In the first sub-phase, we
identify the region offering good quality solution within
each factor’s range at lower resolution, then increase the
resolution over interesting regions in the second sub-
phase getting more candidates to be assessed. Each sub-
phase includes the ANOVA method to confirm the signifi-
cance of previously identified influential factors and Med

assessment to rank the candidates. The sub-phases can
increase until neither significant factors are identified nor
a better candidate is discovered. Eventually, a candidate
CSκ with the lowest associated Med is chosen as the
optimisation solution.
The first sub-phase includes p = 3, q = 3 and s =
3; thus, 33 ∗ 3 = 81 experiments. The ANOVA results
presented in Table IV show α is influencing Mcost.
Then, based on Med, α range is narrowed to [2, 3]. The
ANOVA shows no more significant factors influencing
performance at this stage. Oddly, the ANOVA results
for λ do not conform to Phase 2. However, it is in
accordance with the quality assessment derived in Phase
2, i.e., both high and low values of λ were associated with
the high quality candidates indicating its neutral effect
on performance. Factors α and λ show significant impact
on Mspace. Accordingly, the factor λ with no effect on
performance is dropped at this point and is set to the
lower bound for scalability. The significant factors’ ranges
and insignificant factors values are shown in Table V.
The second sub-phase includes p = {α, δ}, q = {2, 5}
and s = 3; resulting in 30 experiments. The best quality
Med, as the optimisation solution, is associated with Cκ
= {2, 200, 0.0625, 30, 8000} for p = {α, λ, δ, i, NumSet}
respectively.

B. DOE vs. TI

This section evaluates the quality of the Cκ achieved by
the DOE method compared to the TI approach based on 100
experiments each including a set of 10 tasks. For evaluations,
we assume there is one safety-critical task, offering a safety-
critical service, associated with the highest priority in the
task set and the rest are risk-tolerable tasks. This helps to



TABLE IV
PHASE3: p-values FOR SIGNIFICANT p = α, λ, δ AND RM = {Machieve,

Malarp, Mcost, Mspace}

Metrics Machieve Malarp Mcost Mspace

α 0.2164 0.148 0.0118 0.0255
λ 0.639 0.8512 0.6664 0
δ 0.7096 0.693 0.1151 0.8597
αλ 0.1361 0.1411 0.4896 0.2015
αδ 0.6513 0.7637 0.2526 0.2619
λδ 0.2824 0.4057 0.5328 0.9401

TABLE V
PHASE3: RANGE ADJUSTMENT BASED ON RESPONSE METRICS

Factors α λ δ i NumSet
First sub-phase Adj. [2, 4] [200, 1400] [0.05, 0.1] 30 8000

Second sub-phase Adj. [2, 3] 200 [0.05, 0.1] 30 8000

assess the performance of the convergence algorithm for the
risk-tolerable tasks in isolation where the ALARP principle
is applicable, further, to investigate the quality of the timing
analysis with respect to safety-critical task’s requirements. The
preemptive tasks are not associated with overheads due to
context switching, changing processor frequencies, etc and
have the following characteristics.
• The tasks involved in the control software (sensor, calcu-

lation, actuator) get random execution time in the range
[500, 1000].

• The Proportional-Integral-Derivative (PID) calculation
task has random execution time in the range [2500, 5000].

• For the tasks not being involved in the control software,
the execution time is in the range [2000, 20000].

• The tasks’ non-harmonic periods are randomly chosen
in the range [50000, 130000] such that each task set
utilisation falls within the range [80%, 100%].

• The SimDur is set to 1013 from Phase 1, Section VII-A.
All timings for the tasks are in microseconds.

The overall performance and scalability of the convergence
algorithm is calculated for the highest priority tasks and the
risk-tolerable ones separately using the following metrics. For
all the metrics, the smaller the value, the better performance
and scalability are achieved.

AlgorithmAchievement(AA) = mean(Machieve ∗N) (7)

AlgorithmEffort(AE) = mean(Mcost ∗N) (8)

AlgorithmSpace(AS) = mean(Mspace ∗N) (9)

The N parameter normalizes the results such that all the
metrics’ values locate in the range [0%, 100%].

Figure 1 shows AA, AE and AS metrics of the DOE and
TI approaches for the highest priority tasks across all the 100
experiments. In addition, Table VI summarizes the results in
the form of total mean values. The results show that DOE
has got better performance and scalability compared to TI,
i.e., AE TI is 9.5 times greater than AE DOE (67% vs. 7%
respectively) while AA TI has been improved only 0.03%
compared to AA DOE. In essence, the DOE approach has
gained AA almost equal to TI but with significantly less effort.

0

20

40

60

80

100

120

AA TI AE TI AS TI AA DOE AE DOE AS DOE

Fig. 1. The overall algorithm performance for the Safety-Critical Task

TABLE VI
THE OVERALL CONVERGENCE ALGORITHM PERFORMANCE FOR THE

SAFETY-CRITICAL TASK

Approach AA AE AS
TI 0.02 67.00 20.40

DOE 0.06 7.04 13.23

DOE also has less space complexity (13%) than TI (20%),
resulting in enhanced scalability.

Then, Figure 2 presents the evaluation results corresponding
to the risk-tolerable tasks and Table VII summarizes them. The
results show that the DOE method got improved performance
and scalability compared to TI. It can be seen that the TI
approach totally achieves 0.7% greater AA than the DOE
method. However, it does not justify 4 times more effort,
i.e., according to the ALARP principle the TI achievement is
disproportionate with respect to its associated cost. The DOE
approach also has got better scalability compared to the TI
(3% less space).

We also evaluates SPMORT vs. LM of the DOE approach
for the highest and the lowest priorty tasks. The results show
that the SPMORTs for the highest priority tasks are almost
equal to the LMs, i.e., within at most 0.01 of LM which is an
acceptable estimate. It also suggests that further versions of
the algorithm may include extra criteria for the safety-critical

TABLE VII
THE OVERALL CONVERGENCE ALGORITHM PERFORMANCE FOR THE

RISK-TOLERABLE TASKS

Approach AA AE AS
TI 0.30 45.47 10.88

DOE 1.21 10.23 7.05



0

10

20

30

40

50

60

70

80

90

AA TI AE TI AS TI AA DOE AE DOE AS DOE

Fig. 2. The Overall Convergence Algorithm Performance for the Risk-
Tolerable Tasks

tasks, i.e., the algorithm stops when criteria for both the safety-
critical tasks’ and ALARP are fulfilled. For the lowest priority
tasks, the SPMORT is within at most 6% of the LM in average.
However, based on the ALARP principle and the evaluation
results for the risk-tolerable tasks, further improvement is not
justified due to the significant cost.

VIII. CONCLUSIONS

Testing as an important part of the development and certifi-
cation process is very expensive. Therefore, it is significantly
important to determine when to stop testing. Our previous
work proposed a convergence algorithm to make a quantified
ALARP judgement of when sufficient testing has been done.
This paper has proposed a method based on DOE to derive
a set of tunings for the convergence algorithm’s controllable
factors to improve the performance and scalability. The derived
candidate is evaluated against the TI approach which had been
used in our previous work. The evaluation shows that the DOE
method leads to the better performance and scalability. Future
work will investigate how the convergence algorithm can be
robust, i.e., it can be tuned such that it holds across many task
sets and different systems.

ACKNOWLEDGEMENT

We acknowledge the Swedish Foundation for Strategic
Research (SSF) SYNOPSIS Project for supporting this work.

REFERENCES

[1] M. Malekzadeh and I. Bate, “Making an ALARP Decision of Suffi-
cient Testing,” in 2014 IEEE 15th International Symposium on High-
Assurance Systems Engineering (HASE), 2014, pp. 57–64.

[2] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, 2nd ed. Kluwer Academic Publishers, 1997.

[3] N. C. Audsley, A. Burns, R. I. Davis, K. Tindell, and A. J. Wellings,
“Fixed priority pre-emptive scheduling: An historical perspective,” Real-
Time Systems, vol. 8, no. 2-3, pp. 173–198, 1995.

[4] B. Beizer, Software Testing Techniques (2Nd Ed.). Van Nostrand
Reinhold Co., 1990.

[5] C. Kaner, J. L. Falk, and H. Q. Nguyen, Testing Computer Software,
Second Edition, 2nd ed. John Wiley & Sons, Inc., 1999.

[6] B. Beizer, Black-box Testing: Techniques for Functional Testing of
Software and Systems. John Wiley & Sons, Inc., 1995.

[7] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Muller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem–overview of methods and survey of tools,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 7, no. 3,
pp. 1—53, 2008.

[8] I. Bate and A. Burns, “An integrated approach to scheduling in safety-
critical embedded control systems,” Real-Time Syst., vol. 25, no. 1, pp.
5–37, Jul. 2003.

[9] J. Kraft, Y. Lu, C. Norström, and A. Wall, “A metaheuristic approach for
best effort timing analysis targeting complex legacy real-time systems,”
in the 15th IEEE Real-Time and Embedded Technology and Applications
Symposium, 2008, pp. 258–269.

[10] I. Bate and A. Burns, “An integrated approach to scheduling in safety-
critical embedded control systems,” Real-Time Systems Journal, vol. 25,
no. 1, pp. 5–37, 2003.

[11] S. Kullback and R. A. Leibler, “On information and sufficiency,” The
Annals of Mathematical Statistics (AMS), vol. 22, no. 1, pp. 79–86,
1951.

[12] D. Montgomery, Design and Analysis of Experiments, 8th Edition. John
Wiley & Sons, Incorporated, 2012.

[13] G. Box, J. Hunter, and W. Hunter, Statistics for experimenters: design,
innovation, and discovery, ser. Wiley series in probability and statistics.
Wiley-Interscience, 2005.


	Introduction
	Background
	Worst-Case Timing Properties Problem
	System Model
	Simulation Environment

	Convergence Algorithm
	Motivational Example
	Problem Formulation
	DOE Approach
	Experimental Results and Evaluations
	Three-Phase DOE Results
	DOE vs. TI

	Conclusions
	References

