Towards the Verification of Temporal Data
Consistency in Real-Time Data Management

Simin Cai, Barbara Gallina, Dag Nystrom, Cristina Seceleanu
Milardalen Real-Time Research Centre, Milardalen University, Visteras, Sweden
{simin.cai, barbara.gallina, dag.nystrom, cristina.seceleanu} @mdh.se

Abstract—Many Cyber-Physical Systems (CPSs) require both
timeliness of computation and temporal consistency of their
data. Therefore, when using real-time databases in a real-time
CPS application, the Real-Time Database Management Systems
(RTDBMSs) must ensure both transaction timeliness and tempo-
ral data consistency. RTDBMSs prevent unwanted interferences
of concurrent transactions via concurrency control, which in
turn has a significant impact on the timeliness and temporal
consistency of data. Therefore it is important to verify, already
at early design stages that these properties are not breached
by the concurrency control. However, most often such early on
guarantees of properties under concurrency control are missing.
In this paper we show how to verify transaction timeliness and
temporal data consistency using model checking. We model the
transaction work units, the data and the concurrency control
mechanism as a network of timed automata, and specify the
properties in TCTL. The properties are then checked exhaustively
and automatically using the UPPAAL model checker.

I. INTRODUCTION

In a Cyber-Physical System (CPS), the control of physical
working units is decided by the computational operations
based on timely monitored environmental data [1]. Many CPS
applications are real-time systems, which means that the results
of the computation must be not only logically correct, but also
temporally correct [1]. The temporal correctness of a result
depends both on the time when the result is produced, and on
the temporal consistency of the data used for the computation.
For instance, consider a robot arm picking up objects from the
conveyor of an assembling line. In order to pick up the object
correctly, the robot arm must adjust its rotation angle according
to the position of the approaching object. A computer in the
arm calculates the rotation angle, based on current angle of the
arm, and the position of the target. The computational result is
useless, if either the calculation misses its specified deadline,
or the position data are outdated.

One common way of managing the temporal environmental
data and computational results is to store them in a Real-
Time Database (RTDB) [2]. The temporal consistency of the
data requires that the states of the RTDB must be consistent
with the corresponding environmental states timely [3]. Since
computations on data are implemented as transactions in the
database, the Real-Time Database Management System (RT-
DBMS) must therefore ensure both the transaction timeliness
and the temporal data consistency [4]. However, it is not
trivial to verify these properties, partly due to the concurrency
control mechanisms used by RTDBMSs to eliminate unwanted
interferences from concurrent transactions. Transactions may

This work is funded by the Knowledge Foundation of Sweden (KK-
stiftelsen) within the DAGGERS project.

be blocked or aborted by the concurrency control manager,
which on the one hand may lead to breached timeliness and
temporal consistency, and on the other hand increases the
complexity of the analysis. Some of existing work towards
analysis of temporal consistency (e.g., Song et al. [3]) are
based on simulation, and thus lack formal guarantees. Other
work either provide analysis of temporal consistency without
considering concurrency control [5], or focus on other proper-
ties of concurrent transaction systems such as isolation [6] or
absence of deadlock [7].

In our recent work [6], we have proposed a formal approach
based on timed automata [8], Temporal Computational Tree
Logic (TCTL) [9] and UPPAAL [10] for verifying timeliness
and isolation of transactions in a unified manner. Here, we
develop our approach further, focusing on the tradeoff be-
tween timeliness and temporal data consistency instead. We
consider the targeted system as a composition of the following
constituents: the data accessed by either the sensors or the
computational units of the CPS, the transaction work units
[11], which are the logical operations in the transactions, and
the concurrency control manager that coordinates concurrent
transactions. We first transform these constituent parts into a
formal model, which is a network of timed automata. Then
we specify the timeliness and temporal consistency in a logic
formalism called TCTL, using a set of specification patterns.
Finally, we use the UPPAAL model checker [10] to check
whether these formalized properties are satisfied by the model.
The approach is exemplified on a concrete example in detail.

The remaining part of the paper is organized as follows.
Section II introduces the background of the paper, consisting
of the concepts of temporal data consistency in RTDBMS,
and the needed knowledge on timed automata and UPPAAL.
In Section III we present the assumed CPS system with
exemplary transactions and relevant requirements. In Section
IV we describe our modeling approach for transactions, data
and the lock manager of the assumed system. The formal
specification of the requirements, as well as the verification
results, are presented in Section V. We compare our work to
the related work in Section VI, after which we conclude the
paper in Section VIL.

II. BACKGROUND

In this section, we first recall the concepts of temporal data
consistency in real-time databases, followed by a brief intro-
duction of timed automata and the UPPAAL model checker.

A. Temporal Data Consistency

Data in an RTDBMS can be classified into base data and
derived data. In real-time applications, which often monitor

the environment states and react accordingly, base data are
the representations of the environment states in the database.
A typical example of base data is the readings from sensors
that monitor the speed of the conveyor in our example CPS.
Derived data are the results of computations based on a set of
base data objects. For instance, a transaction takes the conveyor
speed and the position of the robot arm as inputs to compute
the rotation angle. The rotation angle is a derived data. Each
data object is associated with a timestamp. For a base data
object, the timestamp indicates the time when it is collected,
whereas for a derived data object, it refers to the time when
it is derived.

As mentioned in Section I, RTDBMSs must guarantee
the temporal data consistency, which includes two aspects:
the absolute validity and the relative validity [3] of data.
Absolute validity refers to the property that the data must
always reflect the environment timely. If we define the age
of a data object as the difference between the current time and
its timestamp, a base data object is absolute valid if the age
of the data is smaller than a specified interval, called absolute
validity interval. A derived data object is absolute valid if all
participating data are absolute valid.

In order to compute a valid derived data, the set of base
data may have to be collected close enough to each other in
time. For instance, the conveyor speed and the position of the
robot arm must be collected within 50 milliseconds. A set of
data objects are relative valid, if the difference between the
ages of every object is within a specified relative validity
interval.

The original absolute validity requires data to be absolute
valid all the time. This however imposes restrictions on the
database performance and the timeliness of other transactions,
since the data may need to be updated frequently, even though
it is not accessed by any other transaction. Therefore, Kao et al.
[12] propose the weak absolute validity as a relaxation, which
requires that, the age of the data accessed by a transaction
should be smaller than its absolute validity interval only when
the transaction accesses it. Similarly, one can define the weak
relative validity, which requires that the age differences of the
base data should be within the relative validity interval when
they are accessed by a transaction.

B. Timed Automata and UPPAAL

UPPAAL [10] is the state-of-art model checker for real-
time systems, based on timed automata [8]. Basically, a system
is modeled as a network (a parallel composition) of timed
automata in UPPAAL. A timed automaton is a finite-state au-
tomaton extended with real-valued clock variables and discrete
variables. In UPPAAL, clock variables progress synchronously.
The locations of all automata, together with the values of clock
variables, define the state of a system.

The action to be taken at one location can either be a
delay at the same location, or a transition to another location
following an edge. An invariant, which is a predicate (boolean
set of states) over clock variables, may be associated with a
location setting an upper-bound on the delay. A guard, which
is a predicate of clock or discrete variables, may be associated
with an edge as the required condition to take the underlying
transition. During the transition, discrete variables can be
updated, while clock variables can be reset. An automaton

c>5
L1 chan! L2 L3
chan?
O———0

c<=10

(a) Automaton A1 (b) Automaton A2

Fig. 1. Example of automata in UPPAAL

can synchronize with another automaton via channels. Data
can be shared by all automata by shared variables. A location
marked as “U” is an “urgent” location, indicating that the next
transition (not necessarily from this same location) should be
taken without delay. A location marked as “C” is a committed
location, indicating that the transitions from this location
should be taken immediately.

Fig. 1 shows two automata, Al and A2, in UPPAAL
notation. Al has two locations, L/ and L2, and has defined
a clock variable c¢. LI has an invariant ¢ <= 10, indicating
that A1 may delay at L/ at most until ¢ equals 10 time units.
The guard ¢ > 5 requires that the value of ¢ must be bigger
than 5 in order to take the transition to L2. Al synchronizes
with A2 via channel chan. The “!” denotes sending the signal,
and the “?” denotes receiving the signal. When Al transits
from LI to L2, it sends a signal via chan and resets c. When
receiving the signal, A2 takes the transition from location L3
back to L3, in turn.

UPPAAL uses a decidable subset of TCTL (Timed Com-
putational Tree Logic) to formalize requirements that need
to be proven as properties of the system by model-checking.
These formalized specifications, called queries, can be verified
exhaustively on the network of timed automata (e.g., Al ——
A2 in Fig. 1). In this paper we will use the following queries:

e AJ]p: Invariant property (For all possible execution
paths p always holds).

e p — q: Leads-to property (Whenever p holds, q will
eventually hold).

Property p is a logic expression that may contain logical
operators such as “and”, “or”, “not” or “imply”. In case an
invariant property fails the verification, the model checker
provides a counter-example, and step-by-step simulation of the
counter-example. Readers can refer to the literature [10] for
more information about UPPAAL.

III. ASSUMED SYSTEM

The assumed system is a CPS including sensors that
monitor the environment, and control processes that control
the actuators based on the sensor readings. The real-time data
are stored in an RTDB. The access and manipulation of the
data are managed by an RTDBMS as transactions. We identify
the following transaction types in the RTDBMS.

a) Update transaction: An update transaction is a
write-only transaction that updates a real-time data object with
the sampled value in the database. It is triggered with a period
that is decided by the sampling rate.

b) Control transaction: A control transaction reads
data from the database, performs application-dependent com-
putation based on the data, and may write data into the

database. In a real-time application, control transactions are
often periodic, or are triggered with a minimum inter-arrival
time. They often have specified deadlines to meet.

Such update and control transactions may be executed
concurrently. The RTDBMS applies a certain concurrency
control mechanism to prevent unwanted interferences.

We consider the following computations in the system.
Two update transactions, TO and T1, update data DO and DI,
respectively. TO has a period of 7ms, and T1 has a period of
8ms. A control transaction, T2, reads DO and D1, and does
some computation based on the values. T2 has a period of
15ms, and a deadline of 15ms. The worst-case time to read
a data is 1ms, while the worst-case time to write is 2ms. In
this paper, we assume that a lock-based concurrency control is
applied. Before a transaction is able to read from or write to
a data object, it needs to acquire the lock of that data. When
a transaction commits, it releases the locks it holds so that
the locked data become accessible to other transactions. The
locking and unlocking are assumed to be instantaneous.

The following temporal consistency and timeliness require-
ments are specified. Among them, Requirement 1 and 2 refer
to absolute validity, Requirement 3 refers to relative validity,
and Requirement 4 refers to the transaction timeliness.

e Requirement 1.1 DO should never be older than its
absolute validity interval, which is 15ms.

e Requirement 2.1 D1 should never be older than its
absolute validity interval, which is 16ms.

e Requirement 3.1 The difference between the ages of
DO and D1 should never be larger than the relative
validity interval, which is 18ms.

e Requirement 4 T2 should not miss its deadline, which
is 15ms.

The weak absolute validity and weak relative validity are
specified as follows.

e Requirement 1.2 DO should not be older than its
absolute validity interval, which is 15ms, when it is
accessed by T2.

e Requirement 2.2 D1 should not be older than its
absolute validity interval, which is 16ms, when it is
accessed by T2.

e Requirement 3.2 The difference between the ages
of DO and D1 should not be larger than the relative
validity interval, which is 18ms, when accessed by T2.

IV. MODELING TRANSACTION WORK UNITS AND DATA

In this section, we describe our approach for modeling the
work units [11] of the transactions, the data and the transaction
manager. The high-level description of the modeling approach
is presented in Fig 2. The work units, data and the transaction
manager are modeled as timed automata respectively. Similar
to our previous work [6], a work unit automaton models the
operations within a transaction with respect to timing, as well
as the interactions with the data and the transaction manager.
A transaction manager automaton models the concurrency
control mechanism in this paper. In order to verify temporal
data consistency, in this paper we extend the approach with
a data automaton that models the updated time and the age
of the data. A work unit automaton sends signals to the data

automata, when the data is updated by the transaction. The
data automaton will then update the timestamps of the data.

The assumed RTDBMS applies a lock-based concurrency
control mechanism to manage concurrent transactions. There-
fore, the transaction manager is called the lock manager in the
rest of the paper. The work unit automata may send signals
to require for locks from the lock manager. The lock manager
either sends signals to the transactions and grant the locks, or
lets the transactions wait if the data are already locked. In the
remaining part of this section we will discuss how to model
the work units, the data and the lock manager. To simplify
the illustration, we omit error handling of the transactions, and
assume that the lock manager makes decisions instantaneously.

Transaction Data Automaton
Automaton pegin
write

update_timestamp

read/write/
other_computation
lock/unlock
. | Transaction Manager
Automaton

grant_lock

commit

Fig. 2. High-level description of the approach

A. Modeling Transaction Work Units

Similar to our previously proposed approach [6], a trans-
action is composed by its work-unit operations that include
the operations on data and other computation, and transaction
management operations, including begin, commit, and syn-
chronizing with the lock manager. We model the work unit,
as well as the interactions with the lock manager imposed by
the concurrency control, as an automaton in UPPAAL. In such
a model, the operations are modeled as a set of locations. A
transition from one location to another models the execution
order of the operations. Since we especially target temporal
data consistency, we explicitly model the interaction between
transactions and data. When a transaction updates a data, it
sends a corresponding signal to the data automaton via the
designated channel.

Fig. 3 shows the timed automaton for the update transaction
TO described in Section III. In this automaton, the transaction
starts from the initial location begin. A variable cs represents
the CPU resource. If cs is 1, meaning the CPU is taken by
another transaction, TO must wait until CPU is free, which
is modeled by the cs_free signal. When cs is 0, TO tries
to lock the data DO via channel lock_data_O[id], where id
is the identifier of this transaction. It then waits until the
lock is granted via channel grant_lock_0[id], and proceeds
to write the new value of DO at location write_d0. Due to
the timing constraints, we use a clock femp together with
the invariant WRITE_TIME to model that it takes in worst
case WRITE_TIME time units (in this case 2ms) to write the
data. After this, the transaction immediately unlocks the data,
which is modeled by an urgent location, and a consecutive
unlock_data_0[id] channel. Then it notifies the observer that
DO is updated, via channel update[data_id]. The commit of the
transaction is modeled as the commit_work location, with an
invariant bounded by the commit time. To model the execution
time of TO we create a clock variable ¢_u0, which is reset when
TO is started. The periodic behavior of TO is modeled such that
TO will be restarted if #_u0 is equal to TO’s period.

wait_for_lock_d0

t_uO==period lockd0_granted

temp:=0, cs:=1

write_d0 temp<=WRITE_TIME

unlock_data_0fid]!

t_uO<=deadline

cs_free!
cs:=0
©

& t_u0>deadline

commit_work

committed

t_u0<=period deadiine_miss

Fig. 3. The work unit automaton of the updater transaction TO

The model of T1 is very similar to the automaton of TO.
The channels are defined as locking, unlocking and updating
operations on D1 instead of DO, and the values of deadline
and period are T1 specific.

The modeling of the control transaction T2 follows the
same principles. We show the automaton of T2 in Fig 4.
The reading DO and D1 operations are modeled as loca-
tions read_d0O and read_dl respectively, and between the
locations channels are used to model the locking mecha-
nism. Computational operations other than read and write
are abstracted as a location other_work. The temp clock, the
invariant temp<=MAX_WORK_TIME and the guard temp >=
MIN_WORK_TIME together enforce the best and worst case
execution time of the computation. A clock variable ¢ _tran
keeps track of the time of T2. If ¢_tran is bigger than the
deadline, T2 will reach the deadline_miss location, indicating
a deadline miss.

wait1

cs==
l [a_0[id]!
wait_for_lock_d0
o grant_lock_0[id]?
wait2 -

€S free? lockd0_done

cs==0

temp:=0, cs:=1
temp<=READ_TIME

cs_free!

read_d0

©552%d0_done

ock_data_1[id]!

grant_lock_1[id]
lockd1_done

cs==0
temp:=0, cs:=1

read_d1 temp<=READ_TIME

s_free!
cs:=0

readd1_done
cs==0

temp:=0, cs:=1
other_work temp<=MAX_WORK_TIME
temp>=MIN_WORK_TIME
cs_free!
wait6 cs==1 cs=0
OD work_done

“Un data_O[id]!
unlock_data_1]id]!
©mP=0 { tran>deadiine ®

el
commit_work

t_tran<=deadline

committed

deadiine_miss
t_tran<=period

Fig. 4. The work unit automaton of the control transaction T2

B. Modeling the Age of Data

In order to model-check temporal data consistency, we
need to model the age of the data. Our solution is to use
observer automata that observe the write operations on the
data, and update the age of the data accordingly. The observer
automaton of DO is shown in Fig 5. In this figure, the age of
data DO is modeled by a clock variable age. When data DO is
updated, the transaction sends a signal to the data automaton
via channel update[0], and the observer automaton then resets
age. Therefore, at any given time point, age represents the age
of DO.

P ?
update[0] updated

UPPAAL model of data DO

Fig. 5.

C. Modeling the Lock Manager

The lock manager handles lock requests and releases from
transactions, and grants available locks to the transactions. The
modeling of the lock manager is heavily application dependent.
In the assumed system, the lock manager grants locks to the
transactions in a First-In-First-Serve manner. The lock manager
implements a queue that holds the transactions requiring for
a lock. New requiring transactions are appended to the end of
the queue, while the head of the queue is the one that will be
granted the lock.

The model of the lock manager is shown in Fig 6. The
queue of waiting transaction ids is modeled by an array,
whose first transactions’ id is assigned to a variable head.
An enqueue() function appends a new transaction id to the
end of the array, while a dequeue() function removes the
first transaction id from the array, and updates the index
and the head of the queue. The enqueue() and dequeue()
functions are shown in Listing 1. When the lock manager
gets requests from a transaction with tran_id for locking DO
via channel lock_data_Oftran_id], it moves to the lock_data
location. Meanwhile, during the transition, the transaction is
inserted into the queue of DO by enqueue(). The lock manager
then checks if the data is currently being locked. If the
data is not locked, which means the requiring transaction is
the head of the queue, the lock is granted via the channel
grant_lock_O[head]. If the data is locked, the lock manager
just returns to the initial location, and the requiring transaction
has to wait. The location lock_data is a committed location, in-
dicating the transition sequence from location idle to lock_data
and then back to idle is instantaneous and atomic.

When a transaction unlocks data DO via channel un-
lock_data_O[tran_id], it is removed from the queue by function
dequeue(). If the array is not empty, the lock will be granted
to the head of the queue via channel grant_lock_O[head].

V. VERIFICATION OF TEMPORAL DATA CONSISTENCY
AND TIMELINESS

In this section we formulate the requirements of temporal
consistency and timeliness as UPPAAL verification queries, and
verify these properties for the assumed system.

Lisii The funci . L on
void enqueue (int tran_id) {

queue [len]=tran_id;

len++;

head=queue[0];}

void dequeue () {

if (len==1) {
queue[len]=0;
len——;
head=0;

} else {
int i;
for (i=0;i<len;i++)

queue [i]=queue[i+l];

queue[len]=0;
len——;
head=queue[0]; }}

unlock_data

len==0 len>0

locked:=false grant lock O[head]!
unlock_data_Oftran_iq]? | 9rant_lock_Ofhead]

dequeue()

locked==false

lock_data_Oftran_id]?
grant_lock_O[head]!

locked==true

enqueue(tran_id)

locked:=true

Fig. 6. UPPAAL model of the lock manager

A. Formalizing the Requirements

To model-check the requirements in Section III using UP-
PAAL, we have to first specify these requirements in TCTL. We
propose a set of specification patterns to help the formulation
of the temporal consistency and the timeliness of transactions.

The absolute validity requirements, i.e., Requirement 1.1
and 2.1 from Section III, can be specified as: the clock age of
the automaton of Di must always be smaller than or equal to its
absolute validity interval AVI(i). This is a property that must
hold invariantly, and can be specified using the A[] operators
in TCTL as: A[] Di.age <= AVI(i).

The weak absolute validity requirement can be specified
as: whenever Tj reads Di, the age of Di must be smaller than
or equal to its absolute validity interval AVI(i). This property
is specified as A[] (T'j.read_diimply Di.age <= AVI(i)).

The relative validity, as described in Requirement 3, re-
quires the age differences of Di and Dj to be smaller than or
equal to the relative validity interval RVI(i,j). Intuitively, this
requirement can be specified as A[] (Di.age — Dj.age <=
RVI(i,j)and Dj.age — Di.age <= RVI(i,j)). However,
the verification of this query might not terminate, due to a
large state-space during verification. .

In Fig 7 we illustrate the update of the age variables with
respect to time, using DO and D1 as examples. During the
period shown in the figure, DO is updated in t1 and t4, while
DI is updated in t2 and t6. Without loss of generality, we
consider the relative validity at t3 and t5. At t3, the values
of DO.age and Dl.age are t3-tl and t3-t2 respectively. The
difference between the ages is hence t2-t1. This is actually the
age of DO when DI is updated. Similarly, the age difference

DO0.age:=0 DO.age:=0

Do » time
t1 t3 t4 t5
D1.age:=0 D1.age:=0
D1
» time
2 3 56
Fig. 7. Tllustration of updates of data with respect to time

at t5 is equal to t4-t2, which is the age of D1 when DO is
updated. Therefore, we formulate relative validity of Di and Dj
as the following query, which explores fewer states compared
with the original one we mentioned in the previous paragraph:
Al (Di.updatedimply Dj.age <= RV I(i,7))

and (Dj.updated imply Di.age <= RV I(i,7))).

Similarly, the weak relative validity requirement requires
that whenever Tk reads Di or Dj, the age differences
of Di and Dj to be smaller than or equal to the rela-
tive validity interval RVI(i,j). This can be formulated as:
All (Tk.read_di or Tk.read_dj) imply
((Di.updated imply Dj.age <= RVI(i,j)) and
(Dj.updated imply Di.age <= RVI(i,7))))

The verification of timeliness equals to proving that
location Ti.deadline_miss is not reachable. This require-
ment is equivalent to the following invariant property:
Al] not Ti.deadline_miss.

The proposed specification patterns are summarized in
Table I. In each row, the table shows the informal description
of the property, as well as the corresponding query patterns in
UppAAL TCTL.

B. Verification Results

We model the assumed system as described in Section IV
and verify properties using UPPAAL 4.1.19. The properties
are specified using the specification patterns from the previous
subsection. The results are listed in Table II. All requirements
have passed the verification. The table also lists the time it
takes to verify each query, as well as the memory consumption.
Since the system we have modeled is not complex, the time
and memory costs look promising.

VI. RELATED WORK

Kung [13] applies pushed automata techniques to model
and verify temporal constraints in a database. However, the
temporal constraints he has verified do not include temporal
data consistency. Song et al. [3] introduced the concept of
temporal consistency. In their work, temporal consistency is
evaluated via simulation, instead of formal verification. Han
et al. [5] apply schedulability analysis on transactions to
maintain temporal consistency. However, they do not consider
concurrency control in the analysis. Both Lauer et al. [14] and
Le Berre et al. [15] use formal methods to verify temporal data
consistency in networked systems. Compared with our work,
their work do not deal with database assumptions and do not
model transaction behaviors.

Several researchers have used UPPAAL to model various
aspects of database transactions and transaction management
mechanisms. For example, Kot [7] models several selected
transaction concurrency control mechanisms in UPPAAL and
verify properties such as free of deadlock. Al-Bataineh et al.

TABLE 1. SPECIFICATION PATTERNS

Property Informal Specification

Query Pattern

Absolute validity The age of Di must always be smaller than or equal to its
absolute validity interval AVI(i)

A[] Di.age <= AV I(z)

Weak absolute validity Whenever Tk reads Di, the age of Di must always be smaller
than or equal to its absolute validity interval AVI(i)

A[](Tk.read_di tmply Di.age <= AVI(i))

Relative validity The age differences of Di and Dj to be smaller than or equal
to the relative validity interval RVI(,j)

A[] ((Di.updated imply Dj.age <= RV I(1,j))
and (Dj.updated imply Di.age <= RV I(1,j)))

Weak relative validity Whenever Tk reads Di or Dj, the age differences of Di and
Dj to be smaller than or equal to the relative validity interval
RVIGij)

A[]((Tk.read_di or Tk.read_dj) imply
((Di.updated imply Dj.age <= RV I(i,j)) and
(Dj.updated imply Di.age <= RVI(,j))))

Transaction timeliness Transaction Tk will not miss its deadline

Al]not Tk.deadline_miss

TABLE II. VERIFICATION RESULTS
Requirement Query Verification Time | Memory Consumption | Explored States Status
Requirement 1.1 Al| D0.age <= 15 0.577s 9716KB 54996 Satisfied
Requirement 1.2 | A[] Dl.age <= 16 0.609s 9844KB 54643 Satisfied
Requirement 2.1 | A[] (T2.read_d0 tmply D0.age <= 15) 0.608s 9860KB 54996 Satisfied
Requirement 2.2 | A[] (T2.read_d1 tmply D1.age <= 16) 0.608s 9868KB 54643 Satisfied
Requirement 3.1 fnd(((gﬁggjstt:;ilgﬁg501.';5: <<:_ 1188))) 0.765s 10008KB 57893 Satisfied
A[T((T2.read_d0 or T2.read_d1) imply
Requirement 3.2 | ((D1l.updatedimply DO.age <= 18) and 0.780s 10044KB 57893 Satisfied
(D0.updated imply D1.age <= 18)))
Requirement 4 Al]not T2.deadline_miss 0.468s 9680KB 58729 Satisfied

[16] uses UPPAAL to model a two-phase commit protocol [3]
for an RTDBMS. In our previous work, we have proposed a
flexible approach to verify transaction timeliness and isolation
using UPPAAL [6]. Although these works also use model
checking and UPPAAL, they focus on other aspects of the
database than temporal data consistency.

(4]

[5]
VII. CONCLUSION

In this paper we have described a model-checking approach
for verification of transaction timeliness and temporal data (61
consistency in a real-time database within a cyber-physical
system. We have modeled the transaction work units, the
data and the concurrency control mechanisms as a network
of automata. This work continues our previous work [6] in an

(71

attempt to create a framework for verification of RTDBMS, (8]
with respect to verifying transaction timeliness v.s. temporal
data consistency. The properties are specified in TCTL using [91

our proposed specification patterns. The formalized properties
are model checked using UPPAAL. An example RTDBMS with [10]
update and control transactions has been used to demonstrate
the model checking approach. All properties have been proved

satisfied within short time and with low memory consumption. [t

One possible problem of this approach is the potential
state explosion when the modeled system incorporates a large (12]
number of transactions and data. This can be mitigated by
partitioning the transactions and data according to their de-
pendencies. For example, many CPSs apply distributed data [13]
management. Instead of modeling the entire system directly, it
may be possible to verify the properties in the local databases,
and the model check, or deductively prove, the properties of [14]
the entire system.

REFERENCES [15]

[11 L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang, “Cyber-physical
systems: A new frontier,” in Machine Learning in Cyber Trust. Springer
Us, 2009, pp. 3-13. [16]
[2] K.-D. Kang and S. Son, “Real-time data services for cyber physical
systems,” in Distributed Computing Systems Workshops, 2008. ICDCS
"08. 28th International Conference on, June 2008, pp. 483-488.

X. Song and J. Liu, “Performance of multiversion concurrency control
algorithms in maintaining temporal consistency,” in Proceedings of the
Fourteenth Annual International Computer Software and Applications
Conference, 1990, pp. 132-139.

K. Ramamritham, S. H. Son, and L. C. Dipippo, “Real-time databases
and data services,” Real-Time Syst., vol. 28, no. 2-3, pp. 179-215, 2004.

S. Han, K. yiu Lam, J. Wang, S. H. Son, and A. K. Mok, “Adaptive co-
scheduling for periodic application and update transactions in real-time
database systems,” Journal of Systems and Software, vol. 85, no. 8, pp.
1729 - 1743, 2012.

S. Cai, B. Gallina, D. Nystrom, and C. Seceleanu, “Flexible verification
of transaction timeliness and isolation,” Tech. Rep., 2016. [Online].
Available: http://www.es.mdh.se/publications/4276-

M. Kot, “Modeling selected real-time database concurrency control
protocols in uppaal,” Innovations in Systems and Software Engineering,
vol. 5, no. 2, pp. 129-138, 2009.

R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
computer science, vol. 126, no. 2, pp. 183-235, 1994.

R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in dense real-
time,” Information and Computation, vol. 104, no. 1, pp. 2 — 34, 1993.

K. G. Larsen, P. Pettersson, and Y. Wang, “Uppaal in a nutshell,” In-
ternational Journal on Software Tools for Technology Transfer (STTT),
vol. 1, no. 1, pp. 134-152, 1997.

B. Gallina, “Prisma: a software product line-oriented process for the
requirements engineering of flexible transaction models,” Ph.D. disser-
tation, University of Luxembourg, 2010.

B. Kao, K. Y. Lam, B. Adelberg, R. Cheng, and T. Lee, “Updates and
view maintenance in soft real-time database systems,” in Proceedings
of the Eighth International Conference on Information and Knowledge
Management, ser. CIKM 99, 1999, pp. 300-307.

C. H. Kung, “On verification of database temporal constraints,” in
Proceedings of the 1985 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’85, 1985, pp. 169-179.

M. Lauer, F. Boniol, C. Pagetti, and J. Ermont, “End-to-end latency
and temporal consistency analysis in networked real-time systems,”
International Journal of Critical Computer-Based Systems, vol. 5, no.
3-4, pp. 172-196, 2014.

T. Le Berre, P. Mauran, G. Padiou, and P. Quéinnec, “A Data Oriented
Approach for Real-Time Systems,” in 17th International Conference on
Real-Time and Network Systems, Paris, France, Oct. 2009, pp. 147-158.

O. Al-Bataineh, T. French, and T. Woodings, “Formal modeling and
analysis of a distributed transaction protocol in uppaal,” in Temporal
Representation and Reasoning (TIME), 2012 19th International Sym-
posium on, Sept 2012, pp. 65-72.

