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Abstract. Testing of safety-critical embedded systems is an important
and costly endeavor. To date work has been mainly focusing on the de-
sign and application of diverse testing strategies. However, they have left
an open research issue of when to stop testing a system. In our previous
work, we proposed a convergence algorithm that informs the tester when
the current testing strategy does not seem to be revealing new insight
into the worst-case timing properties of system tasks, hence, should be
stopped. This algorithm was shown to be successful while being applied
across task sets having similar characteristics. For the convergence al-
gorithm to become robust, it is important that it holds even if the task
set characteristics here called nuisance factors, vary. Generally speaking,
there might be either the main factors under analysis, called design fac-
tors, or nuisance factors that influence the performance of a process or
system. Nuisance factors are not typically of interest in the context of the
analysis. However, they vary from system to system and may have large
effects on the performance, hence, being very important to be accounted
for. Consequently, the current paper looks into a set of nuisance fac-
tors that affect our proposed convergence algorithm performance. More
specifically, it is interested in situations when the convergence algorithm
performance significantly degrades influencing its reliability. The work
systematically analyzes each nuisance factor effect using a well-known
statistical method, further, derives the most influential factors.

Keywords: Testin; Safety; ALARP; Nuisance Factor; Real-Time Sys-
tem; ANOVA; Analysis of Variance

1 Introduction

Testing is an important part of the development and certification process in
safety-critical systems in which failure can lead to catastrophic damage to people
or environment. However, it is also one of the most expensive parts. Therefore,
testers have to determine whether there is any benefit in running the current
testing strategy further. Currently, this is at best a qualitative decision. Such a
decision also plays an important role in the As Low As Reasonably Practicable



(ALARP) principle which is an underpinning concept in most safety standards.
According to the ALARP principle, risk-tolerability depends on practicability
of further risk-reduction which is a cost-benefit analysis, i.e., it must be feasible
to demonstrate that the cost of reducing the risk further would outweigh the
benefit gained. We addressed this decision challenge quantitatively in our pre-
vious work [1] for the important problem of testing the Worst-Case Response
Time (WCRT) of Real-Time Systems (RTS) [2] in which the correctness of the
software not only depends on the functional correctness but also on the timely
delivery of the computational results. In [1], We proposed a convergence algo-
rithm based on the ALARP principle to decide when to stop testing the RTS as it
was unlikely that significant new information would be obtained. The algorithm
checked whether the High WaterMark (HWM), which represents the Maximum
Observed Response Time (MORT) during testing, is increasing at a sufficiently
fast rate as well as the distribution of response times is varying significantly.

Our convergence algorithm got a set of design factors which were initially
tuned using limited trial and improvement experiments. Further in [3], we used
the Design of Experiments (DOE) approach to tune the design factors such
that a better decision of when to stop testing is made and the analysis itself is
more scalable. The experimental results showed that the tuning did improve the
algorithm performance and scalability.

The convergence algorithm, so far, has been evaluated with task sets having
similar characteristic. However, to have a robust algorithm, it is important that
it holds when the task set characteristics change, i.e., in the presence of nui-
sance factors. A nuisance factor may be sometimes unknown and uncontrolled,
i.e., we do not know that it exists and is even changing during the experiments.
Such a nuisance factor may affect the process output. A design technique called
randomization is used which helps averaging out the nuisance factor effect. How-
ever, there is a potentially serious problem with randomized experiment if the
nuisance factor significantly affects the process output. To cut off the nuisance
factor effect, firstly, the nuisance factor with large effect on the output has to be
identified which helps to systematically control the nuisance source of variabil-
ity. Secondly, when the nuisance factor becomes known and controllable, we can
eliminate its effect using appropriate design techniques which, in effect, leads to
robustness to conditions that can not be easily controlled.

The contributions of this paper are to address the concern raised by the
presence of nuisance factors for our convergence algorithm and are as follows.
– To propose a set of nuisance factors to find out whether they have any signif-

icant effect on the convergence algorithm performance, also called response.
The intuition behind choosing each factor is its effect on the worst-case tim-
ing properties of the task set.

– To systematically analyze the effect of each nuisance factor through analysis
of variance (ANOVA) to see whether the factor does in fact influence the
algorithm response and to eventually identify the most influential nuisance
factors.



– To take the first step towards robust design of the algorithm by identifying
under what conditions the algorithm response significantly degrades which
also relates to the reliability, i.e., the likelihood of the algorithm failure in
the presence of a nuisance factor. Robust design of the algorithm, further,
tries to reduce the failure.
The remainder of this paper is structured as follows. Section 2 describes the

background of the work. The convergence algorithm, system model and simu-
lation environment in which we run our experiments are stated in 3. Section 4
includes the problem statement and the ANOVA approach for identifying the
nuisance factors followed by the experimental results in Section 5. Section 6
finally states the conclusions and future work.

2 Background

This section describes the worst-case timing properties of real-time systems, the
problems associated with the traditional timing analysis techniques and in what
sense our algorithm tries to tackle those problems, followed by a related work.
Safety-critical embedded systems are expected to work properly under extreme
and uncontrollable conditions which significantly raises the requirements on their
dependability and reliability. They also have real-time characteristics need to be
fulfilled as part of the safety requirements which makes the worst-case timing
analysis an important and necessary task. The traditional Response-Time Anal-
ysis (RTA) [4] techniques, however, are incapable of capturing features inhabiting
complex real-time systems, thus, resulting in inaccurate WCRT analysis. They
also depend on the exact Worst-Case Execution Time (WCET) of each task
which itself is hard to be gained due to the advanced hardware features, tem-
poral and execution dependencies between tasks [5], et cetera. Our convergence
algorithm looks into the MORT of the tasks during testing and their distribu-
tions using HWM and a statistical test respectively such that it depends neither
on an abstract system model nor the exact WCET estimation which also makes
it suitable for real systems.

To the best of our knowledge there is no similar work on making a decision of
sufficient testing, e.g., the authors in [6] look into the HWM and the distributions
of the WCET in multi-path, therefore realistic programs, to estimate the WCET.
They collect execution times by running the program under analysis and pick
the HWM within randomly formed blocks of data, then, examine whether the
HWMs matches one of the Extreme Value Theory (EVT) [7] distributions. They
compare two successive distributions to see whether they have converged, thus,
no more observations need to be collected. They estimate the WCET using the
resulted EVT distribution. Although we use HWM and the worst-case timing
distributions similar to theirs, our convergence algorithm, firstly, applies the
HWM on the MORTs as it is a relatively cheap test. Then, it looks into the
MORT distributions to see whether they are getting converged rather than the
WCET distributions. Eventually, our goal is to derive a stopping point for testing
rather than WCET estimation in [6].



3 Convergence Algorithm

Our proposed convergence algorithm in [1] decides when to stop testing the
RTS as no significant new information will be determined without clairvoyance.
The system model assumed and the task set simulator used by the convergence
algorithm are as follows.
– System Model comprises a set of applications. Each application consists of

tasks which are assigned unique priorities according to some policy. Each
periodic task τi gives rise to an infinite sequence of invocations separated by
a period Ti. Ti represents the minimum time between successive invocations.
A task performs an amount of computation bounded by Ci during each
invocation which has to be completed by its deadline Di. The time difference
between completion and release time of a task is called its response time.

– Task Set Simulator generates testing data that allows a ground truth to
be established and careful control of the task set characteristics, including
complexity. Two ground truths are available for comparison: static analysis
which in this particular situation gives an exact safe result [8], and a HWM
but with significantly longer simulation. Longer simulation is possible due
to the nature of the simulator, however, such increased testing would be
prohibitively expensive in a real system. The simulator generates a set of
preemptive tasks with no overheads and the following characteristics.
• Total utilisation of the task set which falls within the range [80%, 100%].
• Each task utilisation Ui which is generated using the UUniFast algorithm

[9] to generate random tasks with uniform distributions.
• Each task i execution time (depicted by Ci) which is set using the fol-

lowing equation.
Ci = UiTi (1)

The simulation duration is set to 1013 when the MORTs of the tasks within
a set of 10 fall within 5% of the last MORT observed during the whole
simulation. All timings are in microseconds.

Algorithm 1 presents the convergence algorithm having the following design
factors: α, λ, i, δ and NumSet. The response times of a task set and the proposed
Stopping Point (SP) by the convergence algorithm form the input and the output
of the algorithm respectively. The factor NumSet defines how many data sets
of the MORT distributions to be generated. The factor λ defines the number of
bins and is to assort response times into equally-sized bins, each of size BinSize,
to foil the outliers effect and to improve scalability, i.e., instead of saving every
single response time, the frequencies of the response times falling in the range
[s, s + BinSize] are recorded.

For each task, the algorithm takes two overlapping distributions depicted by
X and Y such that Y is a superset of X (Line 7), i.e., to gradually examine
testing data for convergence. The algorithm, firstly, checks whether the HWM
is increasing (Line 9) and if it has not been increased for i successive analysis
iterations (Line 14). If the HWM is passed, the algorithm checks whether the
distribution models of response times are being refined using the Kullback-Leibler



DIVergence (KLDIV) test [10]. Otherwise, the HWM test is reset (Line 10). The
criterion for the the KL DIV test being passed is that the test result falls below
the δ threshold (Line 17). The algorithm stops further analysis provided that
both the HWM and KL DIV tests are passed, otherwise, the HWM test is reset
(Line 25) and further datasets would be analysed (Line 27). SPMORT in Line
19 and 31 corresponds to the MORT value, observed for each task, when the
algorithm stops. It is worth highlighting that the higher priority tasks in the task
set tend to converge sooner than the lower priority tasks. However, the algorithm
stops only if the latest task within the task set converges (Line 32, 33).

Algorithm 1: The Convergence Algorithm
Input: ResponseTimes

Output: AlgorithmStoppingPoint

1 BinSize ← MaxPeriod/λ;
2 foreach Task ∈ {TaskSet} do
3 X = 1;
4 Y = 1;
5 OldMORT = 0;
6 while Y <= NumSet do
7 Y ← α ∗X;
8 CurrentMORT = Maximum(ResponseTimes ∈ Y );
9 if (CurrentMORT > OldMORT ) then

10 HWMCounter ← 0;
11 end
12 else if (CurrentMORT <= OldMORT ) then
13 HWMCounter ← HWMCounter + 1;
14 if (HWMCounter >= i);
15 then
16 run KL DIV test;
17 if (KLDIV <= δ);
18 then
19 save task testing time and MORT when the algorithm passes both tests:

Task(TestingTime, SPMORT);
20 break;

21 end

22 end

23 end
24 else
25 HWMCounter ← 0;
26 end
27 X ← X + 1;
28 OldMORT ← CurrentMORT ;

29 end

30 end
31 foreach Point ∈ {TaskSet(TestingTime, SPMORT)} do
32 LatestConvergence ← Maximum(TestingTime);
33 Return Task(LatestConvergence, MORT at LatestConvergence);

34 end

4 Approach and Problem Formulation

For any testing strategy to be valid for a range of systems, it needs a clear
understanding of what parameters of the system could make it invalid. These
parameters are called nuisance factors. The nuisance factors, in our case, relate
to those factors seem to be influential on the MORT based on the scheduling
theory. More specifically, we focus on the factors which lead to more complex
timing behaviour of the task set while they are being changed. We limit this work
to the following nuisance factors: Period, Offset, Number of tasks, Harmonic vs.
nonharmonic periods where the latest corresponds to the way task period is



generated. Harmonic period requires that every task period evenly divides every
longer period which is not the case for nonharmonic period.

4.1 The ANOVA Approach

As stated earlier, we use the ANOVA method to identify a set of nuisance fac-
tors which are the most influential on the convergence algorithm response. The
ANOVA method determines whether any of the nuisance factors contributes to
the variability transmitted to the response, further, decides which set of factors
are significant at a given confidence level. In particular, we are interested in the
p-value [11] which, in statistics, is a function of the observed sample results used
for testing a statistical hypothesis. Before the test, a threshold value is chosen
and is called the significance level of the test, traditionally 5% or 1% [1]. If the
p-values are equal to or smaller than the significance level, then, it suggests that
the observed data are inconsistent with the assumption of the null hypothesis
correctness, thus, that hypothesis has to be rejected. In our approach, the null
hypothesis suggests that the nuisance factor under analysis has no effect on the
convergence algorithm response, thus, the p-value smaller than the significance
level suggests that the null hypothesis must be rejected and eventually, derives
a set of influential nuisance factors.

As the response times distributions being used in our analysis do not follow
a normal distribution, the parametric ANOVA, which assumes normal distribu-
tions of data, should be replaced. Hence, we use the non-parametric analysis
of variance test, called Kruskal Wallis test that does not depend on such an
assumption. In the rest of the paper, however, we use the term ANOVA for
simplicity.

4.2 Problem Formulation to Identify Nuisance Factors

We observe and analyze the effect of each nuisance factor through a set of re-
sponse metrics. The response metrics relate to the algorithm performance and
are defined such that the smaller values indicate better performance is achieved.
They also form our ANOVA approach inputs and are as follows.
– Machieve: Closeness of the algorithm SPMORT to the LM while LM corre-

sponds to the last MORT observed during simulation assuming that virtually
infinite test data resources are available.
SPMORT has to be reasonably close to LM when the algorithm stops, thus,
the smaller Machieve, the better performance is gained.

Machieve =
LM − SPMORT

LM
(2)

Ideally, LM has to be equal to WCRT from static analysis. However, in
practice, it is not scalable especially for a low priority task. It is also less
important as we want to make an ALARP decision.

– Mcost: The cost of testing in terms of the time that has been spent to generate
and to analyse testing data. Similar to Machieve, smaller values of Mcost



indicate better performance.

Mcost =
TestingT imeatSP

TestingT imeatLM
(3)

5 Experimental Results

This section presents the experiments and ANOVA results to identify which nui-
sance factors are the most influential on the convergence algorithm performance.
The task set simulator described in 3 is used in the experiments.

The ANOVA test is run at two phases: Phase 1 and Phase 2. Phase 1 includes
20 experiments, called sample size, for each level of the potential nuisance factor
under analysis and it is called a low resolution phase as allows us to identify the
most influential nuisance factors at relatively low cost. Phase 2, here called high
resolution phase, includes the influential nuisance factors identified in Phase
1, however, with bigger sample size. The sample size is determined such that
at least 90% power would be associated with the ANOVA test. The potential
nuisance factors are analyzed at the following levels.
– Period is analyzed in overlapping ranges each starts at 50000 and ends in

the following upper bounds: {200000, 400000, 600000, 800000}.
– Harmonic vs. nonharmonic period includes task sets of the same character-

istics except the way periods are generated.
– Offset is analyzed in overlapping ranges starting at 10000 and ending at

upper bounds as follows: {50000, 100000, 200000, 300000}. The analysis also
includes a level with no offset.

– Number of tasks includes experiments of {10, 30, 50} tasks within each task
set.
The ANOVA results from Phase 1 are shown in Table 1. We are interested

in p-values smaller than 0.05 that show the corresponding nuisance factor is sig-
nificant on the observed response with 95% confidence. Based on the achieved
p-values, the nuisance factors {Harmonic vs. nonharmonic, Offset, Number of
tasks} are the most influential on at least one of the response metrics. For scal-
ability reason, the set {Harmonic vs. nonharmonic, Number of tasks} is chosen
to be analyzed further at the high resolution phase as they are associated with
much smaller p-values rather than the offset, i.e., they are much more significant.

Table 1: Phase1 - ANOVA results

Metrics Machieve Mcost

Period 0.5057 0.2288
Harmonic vs. nonharmonic 0.0002 0.7455

Offset 0.0242 0.0139
Number of tasks 2.9186e-10 0.8237

Table 2: Test Power & Sample Size

Nuisance Factors Test Power Sample Size

Harmonic vs. nonharmonic 15% 265
Number of tasks 86% 27

The box plots in Figure 1 show the algorithm performance in Phase 1 for
the most infuential nuisance factors including Harmonic vs. nonharmonic period
and Number of tasks. In each box plot, the central box represents the central



50% of the data with lower and upper boundary lines are at the 25%, 75%
quantile of the data respectively. The central line indicates the median of the
data and the two vertical lines extending from the central box indicating the
remaining data outside the central box that are not regarded as outliers. The
+ sign presents outliers. In both figures the horizontal axis shows the nuisance
factor levels while the vertical axis presents the response metrics values for the
whole sample size. As stated earlier, smaller values ofMachieve andMcost indicate
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Fig. 1: Algorithm Performance

that the algorithm performance has been improved, i.e., when Machieve and
Mcost decrease it implies that the algorithm stops closer to the last MORT and
is spending less effort to propose when to stop testing respectively. It can be seen
that for both factors Machieve significantly degrades, i.e., becomes larger as the
task sets get more complex timing behaviour while Mcost does not change very
much. For example, Machieve for nonharmonic periods is 2.3 times more than
harmonic periods while Mcost difference is 1.1 times. Also, for the task sets of
size 50, Machieve is 4.5 times more than task sets of size 10 whereas Mcost does
not significantly differ (1.1 times).

The results also imply that the reliability of the algorithm decreases either
when we introduce nonharmonic periods to the system or increase the number of
tasks which would also help to investigate the algorithm failure modes. To evalu-
ate the algorithm performance, we introduce a quantified MORT called ALARP
MORT (AM) relying on the ALARP principle. Ideal is that the algorithm stops
later than AM but not far from it, i.e., by stopping too soon before AM, the
MORT value at SP becomes far from the LM and by stopping too late after AM,
it may result in higher cost without gaining useful new findings as it has already
fallen within the ALARP region. In this paper, the MORT values within 5% of
the LM defines the ALARP region.

In order to proceed with the high resolution phase, firstly, we calculate the
ANOVA test power achieved by sample size 20 in Phase 1 for each influential
nuisance factor and the corresponding response metrics which includes the set
{Harmonic vs. non-harmonic, Number of tasks} and response metric Machieve

respectively. Secondly, we calculate the sample size of the high resolution phase



such that 90% power of the ANOVA test would be achieved. Table 2 shows that
for both nuisance factors the test power achieved by sample size 20 is less then
90%. Then, the required sample size is calculated, shown in column 3, such that
at least 90% power would be associated with the ANOVA test in Phase 2.

Phase 2 includes 265 and 27 experiments for harmonic vs. nonharmonic pe-
riods and number of tasks respectively to achieve the ANOVA results with 90%
power. Table 3 shows the results from Phase 2 which conform to Phase 1, i.e.,
both nuisance factors are influential on Machieve , however, with much smaller
p-values rather than Phase 1. Mcost also shows to be affected in Phase 2 for
harmonic vs. nonharmonic factor, i.e., the test gets more powerful to identify
the transmitted variability as the sample size is significantly increased.

Table 3: Phase 2 - ANOVA Results

Metrics Machieve Mcost

Harmonic vs. nonharmonic 1.6954e-27 0.0039

Number of tasks 4.7434e-12 0.1158

6 Conclusions and Future Work

Testing as an important part of the development and certification process is
very expensive. Therefore, it is extremely important to determine when to stop
testing. Our previous work, firstly, proposed a convergence algorithm to make a
quantified ALARP judgement of when sufficient testing has been done. Secondly,
the algorithm was tuned based on the DOE approach to improve its performance
and scalability. This paper focuses on the nuisance factors that vary from system
to system and may affect the performance of the convergence algorithm. The
reason is that there will be a huge bias in the experimental analysis caused by
the nuisance factors if they significantly influence the algorithm response. So,
it is very important that they are identified and their effect is controlled early
on in the experiments. This paper proposes a set of nuisance factors, derived
from system task set characteristics, that may potentially affect the convergence
algorithm. Then, it systematically identifies whether the nuisance factors, in fact,
influence the algorithm response.

This work also forms a stepping stone towards our future work. The future
work, firstly, is around stress testing the algorithm based on the algorithm failure
modes identified in this work, i.e., it uses the nuisance factor levels where the
algorithm response significantly degrades. Secondly, it tries to remove the effect
of the nuisance factors by robust design of the algorithm.
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