
AQAF: an Architecture Quality Assurance
Framework for systems modeled in AADL

Andreas Johnsen, Kristina Lundqvist, Kaj Hänninen, Paul Pettersson
School of Innovation, Design and Engineering

Mälardalen University
Västerås, Sweden

{andreas.johnsen,kristina.lundqvist,kaj.hanninen,paul.pettersson}@mdh.se

Martin Torelm
Bombardier Transportation Sweden AB

Propulsion & Converter Control Standardization
Västerås, Sweden

martin.torelm@se.transport.bombardier.com

Abstract—Architecture engineering is essential to achieve
dependability of critical embedded systems and affects large
parts of the system life cycle. There is consequently little room
for faults, which may cause substantial costs and devastating
harm. Verification in architecture engineering should therefore
be holistically and systematically managed in the development of
critical embedded systems, from requirements analysis and design
to implementation and maintenance. In this paper, we address
this problem by presenting AQAF: an Architecture Quality
Assurance Framework for critical embedded systems modeled
in the Architecture Analysis and Design Language (AADL). The
framework provides a holistic set of verification techniques with
a common formalism and semantic domain, architecture flow
graphs and timed automata, enabling completely formal and
automated verification processes covering virtually the entire
life cycle. The effectiveness and efficiency of the framework are
validated in a case study comprising a safety-critical train control
system.

I. INTRODUCTION

The highly increased utilization of digital technology
in critical embedded systems is challenging the ability of
dependability-achieving engineering. A problem is that the
complexity of the systems is increasing beyond what current
engineering is able to manage [1, p. 4]. Quality assurance
in the form of verification is essential to achieve dependable
systems and often stands for a considerable amount of the total
development cost. With an increasing complexity, the ability
to assure quality becomes even harder. There is consequently
a need for more effective and efficient verification techniques
such that acceptable levels of dependability of increasingly
complex embedded systems can be maintained. A part of
the solution to this problem is advances of verification in
architecture engineering as faults emerge in the interactions
of components when the complexity increases [1, p. 8]. We
denote this type of verification as architecture-based verifi-
cation. State of the art architecture engineering is based on
architecture models expressed in some architecture description
language (ADL). An ADL that has been developed for critical
embedded systems is the Architecture Analysis and Design
Language (AADL) [2] – an overview of AADL can be found
in [7]. The use of AADL generates standardized, computer-
readable, and semi-formal models of the system architectures.
These properties contribute to the assurance of quality by
facilitating understandability, communication, and analysis. In
addition, they provide the necessary prerequisites for develop-
ing computerized verification techniques that are effective and

efficient enough in detecting architectural faults that emerge in
the development of complex embedded systems. Research in
this field has mostly been focused on adapting formal methods
to AADL; there exist a number of model checking, formal
analysis, and simulation techniques. However, architecture
engineering is conducted throughout the entire system life
cycle in varying phases, from requirements analysis and design
to implementation and maintenance. These conditions promote
a holistic approach to architecture-based verification whereas
current contributions to this field, to our knowledge, do only
address fractions of the system life cycle.

In this paper, we present a possible solution to this problem:
the Architecture Quality Assurance Framework (AQAF), illus-
trated in Fig. 1. AQAF provides a model checking technique
to avoid (i) architecture design faults, a model-based testing
technique to avoid (ii) architecture implementation faults, and
a selective regression verification technique based on change
impact analysis through slicing to avoid (iii) faults introduced
in response to maintenance.

The primary focus of evaluation at the architectural level
is the integration of components, including the structure and
the resulting emergent behavior and non-functional properties.
General verification objectives are to ensure consistency, com-
pleteness, and correctness of component interfaces and the
control and data interactions among them. To obtain these
objectives, the proposed framework is based on architectural
control and data flow verification criteria. This is of industrial
importance as some contemporary safety standards (e.g., ISO
26262 [4]) request control and data flow analysis of software
architecture designs. Based on the control and data flow
verification criteria, model checking and model-based testing
techniques are used to automatically and formally avoid (i)
and (ii) respectively. The semantic domain of AADL is not
based on a mathematical language and cannot be directly
explored by a model-checker. The framework therefore in-
cludes a mapping from AADL to timed automata such that the
verification processes can be executed by the UPPAAL model-
checker [5]. UPPAAL timed automata has been chosen due to
its ability to express real-time properties and the maturity of
the corresponding model-checker and its model-based testing
capabilities. Furthermore, the design and implementation are
typically subjected to maintenance modifications. Artifacts
must therefore undergo regression verification to verify that
no new faults have been introduced in response to a design
change. In addition, architectural variants may be designed to

AADL model (g) AADL to timed
automata transformation

(c) Verification
criteria (h) Timed

automata

(d) Verification
sequences

(i) Model checking

Implementation of
AADL model

(m) Model-based testing

(a) AFG generation

(b) AFG

(r) ADG
generation

(t) Slicing

(s) ADG

(x) Selective regression
verification

(e) Verification sequences to
observer automata transformation

(f) Observer
automata

(n) Regression
verification suite

(j) Timed
automata traces

(k) Test case
generation

(l) Test suite

(p) AFGs comparison

(o) Inter-observer
satisfiability independence

Changed
AADL model

(q) Change

(u) Change
impact

(v) Selection
criteria

Fig. 1. Flowchart of AQAF. The alphabetical order illustrates a typical
application of the framework. A black shape denotes a necessary framework
input. A gray shape denotes a formally defined process or rule set (c and v).
A white shape denotes an artifact produced by the framework.

develop a product line or to analyze trade-offs. All these sce-
narios, where different instances of the architecture design or
implementation are created, are common and challenged with
inefficient regression verification if equivalent parts among the
artifacts that are not affected by the changes or variations are
unnecessarily re-verified. The framework therefore includes a
selective regression verification technique for efficient avoid-
ance of (iii).

These approaches have individually been developed in
previous work [3], [6]. However, they have been developed
on the idea of a common formalism for architectural control
and data flow representation, architecture flow graphs (AFGs),
and a common semantic domain, timed automata. Through
a common formal underpinning, the techniques can be ef-
fectively and efficiently used in an integrated and automated
manner with guaranteed semantics preservation. In this paper,
we bridge these techniques to achieve this leverage. More
specifically, we contribute with a definition of 1. AFGs and
how they are generated from AADL models (Section III); 2.
how verification sequences are derived from AFGs according
to the verification criteria (Section IV); 3. how verification
sequences are transformed into observer automata for model
checking (Section V and VI); 4. how test cases are generated
from observer-generated timed automata traces for model-
based testing (Section VII); and 5. how the verification history
(n and o in Fig. 1) can be used together with slicing of archi-
tecture dependence graphs (ADGs), generated from AFGs, for
selective regression verification (Section VIII). In Section IX,
we present an empirical validation of AQAF by means of
an industrial case study, where the framework is applied to
a safety-critical train control system presented in Section II.

II. LINE TRIP RELAY INTERFACE AND SUPERVISION

Line trip relay interface and supervision (LTRIS) is a
safety-critical train control sub-system embedded in a system
of systems developed by Bombardier Transportation AB. An
AADL model of LTRIS is partly shown in Table I. The
complete model can be found in the technical report of the
case study [7]. The core of LTRIS is composed of two periodic
tasks: Controller and Tester. The functionality of Controller is

to control a safety-critical relay (not shown) according to input,
monitor its status, and output feedback data. The feedback
data is information on the status of the relay and the status
relative to the expected one. Controller controls the relay
according to input on ports and shared variables from various
components. In this manner, Controller acts as an interface
to the relay. Its input domain is partly determined by Tester
through connection1 and connection2. The functionality of
Tester is partly to execute a test sequence, LtrTsSq, verifying
a correct functioning of the relay. The behavior of Tester
is specified in a behavioral model, from which LtrTsSq is
invoked.

The complete model is composed of 6 executable software
components, one of which is an abstraction of the system
(environment) LTRIS is embedded within, 76 interfaces (ports,
parameters, and shared variables), 55 connections, and 5
behavioral models (41 local states and 51 local transitions).
Non-functional properties of LTRIS have been adjusted in the
model according to the abstraction of the environment.

III. ARCHITECTURE FLOW GRAPHS

An AADL model essentially expresses control and data
flows through the architecture that define the architectural
behavior. Control flows refer to the orders in which software
components and their instructions are executed. Data flows
refer to the orders in which data variables (including interfaces
and connections) are assigned by a component and subse-
quently used, possibly by a different component. In AADL,
the possible interactions among components are represented
by four different types of connections: port connections, data
access connections, subprogram calls, and parameter connec-
tions. A port connection represents a transfer of unqueued
data, queued control, or queued control with associated data
(messages), depending on the type of interconnected interfaces
(data port, event port, or event data port). A subprogram
call represents a transfer of control whereas a subprogram
parameter connection represents a transfer of data. A data
access connection represents a transfer of data to or from a,
possibly shared, data component. In addition, components may
be modeled with behavioral models (BMs) describing their
logical execution. A BM both yields internal flows of a com-
ponent, between input and output interfaces, and refines flows
to other components as it operates on connected interfaces.
These constructs determine the control and data flows of an
AADL model in conjunction with scheduling properties and
protocols of shared resources. In order to verify consistency,
completeness, and correctness of the system architecture, the
control and data flows must be analyzed. A common approach
to control and data flow analysis is to extract the prescribed
flows into a directed graph. Architecture flow graph (AFG) is
a type of directed graph for the representation of AADL flows.

An architecture flow graph AFG(M) = 〈V,A〉 of an
AADL model M is a directed graph of a set of ver-
tices V = {v | v ∈ EXPR ∪ 〈“ENTRY ”, compi〉 ∪
〈“REENTRY ”, compi〉 ∪ 〈“EXIT”, compi〉} representing
AADL expressions and scheduling states of components, and
a set of directed arcs A ⊆ V ×V describing how control and
data flow through the vertices. v of an arc 〈v, v′〉 ∈ A is the tail
and v′ is the head, denoting that the flow is directed from v to
v′. The denotation 〈v, v′〉 is used interchangeably with v → v′.

TABLE I. A MINIATURE AADL MODEL OF LTRIS

thread Controller
features
B OpLtr: in data port Base Types::Boolean;
B CdLtr: in data port Base Types::Boolean;
...
end Controller;
...
thread Tester
features
C LtrTs: in data port Base Types::Boolean;
B LtrFl: in data port Base Types::Boolean;
...
B OpLtr: out data port Base Types::Boolean;
B CdLtr: out data port Base Types::Boolean;
...
end Tester;

thread implementation Tester.Impl
connections
C LtrTs in: parameter C LtrTs ->LtrTsSq.C LtrTs;
B LtrFl in: parameter B LtrFl ->LtrTsSq.B LtrFl;
...
B OpLtr out: parameter LtrTsSq.B OpLtr ->B OpLtr;
B CdLtr out: parameter LtrTsSq.B CdLtr ->B CdLtr;
...
annex behavior specification
{**
variables
...
states
state0 : initial complete final state;
state1 : state;
...
transitions
state0 -[on dispatch]->state1 {LtrTsSq(C LtrTs,B LtrFl,. . . , B OpLtr,
B CdLtr,. . .)};
...
**};
end Tester.Impl;
...
subprogram LtrTsSq
features
C LtrTs: in parameter Base Types::Boolean;
B LtrFl: in parameter Base Types::Boolean;
...
B OpLtr: out parameter Base Types::Boolean;
B CdLtr: out parameter Base Types::Boolean;
...
end LtrTsSq;
...
process implementation LineTripSoftware.Impl
subcomponents
relayController: thread Controller;
relayTester: thread Tester;
connections
connection1: port relayTester.B OpLtr ->
relayController.B OpLtr {Timing =>Immediate;
Latency =>0ms .. 1ms;};
connection2: port relayTester.DHSSMG B CdLtr ->
relayController.DHSSMG B CdLtr {Timing =>Immediate;
Latency =>0ms .. 1ms;};
...
end LineTripSoftware.Impl;

...

A vertex v = 〈expr〉 and an arc 〈v, v′〉 may be attributed with
a set of AADL properties: 〈v, {prop1, prop2, . . . , propn}〉 and
〈〈v, v′〉, {prop1, prop2, . . . , propn}〉.

An arc has one of the following labels to distinguish
different types of control and data flows. 〈v, v′〉c represents
a component-internal control flow. A vertex v is called a
direct predecessor of v′ and v′ a direct successor of v iff

〈v, v′〉c ∈ A. Let outdegree(v) be a function mapping the
number of direct successors of v and indegree(v) the number
of direct predecessors. A vertex can have zero, one, or two
direct successors. A vertex v with two direct successors repre-
sents a so called control expression constituting a Boolean
condition. The two outgoing arcs of v are attributed with
〈v, vx〉cT for true and 〈v, vy〉cF for false and correspond
to the control flow in response to the condition evaluation.
〈v, v′〉c−inter represents an interaction-based control flow due
to the activation of a communication protocol. The execution of
v′ coincides with the execution of v according to the protocol.
〈v, v′〉call represents an inter-component control flow due to a
raised event or call. 〈v, v′〉d represents a component-internal
data flow. 〈v, v′〉d−in represents an inter-component data flow
due to a data passing by value or by reference (shared data)
protocol. The arc indicates data flowing from an output to an
input interface. If used together with a function call, the arc in-
dicates the data flowing from an argument to the corresponding
subprogram input parameter. 〈v, v′〉d−out represents an inter-
component data flow due to a data passing by value protocol
activated to return from a call. The arc indicates data flowing
from an output parameter of a subprogram to the variable
assigned by the call.

The 〈“ENTRY ”, comp〉 vertex represents the
point of the component comp through which control
enters and outdegree(〈“ENTRY ”, comp〉) = 1. A
〈“REENTRY ”, comp〉 vertex represents a point of the
component comp through which control suspends, and reenters
when the component has been reactivated/dispatched after
the suspension and outdegree(〈“REENTRY ”, comp〉) = 1.
A component may have any number of reenter
vertices. The 〈“EXIT”, comp〉 vertex represents the
point of the component comp through which control
exits and outdegree(〈“EXIT”, comp〉) = 0. A path
P = v1 →c v2 →c · · · →c vn is called a control
path. A control path is called a basic block if
v1 6= ENTRY ∪ REENTRY and, for i = 1, 2, . . . , n − 1,
outdegree(vi) = 1.

A. Architecture Flow Graph Generation

An AADL model is transformed into an AFG through three
operations. The first operation is to generate an individual con-
trol flow graph (CFG) for each AADL component representing
a, possibly concurrent, unit of sequential execution, i.e., for
each thread and subprogam component. This is achieved by
analyzing each thread and subprogram component in isolation
to find all possible control flows of type 〈v, v′〉c. From this
perspective, the control flow is entirely determined by the
BM of the component. A BM essentially consists of state
transitions. A state transition s

pri,g,act−−−−−→ s′, from a state s to
a successor state s′, has a priority pri ∈ N, a (possibly empty)
set of predicate guards g, and a (possibly empty) sequence
of actions act. Each state transition corresponds to a fixed
execution order of operations: the guard of the transition is
first computed and, if evaluated to the Boolean value true,
the sequence of actions is executed. Thus, BM guards and
actions are the executable operations and yield the vertices of
the CFG. The fixed execution order of operations is repeated
throughout the BM until a final state is reached, as shown in
Fig. 2. If g1 is evaluated to the Boolean value true, act1 is

executed, resulting in the arrival of a new state si whereupon
the transition going out from si with the highest priority is
executed according to the fixed order. On the other hand, if g1
is evaluated to false, another state transition going out from
s1 with the (next) highest priority is executed in the fixed order
(in this case, the transition with priority pri2 is next in line).

Fig. 2. Illustration of behavioral model semantics. Assume s1 is the initial
state and pri1 > pri2.

Consequently, each transition s
pri,g,act−−−−−→ s′, where act =

action1; action2; ...; actionn is a sequence of n actions, maps
to a CFG construct of one vertex v1 = g representing the
guard of the state transition, a basic block of n vertices v2 =
action1, v3 = action2, . . . , vn+1 = actionn representing the
actions of the state transition, and n arcs 〈v1, v2〉cT , 〈v2, v3〉c,
. . . , 〈vn, vn+1〉c representing the control flow through the
executable operations. Note that the arc from the guard to the
first action is attributed with a “T”. Once a CFG construct has
been created for each transition, they are connected according
to the order in which states can be reached and the priorities
of the state transitions as shown in Fig. 3.

Fig. 3. The control flow graph of the behavioral model example in Fig. 2.

The second operation is to compute the component-internal
data flows for each component and annotate them to the
CFGs. Such flows can be computed by performing def-use
pairs analysis of each CFG. Assume that Vdef is the set of
vertices that defines/assigns variable vari, and Vuse is the
set of vertices that uses/reads vari. For each pair of vertices
〈vx, vy〉 ∈ Vdef × Vuse such that there exists a control path
P = v1 →c v2 →c · · · →c vn from vx to vy (where
v1 = vx and vn = vy) and any other vertex vz in P does
not define/assign vari, i.e., vz 6= Vdef for z = 2, 3, . . . , n− 1,
there exist a component-internal data flow 〈vx, vy〉d. If the
rule is applied to all variables for each CFG, all the possible
component-internal data flows are generated.

The third and final operation is to integrate the CFGs
according to the component connections to produce the AFG.
Components of AADL models may both transfer data and
control through interfaces, where ports and parameters are
accessible as variables. Control may be transferred to threads
through event ports and event data ports that are included in
dispatch conditions, and to subprograms through subprogram
calls. In either case, control is transferred to the entry point
(including reentry points of threads) of the target component.
Data may be transferred through data ports, event data ports,

subprogram parameters, and shared data components. Follow-
ing the default input-compute-output semantics of AADL, each
thread dispatch and subprogram invocation includes assign-
ments to in ports and parameters if the component has such
connections. In addition, each thread-execution completion and
subprogram return includes transmission of output data on out
ports and parameters if such connections exist. Consequently,
input assignments coincide with entry vertices of subprograms,
and with dispatch condition vertices (extensions of entry and
reentry vertices to explicitly represent dispatch conditions) of
threads. Output assignments, on the other hand, coincide with
exit vertices of subprograms whereupon control is returned to
the caller. In threads, output assignments coincide with exit
and reentry vertices of threads as both represent a completion
of the current dispatch when entered.

These inter-component flows are explicitly represented
through four distinguished types of vertices (similarly to
system dependence graphs defined by Horwitz et al. [8]): (1)
actual-in vertices on the form connection = out interface
representing assignments that copy the values of output in-
terfaces to connections; (2) formal-in vertices on the form
in interface = connection representing assignments that
copy the values of connections to input interfaces; (3) formal-
out vertices on the form connection = out parameter
representing assignments that copy return values of a callee’s
output parameters to parameter connections; and (4) actual-out
vertices on the form in interface = connection representing
assignments that copy return values of parameter connections
to destination interfaces of the caller. An actual-in vertex is
connected to the corresponding formal-in vertex through a
data-in arc. If the connection connects event or even data ports,
they are also connected through an event/call arc. A formal-
out vertex is connected to an actual out vertex through a data-
out arc. To conform to the transmission of output semantics,
an interaction-based control flow arc shall be created from
each reentry vertex and the exit vertex of the sending thread
to the actual-in vertex if it represents a port connection. If
it represents a parameter connection, the interaction-based
control flow arc to the actual-in vertex is flowing from the
call vertex. Similarly, dispatch conditions of entry and reentry
vertices of the receiving thread or subprogram must have an
interaction-based control flow to the formal-in vertex. With
respect to return parameter connections, the exit vertex of the
sending subprogram has an interaction-based control flow arc
to the formal-out vertex whereas the call vertex has such an
arc to the actual-out vertex.

Data access connections to a common data component
datax may represent transfers of data (by reference) if there
exist both write-right and read-right access connections. In case
this condition holds, and to represent the possible combinations
of data flows with respect to concurrency, the data flow
between the component compy with write-right access and
the component compz with read-right access is represented
through an actual-in vertex compy − compz = datax, rep-
resenting the write-right connection, and an inverting formal-
in vertex datax = compy − compz , representing the read-
right connection, connected through a data-in arc. Given that a
thread or a subprogram gets the data source upon dispatch and
releases it upon a completion, each reentry vertex and the exit
vertex of the sending thread, or the exit vertex of the sending
subprogram, have interaction-based control arcs to the actual-

in vertex. On the other hand, the dispatch conditions of entry
and reentry vertices of the receiving thread, or the entry vertex
of the receiving subprogram, have interaction-based control
arcs to the formal-in vertex.

Once a construct has been created for each connection,
each CFG-vertex that operates on a connected interface must
subsequently be connected (through component-internal con-
trol and data flow arcs) to the corresponding distinguished
vertex to finalize the AFG. The result of applying these
operations to LTRIS is shown in Fig. 4 (the complete AFG
is found in [7]).

Interaction-based
control flow

Inter-component
control flow

EXIT
Tester.Impl

ENTRY
Tester.Impl

Component-internal
data flow

Component-internal
control flow

Inter-component
data flow

on
dispatch

ENTRY
Controller.Impl

ENTRY
LtrTsSq.Impl

EXIT
LtrTsSq.Impl

B_OpLtr :=
B_OpLtr_out

B_CdLtr :=
B_CdLtr_out

B_LtrFl_in :=
B_LtrFl

C_LtrTs_in :=
C_LtrTs

B_LtrFl :=
B_LtrFl_in

C_LtrTs :=
C_LtrTs_in

B_OpLtr_out :=
B_OpLtr

B_CdLtr_out :=
B_CdLtr

B_LtrFl :=
some_connec

tion

C_LtrTs :=
some_connec

tion

connection2 :=
B_CdLtr

connection1 :=
B_OpLtr

B_OpLtr :=
connection1

B_CdLtr :=
connection2

EXIT
Controller.Impl

on
dispatch

LtrTsSq(C_LtrTs,
B_LtrFl,
…,
B_OpLtr,
B_CdLtr,
…)

…

…

…

{Latency => 0ms .. 1ms;}

{Latency => 0ms .. 1ms;}

T

T

Fig. 4. The AFG of the LTRIS AADL model presented in Table I.

IV. VERIFICATION CRITERIA AND SEQUENCES

In order to verify consistency, completeness, and correct-
ness, the architecture flows must be analyzed with respect to
requirements and constraints associated with the model. Each
control and data flow is composed of a sequence of elements. A
flow is constrained if any member in the sequence is associated
with a property. A model is consistent if each control and
data flow can be fully executed while not contradicting any
constraints imposed by properties. In other words, the model
must be able to be executed in compliance with the semantic
rules such that each flow can be exercised, from the first
element to the last according to the order of the sequence,
while each (active) property value is valid in each state of the
execution. Correctness can only be determined if requirements
are associated with the model or if property declarations
are considered as requirements. The model is correct if no
flow exceeds any requirement declarations while they are
executed. The model is complete if all flows can be activated
by the specified input classes and a flow will be activated

for every class of input. These objectives can be defined
in terms of control- and data-flow reachability. Control-flow
reachability is the property where each architectural element
in an execution order can reach the subsequent element to be
executed without conflicting any constraints or requirements.
Data-flow reachability is the property where each data element
can reach its target component, where the data is used, from
its source component, where the data is defined, without
conflicting any constraints or requirements. Thus, reachability
of each flow imply architecture consistency, correctness, and,
if all possible input classes have been covered, completeness.
Note that reachability analysis consider properties such as
the minimum and maximum latencies of connections, or the
period, execution time, and deadline of threads. It therefore
implies analysis of aspects such as timing and schedulability.
Consequently, flow reachability cannot be achieved if timing
constraints are not met or the system is not schedulable.

An AFG contains different structural path types composed
of control and data flows. An AFG path in conjunction with
the (possibly empty) set of path constraints and requirements
is referred to as a verification sequence. Three types of paths
exist: (1) Component-Internal Paths including component-
internal flows between interfaces of a component; (2) Direct
Component to Component Paths including inter-component
flows between interfaces of two components; and (3) Indirect
Component to Component Paths including flows between inter-
faces of two components through one or several intermediate
components. Covering all paths is necessary to ensure com-
pleteness, correctness, and consistency. The complete AFG of
LTRIS contains 34 component-internal paths, 6 direct paths
(three of which are calls with associated parameter data flows),
and 17 indirect paths [7].

V. FORMAL SEMANTICS IN TIMED AUTOMATA

In order to automatically and formally analyze each path,
the AADL semantics must be formalized and implemented.
Detailed transformation rules from an AADL model to a
network of UPPAAL timed automata are presented in [7]. By
means of the transformation rules, flow-reachability can be
verified using observer automata, the UPPAAL model checker,
and reachability formulae in Time Computation Tree Logic
(TCTL). In this section, we present the essentials of the
transformation rules and define a timed automata syntax and
semantics for AADL model checking and model-based testing,
as described in Section VI and VII.

A network of timed automata NTA =
〈TA, V arG, Ch〉 has a vector of n timed automata
TA = 〈TA0, TA1, . . . , TAn−1〉, a set of shared (global)
variables V arG, and a set of synchronization channels Ch.
A timed automaton TA = 〈L, `0, X, V ar, I, E〉 has a set of
locations L, an initial location `0 ∈ L, a set of real-valued
variables X called clocks, a set of (bounded) integer-typed
variables V ar, a function assigning invariants to locations
I : L→ G, and a set of edges E ⊆ L×G×Act×U ×L. G
is a set of guards, which are conjunctions of predicates over
variables and clock constraints of the form x expr1 c, where
x ∈ X ∪ V ar ∪ V arG, c ∈ N, and expr1 ∈ {<,≤,=,≥, >}.
Act = I ∪ O ∪ {τ} is a set of input (denoted a?) and
output (denoted a!) synchronization actions and the non-
synchronization τ . U is a set of updates which are sequences

of variable-assignments of the form v := expr2 and/or clock
resets of the form x := 0, where v ∈ V ar ∪ V arG, x ∈ X ,
and expr2 is an arithmetic expression over integers. We
shall use the denotation `

g,a,u−−−→ `′ iff 〈`, g, a, u, `′〉 ∈ E. In
addition, locations may be labelled as urgent or committed.
In an urgent location, time is not allowed to progress whereas
in a committed location, time is not allowed to progress and
the next transition must involve one of its outgoing edges.

The semantics of a network of timed automata is defined
in terms of a timed transition system over system states. A
system state is a triple 〈`, φ, σ〉 where ` is a location vector
over all automata such that `0, `1, . . . , `n−1 denotes the current
location of TA0, TA1, . . . , TAn−1, φ is a clock valuation
vector over all automata such that φ0, φ1, . . . , φn−1 ∈ RX+
and satisfies the invariants of the locations (φ |= I(`)), and
σ is a variable valuation vector that maps variables to values
and σ |= I(`). The initial system state is a state 〈`0, φo, σo〉
where `0 is the initial location vector, φo maps each clock to
zero, and σo maps each variable to its default value. Progress
is made through delay transitions or discrete transitions. A
delay transition is of the form 〈`, φ, σ〉 d−→ 〈`, φ⊕ d, σ〉 where
φ ⊕ d is the result of synchronously adding the delay d to
each clock valuation in φ. Let `[`′i/`i] denote that the ith vector
element `i is replaced by `′i. A discrete transition is of the form
〈`, φ, σ〉 a−→ 〈`[`′i/`i, `′j/`j , `′k/`k, . . .], φ′, σ′〉 such that there

are edges `i/j/k...
gi/j/k...,ai/j/k...,ui/j/k...−−−−−−−−−−−−−−−−→ `′i/j/k... where φ

and σ satisfies gi ∧ gj ∧ gk . . ., the result of updating φ and
σ according to ui, uj , uk, . . . is φ′ and σ′, and the edges are
synchronous over complementary actions (a? complements a!).

A model is transformed into an automata network essen-
tially composed of one scheduler automaton per processor
component, one thread automaton per thread component, and
one subprogram automaton per subprogram component. The
scheduler automata control the transition of thread states, from
dispatches to completions, and of preemptions and context
switches. A thread automaton, in its most basic form, con-
sists of four locations: awaiting dispatch, ready, running,
and awaiting resource. An example of Tester in this form
is shown in Fig. 5. Each thread is initially in the await-
ing dispatch location. An edge to the ready location is fired
depending on the dispatch protocol. For periodic threads, the
time of dispatch is entirely dependent on the clock. Input from
connections, represented as global variables, is simultaneously
assigned to input ports, represented as local variables. These
assignments correspond to actual-in vertices of port connec-
tions. Scheduling properties of the thread are simultaneously
assigned to the scheduler. Threads in the ready location
are executed by the processor component they are bound
to according to the scheduling policy property. Assuming a
scheduler with fixed priority preemptive scheduling policy,
the thread with the highest priority is selected to run on the
processor and thus transits to the running location. No more
than one thread (per processing unit) is allowed to be in a
running location simultaneously. A running thread is blocked
if it is trying to access a shared data component that currently is
locked. Shared resources are accessed in critical sections which
are entered through Get Resource service calls. Only one
thread is allowed to be in a critical section of a shared resource
at once. The execution of a thread may also be blocked (in

response to a Await Result service call) to await the return
of a remote subprogram call. A running thread is preempted,
and thus transits back to the ready location, if another thread
with higher priority enters the ready location. A thread in the
running location that completes its execution transits to the
awaiting dispatch location. Output is simultaneously assigned
to connections. These correspond to formal-in vertices of port
connections. If the thread is specified with a BM, the running
location is replaced with the BM automaton.

Fig. 5. The thread automaton of Tester in Table I. The behavior model of
Tester has been omitted, which should replace the “running” location.

VI. OBSERVERS GENERATION AND MODEL CHECKING

Once the UPPAAL model has been generated, the possible
paths of the AFG can be verified against their constraints
and requirements through reachability analysis. Note that
properties that have an effect on the dynamic semantics are
transformed into the timed automata model, such as scheduling
properties. They are therefore not explicitly included in ver-
ification sequences as their validity automatically is verified
when the corresponding timed automata paths are executed.
Each verification sequence is executed through transformation
to an observer automaton [9] and auxiliary variables and
clocks (if constrained by timing properties). Observers have
been developed to provide a flexible method for specifying
coverage criteria for model checking and test case generation.
The execution is formulated as a reachability problem, which
conforms to our verification criteria. An observer essentially
monitors a trace of the timed automata model and reaches an
acceptance state whenever the coverage criterion has been met.
With respect to verification sequences, reaching an acceptance
state denotes flow-reachability of the corresponding AFG
path. Thus, reaching all acceptance states imply consistency,
correctness, and completeness (assuming all input classes have
been covered) of the AADL model. Validity is preserved as
observers cannot interfere with the architecture state space.

Formally, an observer 〈O, o0, oaccept, Eobs〉 over a set of
auxiliary clocks and variables has a set of observer locations
O, an initial observer location o0 ∈ O, an accepting locations
oaccept ∈ O, and a set of observer edges Eobs on the form
o
g,a,u−−−→ o′. A coverage criterion is created by dividing it into

atomic timed automata items that must be covered and, for
each item, generate an observer edge which predicate (g and
a) is dependent on that item. An observer edge will thereby
be fired when the item has been executed. If the criterion
requires the items to be covered in a specific sequence, the
edges are structured correspondingly. Moreover, locations may

be labelled with invariants (including urgent and committed)
and guards, actions, and clocks may be used to specify
additional constraints in which items must be covered. With
respect to a verification sequence, the coverage criterion is the
corresponding timed automata path. Since each control flow
arc in a path corresponds to the firing of one particular edge in
the timed automata model, and each data flow arc to a sequence
of two edges (one where the variable is defined and one where
it is used), the corresponding edges or sequence of edges are
the atomic items to be covered. Thus, an observer automaton is
created for each verification sequence by creating an observer
edge, or a sequence of two edges, for each arc in the path.
In addition, each path constraint (property) and requirement is
specified through location invariants and transition guards and
actions.

Assuming no existence of data flows, a verification se-
quence of m vertices 〈v1 → v2 → v3 → · · · →
vm, {properties}〉 maps to an observer automaton of m −
1 observer edges 〈{o1, o2, o3, . . . om}, o1, om, {o1

g,a,u−−−→
o2, o2

g,a,u−−−→ o3, . . . , om−1
g,a,u−−−→ om}〉, where an execution

of the edge that corresponds to v1 → v2 is observed by
o1

g,a,u−−−→ o2, v2 → v3 by o2
g,a,u−−−→ o3, etc. If the sequence

contains any control flow due to a true or false evaluation
of a control expression, it must be complemented with an
observer edge that resets the observer to its initial location in
case the complementing branch is fired instead. An observer
edge primarily observers the coverage item through a broad-
cast synchronization channel, i.e., given that an execution of
`
g,ax,u−−−−→ `′ corresponds to v1 → v2, `

g,ax!,u−−−−→ `′ synchronizes
with observer edge o1

g,ax?,u−−−−−→ o2 through channel ax. The
correspondence between arcs in an AFG and edges in the
timed automata model is specified in [7]. Given that there exist
an automaton that may stimulate the model with the possible
system inputs, the verification sequence is executed by the
reachability formula E <> om – meaning “there exists one
path where om eventually holds”. The verification sequence
passes if the model satisfies the formula.

A verification sequence that contains a data-flow arc
requires observer edges that observe at least two successive
coverage items: the edge where the data is defined followed by
the edge where it is used. In addition, two auxiliary variables,
vaux1 and vaux2, are used together with the observer edges
to ensure that the use-edge actually uses the data instance
defined by the definition-edge. The data Datadef that is
defined at the definition-edge, and the data Datause that is
used at the use-edge, are stored in the auxiliary variables.
Once the observer edges have observed a definition (through
channel Chandef) followed by a use (through channel
Chanuse) of the data component, a guard g composed of
predicate vaux1 == vaux2 of an edge o

g,a,u−−−→ o′ ensures
data flow reachability before the accepting state o′ is reached.
Nevertheless, in case of inter-component data flows, threads
may be modeled with under-sampled data communication
(the receiving thread has a lower dispatch frequency than the
sending thread) where a fraction of defined data instances
are not supposed to reach the use-edge. In such cases, to
prevent false negatives of data flow reachability, an alternative
definition-observing edge that may synchronize with new
definitions of the data component is added. Consequently,

for sequences that contain an inter-component data flow arc
v1 →d−in v2 or v1 →d−out v2, the two coverage items (def
and use) are observed by two sequential observer edges,
possibly one for under-sampled communication, and one for
assurance of data-flow reachability: 〈{o1, o2, o3, o4}, o1, o4,
{o1

g,Chandef?,〈vaux1:=Datadef 〉−−−−−−−−−−−−−−−−−−−−→ o2,

o2
g,Chandef?,〈vaux1:=Datadef 〉−−−−−−−−−−−−−−−−−−−−→ o2,

o2
g,Chanuse?,〈vaux2:=Datause〉−−−−−−−−−−−−−−−−−−−→ o3, o3

vaux1==vaux2,τ,u−−−−−−−−−−−−→ o4}〉
where Chandef? observes the definition edge that
corresponds to v1 and Chanuse? observes the use
edge that corresponds to v2. For example, the direct
component to component path P = “connection1 :=
B OpLtr” →d−in “B OpLtr := connection1” (not
under-sampled) corresponds to a verification sequence
〈P, {〈〈“connection1 := B OpLtr”, “B OpLtr :=
connection1”〉d−in, “Latency => 0ms..1ms”〉}〉. Assuming
that the time units in the UPPAAL model are milliseconds, the
verification sequence is transformed to an observer automaton
〈{o1, o2, o3(committed), o4}, o1, o4,
{o1

g,Chandef?,〈vaux1:=Datadef ,cl=0〉−−−−−−−−−−−−−−−−−−−−−−−→ o2,

o2
g,Chanuse?,〈vaux2:=Datause〉−−−−−−−−−−−−−−−−−−−→ o3,

o3
cl<=1 and vaux1==vaux2,τ,〈〉−−−−−−−−−−−−−−−−−−−→ o4}〉 where Chandef

synchronizes with running
gtst,atst,utst−−−−−−−−→ awaiting dispatch

of the tester automaton; Datadef is a copy of the value
assigned to variable connection1 in utst; Chanuse
synchronizes with awaiting dispatch

gctrl,actrl,uctrl−−−−−−−−−−→ ready
of the controller automaton; and Datause is a copy of the
value assigned to B OpLtr in uctrl. A clock cl is used to
verify the validity of the latency property – the data should
be received at most after 1ms. For sequences that contain
a component-internal data flow arc, the coverage item is
decomposed to and observed as the underlying control path.

VII. MODEL-BASED TESTING

To verify an implementation, its conformance to the –
complete, consistent, and correct – model must be tested.
A satisfied observer generates a trace 〈`o, φo, σo〉

a1/d1−−−−→
〈`1, φ1, σ1〉

a2/d2−−−−→ · · · an/dn−−−−→ 〈`n, φn, σn〉 that contains infor-
mation about the initial state of the system and its environment
before the path is executed, the input or the sequence of inputs
needed to stimulate an execution of the system according to
the expected path, and the expected output or sequence of
outputs. In addition, the trace holds information on expected
non-functional properties, including timing of input and output.
Thus, depending on which automata are accredited as an
environment E(pi) = 〈TA1, TA2, TA3, . . . 〉 for a specific
verification sequence with path pi, an observer trace over its
E(pi) yields a test case. Let MV (pi) and MAct(pi) denote the
sets of variables and actions (on the form a!) in environment
E(pi) that are monitored by the system under test (SUT).
Let CV (pi) and CAct(pi) denote the sets of variables and
actions (on the form a?) in E(pi) that are controlled by SUT.
For sensor-to-actuator paths, sensor variables and actions are
monitored while actuator variables and actions are controlled.
Assuming that the SUT at time t = 0 is set according to system
state 〈`o, φo, σo〉, depending on the used test harness, the tester,
test script, or test model is responsible of following the trace

such that: 1. for each encountered delay transition〈`, φ, σ〉 d−→
〈`, φ⊕ d, σ〉, wait until t = t+ d; 2. for each encountered dis-
crete transition 〈`, φ, σ〉 a−→ 〈`[`′i/`i, `′j/`j , `′k/`k, . . .], φ′, σ′〉
where `i/j/k...

gi/j/k...,ai/j/k...,ui/j/k...−−−−−−−−−−−−−−−−→ `′i/j/k... are edges of
the environment E(pi) and ai/j/k... is a member of MAct(pi)
and/or any assignment uxi/j/k... is on the form v := expr
such that v ∈ MV (pi), stimulate SUT at time t with actions
ai/j/k... and data updates uxi/j/k...; and 3. for each discrete

transition where `i/j/k...
gi/j/k...,ai/j/k...,ui/j/k...−−−−−−−−−−−−−−−−→ `′i/j/k... are

not edges of the environment E(pi) and ai/j/k... is a member
of CAct(pi) and/or any assignment uxi/j/k... is on the form
v := expr such that v ∈ CV (pi), assure at time t that SUT
responds with actions ai/j/k... and data updates uxi/j/k.... The
collective set of generated tests creates a test suite that tests
the conformance of the implementation with respect to the
architecture model.

VIII. SELECTIVE REGRESSION VERIFICATION

Given a model M , and possibly an implementation of the
model IMPL, for which a verification suite V S of verification
sequences has been generated and executed on M as described
in Section VI, and on IMPL as described in Section VII, it is
likely that M eventually is modified into another version M ′,
which later may be modified into another version M ′′, and so
forth. A conventional approach to regression verification would
be to ensure that a modification has not introduced faults in
the model M ′ and has not violated the conformance with the
implementation IMPL by (1) re-executing all “old” but still
valid verification sequences V S′old ⊆ V S on M ′ and IMPL,
and, if the modification includes an added functionality, behav-
ior, or property, (2) generate a new verification suite V S′new
that covers the added part(s) and execute it. A modification
corresponds to the set of expressions (vertices) and flows (arcs)
that are different among the models, i.e., expressions that exist
in one version but not in the other. However, re-execution of
all verification sequences is inefficient if the modification does
not affect the complete architecture. Nevertheless, determining
which ones that still are valid and the new sequences that
are necessary to cover new parts is difficult. The problem is
that the impact of a modification on the remaining architecture
is complex to manually trace. In order to perform regression
verification efficiently, we contribute with a technique that
selectively re-executes only those verification sequences that
are affected by the modification and generates new verification
sequences that only cover added parts. The technique uses
the concept of slicing through extended system dependence
graphs [6], which we hereafter call architecture dependence
graphs (ADGs), to exactly identify the parts of a modified
AADL model that directly or indirectly are affected by the
modification and must be covered by verification sequences in
the regression verification process. The concept of slicing is
to remove expressions that do not have an effect on and are
not affected by the value of a variable at some expression.
An ADG provides these dependencies such that causality can
be precisely traced and is generated from an AFG through
dominance analysis, as defined in [7]. The approach is to apply
this idea to variables of the changed or added part such that
other parts of the model which behavior now might be faulty
are identified for regression verification.

The first step is to determine what expressions, or flows to
an expression, that have been removed or changed or added.
This is simply done by comparing AFG′ of M ′ with AFG
of M to determine the set of removed vertices and arcs
AFG\AFG′ and the set of added or changed vertices and arcs
AFG′\AFG. V S′old is thereby easily computed: any vs ∈ V S
that covers a vertex or arc in (AFG′\AFG)∪ (AFG\AFG′)
is no longer valid. Invalid verification sequences are discarded
in the regression verification process if the corresponding
architectural paths are removed by the modification. If the
paths still exist, the verification sequences are updated accord-
ing to the modification to become valid. Nevertheless, valid
verification sequences that do not cover the modification or
affected parts are unnecessary to re-execute on M ′ or IMPL.
Affected parts are determined through forward-slicing of the
ADG′. An ADG(M) = 〈V,A〉 of a model is a directed graph
of the set of vertices V ⊆ AFG(M) and arcs A ⊆ V × V
representing control and data dependencies. A forward slice
fSlice(Cri) with respect to a slicing criterion Cri = 〈v, var〉,
where v is a vertex and var ∈ v is a variable or data component
defined or read at v, consists of all vertices of the model
that possibly are dependent on the value of var at v. This
corresponds to all vertices that are forward-reachable (through
dependence arcs) from v in the ADG of the model. The set
of affected vertices V ′aff ⊆ V ′ is thereby determined by, for
each vx ∈ AFG\AFG′ ∪AFG\AFG′, and for each defined
or read variable vary in vx, compute fSlice(〈vx, vary〉)
of ADG′(M ′). The regression verification suite V S′old is
subsequently efficiently executed by only selecting verification
sequences that cover vertices in V ′aff .

The set of affected vertices with respect to old verification
sequences may be further trimmed by means of the inter-
observer coverage data (the trace that satisfies an observer may
have satisfied others as well) from the preceding verification.
From the data, satisfiability independence between observers
may be deduced, which adds a layer of dynamic slicing that
regards cyclic dependencies of the system. If an observer obs1
was satisfied without satisfying another observer obs2, then
obs1 is satisfiable independently from the path observed by
obs2 even though the path, at a later stage, may generate an
erroneous behavior of the path observed by obs1 (as possibly
predicted by static forward slicing). Consequently, a previously
satisfied observer which satisfiability is independent to each
observer that covers the modification will also be satisfiable in
the regression verification process (and therefore unnecessary
to re-execute) even if it covers a vertex in the forward slice.

Finally, changed or added vertices and arcs that generates
new paths must be covered with new verification sequences.
V S′new is generated by applying the verification criteria to the
changed and added set AFG′\AFG, from which the possible
new paths and corresponding set of verification sequences
are extracted. If yet another version M ′′ is developed, the
regression verification process is repeated upon the verification
history V S′ = V S′old ∪ V S′new, instead of V S.

IX. VALIDATION

By means of LTRIS we conducted a case study with
the objective of validating the effectiveness and efficiency of
AQAF. To adequately validate these properties, the application
of AQAF on LTRIS should cover the different types of

TABLE II. CASE STUDY RESULTS

Model checking and sel. regr. ver. effectiveness TOT time cons.(sec) TOT mem. cons.(MB) Sel. efficiency Testing effectiveness
Fault No. V-seqs No. sel. No. unsat. sel. Obs. No. unsat. Obs. Sel. All Sel. All Time Mem. No. failed TCs (of 57)

n/a 57 n/a n/a 0 n/a 855 n/a 9327 n/a n/a 0
1 57 4 4 4 196 504 3236 8085 61% 60% 5
2 57 13 7 7 364 527 5768 8728 31% 34% 6
3 49 25 9 9 373 396 5745 7127 6% 19% 25
4 57 30 18 18 1042 1204 15367 17942 13% 14% 18
5 57 24 7 7 235 403 3404 6832 42% 50% 0
6 57 n/a n/a 20 n/a 492 n/a 7470 0% 0% 7
7 58 50 42 42 51 58 2190 2542 12% 14% 43

faults that may exist in an architecture. The framework must
therefore be systematically applied to controlled versions of
LTRIS to ensure coverage of fault types and to delimit the
probability of false positives and false negatives. Our approach
to a systematic application uses the method of fault injection
and involves two stages. The first stage is to perform model
checking and model-based testing based on a (presumed)
fault-free version of the LTRIS model. If the techniques are
valid and the architecture implementation truly conforms to
the model, the result must necessarily be satisfied observers
(No. unsat. Obs. = 0) and passed test cases (No. failed
TCs = 0). Since the model certainly conforms to itself, it
is treated as the implementation when applying model-based
testing. The second stage of the approach is to create mutated
versions of the AADL model, each of which containing an
injected fault, and extend the steps performed in the first stage
such that the application covers the complete framework and
ranges over the possible fault types. By means of the artifacts
produced in the first stage, each fault injection corresponds
to a modification. If the selective regression verification and
model checking techniques are valid, the result of regression
verification must necessarily be at least one unsatisfied selected
observer per modification (No. unsat. sel. Obs. > 0) since
there now definitely exist a fault. The selective approach is
contrasted with a re-run all approach to assess the selection
effectiveness and efficiency. If valid, the result must neces-
sarily be satisfied observers for all non-selected verification
sequences (No. unsat. sel. Obs. = No. unsat. Obs.) since the
impact analysis is expected to select all verification sequences
that possibly are affected by the modification. The required
overhead expense of conducting the selection must either not
exceed the savings with respect to the cost of a re-run all
approach to be efficient (TOT time/mem. cons.(sel.) < TOT
time/mem. cons.(all)). Furthermore, each mutated version may
be treated as an implementation to validate the effectiveness of
the test suite generated in the first stage. If the testing technique
is valid, the result must necessarily be at least one failed test
case for each tested mutation (No. failed TCs > 0).

Based on this study design, effectiveness of model checking
and model-based testing is measured in terms of the ratio of
found faults to the number of injected faults. Effectiveness of
selective regression verification is measured in terms of the
ratio of unsatisfied non-selected observers to the number of
selected and non-selected unsatisfied observers. Note that a
lower ratio denotes a higher effectiveness in the latter case.
A ratio of zero means that the technique did not exclude
any verification sequence that reveals a fault in the mod-
ified architecture. Efficiency is measured in terms of time
and memory consumption. The resource consuming activities
of model checking are observers generation (including AFG
generation and verification sequences extraction), AADL to

timed automata transformation, and satisfiability checking. For
model-based testing, the resource consuming activities are
identical except that the test data is extracted by searching
the resultant traces. In either case, the bottleneck is satisfia-
bility checking of observers due to the state space explosion
problem, which is the resource consuming activity of interest
in this case study. With respect to efficiency of the selective
verification technique, the resource consumption of slicing is
included to make sure that the overhead the selective regression
verification technique brings does not exceed the savings.

The results of the case study with respect to the following
considered fault types are presented Table II: (1) absent,
unachievable, and incorrect control expressions (guards); (2)
absent and incorrect data assignments, events, and calls (ac-
tions); (3) absent and incorrect port connections; (4) absent
and incorrect parameter connections; (5) absent, incorrect, and
incompatible non-functional properties; (6) absent, incorrect,
and incompatible protocols or use of shared resources (dead-
lock, livelock, starvation, and priority inversion of threads);
(7) absent, incorrect, and incompatible scheduling properties.
The verification was performed in Windows 7 64-bit edition
running an Intel Core i7-3667U 2.0 GHz CPU with 8 GB
RAM. The results conform to the expectations except in two
cases. First, fault No. five was not detected by the test suite.
In retrospect, the result is not a surprise as the fault is an
inconsistent latency property, which in the model does not
affect the execution but impose an analysis constraint on it.
Thus, it is not sound to treat the faulty model as a faulty im-
plementation in this case, since the inconsistent property must
be manifested in the execution to be a realistic implementation
fault. Second, fault No. 6 corresponds to a changed scheduling
property which has no relation to the AFG, consequently, no
slicing can be performed. On average, it took 555 seconds and
8507 MB to check satisfiability of 56 observers. Seven out of
seven design faults were detected and, by disregarding fault
five at the implementation-level, six out of six implementation
faults. The selective approach, on average, reduced the time
and memory consumption of regression verification by 24%
and 27% respectively. No verification sequence that reveals a
fault in the modified design was unselected.

X. RELATED WORK

A lot of research has been conducted in the area of
formal analysis of AADL models and integrations thereof,
however, no notable contribution of conformance testing or
regression verification techniques for AADL have been recog-
nized. Esteve et al. [11] present the usage of COMPASS in
the development of a satellite platform. COMPASS is a tool-
set for SLIM, a variant of AADL, and provides the ability
to model-check functional properties through transformation

to Markov chain and assess dependability through automated
generation and analysis of fault trees and FMEA tables. Model
checking of both nominal behavior and error behavior is
conducted in the case study, where the resultant average time
and memory consumptions for verification of 19 properties
are 508 sec and 469 MB. It is not evident if, and in that
case how, concurrent execution is considered and thereby
comparable to model checking capacities of AQAF. Murugesan
et al. [12] propose an approach to compositional verification
of AADL models against requirements expressed in past-time
linear temporal logic (PLTL) by means of AGREE – an AADL
model-checker. The approach is compositional in the sense that
component-level behavior is described in Simulink and verified
by the Simulink Design Verifier. A case study of a medical
device resulted in a model checking time consumption of 273
seconds to prove 35 properties. The verification technique
is however limited with respect to non-functional properties
as concurrent execution, shared resources, scheduling, and
timing properties are not considered. Björnander et al. [13]
implements a denotational semantics of a subset of AADL
in standard ML for the purpose of checking AADL models
against CTL properties. The subset does not include execu-
tion semantics of threads, where the architecture analysis is
restricted to abstract system components. A mapping of AADL
to Petri Nets is presented by Renault et al. [14], where the
objective is to verify that the system is free from deadlocks
and that defined data interactions behave correctly. Based on
the presented principles, the approach only supports event-
driven architectures without preemption and does not include
timing properties in the verification. Chkouri et al. [15] define
a translation to BIP (Behavior Interaction Priority) to enable
model checking of deadlock-freedom and requirements. As
in AQAF, properties are checked by means of observers. It
is not evident to which degree concurrency is supported as
information on how scheduling properties and preemption are
captured in BIP is not given or referenced. Berthomieu et
al. [16] presents a transformation of AADL models with fixed-
priority scheduling into TTS through an intermediate Fiacre
model, which in turn can be checked by the Tina toolbox. The
work is limited to non-preemptive scheduling.

XI. CONCLUSION

In this paper, we presented AQAF: an Architecture Quality
Assurance Framework covering virtually the entire life cy-
cle of critical embedded systems. The framework has been
developed due to the limited life-cycle coverage of existing
verification techniques. AQAF provides a set of techniques for
a wide coverage and a joint formalism and semantic domain,
architecture flow graphs and timed automata, that allow for
an efficient, effective, and fully automatable integration. An
industrial safety-critical train control system is used to demon-
strate its application in practice and validate effectiveness and
efficiency. First, we presented the architecture-based verifica-
tion criteria and showed how AADL verification data can be
represented by AFGs. Second, we presented an overview of
how AADL models can be transformed into a network of
UPPAAL timed automata such that they can be subjected to
model checking and model-based testing. Third, we described
the process of transforming verification data from AFGs,
in the form of verification sequences, to observer automata.
Observers drive both the model checking process and the test

case generation process through reachability analysis. Satisfied
observers indicate a complete, consistent, and correct model
whereas passed tests indicate conformance to the model. At
last, we presented how selective regression verification can be
performed through slicing of architecture dependency graphs
generated from AFGs. Results indicate that AQAF is effective
in finding the considered types of architectural faults and
that the necessary resource consumption is within acceptable
limits when contrasted with related work. The results also
suggest that the selective approach may significantly reduce
the resource consumption of regression verification.

ACKNOWLEDGMENTS

This research is supported by the Swedish Foundation for
Strategic Research (SSF) project SYNOPSIS.

REFERENCES

[1] N. G. Leveson, Engineering a Safer World: Systems Thinking Applied
to Safety (Engineering Systems), 2012.

[2] As-2 Embedded Computing Systems Committee SAE, “Architecture
Analysis & Design Language (AADL),” SAE Standards, 2009.

[3] A. Johnsen, K. Lundqvist, P. Pettersson, and O. Jaradat, “Automated
Verification of AADL-Specifications Using UPPAAL,” Ninth IEEE In-
ternational Symposium on High-Assurance Systems Engineering, 2012.

[4] I. O. for Standardization, “ISO 26262-1:2011 Road vehicles - Func-
tional safety.”

[5] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on Uppaal,”
2004.

[6] A. Johnsen, K. Lundqvist, P. Pettersson, and K. Hänninen, “Regression
Verification of AADL Models through Slicing of System Dependence
Graphs,” in Tenth International ACM Sigsoft Conference on the Quality
of Software Architectures. ACM, June 2014.

[7] A. Johnsen, K. Lundqvist, P. Pettersson, K. Hänninen, and M. Torelm,
“Empirical Validation of the Architecture Quality Assurance Framework
(AQAF): A Technical Report,” Tech. Rep. [Online]. Available:
http://www.es.mdh.se/publications/4268-

[8] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” in Proceedings of the conference on Programming
Language design and Implementation, 1988.

[9] J. Blom, A. Hessel, B. Jonsson, and P. Pettersson, “Specifying and
Generating Test Cases Using Observer Automata,” in Proceedings of
the 4th International Workshop on Formal Approaches to Testing of
Software, 2005.

[10] J. Chang and D. J. Richardson, “Static and dynamic specification
slicing,” in Proceedings of the Fourth Irvine Software Symposium, 1994.

[11] M.-A. Esteve, J.-P. Katoen, V. Y. Nguyen, B. Postma, and Y. Yushtein,
“Formal Correctness, Safety, Dependability, and Performance Analysis
of a Satellite,” in Proceedings of the 34th International Conference on
Software Engineering, 2012.

[12] A. Murugesan, M. W. Whalen, S. Rayadurgam, and M. P. Heimdahl,
“Compositional Verification of a Medical Device System,” in Proceed-
ings of the 2013 Conference on High Integrity Language Technology,
2013.

[13] S. Björnander, C. Seceleanu, K. Lundqvist, and P. Pettersson, “A Formal
Analysis Framework for AADL,” 2011.

[14] X. Renault, F. Kordon, and J. Hugues, “From AADL Architectural
Models to Petri Nets: Checking Model Viability,” in Proceedings of the
International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing, 2009.

[15] M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis, “Models in Soft-
ware Engineering,” 2009, ch. Translating AADL into BIP - Application
to the Verification of Real-Time Systems.

[16] B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Zilio, M. Filali, and
F. Vernadat, “Formal Verification of AADL Specifications in the Top-
cased Environment,” in Proceedings of the 14th Ada-Europe Interna-
tional Conference on Reliable Software Technologies, 2009.

