
A Controlled Experiment in Testing of
Safety-Critical Embedded Software
Eduard P. Enoiu∗, Adnan Čaušević∗, Daniel Sundmark∗†, Paul Pettersson∗

∗Software Testing Laboratory, Mälardalen University, Västerås, Sweden
†Swedish Institute of Computer Science, Kista, Sweden

Abstract—In engineering of safety critical systems, regu-
latory standards often put requirements on both traceable
requirements-based testing, and structural coverage on system
software units. Automated test input generation techniques can
be used to generate test data to cover the structural aspects
of a program. However, there is no conclusive evidence on
how automated test input generation compares to manual test
generation, or how test case generation based on the program
structure compares to specification-based test case generation.

This paper aims at investigating automated and manual
specification- and implementation-based testing of IEC 61131-
3 Function Block Diagram Code, a programming standard in
many embedded safety critical software systems, measuring the
efficiency and effectiveness in terms of fault detection. For this
purpose, a controlled experiment was conducted, comparing
both test suites created by a total of 23 industrial software
engineering master students. The experiment participants worked
individually on manually designing and automatically generating
tests for two industrial programs. All tests created by each
participant during the experiment were collected and analyzed
by means of mutation score, decision coverage, test length and
time required for creating, executing, and checking the test.
We found that, when compared to implementation-based testing,
specification-based testing yields significantly more effective test
cases in terms of the number of faults detected. Specifically,
specification-based tests more effectively detect comparison and
value replacement type of faults, compared to implementation-
based tests. On the other hand, implementation-based automated
testing leads to shorter tests (up to 85% improvement) created
in less time than the ones manually created based on the
specification.

Index Terms—automated testing, controlled experiment

I. INTRODUCTION

The IEC 61131-3 language [4] is a programming stan-
dard for process control software, commonly used in the
engineering of embedded safety-critical systems (e.g., in the
railway and power control domains). Engineering of this type
of systems typically requires a certain degree of certification
according to safety standards. These standards pose specific re-
quirements on testing (e.g., the demonstration of some level of
structural coverage on the developed software). In our previous
work, we have shown how to generate test input data achieving
high coverage for a domain-specific language like IEC 61131-
3 [7]. Generally, implementation-based testing techniques au-
tomatically generate a test suite (i.e., a set of tests) that,
when fed to the system under test, systematically exercises the
structure of a program (e.g, covering all decisions). However,
there is little evidence on the extent to which such techniques
effectively contribute to the development of reliable systems.

More recent work [11] suggests that coverage criteria alone
can be a poor indication of effectiveness of the testing process.
Given that most of the safety standards in the safety-critical
domain require some type of structural coverage, we seek to
investigate the implications of using both specification-based
testing and automated implementation-based testing.

In this study, we seek to compare the efficiency and ef-
fectiveness of testing programs written in IEC 61131-3 by
comparing tests manually written by human subjects based on
a specification, tests manually written based on the implemen-
tation, and tests produced with the help of an automated test
input generation tool named COMPLETETEST1. Our research
objective can be stated as follows:

To compare the efficiency and effectiveness of tests manually
written based on a specification with implementation-based
tests written manually or generated automatically.

To address this objective, an experiment was organized with
master students enrolled in a software verification and vali-
dation course at Mälardalen University. Twenty-three master
level students in industrial software engineering took part as
subjects in a controlled experiment. The subjects were given
two industrial IEC 61131-3 programs and were asked to
construct tests manually based on a specification, and with
the help of an automated implementation-based test generation
tool. In addition, students were asked to manually create tests
for covering the implementation. All tests created during the
experiment were analyzed using the the following metrics: mu-
tation score, decision coverage, test length, and time required
for creating and executing the test.

Our study shows that manually created tests based on
the specification are more effective, in terms of fault detec-
tion, than tests created based on the implementation either
manually or with the help of an automated test genera-
tion tool. Specifically, compared to the implementation-based
tests, specification-based tests more effectively detect com-
parison and value replacement type of faults. We also found
that implementation-based automated test generation leads to
shorter and faster tests than either manual specification-based
testing or manual implementation-based testing.

1The tool is available for download at http://www.completetest.org/.



Fig. 1: Graphical Interface of COMPLETETEST

II. PRELIMINARIES

A. Programmable Logic Controllers

Programmable Logic Controllers (PLC) are real-time soft-
ware systems used in numerous industrial domains, i.e., nu-
clear plants and train systems. A program running on a PLC
[15] executes in a cyclic loop where every cycle contains three
phases: read (reading all inputs and storing the input values),
execute (computation without interruption), and write (update
the outputs).

Function Block Diagram (FBD) [4] is an IEC 61131-3 PLC
programming language, that is very popular in automation
industry. A programmer uses graphical notations and describes
the program in a data flow manner. Blocks and connections
between blocks are the basis for creating an FBD program.
These blocks are supplied by the PLC manufacturer, defined
by the user, or predefined in a library. An application generator
is utilized to automatically transform each program to a
compliant program with its own thread of execution.

The motivation for using FBD as the target language in
this study comes from the fact that it is the standard in many
embedded systems, such as the ones in the railway and power
domain. According to a Sandia National Laboratories study
[21] from 2007, PLCs are widely used in a large number of
industries with a global market of approx. $ 8.99 billion.

B. An Automated Testing Tool for IEC 61131-3

The automated test input generation tool used in this study
is COMPLETETEST [7], which automatically produces tests
for a given coverage criteria and an IEC 61131-3 program
written using the FBD language. As input for the test case
generation, the tool requires a PLCOpen2 XML implementa-
tion of the program under test. Currently COMPLETETEST
supports different logic coverage criteria with the default
criterion being decision coverage. The tool stops searching
for test inputs when it achieves 100% coverage or when a
stopping condition is achieved (i.e, timeout or out of memory).
COMPLETETEST uses the UPPAAL [17] model-checker as the
underlying search engine. A generated test suite consists of a
timed and ordered sequence of test inputs. As the main purpose

2For more information on the PLCOpen standard we refer the reader to
http://www.plcopen.org

of COMPLETETEST at present is to generate tests that satisfy
a certain coverage criteria, the tool does not generate expected
outputs. Expected outputs are provided manually in the user
interface, shown in Figure 1, by a human tester.

COMPLETETEST can be used both in a command-line
and graphical interface. For the purpose of this controlled
experiment, the user interface shown in Figure 1 was used,
since this is the exact interface used by an industrial end user.
The interface shows several types of information presented to
the user. The numbered points in Figure 1 represent:

1) steps and timing information regarding when the specific
test input is provided to the program,

2) generated test inputs needed to achieve a maximum
coverage for the given program,

3) editable area of the test outputs where the user can
provide expected outputs for a specific set of test inputs
based on a defined behavior in the specification,

4) percentage of the code coverage achieved by the gener-
ated test inputs,

5) diagnostic information with respect to the time spent on
generating test inputs, memory usage and size of the
state space, and

6) an action to compare expected outputs with the actual
ones, computed by the program under test.

It should be noted that the generated test suite, containing
test inputs, actual test outputs and, expected test outputs, is
not intended to replace specification-based written tests, but
to complement it with a structural perspective.

III. EXPERIMENTAL DESIGN

The reporting of the controlled experiment is described in
this section. Additional details on the study (e.g, instruction
material and programs used) can be found at the experiment
website created for storing the information needed for repli-
cation and reviewing3.

A. Research Questions

We defined the following research questions as a starting
goal to the experiment design:

3We provide all experimental material of this study at our website http:
//www.testinghabits.org/completetest/



RQ1: Does manually-written specification-based tests detect
more faults than tests manually or automatically created
based on the structure of the program under test?

RQ2: Are manually-written specification-based tests more
costly to exercise than test cases manually or automatically
created based on the structure of the program under test?

In addition to these questions we are interested in identifying
improvement potentials for automated test input generation,
such that it becomes a more efficient and effective technique.

Based on these research questions, our experiment handles
two independent variables: the testing method used to solve the
tasks (e.g., specification-based manual testing) and the object
of study (i.e., program under test). The dependent variables
of our experiment are: effectiveness score (i.e., measure of
effectiveness in terms of faults detected), testing duration and
number of tests (i.e., measures of efficiency).

B. Experimental Setup Overview

As part of the laboratory session, within the CDT414 soft-
ware verification & validation course at Mälardalen University,
the subjects were given the task of writing tests manually and
writing tests with the aid of an automated test input generation
tool. We present the design of this experiment around the
subjects and the selected objects.

1) Study Subjects: As the study setting available to use
was limited to a non-industrial environment and a physical
space at Mälardalen University in Västerås, we restricted the
experiment as part of a final-year master level course on
software verification & validation. The subjects earned credits
for participation but were informed that the final grade for the
course would be influenced only by their written exam, and
not by their performance in the experiment.

TABLE I: Study Objects: “LOC” refers to the number of
XML code lines contained on each of the programs, “NOD”
refers to the number of decision outcomes reported by COM-
PLETETEST, and “Mutants” is the number of faulty versions
created with the mutation extension of the COMPLETETEST
tool

Program LOC NOD Inputs Outputs Mutants
X Trip 297 14 4 1 38
Fan Control 755 28 1 6 100

2) Object Selection: The objects of study were chosen
manually, based on the following criteria:

• The programs should have a specification that is under-
standable and sufficiently rich in details for a tester to
write executable tests.

• The programs should not be trivial, yet fully manageable
to test within three hours of laboratory time. No domain-
specific knowledge should be needed to understand the
program.

• The programs should represent different types of real
testing scenarios in different areas where the IEC 61131-
3 standard is used.

• The programs should be developed by industrial engi-
neers using the IEC 61131-3 FBD language.

• The COMPLETETEST tool should be able to automati-
cally generate tests. This excludes programs for which
the underlying search engine does not support the data
types used (i.e., strings).

We investigated the industrial libraries provided by Bom-
bardier Transportation AB, a leading, large-scale company
focusing on development and manufacturing of trains and
railway equipment, used in our earlier studies [7]. In addition,
we searched through previous research studies on testing IEC
61131-3 software. We identified several candidate programs
matching our criteria. We then assessed the relative diffi-
culty of the identified programs by manually writing and
automatically generating tests using COMPLETETEST. This
process resulted in the identification of two suitable programs
written in IEC 61131-3 FBD. Details on the programs used
in the experiment can be found in Table I. We note here
that an FBD program is written in a graphical environ-
ment that can be saved in an PLCOpen XML format4. The
first program, is a function used in a nuclear power plant
controlling the shutdown system. We used the program for
calculating th X Trip, as taken from the paper by Jee et al.
[14] (Figure 1 in [14]). In the rest of the paper, this program is
named X Trip. The second program, named Fan Control, was
selected from a train control management system developed
by Bombardier Transportation AB in Sweden. The system
is in development and uses processes influenced by safety-
critical requirements and regulations including the EN 50128
standard [1] which requires different logic coverage levels
(e.g., decision coverage). In addition, engineers developing
IEC 61131-3 FBD software from Bombardier Transportation
AB indicated that their certification process for programs like
Fan Control involves achieving high decision coverage. In this
paper we use decision coverage as the criterion for which tests
are automatically generated.

C. Operationalization of Constructs

In this experiment, we compare the effect of using different
test techniques on the code coverage, efficiency and effective-
ness of the resulting tests. Code coverage and effectiveness
can be operationalized using the following metrics:

• Decision Coverage Score. A coverage score indicator of
the created tests is obtained for each individual solution.
Using COMPLETETEST a decision coverage score indica-
tor of the written tests can be obtained for each individual
solution.

• Mutation Score. A mutation score is calculated by au-
tomatically seeding faults to measure the fault detecting

4While XML has no procedural statements and contains just structural
declarations, it can be argued that FBD programs in XML require significant
effort in software development and lines of code in an XML file should be
counted and considered in the details of the selected objects.



capability of the written tests. Using the mutation exten-
sion of the COMPLETETEST tool we obtain a mutation
score indicator of the created test suite for each individual
solution.

FBD Code Coverage. Code coverage criteria are used in
software testing to assess the thoroughness or adequacy of
tests [2]. These criteria are normally used at the code level
to assess the extent to which the program structure has been
exercised by the tests. Out of the many criteria that have
been defined, logic coverage [7] can be used to measure
the thoroughness of test coverage for the structure of FBD
programs. The flow in an FBD program is largely controlled by
atomic Boolean connections called conditions, and by blocks
called decisions made up of conditions combined with Boolean
operators (not, and, or, xor). A condition can be a single
Boolean variable, an arithmetic comparison with a Boolean
value (e.g., out1 > in2), or a call to a function with a Boolean
value, but does not contain any Boolean operators.

A test suite satisfies decision coverage if running the tests
causes each decision in the FBD program to have the value
true at least once and the value false at least once. In the
context of traditional sequential programming languages,
decision coverage is usually referred to as branch coverage.

Mutant Generation. Mutation analysis is the technique of
creating faulty implementations of a program (usually in an
automated manner) for the purpose of examining the fault
detection ability of a test [5]. During the process of gener-
ating mutants, the mutation tool typically creates syntactically
and semantically valid versions of the original program by
introducing a single fault into the program. As exhaustive
categorization of all possible faults that may occur when using
the FBD language is impractical, we rely on previous studies
that looked at commonly occurring FBD faults [18], [22].
By considering these specific faults we used the following
mutation operators:

• Logic Block Replacement (LRO): replacing a logical
block with another block from the same function category
(e.g., replacing an OR block with an XOR block).

• Comparison Block Replacement (CRO): replacing a com-
parison block with another block from the same function
category (e.g., replacing a Greater-Than (GT) block with
a Greater-or-Equal (GE) block).

• Arithmetic Block Replacement (ARO): replacing an arith-
metic block with another block from the same function
category (e.g., replacing an adder (ADD) block with a
subtraction (SUB) block).

• Negation Insertion (NIO): Negating a boolean input or
output connection (e.g., an input variable in becomes
NOT(in)).

• Value Replacement (VRO): Replacing the value of a
constant variable connected to a block (e.g., replacing
a constant value (const = 0) with its boundary values
(const = −1 and const = 1))).

To generate mutants, each of the mutation operators was

applied to each program element whenever possible. In
total, 138 mutants (faulty programs based on LRO, CRO,
NIO and VRO operators) were created for both programs
by automatically introducing a single fault into the correct
implementation. We computed the mutation score using
an output-only oracle against the set of mutants. For both
programs, we assessed the fault-finding effectiveness of each
test suite by calculating the ratio of mutants killed to total
number of mutants.

Efficiency Metrics. In addition to fault finding effectiveness, we
determined estimates of efficiency when writing tests. This is
an important aspect to consider as it emphasize the practical
usage of a specific test approach. We measured efficiency using
the following indicators:

• Duration: Number of minutes spent on preparing and ex-
ecution the tests. This surrogate measure of cost includes
the following actions: preparing, writing, executing the
tests, and checking the expect versus actual outputs.

• Number of tests: This metric is defined by the size of
the test suite. Recall that each FBD program operates
as a large loop receiving input and producing output. In
this way, a generated test suite is thus a finite number of
steps (tests), with each step corresponding to a set of test
inputs.

D. Instrumentation

Two laboratory sessions were organized for the sake of the
experiment: the first one for writing tests manually based on
the specification (SMT) and the other one for implementation-
based manual and automated testing (IMT and IAT respec-
tively):

• Session 1. The subjects were given the task to com-
pletely test (to the extent they consider sufficient based
on the specification) two industrial programs already
implemented. The subjects were not grouped and the
specification needed for testing the program was provided
digitally and in written form.

• Session 2. The subjects were given the task to test (to
achieve full decision coverage) the same two programs
tested in session 1 by (i) manually creating tests to
achieve full decision coverage and (ii) by automatically
creating tests to achieve full decision coverage. The
COMPLETETEST tool was used to automatically create
tests. Before commencing session 2, a short tutorial of
approximately 10 minutes on IEC 61131-3 and FBD
syntax was provided to the subjects in order to avoid
further problems with subjects’ unfamiliarity with the
concepts used. The tutorial included screencasts demon-
strating programming and testing of FBD programs both
manually and automatically using COMPLETETEST.

Detailed information about the problem and instructions
were provided in each experiment session.



E. Data Collection Procedure

As part of the instructions, subjects uploaded their solutions
using the Blackboard online learning platform at the end
of each assignment. This way we had a complete log of
subjects’ activities. Data from both experiment sessions were
then exported in a comma separated values (.csv) file format.

IV. EXPERIMENT CONDUCT

Once the experiment design was defined, the requirements
for executing the experiment were in place. Session 1 and 2
were held two days after a theoretical lecture on specification-
based testing and implementation-based testing respectively 5.
These practical sessions were performed one week apart from
each other.

A. Sample

In total, we had twenty-three participants in the experiments.
Initially, thirty participants showed up during each of the two
sessions of the experiment. Before starting the experiment the
participants were informed that their work would be used for
experimental purposes. The participants had the option of not
participating to the experiment and not allowing their data to
be used in this way. The data provided by seven of the subjects
had to be considered separately, as these participants produced
the tests a long time after the experiment had finished. As these
tests were produced outside the frame of the experiment we
decided to discard this data from our experimental analysis.

B. Preparation

Prior to starting with the experiment, the subjects answered
an initial set of questions using an online survey system in
the Blackboard learning platform. In addition, before starting
Session 2 the first author of this paper initiated a tutorial
demonstrating the use of COMPLETETEST and FBD language.
A video of the presentation was made available on Blackboard
for reference during the experiment.

To start the experiment, each subject entered the assignment
page on Blackboard online platform, where the assignment
information was provided. The subjects worked individually
and during the experiment; the first two authors of this paper
interacted with the participants to ensure that everybody had
sufficient understanding of the involved tools without getting
involved in the writing of the solution. All subjects used
machines provided in the university premises of the same
hardware configuration, booting Windows 7.

The experiment was fixed to three hours per lab session.
To complete the assignments in both sessions, the subjects
were given the same time to work on testing the programs
according to the given instructions. For measuring the mutation
score, the achieved decision coverage, the test length and the
time required for creating and executing the tests produced
manually and automatically, we provided a template to enforce
the usage of the same reporting interface. By having a common

5The material taught in these lectures can be viewed in a video format at
http://www.testinghabits.org/completetest/

TABLE II: Results of the experiment. For each metric we
report several statistics relevant to the obtained results: mini-
mum, median, mean, maximum and standard deviation values.

(a) X Trip

Metric Method Min Median Avg. Max SD
Mutation
score
(%)

SMT 68, 42 97, 37 93, 94 100, 00 8, 99
IMT 57, 89 73, 68 72, 31 92, 11 9, 01
IAT 63, 16 71, 05 72, 54 84, 21 5, 66

Decision
coverage
(%)

SMT 92, 86 100, 00 99, 15 100, 00 2, 27
IMT 85, 71 100, 00 97, 21 100, 00 4, 16
IAT 100, 00 100, 00 100, 00 100, 00 0, 00

Length
SMT 6, 00 32, 00 33, 08 95, 00 21, 48
IMT 3, 00 3, 0 5, 13 16, 00 3, 32
IAT 3, 00 5, 0 4, 82 6, 00 1, 11

Duration
(min.)

SMT 17, 40 59, 78 58, 43 120, 90 25, 11
IMT 10, 07 27, 57 30, 05 54, 08 12, 18
IAT 0, 78 3, 87 4, 49 9, 58 1, 94

(b) Fan Control

Metric Method Min Median Avg. Max SD
Mutation
score
(%)

SMT 97, 00 98, 00 98, 57 100, 00 1, 34
IMT 80, 00 84, 00 88, 76 100, 00 7, 31
IAT 85, 00 92, 00 90, 78 98, 00 4, 08

Decision
coverage
(%)

SMT 92, 86 100, 00 97, 83 100, 00 3, 36
IMT 78, 00 100, 00 96, 73 100, 00 6, 18
IAT 100, 00 100, 00 100, 00 100, 00 0, 00

Length
SMT 8, 00 10, 00 10, 04 17, 00 1, 94
IMT 3, 00 4, 00 5, 96 15, 00 2, 99
IAT 5, 00 6, 00 5, 83 7, 00 0, 78

Duration
(min.)

SMT 11, 35 29, 42 31, 85 61, 85 12, 75
IMT 12, 33 27, 58 26, 43 45, 25 7, 20
IAT 2, 05 3, 67 4, 10 9, 30 1, 93

template for test reporting we eased the process of performing
the data collection and analysis.

To finish the assignment, we required the participants to
send the produced tests through Blackboard online system as
soon as they finished writing the tests. During the experiment
the subjects were not allowed to directly communicate with
others in order to avoid introducing any bias.

C. Data Collection

By using the Blackboard online system, we had a complete
log of activities during the experiment with the ability to obtain
the test suites. After each student finished their assignment,
a complete solution was saved containing the tests and the
timing information for each student solution. In addition, we
separated the data provided by the twenty-three participants
from their names.

V. EXPERIMENT ANALYSIS

This section provides an analysis of the data collected in
the experiment. In the analysis, we follow the guidelines on
statistical procedures for assessing randomized algorithms in
software engineering provided by Arcuri and Briand [3].

For each program under test and each testing technique
(SMT, IMT, IAT), each subject in our study provided a test
suite. These sets of tests were used to conduct the experimental
analysis. For each test suite produced, we derived four distinct



●

●

●

●●

●

●

SMT IMT IAT SMT IMT IAT

60

70

80

90

100

M
ut

at
io

n 
sc

or
e 

in
 %

X Trip Fan Control

(a) Generated Mutants Killed

●

●●

●

●

SMT IMT IAT SMT IMT IAT

80

85

90

95

100

D
ec

is
io

n 
co

ve
ra

ge
 in

 %

X Trip Fan Control

(b) Decision Coverage

●

●

●
●

● ●

SMT IMT IAT SMT IMT IAT

0

20

40

60

80

Te
st

 le
ng

th

X Trip Fan Control

(c) Test Length

●

●

●

●●

SMT IMT IAT SMT IMT IAT

0

20

40

60

80

100

120

Te
st

 d
ur

at
io

n 
in

 m
in

ut
es

X Trip Fan Control

(d) Testing Duration

Fig. 2: Test metrics comparing specification-based manual testing (SMT) against implementation-based manual testing (IMT)
and implementation-based automated testing (IAT); boxes spans from 1st to 3rd quartile, black middle lines mark the median
and the whiskers extend up to 1.5x the inter-quartile range and the circle symbols represent outliers.

metrics: mutation score, decision coverage, test length, and
testing duration. These metrics form the basis for our statistical
analysis towards the goal of answering the research questions.
Statistical analysis was performed using the R statistical tool.

Table II and Table III list the detailed statistics on the
obtained results, like minimum values, median, mean and stan-
dard deviation. The results of this study are also summarized
in the form of boxplots in Figure 2.

Our observations are drawn from an unknown distribution.
To evaluate if there is any statistical difference between
each metric without any assumption on the distribution of
the collected data, we use a Wilcoxon-Mann-Whitney U-test
[13], a non-parametric hypothesis test for determining if two
populations of samples are drawn at random from identical
populations. This test is used for checking if there is any

statistical difference among the three groups for each metric.
In addition, the Vargha-Delaney test [25] was used to calculate
the standardized effect size, which is a non-parametric effect
magnitude test that shows significance by comparing two
populations of samples and returning the probability that a
random sample from one population will be larger than a
randomly selected sample from the other. According to Vargha
and Delaney [25] statistical significance is determined when
the effect size measure is above 0,71 or below 0,29.

For each metric, we calculate the effect size of specification-
based manual testing (SMT), implementation-based manual
testing (IMT) and implementation-based automated testing
(IAT). To this end, we report the p-values of these Wilcoxon-
Mann-Whitney U-tests with statistical significant effect sizes
shown in bold.



TABLE III: Results of the experiment. For each metric we
calculated the effect size of each method compared to each
other. We also report the p-values of a Wilcoxon-Mann-
Whitney U-tests with significant effect sizes shown in bold.

(a) X Trip

Metric Method Effect Size p-value

Mutation
score
(%)

SMT 0,900 < 0,001
IMT
IMT 0,507 0,920
IAT
SMT 0,911 < 0,001
IAT

Decision
coverage
(%)

SMT 0,607 0,066
IMT
IMT 0,339 < 0,001
IAT
SMT 0,439 0,040
IAT

Test Length
SMT 0,928 < 0,001
IMT
IMT 0,426 0,341
IAT
SMT 0,946 < 0,001
IAT

Duration
SMT 0,819 < 0,001
IMT
IMT 0,958 < 0,001
IAT
SMT 0,958 < 0,001
IAT

(b) Fan Control

Metric Method Effect Size p-value

Mutation
score
(%)

SMT 0,848 < 0,001
IMT
IMT 0,398 0,205
IAT
SMT 0,923 < 0,001
IAT

Decision
coverage
(%)

SMT 0,511 0,859
IMT
IMT 0,359 0,004
IAT
SMT 0,359 0,004
IAT

Test Length

SMT 0,844 < 0,001
IAT
IMT 0,366 0,087
IAT
SMT 0,958 < 0,001
IAT

Duration

SMT 0,614 0,147
IMT
IMT 0,958 < 0,001
IAT
SMT 0,958 < 0,001
IAT

A. Fault Detection

For both programs, the fault detection scores of tests
manually written based on the specification (SMT) were
superior to tests written based on the implementation with
statistically significant differences between SMT and IMT or
IAT (effect size of over 0,900). For example, from Figure
2a we see that tests written for X Trip using SMT show an

average fault detection of 93,94% compared to 72,31% for
IMT and 72,54% for IAT. For Fan Control, SMT tests detect
in average 98,57% of the faults versus 88,76% for IMT
and 90,78% for IAT. with statistically significant differences
between SMT and IMT or IAT (effect size of over 0,848).
For both programs, the difference in fault detection between
the SMT and IMT or IAT is statistically significant. None
of the cases show any statistically significant differences
in fault detection between IMT and IAT (at 0,05), as the
lowest p-value is equal to 0,205 for Fan Control. A question
emerging from these results concerns why tests written using
specification-based manual testing are far better than the ones
written using implementation-based testing.

Answer RQ1: Specification-based manual test-
ing yields significantly more effective test
suites in terms of the number of faults de-
tected than implementation-based manual or
automated testing.

For the purpose of shedding some light on this matter, we
set out to investigate if these results could be explained by
the fact that tests generated based on the implementation are
particularly weak in detecting certain type of faults. More
precisely, we examined what type of mutants were killed by
tests written using SMT to tests written using IMT and IAT.
For each of the mutation operators described in Section III,
we examined the faults detected by each technique for both
programs. The results of this analysis are shown in Figure
3 in the form of box plots. For the Fan Control program,
both negation type of faults (NIO) and logical type of errors
(LRO) are 100% detected by all three testing techniques. This
shows that, for this program, all LRO and NIO injected faults
are easily detected by every participant’ test. On the other
hand, tests written using SMT detect, on average, 7,9% more
comparison type of faults (CRO) than tests produced using
IAT. The increase is bigger for value replacement type of faults
(VRO) with tests produced using SMT detecting, in average,
19,1% more faults than IAT. For the X Trip program, the
situation is different, with SMT detecting more comparison
(with 30% more faults in average), logical (with 38% more
faults in average) and value replacement faults (with 51% more
faults in average) than IAT. The exception, for X Trip program,
is that NIO type of faults are detected by the majority of tests
produced using all three testing techniques.

To further investigate the differences in fault detection
for different mutation operators, we looked at one particular
test suite automatically generated using IAT by one of the
participants with COMPLETETEST tool. The generated test
suite contains five tests achieving 81,58% mutation score with
seven mutants not being detected. This test suite achieves
100% decision coverage on the non-mutated version of the
X Trip program. The mutants that are not killed by this test
suite are shown in Table IV. Interestingly enough the test suite
achieves 100% decision coverage also on the mutated program
except for M4 on which the test suite achieves just 92,85%



●

●
● ●●

●

●●

●

●

●●●●

●

●

●●●

●

●●●●

●

S
M

T
(N

IO
)

IM
T

(N
IO

)

 IA
T

(N
IO

)

S
M

T
(C

R
O

)

IM
T

(C
R

O
)

IA
T

(C
R

O
)

S
M

T
(L

R
O

)

IM
T

(L
R

O
)

IA
T

(L
R

O
)

S
M

T
(V

R
O

)

IM
T

(V
R

O
)

IA
T

(V
R

O
)

0

20

40

60

80

100

M
ut

at
io

n 
sc

or
e 

in
 %

(a) X Trip

S
M

T
(N

IO
)

IM
T

(N
IO

)

 IA
T

(N
IO

)

S
M

T
(C

R
O

)

IM
T

(C
R

O
)

IA
T

(C
R

O
)

S
M

T
(L

R
O

)

IM
T

(L
R

O
)

IA
T

(L
R

O
)

S
M

T
(V

R
O

)

IM
T

(V
R

O
)

IA
T

(V
R

O
)

50

60

70

80

90

100

M
ut

at
io

n 
sc

or
e 

in
 %

(b) Fan Control

Fig. 3: Mutation score comparing specification-based manual
testing (SMT) against implementation-based manual testing
(IMT) and implementation-based automated testing (IAT);
NIO is the negation insertion operator, CRO is the comparison
block replacement operator, LRO is the logical block replace-
ment operator, and VRO is the value replacement operator.

decision coverage. There is an obvious reduction in achieved
coverage of the generated test suite for M4 but not for the
other mutants. To determine if this behavior stems from the
generation of poor tests and what tests would improve the
mutation score, we observed that one extra test targeting the
detection of the value replacement fault k xmin = −54 in the
X Trip program would detect M4 and, as a byproduct, all CRO
faults (M0 to M1 in Table IV). In addition, three extra tests
were created targeting the detection of M4 to M6 faults. With
a final test suite of nine tests all faults were detected. In this
case, the addition of four tests targeting the detection of the
remaining faults has improved the fault-finding effectiveness.
As a secondary result this particular example shows that for
achieving better tests one should not solely rely on a decision
coverage criterion alone.

TABLE IV: Mutants not killed by a test generated automati-
cally using COMPLETETEST: the type of fault is represented
by the mutant operator used to create it and the achieved
decision coverage (DC) is obtained from running the generated
test on each mutant.

ID Mutant Type DC (%)
M0 GE → GT CRO 100
M1 LE → GE CRO 100
M2 LE → EQ CRO 100
M3 k xmin = −54 VRO 100
M4 k xmin = 126 VRO 92,85
M5 OR→ XOR LRO 100
M6 OR→ XOR LRO 100

B. Decision Coverage

As seen in Figure 2b, for both X Trip and Fan Control
programs, the use of COMPLETETEST (IAT) entails 100%
decision coverage (which is natural, as covering all decisions
is the search objective for the test generation). Considering
the effect sizes and the corresponding p-values in Table III,
results for both programs are not strong in terms of effect
size and we did not obtain any significant statistical difference
for decision coverage. The results for both programs matched
our expectations: even if IAT achieves tests for both programs
satisfying 100% decision coverage, tests written using SMT
achieved relatively high coverage (in average 99,15% for X
Trip and 97,83% for Fan Control). This shows that, for the
two programs studied in this experiment, SMT achieves high
structural coverage for both programs. This is likely due to
the relatively limited complexity of the studied programs. It
is possible that a more complex program would yield greater
coverage differences between tests written using SMT and IAT
or IMT.

C. Test Length

As seen in Figure 2c, the use of IAT and IMT consistently
results in shorter tests for both programs. This is perhaps most
pronounced for IAT, for which we can see in average shorter
test lengths with 42% to 85,5% when using COMPLETETEST
tool (IAT) than SMT. Examining Table III, we see the same
pattern in the statistical analysis: standardized effect sizes
being higher than 0,844, with p-values below the traditional
statistical significance limit of 0,05. The effect is the strongest
for the Fan Control program with a standardized effect size of
0,958. It seems that a human tester, given sufficient time will
create much more tests using SMT than IMT or IAT. This can
be explained, for IAT, by considering that COMPLETETEST
tool optimizes first for decision coverage, and secondary for
test length. It is likely that specification-based manual testing
(SMT) will in practice achieve more tests for a similar level
of coverage.

Answer RQ2: Implementation-based auto-
matically generated tests are shorter than
specification-based manually created tests.



●●●

●

●

●

●●

●

●

Rand SMT IAT Rand SMT IAT

70

80

90

100

M
ut

at
io

n 
sc

or
e 

in
 %

X Trip
Fan Control

Fig. 4: Mutation score (each box spans from 1st to 3rd quartile,
middle black lines mark the median and whiskers extend up to
1.5x the inter-quartile range) comparison between pure random
tests (Rand), manual tests based on specification (SMT) and
automatically generated tests (IAT).

To investigate the effect of the test length on fault-finding
effectiveness we produced purely random test suites of equal
size as the ones created by the participants using SMT. In
this way we controlled random tests for their length. The
results are shown in Figure 4 as box plots. For all programs,
random generated tests are less effective in terms of mutation
score than tests written using SMT, in average by 15% to
31%. This indicates that tests produced using SMT are good
indicators of test effectiveness. When comparing these random
test suites with implementation-based automated tests (IAT),
we can observe from Figure 4 that, for the Fan Control
program, decision coverage alone is a better indicator of test
suite effectiveness than random tests. For X Trip, random tests
are more effective than tests generated using IAT. In this case
decision coverage is not necessarily a good indicator of test
suite effectiveness with factors other than coverage impacting
the testing process.

D. Testing Duration

Analyzing testing duration is partially related to the test
length analysis, but this metric gives a slightly different
picture as the effort per created test suite is not necessarily
constant over the different techniques under investigation.
As seen in Figure 2d, the duration of writing tests using
COMPLETETEST (IAT) is consistently significantly lower
than for manually derived tests based on the specification
(SMT). First, consider the data related to both programs
(Figure 2d); COMPLETETEST assisted subjects have a
shorter completion time (from 85,5% to 15,5% shorter in
average) over specification-based manual testing (SMT) and
implementation-based manual testing (IMT). Examining
Table III, we observe that there is enough evidence to claim
that these results are statistically significant with p-values
below the traditional statistical significance limit of 0,05 and

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

0 20 40 60 80 100 120

70
80

90
10

0

Testing duration in minutes

M
ut

at
io

n 
sc

or
e 

in
 %

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

SMT IMT IAT

(a) X Trip

● ●● ●

●●

●
●●

●

●

●●

●
● ●

● ● ●●●

● ●

0 10 20 30 40 50 60 70

70
80

90
10

0

Testing duration in minutes

M
ut

at
io

n 
sc

or
e 

in
 %

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

SMT IMT IAT

(b) Fan Control

Fig. 5: The relation between cost and effectiveness for
tests manually written based on the specification (SMT),
tests manually written based on the implementation (IMT)
and implementation-based tests generated automatically using
COMPLETETEST (IAT).

a standardized effect size of 0,958.

Answer RQ2: Implementation-based auto-
mated tests are created and executed in less
time than manually created specification-based
tests or implementation-based tests.

E. Cost-effectiveness Tradeoff

One important question in software testing is how the use of
the investigated testing techniques affect the cost-effectiveness
relation. In Figure 5 we show the relation between cost and
effectiveness for tests written using SMT, tests written using
IMT and tests generated with IAT. We use a proxy measure



for cost, duration time (preparation and execution time) and a
surrogate measure for effectiveness, namely mutation score.
Obviously for both programs the ideal scenario would be
to have low values for duration time while achieving high
mutation scores. As shown in Figure 5a, for the X Trip
program, test suites derived using SMT provided a good
mutation score (93,94% in average) and an inconsistent testing
duration that spans from 17,40 minutes to 120,90 minutes. Test
suites derived using IAT are significantly consistent in terms
of testing duration (between 0,78 minutes to 4,49 minutes)
while achieving lower mutation scores than SMT (72,31% in
average) but similar to the effectiveness shown by test written
using IMT. On the other hand, Figure 5b shows that the
achieved mutation scores for SMT are very consistent even
if this comes at the price of having expensive tests in terms
of testing duration. As for X Trip, tests generated using IAT
are cheap (completion time between 2,05 to 9,30 minutes)
with fairly good fault-detection capability between 85,00% to
98,00% mutation score.

F. Limitations of the Study and Threats to Validity

External Validity. All of our subjects are master students
and have limited professional development experience. This
fact has been shown to be of somehow minor importance
in certain conditions in a study by Höst et al. [12] with
software engineering students being good substitutes in exper-
iments for software professionals. Furthermore, in the light of
our results regarding specification-based manual testing being
better at fault detection than implementation-based manual
or automated testing, we see no reason why the use of
professionals in our study would yield a completely different
result. Testing professionals with experience in FBD software
would intuitively write better tests at detecting common FBD
faults than tests written by student subjects.

We have used COMPLETETEST tool for automated test
input generation. There are many tools for generating test
inputs and these may give different results. Nevertheless COM-
PLETETEST is a tool based on a well know search technique,
named model-checking, and its output in terms of tests is
similar to the output produced by other test input generation
tools for other programming languages, such as EvoSuite [8],
Java PathFinder [26], and Pex [23].
Internal Validity. All subjects were assigned to perform
specification-based testing in the first experiment session and
after one week the same subjects were asked to perform
implementation-based testing. This was dictated by the way
the software verification and validation course was organized
with lectures being followed by practical work. A potential
bias is that participants can be expected to generate better
tests in the second session. We controlled for that by putting
the most mechanical process (i.e., implementation-based au-
tomated and manual testing) last, that is, the process that uses
the least knowledge from the participant.
Construct Validity. In our study we automatically seeded faults
to measure the fault detecting capability of the written tests.
While it is possible that faults created by industrial developers

would give different results, there is scientific evidence [16] to
support the use of injected faults as substitutes for real faults.
Conclusion Validity. The results of the study were based on
an experiment using 23 participants and two FBD programs.
For each program all participants performed the study which
is a relatively small number of subjects. Nevertheless, this
was sufficient to obtain a statistical power showing an effect
between manual testing and automated testing.

VI. RELATED WORK

Among the various fields of research in software engi-
neering, automated test input generation has gain a consid-
erable amount of work [19] in the last couple of years.
Implementation-based automated testing techniques are used
for generating a set of input values for a program, typically
with the final aim of fulfilling a certain coverage criteria or
reachability property. When using this technique in practice,
a human tester just needs to check that actual outputs for the
test inputs are matching the expected outputs.

According to a survey [6] of testing techniques studies,
published between 1994 and 2003 in top software engineer-
ing publication venues, only 16% of the techniques were
evaluated using controlled experiments. Although controlled
experiments using humans are not common in software testing,
in recent years researchers have evaluated different techniques
with users. Tillmann et al. [24], in their experience report,
looked at transferring an automated test generation tool, named
Pex, in practice and considered human factors as a central
part of generating user-friendly tests by seeking feedback from
users as well as setting realistic expectations on how the test
generation works.

Ramler et al. [20] conducted a study, carried out with 48
master students, addressing the question of how automated
testing tools compare to manual testing. In this specific ex-
periment, they found that the number of faults detected by the
automated testing tool was similar to manual testing. Recently
Fraser et al. [10], [9] performed a controlled experiment
and a follow-up replication experiment on a total of 97
subjects. They found that automated test input generation, and
specifically the EvoSuite tool, leads to high code coverage
but no measurable improvement over manual testing in terms
of number of faults found by developers. Fault detection rate
between automated testing and manual testing was found to
be different from our study.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we investigated and compared the effi-
ciency and effectiveness of specification-based manual testing,
implementation-based manual testing, and implementation-
based automated testing for embedded safety-critical software
written using IEC 61131-3 FBD language.

The results of this experiment indicate that while the use of
implementation-based automated testing yields high structural
coverage and improves the length of the tests and the testing
time over specification-based manual testing, this is not re-
flected in the ability of the written tests to detect more faults.



These results shows the need to take caution in selecting test
suite generation objectives when using tools for automated test
input generation, as well as continued research in establishing
more effective test adequacy criteria. To achieve this, we need
a better view of what aspects of software testing affect test
effectiveness.

ACKNOWLEDGMENTS

This research was supported by The Knowledge Foundation (KKS)
through the following projects: (20130085) Testing of Critical System
Characteristics (TOCSYC), Automated Generation of Tests for Sim-
ulated Software Systems (AGENTS), and the ITS-EASY industrial
research school. The authors would like to thank Jeff Offutt, Birgitta
Lindström, Emil Alégroth, Jan Schroeder, and Shirin Tavara for their
valuable comments on an early manuscript of this work.

REFERENCES

[1] 50128: Railway Application–Communications, Signaling and Processing
Systems–Software for Railway Control and Protection Systems. 2001.

[2] Paul Ammann and Jeff Offutt. Introduction to Software Testing.
Cambridge University Press, 2008.

[3] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software
Testing, Verification and Reliability, 24, 2014.

[4] International Electrotechnical Commission. IEC International Standard
1131-3. Programmable Controllers, 2014.

[5] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. Hints
on test data selection: Help for the practicing programmer. Computer,
11, 1978.

[6] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
Controlled Experimentation with Testing Techniques: An infrastructure
and its potential impact. Empirical Software Engineering, 10, 2005.

[7] Eduard P Enoiu, Adnan Čaušević, Thomas J Ostrand, Elaine J Weyuker,
Daniel Sundmark, and Paul Pettersson. Automated Test Generation using
Model Checking: an Industrial Evaluation. International Journal on
Software Tools for Technology Transfer, 2014.

[8] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite
generation for object-oriented software. In Conference on Foundations
of software Engineering. ACM, 2011.

[9] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank
Padberg. Does automated white-box test generation really help software
testers? In International Symposium on Software Testing and Analysis.
ACM, 2013.

[10] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank
Padberg. Does Automated Unit Test Generation Really Help Software
Testers? A Controlled Empirical Study. In Transactions on Software
Engineering and Methodology. ACM, 2014.

[11] Gregory Gay, Matt Staats, Michael Whalen, and Mats Heimdahl. The
Risks of Coverage-Directed Test Case Generation. Transactions on
Software Engineering, 2015.

[12] Martin Höst, Björn Regnell, and Claes Wohlin. Using students as
subjects—a comparative study of students and professionals in lead-time
impact assessment. Empirical Software Engineering, 5, 2000.

[13] David Howell. Statistical Methods for Psychology. Cengage Learning,
2012.

[14] Eunkyoung Jee, Donghwan Shin, Sungdeok Cha, Jang-Soo Lee, and
Doo-Hwan Bae. Automated test case generation for fbd programs
implementing reactor protection system software. Software Testing,
Verification and Reliability, 24, 2014.

[15] K.H. John and M. Tiegelkamp. IEC 61131-3: Programming Industrial
Automation Systems: Concepts and Programming Languages, Require-
ments for Programming Systems, Decision-Making Aids. Springer, 2010.

[16] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid
Holmes, and Gordon Fraser. Are mutants a valid substitute for real faults
in software testing. In International Symposium on the Foundations of
Software Engineering, 2014.

[17] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
International Journal on Software Tools for Technology Transfer, 1,
1997.

[18] Younju Oh, Junbeom Yoo, Sungdeok Cha, and Han Seong Son. Software
safety analysis of function block diagrams using fault trees. Reliability
Engineering & System Safety, 88, 2005.

[19] Alessandro Orso and Gregg Rothermel. Software testing: a research
travelogue (2000–2014). In Proceedings of the on Future of Software
Engineering. ACM, 2014.

[20] Rudolf Ramler, Dietmar Winkler, and Martina Schmidt. Random test
case generation and manual unit testing: Substitute or complement in
retrofitting tests for legacy code? In EUROMICRO Conference on
Software Engineering and Advanced Applications. IEEE, 2012.

[21] Moses D Schwartz, John Mulder, Jason Trent, and William D Atkins.
Control System Devices: Architectures and Supply Channels Overview.
Sandia Report SAND2010-5183, 2010.

[22] Donghwan Shin, Eunkyoung Jee, and Doo-Hwan Bae. Empirical evalu-
ation on fbd model-based test coverage criteria using mutation analysis.
In Model Driven Engineering Languages and Systems. Springer, 2012.

[23] Nikolai Tillmann and Jonathan De Halleux. Pex–white box test gener-
ation for. net. In Tests and Proofs. Springer, 2008.

[24] Nikolai Tillmann, Jonathan de Halleux, and Tao Xie. Transferring an
automated test generation tool to practice: From pex to fakes and code
digger. In International Conference on Automated Software Engineering.
ACM, 2014.

[25] András Vargha and Harold D Delaney. A critique and improvement
of the cl common language effect size statistics of mcgraw and wong.
Journal of Educational and Behavioral Statistics, 25(2):101–132, 2000.

[26] Willem Visser, Corina S Pasareanu, and Sarfraz Khurshid. Test input
generation with java pathfinder. ACM SIGSOFT Software Engineering
Notes, 29, 2004.


