
Flexible Verification of Transaction Timeliness and
Isolation

Simin Cai, Barbara Gallina, Dag Nyström, and Cristina Seceleanu

Mälardalen Real-Time Research Centre, Mälardalen University,
Västerås, Sweden

{simin.cai,barbara.gallina,
dag.nystrom,cristina.seceleanu}@mdh.se

Abstract. Competitive real-time transaction management systems ideally must
guarantee both transaction timeliness and isolation. While a high level of isolation
can be achieved by the selected Concurrency Control (CC) mechanisms, the un-
predictable delays introduced by such mechanisms could cause deadline misses
of transactions. To avoid deadline misses, one solution is to select or design an
appropriate CC mechanism that can guarantee timeliness and an acceptably re-
laxed level of isolation. However, trading-off isolation in favor of timeliness is
not an easy task using existing analysis techniques. In this report we propose
an approach to model a concurrent real time transaction system as a network of
timed automata, and verify using model checking the consistency of the traded-
off transaction timeliness and isolation. We propose a set of automaton patterns
and skeletons as basic blocks for modeling the transactions as well as for model-
ing common CC mechanisms. These patterns and skeletons not only reduce the
modeling efforts, but also enable easy adjustment of the CC mechanism, which
can lead to the desired relaxation of isolation.

1 Introduction

In a DataBase Management System (DBMS) where concurrent transactions compete
for data resources, transaction isolation, which means that transactions are not interfered
by other concurrent transactions [13], is often desired to be guaranteed in order to main-
tain logical data consistency. Concurrency Control (CC) mechanisms are developed to
regulate the execution of concurrent transactions so that the undesired interferences are
prevented [10]. In a Real-Time DBMS (RTDBMS) where transactions must meet their
specified deadlines, however, isolation and the entailed restrictive concurrency control
may not be suitable. Long blocking, chained blocking, and arbitrary aborts and restart-
ing introduced by concurrency control may reduce the predictability of the system and
lead to deadline misses [8]. Therefore, it is common to relax isolation and exploit a less
restrictive CC in RTDBMS, in order to ensure the timeliness of transactions [22].

A crucial task in developing an RTDBMS is to develop the appropriate CC that guar-
antees both transaction timeliness and an acceptable relaxation of isolation. To achieve
this goal, the capability of reasoning about both timeliness and isolation in a unified
analysis framework is necessary. Traditionally, the analyses of isolation and timeliness
are separate tasks. The analysis of isolation in database community is based on depen-
dencies exhibited in transaction execution history without incorporating timing [2]. In
RTDBMS community, focuses used to be schedulability analysis [15] and experimental



studies with different CC algorithms [21], but no study have verified to which extent
isolation can be achieved. In our previous work [5], we proposed a high-level process,
called the DAGGERS process, for trading off the ACID (Atomicity, Consistency, Isola-
tion and Durability) and transaction timeliness for developing a customized RTDBMS
in a unified framework. In this process, we derive transaction models with conceptually
relaxed ACID properties from system requirements, and model the actual transaction
behaviors in timed automata. A collection of candidate run-time mechanisms, includ-
ing candidate CC mechanisms, are also modeled as timed automata, and can be woven
into the transaction models. The framework then model checks the desired ACID and
timeliness. In case the desired properties are not satisfied, a new candidate mechanism
is selected and replace the old one, and the model checking is started again.

The work of this report can be seen as part of the concretization of the DAGGERS
process. Instead of covering the massive number of CC mechanisms proposed in lit-
erature, we focus on one common type of CC, called Pessimistic Concurrency Control
(PCC) [10], which utilizes locking techniques to prevent interferences. The main contri-
bution of this paper is an approach for modeling transaction behaviors under a selected
PCC mechanism that allows for verification of both timeliness and isolation. This mod-
eling approach is flexible, so that the models of different candidate PCC algorithms can
be constructed with reduced efforts.

In this report we propose an approach for modeling concurrent transaction systems
in timed automata, and model checking transaction timeliness and isolation using the
UPPAAL model checker [19], which is the state-of-art model checker for real-time sys-
tems. We propose a set of automata skeletons modeling basic structures of transactions
and common PCC mechanisms. The models of concrete systems are constructed based
on these skeletons. We also propose a set of parametrized automata patterns that model
finer-grained recurring activities. These patterns can be reused as basic building blocks
to enrich the skeletons. In order to model and verify isolation, observer models intro-
duced, and can be easily plugged into the model of the transaction system. Using our
modeling approach, the RTDBMS designer can easily model different CC mechanisms
with limited adjustments, and verify different relaxations of isolation flexibly.

The rest of the report is organized as follows. In Section 2 we discuss the related
work. In Section 3 we present the background information about transactions, concur-
rency control, timed automata, and UPPAAL. Section 4 and 5 describe our modeling
approach, the skeletons and patterns, for model checking timeliness and isolation re-
spectively. We then describe the adjustments of models for different PCC algorithms
and relaxation of isolation in Section 6. Finally, in Section 7 we conclude the paper.

2 Related Work

There have been efforts on modeling real-time transactions and verifying certain proper-
ties. Xiong et al. [23] propose the Real-Time ACTA framework to specify transactional
properties, including isolation and timeliness, and verify the consistency of the specifi-
cation. However, the models in Real-Time ACTA are conceptual and based on axioms.
It is difficult to model different concurrency control algorithms. Our approach sup-
ports modeling of various CC algorithms, and reasoning about the low level behaviors
of transactions under the modeled CC algorithm. Gallina et al. [12] propose modular



specification of advanced transaction models, and verification of isolation variants using
the Alloy verification tool. There work models neither timing behaviors of transactions,
nor concrete CC algorithms. Chkliaev et al. [6] propose a formal modeling and analysis
approach for real-time transactions using the verification system PVS. Their work fo-
cuses on, however, the commit protocols, instead of concurrency control and isolation.
Makni et al. [20] uses the verification tool SPIN to model real-time transactions with
one concurrency control algorithm. Their work only tries to verify one particular CC
algorithm, and they do not verify isolation.

Timed automata have been used to model real-time transactions. Lanotte et al. [18]
propose a framework based on timed automata for modeling long running transactions
with timing constraints. They have also proposed automata patterns for different com-
mitting protocols. Their work, different from ours, focuses on the modeling of commit-
ting protocols. The targeted properties they verify are related to transaction atomicity,
instead of isolation. One similar work to ours is done by Kot [17], which models various
real-time CC algorithms in UPPAAL. Despite the the similarity of the target to be mod-
eled, this work is different from ours in several different aspects. First, the purpose of
this work is to show the feasibility of modeling transactions and CC in UPPAAL, while
we strive to contribute to general modeling approach for common CC mechanisms and
propose skeletons and patterns to enhance the reusability of models. Second, our mod-
els are designed for flexible verification of various relaxations of isolation, while their
work checks more general properties, like deadlocks, starvation, etc.

3 Preliminaries

3.1 The Concept of Transaction

A transaction is initially defined as a partially-ordered set of logically related opera-
tions that as a whole ensure the so-called ACID (Atomicity, Consistency, Isolation and
Durability) properties [13]. Due to the semantic and performance restrictions of the full
ACID assurance, the original “flat” transaction model is extended to allow various re-
laxations of the ACID properties [11]. In this paper, we assume that the isolation may
be relaxed, whereas the atomicity, consistency and durability are fully ensured.

The logically related operations in a transaction may include database operations
(read operations that read data from the database, and write operations that modify data
in the database), and other calculations that do not interact with the database. Read and
write operations are atomic operations, i.e., no interleaves occur within these operations.
A read or write operation may be associated with a predicate that all tuples that satisfy
the predicate are read or modified. In this paper we do not consider predicate-based
operations.

A transaction is associated with transaction management primitives. The primitive
Begin informs the transaction manager of the initiation of a transaction, whereas the
primitives Commit and Abort indicate the transaction termination when all system re-
sources possessed by the transaction are released. When a transaction commits, the
changes made by this transaction are saved permanently in the database, and become
visible to other transactions. When a transaction aborts, the changes made by this trans-
action are undone. While there may exist other primitives depending on the particular



transaction manager, Begin, Commit and Abort are the essential ones that define the
boundary of a transaction, and thus are the primitives considered by our modeling ap-
proach. In an RTDBMS, transactions are associated with deadlines, meaning the trans-
actions must complete within the specified time units after it begins.

Program 1.1 and 1.2 show two simple transactions T0 and T1 respectively. They are
used as examples because they consist of read and write operations on the same data,
which may lead to conflicts and expose the need for concurrency control. D0 and D1

are two data objects in the database. T0 reads D0, performs calculation, and writes the
result into D1. In case any error occurs during the calculation, T0 will be aborted. T1
simply updates the value of D0 and D1. In the following sections, we use rji to denote
the operation of Ti reading Dj , wj

i denotes the operation of Ti writing Dj , ci to denote
the commit of Ti, and ai to denote the abort of Ti. Both T0 and T1 have to meet their
deadlines, which are 8 time units and 5 time units respectively.

Program 1.1. Transaction T0

Begin
read D0

calculate
if error, Abort
write D1

Commit

Program 1.2. Transaction T1

Begin
write D0

if error, Abort
write D1

Commit

3.2 Concurrency Control

A transaction management system prevents data inconsistency caused by concurrent
transactions accessing the same data via concurrency control. We focus on one type
of concurrency control, Pessimistic Concurrency Control (PCC), which is commonly
applied in modern database systems [10].

Pessimistic concurrency control protocols employ locking techniques to prevent in-
terferences from concurrent transactions. Basically, a transaction needs to require a cor-
responding lock before it accesses the data, and release the lock after using the data.
The CC manager receives requests for locking and unlocking data, and decides which
transactions should be granted the lock, wait, or be aborted, according to the selected
resolution algorithm. Among the family of proposed PCC algorithms, one of the most
widely used is rigorous Two Phase Locking (2PL) [10]. According to rigorous 2PL,
a transaction must acquire a write lock before writing to a data object, and must ac-
quire a read lock or write lock before reading from a data object. If the data is already
read-locked, rigorous transaction can still be granted another read lock, but they cannot
acquire a write lock. If the data is write-locked, no other transactions can be granted
to any lock. Transactions failing to acquire locks are put in a waiting queue. When a
transaction unlocks a data, both read and write locks it has acquired are released, and
the next transaction in the waiting queue will be granted the lock. Most importantly, a
transaction is divided into two ordered phases, first a growing phase, and then a shrink-
ing phase. In the growing phase the transaction can only require locks, whereas in the
shrinking phase the transaction can only release locks. In rigorous 2PL, the shrinking
phase occurs when the transaction commits or aborts.



Other PCC algorithms differ from rigorous 2PL on the types of locks, the decision
upon lock conflicts, the point of time to acquire/release locks, etc. For examples, binary
locking exploits only one type of lock, instead of read and write locks [10]. 2PL-HP
[1] allows transactions with higher priority to lock a data that is already locked by
another transaction with lower priority and abort it. Different PCC algorithms can also
be designed to rule out different types of interferences, by adjusting the locking and
unlocking time points [14].

3.3 Timed Automata and UPPAAL

A Timed Automaton (TA), proposed by Alur and Dill [4], is a finite-state automaton
extended with real-valued clock variables. UPPAAL is one of the most popular and
mature verification tools based on timed automata, and extends the standard framework
of TA with utilization of discrete variables as well as other modeling features [19].
We use UPPAAL TA in this paper, and introduce the relevant syntax and semantics of
UPPAAL TA using a simple example in this subsection. Figure 1 exhibits a network of
TA, composed of timed automaton A1 and A2, that models a simple concurrent real-
time system.

C

cl:=0,a:=0

ch!

cl<=3 

cl>=1 

cl:=0 

L1 L2

L3

inc(a)

||

(a) A1

U

ch?
a<5

L4

L5

(b) A2

Fig. 1. A network of timed automata, composed of automaton A1 and automaton A2

A timed automaton consists of a finite set of locations connected by edges. A1 con-
sists of locations L1, L2 and L3, among which L1 is the initial location. A clock variable
cl is defined in A1, and progresses continuously. A discrete variable a is defined, and
shared by A1 and A2. A1 moves from location to location along the edges. At each
location, A1 may non-deterministically take a transition along an edge, or delay at the
location. A location may have an invariant, which is a conjunction of clock constraints.
The TA must leave the location before the invariant is violated. In Fig. 1a, A1 may stay
at L2 until the value of cl reaches 3. Each edge may have a guard, an action and an
assignment. A guard is a finite conjunction of constraints on discrete variables and/or
clock variables. A transition can be taken, only if the guard over the edge is satisfied.
An action is the synchronization with other automata via a channel. A binary channel
is defined for a synchronization pair. An exclamation mark “!” following the channel
name denotes the sending automaton, and a question mark “?” following the channel
name denotes the receiver. If the expected sender or receiver the synchronization pair
is not ready, the other automaton receiving or sending the message will be blocked. A
broadcast channel is defined between one sender and an arbitrary number of receivers.
The sender will not be blocked no matter how many receivers are ready. The system
of A1 and A2 has a binary channel called “chan”. When A1 is at location L2, A2 is at



location L4, and cl is greater than 1, A1 can take the transition to L3 and send the mes-
sage to A2 via chan. Meanwhile, A2 receives the message via chan, and moves to L5.
the An assignment resets the clock and discrete variable when a transition is taken. In
UPPAAL, both guards and assignments can be user-defined functions. In our example,
when A1 moves from L2 to L3, the value of a is incremented.

A location can be urgent or committed. When an automaton reaches an urgent
location, marked as “U”, it must take the next transition without any delay in time.
In our example, when A2 arrives at L5, it must take the transition to L4 before the
time progresses. If at this time the value of discrete variable a happen to be greater
than or equal to 5, the transition cannot be taken, which leads to a deadlock. When A2
reaches the urgent location L5, other concurrent automata (A1 in this example) may
still take transitions before A2 moves to L4, as long as the time does not evolve. When
an automaton reaches a committed location, marked as “C”, it must also take the next
transition without delay in time, and no other transitions in other automata can be taken
in between.

The UPPAAL model checker defines a subset of Timed Computation Tree Logic
(TCTL) [3] as a specification language of properties, and supports verification of live-
liness and safety properties [19]. For example, one can specify the safety property “A1
will never reach location L3” as “A[] not A1.L3”. If a property is not satisfied, a
counterexample will be provided by the model checker. Interested readers can refer to
paper [19] for more information about UPPAAL.

4 Modeling Checking Transaction Timeliness

In this section we describe our approach to model a real-time concurrent transaction
system that is decomposed into a set of transactions and the Concurrency Control Man-
ager (CCManager). The entire system is modeled as a network of timed automata, in
which each transaction and the CCManager are modeled as timed automata respec-
tively. Formally, a real-time concurrent transaction system is defined as follows.

Definition 1. A real-time concurrent transaction system NS is defined by the following
parallel composition:

NS := A0 || A1 || ... || An−1 || ACCManager

whereAn−1 is the timed automaton of transaction Tn−1, andACCManager is the timed
automaton of the CCManager.

Each transaction Ti is assigned a relative deadline. The key requirement concerning
real-time properties to be satisfied by the modeled system is to meet the deadlines of all
transactions.

Our modeling approach comprises a set of timed automaton skeletons for modeling
the basic structures Ai and ACCManager, and a set of parametrized patterns for mod-
eling the operations within the transactions. The skeletons are supposed to be adjusted
and enriched with respect to the particular system design, such as the selected PCC al-
gorithm. The patterns, on the contrary, can be instantiated and reused with little change,
to enrich the skeleton as basic modeling units. The proposed skeletons and patterns are
presented in the following subsections.
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Fig. 4. Timed automaton for T0 without CC

4.1 Basic Transaction Skeleton

The transaction management primitives (Begin, Commit and Abort), and the operations
(Read, Write and Calculate), form the basis of our automaton skeleton for basic transac-
tions. As shown in Fig. 2, in our transaction skeleton, the locations begin, commit_trans
(commit is a reserved word in the UPPAAL tool) and abort represent the respective
primitives. A transaction may contain multiple operations, each of which is modeled as
an instantiation of the “operation pattern” in the automaton. Since we intend to verify
the timeliness of the transaction, a clock variable trans_clock is defined for the automa-
ton, and reset to zero once the transaction begins. When the transaction commits, the
value of trans_clock is compared with the transaction’s DEADLINE, which is a value
specified by the designer. If trans_clock is greater than DEADLINE, a transition to the
location miss_deadline will be taken.

The atomic read/write operation pattern is defined in Fig. 3. Connected to a previ-
ous location, this pattern contains locations operation, and operation_done, in which the
word “operation” must be substituted by the actual operation, for instance “read_t1_d1”
(T1 reading D1). The variable cs stands for the critical section that models the CPU re-
source and ensures the atomic behavior. A wait location models the behavior of waiting
for the CPU. When cs equals 0, the automaton obtains the CPU, sets cs to 1, and per-
forms the operation. Before reaching location operation_done, which is the end of the
operation, cs is set back to 0. A clock variable temp_clock is defined to trace the time
spent on the operation. WCRT and BCRT are parameters specified by the designer,
representing the worst-case and best-case response time, respectively. The invariant
temp_clock <= WCRT on location operation constrains that the execution of the op-
eration takes at most WCRT time units. The guard temp_clock >= BCRT constrains
that the execution takes at least BCRT time units. For non-atomic operations (calcula-
tions), the pattern is similar to the one for atomic operations, but without changing the
value of cs.

For atomic read and write operations, the response times are equal to their exe-
cution times. For non-atomic operations, the response times could be derived by the
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Fig. 5. Automaton skeleton for a pessimistic concurrency control manager

designer from the particular scheduling policy and the timing constraints, using for in-
stance schedulability analysis techniques.

The modeling of a transaction is the initialization of the operation patterns, and the
composition of the initialized patterns with the skeleton. For example, the automaton of
transaction T0 is shown in Fig. 4. The initialized operation patterns include Read_d0,
Calculate, and Write_d1. These initialized patterns, as we will show in the remaining
of the paper, can be reused to model a system with different CC mechanisms.

4.2 Concurrency Control Skeletons and Patterns

Pessimistic concurrency control employs locking mechanisms that require interaction
between the CCManager and the transactions. We introduce skeletons for the CCMan-
ager, as well as patterns for the transaction skeleton that model such interactions.

The automaton skeleton for a PCC manager is shown in Fig. 5. When the automa-
ton receives a locking request via the channel lock[ti][dj], it takes the transition from
the initial location idle to lock_request_received. A user-defined function that imple-
ments the resolution algorithm, satisfy_policy() is defined as a guard on the transitions
from lock_request_received. If satisfy_policy() returns true, the automaton moves to
decide_grant, and then immediately sends the signal grant[ti][dj]! to transaction Ti.
During the transition, the automaton may need to update the status of the transactions
and the locks, using a user-defined function update_status().

When the PCC manager receives an unlocking request via unlock[ti][dj], it updates
the status of the data and the transaction, and moves to unlock_request_received. The
guards on the transitions from this location check if any transaction is waiting for lock-
ing the data by a user-defined function is_trans_waiting(). If this function returns true,
the automaton sends a signal via grant[next][dj]! to the next transaction, and updates
the status accordingly.

The transaction skeleton needs to be extended to model the interaction with the PCC
manager. A locking pattern and an unlocking pattern are introduced in Fig. 6 and Fig. 7
respectively. After the transaction sends a message via lock[ti][dj], it waits at location
wait_for_lock_j, until it receives the message grant[ti][dj]. They can be inserted into
the basic transaction automata at particular positions depending on the selected PCC
algorithm. For example, using rigorous 2PL write locks are released after the transaction
commits or aborts. To model this PCC algorithm, the unlocking patterns for write locks
must be inserted after the commit or abort location in the transaction automaton.
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4.3 An Example: Model Checking Timeliness under Rigorous Two Phase
Locking

We illustrate our modeling approach by modeling a concurrent transaction system im-
plementing the rigorous 2PL algorithm presented in Section 3. Let us consider the two
transactions in Program 1.1 and 1.2. T0 contains operations r00 and w1

0 , whereas T1 con-
tains operations w0

1 and w1
1 . Assume the time spent on each individual read and write

operation in the worst case is 1 time unit, and the time for the calculation in the worst
case is 2 time units. The best case execution times are assumed to be 0 for simplicity.
The deadlines of T0 and T1 are 8 and 5 time units respectively.

The model of T0 is shown in Fig. 8. The basic transaction skeleton without CC con-
tributes to the locations begin, commit_trans, abort and miss_deadline. The skeleton
is enriched by the operations contained in the transaction, as well as locking and un-
locking interactions with the CCManager. As illustrated in Fig. 8, the transaction first
tries to acquire a readlock of D0, which is modeled by an instantiated locking pattern
Readlock_d0. The operation r00 then follows, modeled by an initiated operation pat-
tern Read_d0. After r00 , the transaction performs calculation, acquires a writelock of
D0, and performs the operation w1

0 . Before committing, the transaction releases it locks
using instantiated unlocking patterns. The initialized operation patterns Read_d0, Cal-
culate and Write_d1 are reused from the model of T0 without CC in Fig. 4. The timed
automaton of T1 is modeled in a similar way.

Figure 9 illustrates the timed automaton for the CCManager using the selected rig-
orous 2PL algorithm. The PCC skeleton is extended to incorporate two types of locks,
the readlock and the writelock. In this model, the user-defined functions implement the
actual algorithm. Function satisfyPolicy() decides whether a transaction can be granted
the required lock, based on the current status of the locked data. Functions update-
Granted(), updateUnranted() and updateUnlock() update the status of transactions and
data after a locking, refusing or unlocking action is taken, respectively. Function is-
Transwaiting() checks if any transaction is waiting in the queue for locking a previously
locked data. Function getNextFromQueue() fetches the next transaction in the waiting
queue. The implementation of these functions is listed in Program 1.3.



Fig. 8. The timed automaton for transaction T0 using rigorous 2PL
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Fig. 9. The timed automaton for rigorous 2PL CCManager

Program 1.3. User-defined functions for rigorous 2PL in the CCManager model

void enqueue(int t, int d, int type) {
QueuedTrans qt = {t, d, type};
queue[d][len[d]]=qt;
len[d]++;}

void dequeue(int d) {
if(len[d]>0) {
int i;
for(i=0;i<len[d];i++) {
queue[d][i]=queue[d][i+1];
}
queue[d][len[d]]=null_trans;
len[d]--;}}

bool satisfyPolicy() {
//if data is not locked
if(!locked[data_id]) return true;
else if(locked[data_id]==READLOCKED){ //if data is readlocked
//Readlocks can be granted
if(lock_type==READLOCK) return true;
else if(lock_type==WRITELOCK) {
//write lock can be granted to the same transaction
if(no_of_read[data_id]==1 && readlockdata[trans_id][data_id]==1)

return true;
else return false;}}
//if data_id is writelocked, no locks can be granted
return false;}

void updateGranted() {
int d = data_id, t = trans_id;
if(lock_type==READLOCK) {
locked[d]=1;
readlockdata[t][d]=1;
no_of_read[d]++;
} else if(lock_type==WRITELOCK) {
locked[d]=2;
writelockdata[t][d]=1; }}



void updateUngranted() {
enqueue(trans_id, data_id, lock_type); }

void updateUnlock(int t, int d) {
if(locked[d]==2) {//if data d is writelocked,
locked[d]=0;
writelockdata[t][d]=0;
readlockdata[t][d]=0;
} else if(locked[d]==1) {//if data d is readlocked,
no_of_read[d]--;
readlockdata[t][d]=0;
if(no_of_read[d]==0)
locked[d]=0;}}

bool isTransWaiting(int d) {
if(no_of_read[d]==0 &&len[d]>0)
return true;
return false;}

int getNextFromQueue(int d) {
QueuedTrans t=queue[d][0];
lock_type = t.locktype;
dequeue(d);
return t.t_id;}

Verification of Timeliness Having a network of timed automata for the modeled sys-
tem, we are able to model check the timeliness of the transactions using the UPPAAL
model checker. The timeliness property, requiring each transaction meeting its deadline,
can be specified as a safety property that the miss_deadline locations are not reachable.

The specifications are listed in Table 1. S1 and S2 specify the timeliness of T0
and T1, respectively. The verification by the UPPAAL model checker proves that S1 is
satisfied. However, the verification of S2 fails, indicating that T1 may miss its deadline.
The model checker provides a trace that leads to the deadline miss. From the trace we
realize that T1 was trying to lock D1 before w1

1 , while D1 was already locked by T0
before r11 until T0 committed. Such long blocking time introduced by the concurrency
control caused the breached timeliness of T1.

Table 1. Specification of properties and verification results

ID Specification Verification Time Explored States Result
S1 A[ ]not T0.miss_deadline 0.001s 896 Satisfied
S2 A[ ]not T1.miss_deadline 0.001s 439 Not Satisfied



5 Model Checking Transaction Isolation

In the previous section, transaction T1 misses its deadline due to the blocking time in-
troduced by the rigorous 2PL concurrency control, which aims to achieve full isolation.
Alternatively, one could choose a less restrictive CC mechanism that achieves a less
degree of isolation, which can hopefully improve the timeliness. In order to achieve a
controlled relaxation of isolation, it is important to understand the variations of isola-
tion, and discover means to verify the selected isolation variation. In this section, we
first recall an overview of the existing isolation levels. Based on the definitions of iso-
lation levels, we introduce an observer model and its automaton skeleton that could be
composed into the automata network of the concurrent transaction system proposed in
the previous section.

5.1 An Overview of Isolation

Isolation refers to the property that the execution of one transaction is not interfered by
other transactions executing concurrently [2]. Since full isolation leads to performance
degrades and is not always necessary, the relaxation of isolation has been introduced
by both industry and academia. Most commercial DBMSs support the isolation levels
defined by ANSI/ISO SQL92 standard [16], which are SERIALIZABILITY (the most
strict isolation), REPEATABLE READS, READ COMMITTED, and READ UNCOM-
MITTED (the most relaxed isolation).

Adya et al. [2] have generalized these isolation levels, and provided unambiguous
definitions using the concept of phenomena. A phenomenon is a type of behavior that
can lead to inconsistent data, and can be characterized by the direct conflicts of two
committed transactions. The isolation levels are defined in terms of the phenomena that
must be avoided at each level.

The direct conflicts of two committed transactions, without considering predicate-
based operations, are defined as follows [2]:

Direct read-dependency Transaction Tj directly read-depends on Ti, if Tj reads data
x after Ti writes x (before other transactions write x).

Direct write-dependency Transaction Tj directly write-depends on Ti, if Tj writes
data x after Ti writes x (before other transactions write x).

Direct anti-dependency Transaction Tj directly anti-depends on Ti, if Tj writes data
x after Ti reads x (before other transactions write x).

Based on the direct conflicts a Direct Serialization Graph (DSG) can be constructed.
Each transaction is represented by a node in a DSG. An edge Ti

wr−−→ Tj represents
that Tj directly read-depends on Ti. The direct write-dependency and the direct anti-
dependency are denoted as Ti

ww−−→ Tj and Ti
rw−−→ Tj respectively. For example, one

possible transaction execution involving T0 and T1 can be denoted as follows: <r00 , w0
1 ,

w1
1 , w1

0>. The DSG of this transaction execution is shown in Fig. 10.
Using this representation the phenomena are defined in Table 2 [2]. According to

the definition, the DSG in Fig. 10 exhibits phenomenon G2 because it contains an anti-
dependency T0

rw−−→ T1 within a cycle.



T1T0
rw

ww

Fig. 10. The DSG of a transaction execution <r00 , w0
1 , w1

1 , w1
0>Table 2. Phenomena defined by Adya et al. [2]

Phenomenon Definition
G0: Write Cycles The DSG of the transaction execution contains a directed cycle consisting

entirely of write-dependency edges.
G1a: Aborted
Reads

The execution includes a committed transaction T1 and an aborted transac-
tion T2, and T1 reads the data modified by T2.

G1b: Intermediate
Reads

The execution includes a committed transaction T1 that reads a modifica-
tion of T2, and this modification is not the final modification of T2.

G1c: Circular In-
formation Flow

The DSG of the execution contains a directed cycle including any depen-
dency edges (but no anti-dependency edges in the cycle

G2: Anti-
dependency Cycles

The DSG of the transaction execution contains a directed cycle consisting
one or more anti-dependency edges.

An isolation level can then be defined as the property of avoiding a particular subset
of the defined phenomena. For example, the SERIALIZABLE level precludes all the
aforementioned phenomena, whereas READ COMMITTED only precludes G0 and G1.
Therefore, the execution <r00 , w0

1 , w1
1 , w1

0> represented by the DSG in Fig. 10 violates
SERIALIZABLE isolation. To verify a particular level of isolation is satisfied, we must
verify the absence of the phenomena precluded by this level, at the presence of the
underlying concurrency control mechanism.

5.2 An Observer Model for Isolation

In order to verify the satisfaction of an isolation level one needs to verify the the ab-
sence of the corresponding phenomena. We introduce IsolationObserver automata to
capture the phenomena. Assuming a real-time concurrent transaction system NS in-
tends to achieve a selected isolation level that precludes k phenomena, then we can
define NS as follows:

NS := A0 || ... || An || ACCManager || O0 || ... || Ok−1

where An is the timed automaton of transaction Tn, ACCManager is the timed automa-
ton of the CCManager, and Ok−1 is the timed automaton for observing a phenomenon
Gk that is disallowed by the selected isolation level.

The automaton skeleton for an isolation observer is described in Fig. 11. The au-
tomaton starts from the idle location, and reaches the phenomenon_Gn location if all
transitions are taken. Each location between idle and phenomenon_Gn is a subsequence
of the operation sequence defining the phenomenon Gn. Without losing generality, let
as define Gn as the sequence <opji , opnm, ...>. In Fig. 11, when transaction Ti success-
fully completes operation opji (read or write Dj), the observer automaton is notified
via the channel notify_operation1[ti][dj], and takes the transition to the location oper-
ation1_i_j. Subsequently, when Tm successfully completes opnm, the automaton takes
the transition from operation1_i_j to operation1_i_j_operation2_m_n. Since the ob-
served phenomenon is started by an operation of transaction Ti, the end of Ti also
means the end of the observation. Therefore, when Ti commits or aborts, the observer



phenomenon_Gn

notify_operation1[ti][dj]?

notify_operation2[tm][dn]?

…

operation1_i_j

operation1_i_j_operation2_m_n

idle

notify_commit/abort[ti]?

notify_commit/abort[ti]?

Fig. 11. Automaton pattern for an isolation observer

temp_clock:=0

temp_clock <=WCET

temp_clock >= BCET

operation

operation_done C

notify_read/write[ti][dj]!

Fig. 12. Operation pattern extended
for IsolationObservers in a basic
transaction skeleton

automaton gets a notification via channel notify_commit/abort[ti], and reset to the lo-
cation idle. Such notification-transition behavior is repeated until the observer reaches
phenomenon_Gn, indicating the existence of Gn and thus the violation of the desired
isolation level.

notify_write[1][0]? notify_read[0][0]? notify_abort[1]?

notify_abort[1]?

notify_commit[1]?

w_1_0

notify_commit[1]?

w_1_0_r_0_0

G1aidle

(a) Observer for G1a

notify_read[0][0]? notify_write[1][0]? notify_write[1][1]?

notify_abort[0]?

notify_commit[0]?

r_0_0

notify_commit[0]?

r_0_0_w_1_0
G2idle

notify_write[0][1]?

r_0_0_w_1_0_w_1_1

notify_abort[0]?

notify_abort[0]?

notify_commit[0]?

(b) Observer for G2

Fig. 13. IsolationObservers for G1a and G2 for the exemplary system

Accordingly, the transaction skeleton and patterns introduced in the previous section
must be extended to incorporate the notifications. In the transaction skeleton in Fig. 2,
notify_commit[ti]! and notify_abort[ti]! should be added to the transitions leading to
commit_trans and abort respectively. The operation pattern defined in Fig. 3 needs to
extend with notify_operation[ti][dj]! (notify_read[ti][dj] or notify_write[ti][dj]) on the
transition to operation_done, as shown in Fig. 12.

Using the IsolationObserver skeleton and the patterns introduced above, we can
verify that the example in Section 4 achieves full isolation, i.e., SERIALIZABLE iso-
lation level. To prove this, one must prove that none of the phenomena G0, G1 (G1a,



Fig. 14. UPPAAL model of T0 using rigorous 2PL



Fig. 15. UPPAAL model of T1 using rigorous 2PL

Table 3. Verification results using rigorous 2PL

IDSpecification Verification
Time

Explored
States

Result

S1A[ ]not T0.miss_deadline 0.001s 896 Satisfied
S2A[ ]not T1.miss_deadline 0.001s 896 Satisfied
S3A[ ]not

IsolationObserverG1a.G1a
0.001s 896 Satisfied

S4A[ ]not
IsolationObserverG2.G2

0.001s 439 Not satis-
fied



begin

commit_trans

Operation read d0

Operation calculate

Operation write d1

Locking readlock d0

Locking writelock d1

Unlocking d0

Unlocking d1

SERIALIZABLE READ COMMITTED READ UNCOMMITTED
Isolation level

(1) Rigorous 2PL (2) Short readlock (3) No readlock

begin

commit_trans

Operation read d0

Operation calculate

Operation write d1

Locking readlock d0

Locking writelock d1

Unlocking d0

Unlocking d1

begin

commit_trans

Operation read d0

Operation calculate

Operation write d1

Locking writelock d1

Unlocking d1

Fig. 16. Adjusting the composition positions of locking/unlocking patterns for different isolation

G1b and G1c) and G2 could occur. By definition, G0 is exhibited only if there exists a
write-dependency loop between T0 and T1, which is not possible considering the oper-
ations of these two transactions. Similarly, G1b and G1c will not occur by definition.
Therefore, in order to verify that the SERIALIZABLE isolation level is met, we only
need to prove the absence of G1a and G2. Among them, G1a (Aborted Read) can be
described as the sequence <w0

1 , r00 , a1>, in which a1 denotes the abort of T1. G2 (Anti-
dependency Cycles) can be described as the sequence <r00 , w0

1 , w1
1 , w1

0>. The observer
automata for G1a and G2 are shown in Fig. 13a and 13b. The detailed UPPAAL models
of T0 and T1 are shown in Fig. 14 and 15. The CCManager is the same as in Fig. 9.
The verification results, as listed in Table 3, show neither location G1a nor location G2
is reachable, which means that the verified system achieves SERIALIZABLE isolation
level.

6 Flexible Modeling of Concurrency Control for Relaxed Isolation

As demonstrated in Section 4 and Section 5, concurrency control aiming for isolation
may lead to deadline miss of real-time transactions, and therefore a relaxed level of iso-
lation could be desirable. In order to select an appropriate PCC so that both timeliness
and a particular isolation level, the designer must model different PCC mechanisms
together with the transactions. Our approach provides flexibility in modeling different
PCC mechanisms, leading to reduced modeling efforts. The flexibility, on the one hand,
lies in the easy customization of isolation level to be verified. One only needs to de-
cide the unwanted phenomena, create the observers for these phenomena, and compose
these observers into the automata network. As we have shown in Section 5.2, to verify
SERIALIZABILITY, we can plug the autamata in Fig. 13a and 13b into the modeled
transaction system. On the other hand, as further explained in this section, our modeling
approach enables easy adjustment of existing models for a different PCC mechanism
aiming for relaxed isolation levels, without major changes in the existing models.

One type of adjustments for relaxing isolation is to adjust the times and duration
of locking and unlocking. By adjusting the times and durations of the locks, one can



develop different pessimistic concurrency control algorithms that achieve different iso-
lation levels [2,14]. For example, SERIALIZABLE can be achieved by exploiting long
readlocks and long writelocks, as in rigorous 2PL. These locks are released when the
transaction is committed. If the readlocks are changed to have short duration, which
means the readlocks are released immediately after the read operation, a lower level of
isolation such as READ COMMITTED could be achieved. The READ COMMITTED
level can be further relaxed to READ UNCOMMITTED by, for instance, removing
the requirement of readlocks entirely. This type of adjustment is easy to achieve in our
model. Since locking and unlocking are modeled as parametrized patterns composed
into the transaction skeleton, one can move them to the desired locations to achieve dif-
ferent durations. The adjustments of locking types and durations are illustrated in Fig.
16. The dashed rectangles represent the initiated locking and unlocking patterns in the
automaton of T0. The adjustments for different PCC algorithms can easily be accom-
plished by adding, removing, or moving around the locking and unlocking patterns.

We now exploit the short readlock algorithm for the concurrency control of the
transaction system including T0 and T1. The transaction automata are adjusted accord-
ing to the adjustment for short readlocks in Fig. 16. The detailed UPPAAL timed au-
tomata models of T0 and T1 are shown in Fig. 17 and 18 respectively. The CCManager
atomaton is exactly the same as the one in Fig. 9. The IsolationObservers are exactly
the same as the ones in Fig. 13a and 13b. The verification result using UPPAAL model
checker is listed in Table 4. As shown by the table, both transactions can meet their
deadlines. S3 is satisfied, indicating phenomenon G1a could not occur, which means
the modeled system reaches READ COMMITED isolation level. However, S4, which
checks the absence of G2, is not satisfied, which means the system does not meet the
SERIALIZABLE isolation level.

Table 4. Verification results using the short readlock concurrency control algorithm

ID Specification Verification Time Explored States Result
S1 A[ ]not T0.miss_deadline 0.001s 1179 Satisfied
S2 A[ ]not T1.miss_deadline 0.001s 1179 Satisfied
S3 A[ ]not IsolationObserverG1a.G1a 0.001s 1179 Satisfied
S4 A[ ]not IsolationObserverG2.G2 0.001s 966 Not Satisfied

Another type of adjustment lies in the conflict detection and resolution policy of the
PCC mechanism. This type of adjustment can be easily implemented in our model,
by modifying the user-defined functions in the model. For a PCC algorithm differ-
ing from a two phase locking algorithm, the modification mainly appears in the lock
granting mechanism and the queuing mechanism, that is, the satisfyPolicy() and get-
NextFromQueue() functions in the skeleton for CCManager in Fig. 5. For example,
2PL-HP [1] allows transactions with higher priorities to lock the data blocked by trans-
actions with lower priorities, and aborts the lower priority transactions. To model 2PL-
HP, one only needs to adjust the model by modifying the functions satisfyPolicy() and
getNextFromQueue(), plus other minor extensions or adjustments in the model.

We apply our approach to modeling a set of transactions under 2PL-HP [1], a widely
applied CC algorithm in real-time database systems. 2PL-HP allows transactions with



Fig. 17. UPPAAL model of T0 using short readlocks



Fig. 18. UPPAAL model of T1 using short readlocks



higher priorities to lock the data that are already locked by transactions with lower
priorities. The lockers with lower priorities are aborted by the CCManager. The aborted
transactions are scheduled to be restarted, according to a predefined criterion. In our
case we assume that transactions are restarted if they have not missed their deadlines.

Program 1.4. Transaction T2

Begin
read D0

read D1

write D2

Commit

Program 1.5. Transaction T3

Begin
read D2

write D2

Commit

The transaction set consists of T0 and T1 listed in Programs 1.1 and 1.2 in Section
3, as well as T2 and T3 in Programs 1.4 and 1.5. D0 and D1 are shared by T0, T1 and
T2, while D2 is shared by T2 and T3. The deadlines for T0, T1, T2 and T3 are 11, 4, 22
and 13 time units respectively. The priorities are assigned, from highest to lowest, as
follows: T1, T0, T3, T2.

The UPPAAL models of the transactions using 2PL-HP and binary locks are shown
in Fig. 19, 20, 21 and 21, respectively. In these models, the initialized operation patterns
for modeling the read, calculate and write operations are the same as the ones in the
models of rigorous 2PL (Fig. 8). Unlike rigorous 2PL using two types of locks, 2PL-HP
with binary locks do not distinguish read and write locks. Figure ?? presents the model
of the CCManager. A sch() function, as listed in Program 1.6, models the scheduling
policy. The major changes, compared to the CCManager of rigorous 2PL, lie in the
satisfyPolicy() function. The satisfyPolicy() of 2PL-HP, as listed in Program 1.7, aborts
the lock holder and grants the lock to the requester, if the requester has a higher priority
than the lock holder. The IsolationObservers are the same as the ones in Fig. 13a and
13b.

Program 1.6. sch() functions for 2PL-HP in the CCManager model

int sch() {
int next=0, prio=10;
int i;
if(cs!=-1) {return cs;}
for(i=0;i<TRNO;i++) {
if(rq[i]==1 && wq[i]==0) {//if transaction i is ready and not

blocked
if(priorities[i]<prio) {//if i has a higher priority, i should

be the next
next = i;
prio = priorities[i];}}}
return next;}

Program 1.7. satisfyPolicy() functions for 2PL-HP in the CCManager model

bool satisfyPolicy() {
int i;
if(!locked[data_id])
return true;



Fig. 19. UPPAAL model of T0 using 2PL-HP
Fig. 20. UPPAAL model of T1 using 2PL-
HP

Fig. 21. UPPAAL model of T2 using 2PL-HP
Fig. 22. UPPAAL model of T3 using 2PL-
HP



Table 5. Possible phenomena during execution

Phenomenon Operation sequences
G1a <w0

1 , r00 , a1> <w1
0 , r02 , a0> <w0

1 , r02 , a1> <w1
1 , r12 , a1> <w2

2 , r23 , a2>
G2 <r00 , w0

1 , w1
1 , w1

0> <w0
1 , r02 , r12 , w1

1> <r02 , w0
1 , w1

1 , r12> <r23 , w2
2 , w2

3>

for(i=0;i<TRNO;i++) {
if(lockdata[i][data_id]==1) {
if(priorities[trans_id]<priorities[i])
return true;}}
return false;}

Fig. 23. IsolationObserver for <r02 , w0
1 , w1

1 , r12>

The phenomena possible to occur during the execution of the example transactions
are listed in Table 5. One observer automaton is constructed for each phenomenon, in a
similar way as in Section 5.2. One example is the observer for <r02 ,w0

1 ,w1
1 , r12> in Fig.6.

To verify SERIALIZABLE isolation, one needs to verify that none of the listed phe-
nomena could actually occur. The verification results are listed in Table 6. Specification
S1, S2, S3 and S4 encode timeliness of T0, T1, T2, and T3, respectively. S5 specifies
that none of the locations indicating a phenomenon is reachable. All listed specifica-
tions are satisfied, which means that both timeliness and SERIALIZABLE isolation are
guaranteed by 2PL-HP.

Validation of the model checking results. The authors of 2PL-HP have proved
that the algorithm guarantees serializability [1], which validates the verification results
regarding isolation.

We compare the model checking results of timeliness with the results of schedu-
lability analysis. We argue that existing schedulability analysis techniques cannot be
directly applied to analyze the schedulability of the transaction set. For instance, anal-
ysis of tasks in the Abort-and-Restart (AR) model assumes that higher priority tasks
immediately abort lower priority tasks that are later restarted. The transaction model in
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Fig. 24. Worst case for T3

2PL-HP is more complex. A transaction may be blocked by a lower priority transaction
because of the atomic operations and rollback. A transaction may be aborted (and then
restarted) by a higher priority transaction if they share the same data, or be preempted
if they do not share data.

Since the considered transaction set consists of only four transactions, for the pur-
pose of validating that the model-checked transactions are indeed schedulable, we ana-
lyze the worst case for each transaction manually, assuming each transaction is modeled
as a real-time task. As an example, we show the worst case for transaction T3 in Fig
24. In this case, a lower priority transaction T2 has read D0 and D1 (denoted as “r0”
and “r1”), and started an atomic write operation on D2 (“w2”) at time 2. T3 is activated
at time 2 + ε, and tries to read D2. T2 is aborted due to conflicts, but before T3 starts,
T2 must finish the atomic operation, and perform the rollback (“rb”). When the roll-
back is completed at time 4, T0 is activated, which has a higher priority than T3, and
thus preempts T3. However, before T0 could complete its work, it gets aborted by T1 at
time 7, gets restarted at time 10, and terminates at time 13. T3 is then allowed to exe-
cute, and terminates at time 15. The worst case response time of T3 is therefore 13− ε,
smaller than its deadline 13. T3 is indeed schedulable. Similar analysis shows that T0,
T1 and T2 can all meet their deadlines, whose worst case response times are 11, 4 and
22, respectively. Therefore, the model checking results with respect to timeliness are
validated. For a larger transaction set under 2PL-HP, the validation via schedulability
analysis should be automated, which is not trivial and out of our current scope.

Compared with schedulability analysis, our approach can perform more exact anal-
ysis for more complex transaction models. For instance, a variant of 2PL-HP condition-
ally aborts transactions based on their current time [1]. While existing schedulability
analysis techniques can be applied but with large pessimism, our approach can easily
model the conditional aborting behavior by extending the current models, and perform
more exact analysis.



Table 6. Verification results using 2PL-HP

ID Specification Verification Time Explored States Result
S1 A[ ]not T0.miss_deadline 1.592s 161126 Satisfied
S2 A[ ]not T1.miss_deadline 1.606s 161126 Satisfied
S3 A[ ]not T2.miss_deadline 1.623s 161126 Satisfied
S4 A[ ]not T3.miss_deadline 1.638s 161126 Satisfied
S5 A[ ]not (IsolationObserverT0T1G1a.G1a

or IsolationObserverT0T1G2.G2 or IsolationObserverT0T2G1a.G1a
or IsolationObserverT1T2G1a_0.G1a or IsolationObserverT1T2G1a_1.G1a
or IsolationObserverT1T2G2_0.G2 or IsolationObserverT1T2G2_1.G2
or IsolationObserverT2T3G1a.G1a or IsolationObserverT2T3G2.G2)

1.669s 161126 Satisfied

7 Conclusion

In this paper we have proposed an approach for modeling concurrent transaction sys-
tems, with an aim of verifying transaction timeliness and isolation in a unified frame-
work. UPPAAL timed automata are used to model the system, including transactions,
the CC manager, and observers for isolation. Our approach is based on timed automata
skeletons and patterns, which could reduce the modeling effort when a different CC
algorithm is selected.

One concern of the proposed modeling approach is the possibility of state explo-
sion. Since isolation is a property for concurrent transactions sharing the same data,
one promising way to mitigate state explosion would be partitioning the transactions ac-
cording to the data dependency. Another approach is to apply bounded model-checking,
such as statistical model checking implemented in UPPAAL-SMC [9]. Although the
verification result is not a guarantee using statistical model checking, it will provide
valuable insights into the design, and suffices many soft real-time applications.

Besides the state explosion issue, we are going to extend our models to support
predicate-based operations. We also plan to build up a framework for trading off more
transactional properties, for instance atomicity and durability, that facilitates the au-
tomation of customizing an RTDBMS.
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