
Handling Uncertainty in Automatically Generated
Implementation Models in the Automotive Domain

Alessio Bucaioni∗†, Antonio Cicchetti∗, Federico Ciccozzi∗, Saad Mubeen∗,
Alfonso Pierantonio‡∗, Mikael Sjödin∗

∗ MRTC, Mälardalen University, Västerås, Sweden
Email: firstname.lastname@mdh.se
† Arcticus Systems, Järfälla, Sweden

‡ DISIM, Universitá degli Studi dell’Aquila, L’Aquila, Italy
Email: alfonso.pierantonio@univaq.it

Abstract—Models and model transformations, the two core
constituents of Model-Driven Engineering, aid in software devel-
opment by automating, thus taming, error-proneness of tedious
engineering activities. In most cases, the result of these automated
activities is an overwhelming amount of information. This is the
case of one-to-many model transformations that, e.g. in design-
space exploration, can potentially generate a massive amount of
candidate models (i.e., solution space) from one single model.
In our scenario, from one design model we generate a set of
possible implementation models on which timing analysis is run.
The aim is to find the best model from a timing perspective.
However, multiple implementation models can have equally good
analysis results. Therefore, the engineer is expected to investigate
the solution space for making a final decision, using criteria which
fall outside the analysis’ criteria themselves. Since candidate
models can be many and very similar to each other, manually
finding differences and commonalities is an impractical and error-
prone task. In order to provide the engineer with an expressive
representation of models’ commonalities and differences, we
propose the use of modelling with uncertainty. We achieve this
by elevating the solution space to a first-class status, adopting a
compact notation capable of representing the solution space by
means of a single model with uncertainty. Commonalities and
differences are thus represented by means of uncertainty points
for the engineer to easily grasp them and consistently make her
decision without manually inspecting each model individually.

I. INTRODUCTION

Model-Driven Engineering (MDE) [1] is rapidly evolving
in academia and have gained considerable foothold in indus-
trial software-development projects. While model transforma-
tions can relieve software developers from significant engineer-
ing effort and mitigate errors typical of manual translations,
they can also potentially create an overwhelming amount of
information. Especially, design-space exploration techniques,
characterised by one-to-many model transformations, have the
potential to generate hundreds, thousands, or more, candidate
solutions (i.e., models) from one single model. Despite auto-
mated analyses can be employed for evaluating the appropri-
ateness of each candidate solution – as done in our previous
work [2] – their usefulness for the engineer can be limited as
the solution space is never really unveiled in the process. In
fact, while the analysis refines the solution space by sorting out
solutions not complying to given requirements, the engineer
still has multiple choices and remains uncertain about the one
to take: a decision can only be made by manually inspecting
and comparing all candidate models. However, since candidate

models can be very similar to each other, a manual traversing
of the solution space is impractical and error-prone. This is
worsened by the fact that the number of alternatives, as well
as their size, may grow exponentially for several reasons, e.g.,
more complex source models.

In this paper, we propose the use of modelling with
uncertainty in order to explicitly represent the uncertainty
that typically accompanies many stages of the development
process [3]. More specifically, we revise our methodology [2]
in order to accommodate a compact notation capable of
representing the solution space by means of a single model
(with uncertainty). The intent is to provide the engineer with
an expressive representation of all candidate models with their
commonalities and distinctions by means of uncertainty points.
The engineer can therefore easily grasp the differences among
candidate models and consistently make her decision without
manually inspecting each model individually. Such a support is
provided by employing the metamodel-independent technique
presented in [4]. Moreover, an industrial application from the
automotive domain is used to illustrate the advantages of the
proposal.

Outline. The remainder of the paper is organised as follows.
Section II illustrates the context of this work, while the
subsequent section describes a motivating examples taken from
the automotive domain. Section IV introduces the uRubus
metamodel, i.e., execution models with uncertainty. Section V
discusses the pros and cons of modelling with uncertainty.
Section VI presents related work documented in literature
while Sect. VII draws conclusions and future work.

II. BACKGROUND

In the automotive domain, the adoption of models and
MDE led to the standardisation of an architectural descrip-
tion language, called EAST-ADL [5]. EAST-ADL proposes a
top-down development approach relying on four abstraction
levels – vehicle, analysis, design and implementation – which
implicitly ensure separation of concerns through the engineer-
ing phases. Each abstraction level is described by means of
metamodelling constructs and hides unnecessary information
from lower abstraction levels. EAST-ADL has been developed
with particular focus on the functional and structural mod-
elling. However, it does not focus on execution and timing



modelling [6]1. To this end, EAST-ADL is usually comple-
mented, at implementation level, with additional notations that
explicitly support execution and timing modelling. Among
other alternatives, Rubus Component Model (RCM) [7] is
a modelling language which gained industrial recognition as
an EAST-ADL complementary technology. RCM was devel-
oped by Arcticus Systems2 in collaboration with Mälardalen
University and it is currently used by several international
companies, e.g., Volvo CE3, BAE Systems4, for execution and
timing modelling of distributed resource-constrained real-time
software systems. EAST-ADL provides means for abstraction
and separation of concerns, but it does not provide explicit
support for automation among the different abstraction levels.

Fig. 1: Original methodology supporting timing analysis

Therefore, in our previous work [2], we have described a
methodology for seamlessly linking the modelling language
used at EAST-ADL design level and RCM with the aim of
enabling high-precision timing analysis5 at EAST-ADL design
level. The methodology before this contribution, depicted in
Fig. 1, leveraged model-driven techniques as follows. Starting
from an EAST-ADL design model, the methodology generated
the set of all the corresponding meaningful Rubus models,
which represented our candidate solutions. The generation was
performed by means of a model transformation defined in
JTL [8] that non-deterministically generated all the models
satisfying the constraints encoded in the transformation itself.
At this point, timing analysis was run on the generated Rubus
models resulting in a set of analysis results. These results
were checked against a non-empty set of timing requirements
expressed on the vehicle functionality. The result which better
met the given timing requirements was selected and the cor-
responding Rubus model was conveyed back6 to the engineer.
It is worth noting that, when selecting among analysis results,
multiple results and thereby Rubus models could be selected if
timing requirements were met. However, when this happened,

1Lately, EAST-ADL has been extended for supporting the modelling of
timing requirements [5].

2https://www.arcticus-systems.com
3http://www.volvoce.com/dealers/sv-se/swecon/Pages/homepage.aspx
4http://www.baesystems.com
5In the remainder of the paper, high-precision timing analysis is referred

simply as timing analysis
6Back-propagation was achieved through in-place model transformations

that annotated filtered Rubus models with related analysis results.

the engineer was required to manually inspect the set of
filtered Rubus models annotated with analysis results individ-
ually. From a broader perspective, this operation is frequent
in human-in-the-loop processes where domain knowledge is
needed to meet decisions that cannot be made by the tools.
Therefore, providing (semi-) automated support that prevents
the engineer from manually traversing the solution space is
key to success.

To this end, we realised that there was need for our
methodology to entail a compact notation to represent the
solution space (e.g., Rubus models) by means of a model with
uncertainty. In such a representation, model differences are
enucleated in uncertainty points that provide the engineer with
a straightforward locality for understanding how models differ
one with another.

III. MOTIVATING SCENARIO

Let us apply the methodology introduced in Sect. II on
the automotive application called Intelligent Parking Assist
(IPA) system. The IPA system assists drivers in parking their
vehicles. To this end, it uses a warning system, composed of
a set of proximity sensors and backup cameras, for detecting
obstacles and calculating optimum manoeuvres.

For the sake of simplicity, we consider only a portion
of the software architecture consisting of two nodes, namely
IPAssistant and Actuator connected to a single network that
implements the Controller Area Network (CAN) protocol [9]
(Fig. 2). Figure 2 depicts the EAST-ADL design level model
of the partial software architecture7. In the hierarchy of
an EAST-ADL design model, the so-called design function
prototype (DFP) represent a specific instance of a vehicle
functionality8. The partial IPA architecture consists of seven
DFPs in a chain. Proximity Sensor DFP, Input Process DFP,
Path Calculator DFP and CAN Send DFP DFPs are part of
the software architecture of the IPAssistant node. The remain-
ing three DFPs in the chain, CAN Receive DFP, Control DFP
and Brake Actuator DFP are part of the software architecture
of the Actuator node. Please note that CAN Send SWC sends
a network message that is received by CAN Receive SWC.
There is a periodic constraint of 10 ms that is specified on each
DFPs in the chain. However, the information about whether
each DFPs is activated independently or by its predecessor is
not available. The following timing requirement is specified
too:

• “The calculated age and reaction delays [11] shall
not exceed 20 ms and 15 ms, respectively.”

Within EAST-ADL, timing requirements are specified by tim-
ing constraints [12]. Therefore, there are two timing con-
straints, namely Data Age (AgeChain2) and Data Reaction
(DRChain2), that are specified from the input flow port of
Input Process SWC to the output flow port of Control SWC
as shown in Fig. 2.

7We have modelled the IPA system with the help of Rubus ICE [10]
8EAST-ADL implements the type-prototype pattern. Therefore, a DFP

represents a specific instance of a design function type, which defines its
type. the complete explanation of the EAST-ADL metamodel is not in the
scope of this work. The interested reader is referred to [5] for details

https://www.arcticus-systems.com
http://www.volvoce.com/dealers/sv-se/swecon/Pages/homepage.aspx
http://www.baesystems.com


Fig. 2: Partial software architecture of the two nodes in IPA system at the design-level of EAST-ADL.

(1)

(2)

(3)

(4)

Software Circuit Clock

Connector data

Connector trigger

Data ports

Trigger ports

Timing constraints
Timing constraints

Fig. 3: 4 of the 32 Rubus models generated from the EAST-ADL model

So far according to our original methodology (Fig. 1),
the EAST-ADL model in Fig. 2 is transformed in 32 Rubus
models. The first 4 Rubus models9 are depicted in Fig. 3. In
the hierarchy of a Rubus model, a software circuit (SWC)
encapsulates basic software functions. RCM distinguishes be-
tween data and control flow therefore a SWC has data and
trigger ports. Within RCM, data connectors link data ports
while trigger connectors link trigger ports. Clocks and trigger
sinks are used to initiate and terminate the execution of a SWC,
respectively. A simplified version of the Rubus metamodel is
presented in Sect. IV. All these models differ from each other
depending upon whether a SWC is activated independently
by a clock element or by its preceding SWC. Considering

9The interested reader can find the whole set of artefacts at http://www.
mrtc.mdh.se/SEAA2016.

the age constraint of 20 ms specified in Fig. 2, only 14 out
of 32 Rubus models satisfy it whereas only 1 Rubus model
satisfies the specified reaction constraint of 15 ms9. Despite the
automated analysis has filtered the solution space, there are still
14 Rubus models which must be inspected by the engineer for
deciding which one should be selected for proceeding in the
development process. However, with the current support, such
an inspection might be a daunting task as the selected Rubus
models greatly overlap one with another. For instance, let us
consider the Rubus models marked with (1) and (2) in Fig.3.
The only difference between these two models is on how the
Control SWC SWC is activated: in the model marked with (1)
it is activated from a clock element, while in the model marked
with (2) is activated from its preceding SWC. If these small
differences are hard to catch when dealing with a reasonably
small number of models and model elements, they are nearly

http://www.mrtc.mdh.se/SEAA2016
http://www.mrtc.mdh.se/SEAA2016


impossible to spot when dealing with hundreds or thousands
models and model elements.

Fig. 4: New methodology supporting timing analysis and
uncertainty

Contribution. In order to ease the inspection of the solu-
tion space represented by Rubus models, we enhanced our
methodology (Fig. 4) by introducing the u-Rubus metamodel,
a compact notation to represent the solution space by means of
a single u-Rubus model (that can represent uncertainty). Uncer-
tainty points are employed for representing commonalities and
distinctions of the Rubus models. The u-Rubus metamodel was
generated by means of an automated transformation defined in
the revised version of JTL, which we hereafter call u-JTL [4].
Since our timing analysis is currently not able to run on u-
Rubus models, we exploit a concretiser operator (in the sense
of [3]) provided by u-JTL that, starting from a u-Rubus model,
returns all Rubus models encoded in it and on which timing
analysis can be run. Analysis results are then back-propagated
as annotations to the u-Rubus model through an in-place model
transformation.

IV. u-RUBUS

In this section, we present the u-Rubus metamodel. Such
a modeling notation is obtained by endowing Rubus with
uncertainty elements in order to deal with the multitude of
Rubus models presented above. The intent is to provide the
engineer with a representation that permits to deal with a set of
Rubus models as if they were a single model and do reasoning
with all the possible models at the same time.

With reference to the small Rubus fragment9 in Fig. 5, an
execution model consists of Circuit(s), that have exactly
one Interface with Connector(s). In turn, connectors
can be either ConnectData or ConnectorTrig to denote
data- and control-flow linking a circuit to another. In Fig. 3
part of the Rubus models generated with a JTL program with
the original methodology are shown. In many cases it has
been observed that generated models share most of their model
elements, making engineer’s life harder as comprehending the
differences among the models is not always straightforward.

Fig. 5: A Rubus metamodel fragment

Fig. 6: A u-Rubus Metamodel fragment

Recently, the JTL language has been given an intensional
semantics in order to generate models with uncertainty [4].
Transformations, instead of delivering myriads of models,
can generate models with uncertainty, i.e., models denoting
multiple possibilities. As a result, engineers do not need to
manually compare models to discern between them anymore,
but rather they can combine the variants associated to un-
certainty points to explore the solution space. In order to
consistently represent uncertain elements, i.e., elements that
are optional or mutually exclusive, the Rubus metamodel has
to be extended with additional constructs. This is performed
by an automated transformation (see [13]) that, starting from
uRubus, generates the u-Rubus metamodel shown in Fig. 6 as
follows:

i) any class in Rubus is added to u-Rubus; in addition
ii) auxiliary classes Uclass and Iclass, with class and

Uclass subclasses of Iclass, are added to u-Rubus;
iii) association uVariants : Uclass �−→ class is added to

u-Rubus;
iv) for each association a : class1 �−→ class2 in Rubus,

an association a : class1 �−→ Iclass2 is added to u-
Rubus.



source pattern target pattern

#1

#2

Fig. 7: Rubus to u-Rubus mappings

Fig. 8: The u-Rubus model generated by u-JTL representing the solution space

In particular, the procedure can also be illustrated in term of
pattern rewriting rules as illustrated in Fig. 7. The first three
steps (i-iii) realize the mapping from the source to the target
pattern in the first row, while the last step (iv) is represented in
the second row. For instance, when the first mapping is applied
to Circuit in Rubus, then it is propagated to u-Rubus
together with the newly created UCircuit and ICircuit
metaclasses as shown in Fig. 6. The UCircuit metaclass rep-
resents uncertainty points where to anchor multiple alternative
Circuit instances. Whereas, the role of the IInterface is
to let the propagated interface composition in u-Rubus to refer
to either a single Interface instance or to multiple instances
through the UInterface (as subclass of IInterface).

As aforementioned, the new methodology makes use of
u-Rubus models for representing the solution space as for
instance illustrated in Fig. 8. In particular, the green elements
u1, . . . , u5 are UConnectorTrig uncertainty points repre-
senting two (mutually excluded) connectors each: a timed one
triggered by a clock element, say u′

i, and another directly
triggered by the preceding circuit, say u′′

i . Such a model
represents an overall number of 25 Rubus models10. Currently
the timing analysis can only be performed on sets of individual

10The overall number comes from the number of possible variants (2) to
the power of the number of the connector uncertainty points ui (5).

Rubus models, therefore the multivalued concretisation oper-
ator (see [14]), part of the u-JTL environment, and defined
as

concr : uRubus→ P(Rubus),

returns the set of all Rubus models encoded in the correspond-
ing u-Rubus model. It is worth noting that the original JTL
transformation, in charge of generating a set of Rubus models
from an EAST-ADL model, did not have to be modified to
generate u-Rubus models. This is due to the fact that the new u-
JTL transformation engine is semantically equivalent to the one
of JTL, although the way models are represented is different.
Once the Rubus models are obtained by concretising the u-
Rubus model, we can perform timing analysis. Without being
too specific, the outcome of such an analysis is a subset of
Rubus models satisfying given timing requirements.

Each Rubus model obtained by means of the concr oper-
ator is univocally identified by the variants chosen for each
uncertainty point ui. For instance, in the case shown in Fig. 8
the Rubus model with only clock elements is given by the 5-
tuple < u′

1, . . . , u
′
5 >. Therefore, the tuples identifying all the

models, which satisfied the timing analysis, are translated back
into annotations in the u-Rubus model together with analysis
results.



Besides being able to better locate the differences among
the models, the main advantage of this proposal consists in
harnessing the possibility to reason with all the models as a
whole. In fact, the engineer can search through the models,
which passed the timing analysis, by discarding those with
characteristics non conforming to criteria that fall outside the
analysis itself. For instance, in the context of the automotive
application presented in Sect. III, timing variations are of
crucial relevance that the engineer cannot neglect. At times,
it might be very important to prefer models presenting more
independent clocks because they can better accommodate
the branching and merging of data along the chain. Also,
independent clocks suit better to SWCs having more than one
data input port. On the other hand, it might be desirable in
some other models to have dependent activation of SWCs re-
ceiving messages from the network, e.g., CAN Receive SWC
in Fig. 8 as they ensure that fresh data from the network
traverses through the rest of the model.

V. DISCUSSION

In this paper, we have proposed a compact notation for
representing a solution space by means of a model with
uncertainty. We have described how the proposed notation
can ease the esploration of the solution space, especially
when candidate solutions display minimal variations among
themselves. This contribution enhances our methodology for
seamlessly linking EAST-ADL and RCM. More specifically,
the notation, addressed as Rubus with uncertainty (u-Rubus),
allows the developer to inspect the solution space represented
by the set of Rubus models automatically generated from a
single EAST-ADL design level model as valid implementation
alternatives. In the scenario presented here, timing analysis is
run on the initial set of generated Rubus models. Thus, the
set of valid alternatives, from a timing perspective, is selected.
These alternatives can be very similar to each other, and it
may be hard for the engineer to effectively compare them and
comprehend how they differ one with another. This difficulty
is exacerbated by the number of alternatives (as well as the
their modelling elements) that may grow exponentially due to,
e.g., loose timing requirements. u-Rubus spawns the means
for the engineer to grasp at a glance the solution space of
interest through a compact visualisation of uncertainty points
represented in a single model. The exploration of the solution
space remains manual. In fact, this contribution represents a
first step towards an analysis-based and semi-automatic design-
space exploration mechanism for guiding the engineer towards
selecting the most suitable Rubus model among a possibly
huge set of alternatives. We have already started investigating
the possibility to extend our methodology (Fig. 9) for running
timing analysis on a u-Rubus model instead of the set of Rubus
models. Doing so, we would be able to entirely act on u-Rubus
model, from start to end, with no need for concretising/de-
concretising mechanisms from/to a u-Rubus model. Moreover,
with a u-Rubus model as sole artefact, we could be able
to provide an analysis mechanism that, while analysing the
candidate solutions (in terms of the u-Rubus model) also gives
the possibility to the engineer to interactively decide upon
uncertainty points (when and whether she wishes so) based
on partial analysis results.

While we showed how u-Rubus can be exploited for
investigating the solution space of Rubus models representing

Fig. 9: Future methodology supporting timing analysis for
uncertainty

timing, this does not necessarily means that a decision on a
single alternative must always be taken. In fact, the idea of a
compact notation can be exploited for successively exploring
the solution space of models in relation to various properties.
Let us imagine that timing and power consumption are two
properties of interest. The engineer could start with running
timing analysis for reducing the solution space. u-Rubus for
timing (shown in this paper) would then be exploited for
selecting among equally good alternatives (from a timing per-
spective). It can happen that, even with the help of u-Rubus, the
engineer is not able or does not want to solve all the uncertainty
points. At this point, unsolved uncertainty points, representing
a set of Rubus models, would be analysed to measure expected
power consumption. The results of this analysis will provide
the engineer with additional information for her to decide in
two ways: i) by decorating the model that instantiates u-Rubus
for timing with power-related details (if timing-related details
are still needed) or ii) by creating a specifically generated u-
Rubus for power consumption to switch the focus of investiga-
tion and selection to power only (in case decisions on timing
are considered established). To summarise, timing analysis can
represent one step in a potential exploration chain [15], where
solution spaces are successively investigated based on different
properties prioritisation.

VI. RELATED WORK

The problem of generating, analysing, and optimising mul-
tiple design alternatives has been largely investigated and is
usually referred to as design-space exploration (DSE) [16].
Rule-based DSE [17], [18] can be considered as a possible
implementation of the exploration in a MDE context: the
space of available solutions is expressed in terms of a model
and transformations are used to derive the corresponding
alternatives. Depending on the characteristics of those models
and transformations, in [15] the authors introduced a catalog
of exploration patterns: our approach complies to the model
generation pattern, that is it performs an exhaustive deriva-
tion of implementation models (lower level of abstraction),
enriched with timing details, as derivable from the system
architecture designed through EAST-ADL, and constrained by



domain-specific rules. The generation is not meant to provide
optimisation hints/solutions at architectural level [19]; rather,
it implements a quality-driven model transformation [17], [20]
to select all the suitable (timing configuration) results given a
certain system architecture as input.

In general, the goal of DSE mechanisms is reaching an
optimal solution in terms of certain properties of interest,
therefore the available works usually focus on generating
appropriate candidates in an effective way. Moreover, based on
user’s choice and/or heuristics, potential solutions are pruned
and the exploration is driven towards optimal alternatives.
Abdeen et al. [18] propose to combine genetic algorithms
with rule-based DSE in order to achieve a domain-independent
multi-objective optimisation process. The approach is fully
automated, hence aiming at reaching the optimal solution
without user intervention. Instead, in [21] the authors embed
search-based mechanisms in a model transformation language
to generate optimal models as solutions to design problems.
Generated models are evaluated through specific metrics, typ-
ically encoded in the transformation as rules and constraints.
User’s input is mentioned as a solution evaluation possibility,
however no further clarification is given with respect to dealing
with the presentation of the alternatives.

In Schätz et al. [17] rule-based DSE for the development
of embedded systems is supported by means of a declara-
tive generation approach. A model transformation mechanism
hosted in Prolog is exploited to both define exploration rules
and constrain the set of suitable alternatives. Differently to our
approach, the user has to mentally render the set of available
choices and write corresponding predicates to narrow down the
solution space, which in our opinion can be a more complex
task than visually comparing the generated alternatives.

The DESERT tool [22] provides support for DSE based
on constraints, where the exploration and pruning rules have
to be manually defined by the user. Similarly to our proposal,
DESERT offers a more compact representation of available de-
sign alternatives in terms of ordered binary decision diagrams.
However, this approach translates to an element-by-element
choice which is devoted to the selection of a sigle preferred
solution among the generated ones. Instead, our models with
uncertainty allow to examine a solution as a whole and to
keep multiple design alternatives until the necessary maturity
was achieved to take a more constrained decision. In this
respect, Kang et al. [23] advocate the need of cost-effective
DSE by avoiding the exploration of design aspects irrelevant
for a certain phase of the design process. In fact, depending
on the maturity of the design, some alternatives might look
equivalent to the user whom is not yet concerned with some
of the details about the system that are changed. The authors
introduce also a tool, FORMULA, supporting a user-defined
equivalence specification among solutions that guarantees the
sole generation of non-isomorphic alternatives with respect to
the existing equivalence relationships. The uncertainty repre-
sentation introduced in this work supports FORMULA’s vision
in the sense that we permit to keep some choices open until
a definitive decision can be taken. Moreover, the definition of
uncertainty itself can be exploited as a definition of aspects to
be explored, and uncertainty resolution techniques [24] can be
used as alternative generation mechanism.

There exists a number of additional approaches, such

as [25], [26], [27] to mention a few, which propose generic
representations of the solution space tailored to DSE from
different perspectives, i.e. targeting multiple optimisation as-
pects. Notably, Saxena and Karsai [25] introduce a generic
DSE framework based on the extension of a domain-specific
language for exploration purposes. Such extension is then
translated to an appropriate intermediate format that can be
exploited by multiple constraint solvers to compute disparate
optimisations. The resulting solutions are listed and can be
visualised in the tool, however a one-by-one browsing of the
alternatives might be difficult to handle for the user, especially
when their number grows and the difference between them
was minimal. A similar approach is adopted in Octopus [27],
a tool that supports DSE for software intensive embedded
systems. A domain-specific model is translated towards a
DSE tailored intermediate representation, which is exploited
to perform several exploration tasks as analyses, searches,
and diagnostics. The underlying goal is to implement an
iterative development and refinement of the application model
until the desired set of properties is completely satisfied. The
intermediate representation can be also exploited to perform
optimisations through parametrisation of selected properties,
however the management of the potential uncertainty raised
by the optimisation is not discussed in the work.

GASPARD [26] is a framework for the development of
massively parallel embedded systems, and shares several so-
lution mechanisms with what is described in our contribution.
In particular, GASPARD provides a higher abstraction level
modelling support based on UML and the MARTE profile;
starting from such design level, the framework prescribes
a workflow made-up of subsequent analyses and refinement
steps, from higher to lower abstraction levels. Similarly to
the automotive development process described in this paper,
some analyses and refinements can be performed at the (EAST-
ADL) design level, while others require lower abstraction
details (notably timing). Moreover, the transition from higher
to lower abstraction levels naturally raises the issue of man-
aging multiple lower level alternatives for the same higher
level model. Indeed, also in [26] the authors advocate for a
refinement process able to support the growing number of
alternatives that should be reduced step-by-step by an analysis
method and the corresponding pruning of inadequate solutions.
However, the authors do not provide any detailed discussion
about the management of multiple alternatives at each step,
and the refinement process seems to rely on the selection of
a single candidate for each level of abstraction. In such a
context, exploiting models with uncertainty would disclose the
opportunity of keeping equally good alternatives for the next
(lower) abstraction level, until an analysis would definitively
discard a certain solution.

VII. CONCLUSION AND FUTURE WORK

As software systems increase in size, complexity and het-
erogeneity there is a growing consensus on the need to leverage
existing techniques, methods, and tools across abstraction. In
the context of automotive software, model-based techniques
underpin analyses that typically refine solution spaces, which
consists of hundred, thousand, or more candidate solutions.
Nevertheless, often the engineer might want to comparatively
inspect the models in order to consider additional requirements
that fall outside those taken into account by the analyses.



In this paper, we enhance our previous methodology by
introducing the u-Rubus metamodel: a compact notation for
formalizing the whole solution space in terms of models
with uncertainty. The advantages of the proposal consists in
letting the engineer i) to reason about multitudes of models
as a whole; and ii) to better locate the differences among
the models for identify models fulfilling criteria dictated by
the engineer’s domain expertise. This work represents a first
attempt in leveraging abstraction and automation in design
space exploration. Future work will investigate how timing
analysis for individual Rubus models can be lifted to u-
Rubus models in order to have better analysis performance
and provide the engineer with more immediate feedback.

ACKNOWLEDGMENTS

This work is supported by the Swedish Knowledge Founda-
tion (KKS) through the SMARTCore project, by the Swedish
Research Council (VR) through the SynthSoft project, and by
the Swedish Foundation for Strategic Research (SSF) through
the PRESS project. We thank our industrial partners Arcticus
Systems AB and Volvo CE, Sweden. Moreover, the authors are
grateful to Gianni Rosa for his comments and insights during
technical discussions.

REFERENCES

[1] D C Schmidt. Guest Editor’s Introduction: Model-Driven Engineering.
Computer, 39(2):25–31, February 2006.

[2] Alessio Bucaioni, Antonio Cicchetti, Federico Ciccozzi, Romina Eramo,
Saad Mubeen, and Mikael Sjödin. Anticipating implementation-level
timing analysis for driving design-level decisions in east-adl. In Inter-
national Workshop on Modelling in Automotive Software Engineering,
September 2015.

[3] Michalis Famelis, Rick Salay, and Marsha Chechik. Partial models:
Towards modeling and reasoning with uncertainty. ICSE, pages 573–
583, 2012.

[4] Romina Eramo, Alfonso Pierantonio, and Gianni Rosa. Managing
uncertainty in bidirectional model transformations. In Proceedings
of the 2015 ACM SIGPLAN International Conference on Software
Language Engineering, pages 49–58. ACM, 2015.

[5] EAST-ADL Domain Model Specification, Deliverable D4.1.1, 2010.
http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-
ADL2-Specification 2010-06-02.pdf.

[6] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Communications-
Oriented Development of Component- Based Vehicular Distributed
Real-Time Embedded Systems. Journal of Systems Architecture,
http://dx.doi.org/10.1016/j.sysarc.2013.10.008, Oct. 2013.

[7] Kaj Hänninen, Jukka Mäki-Turja, Mikael Sjödin, Mats Lindberg, John
Lundbäck, and Kurt-Lennart Lundbäck. The rubus component model
for resource constrained real-time systems. In 3rd IEEE International
Symposium on Industrial Embedded Systems, June 2008.

[8] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso
Pierantonio. Jtl: A bidirectional and change propagating transformation
language. In Software Language Engineering, volume 6563, pages 183–
202. 2011.

[9] ISO 11898-1. Road Vehicles interchange of digital information
controller area network (CAN) for high-speed communication, ISO
Standard-11898, Nov. 1993.

[10] Rubus-ICE: Integrated component Development Environment, 2013.
http://www.arcticus-systems.com.

[11] Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. A
Compositional Framework for End-to-End Path Delay Calculation of
Automotive Systems under Different Path Semantics. In Proceedings of
the IEEE Real-Time System Symposium ? Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems,, 2008.

[12] Timing Augmented Description Language (TADL2) syntax, semantics,
metamodel Ver. 2, Deliverable 11, Aug. 2012.

[13] Romina Eramo, Alfonso Pierantonio, and Gianni Rosa. Uncertainty
in bidirectional transformations. In 6th International Workshop on
Modeling in Software Engineering, MiSE 2014 - Proceedings, pages 37–
42, New York, New York, USA, January 2014. University of L’Aquila,
L’Aquila, Italy, ACM Press.

[14] Rick Salay, Michalis Famelis, and Marsha Chechik. Language indepen-
dent refinement using partial modeling. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), pages 224–239. University of Toronto,
Toronto, Canada, April 2012.

[15] Ken Vanherpen, Joachim Denil, Paul De Meulenaere, and Hans
Vangheluwe. Design-space exploration in model driven engineering.
Technical report, SOCS-TR-2014.4, McGill University, 2014.

[16] Matthias Gries. Methods for evaluating and covering the design space
during early design development. Integr. VLSI J., 38(2):131–183,
December 2004.

[17] B. Schätz, F. Hölzl, and T. Lundkvist. Design-space exploration through
constraint-based model-transformation. In Engineering of Computer
Based Systems (ECBS), 2010 17th IEEE International Conference and
Workshops on, pages 173–182, March 2010.

[18] Hani Abdeen, Dániel Varró, Houari Sahraoui, András Szabolcs Nagy,
Csaba Debreceni, Ábel Hegedüs, and Ákos Horváth. Multi-objective
optimization in rule-based design space exploration. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 289–300, New York, NY, USA, 2014.
ACM.

[19] Martin Walker, Mark-Oliver Reiser, Sara Tucci-Piergiovanni, Yiannis
Papadopoulos, Henrik Lnn, Chokri Mraidha, David Parker, DeJiu Chen,
and David Servat. Automatic optimisation of system architectures using
east-adl. Journal of Systems and Software, 86(10):2467–2487, 2013.

[20] Mauro Luigi Drago, Carlo Ghezzi, and Raffaela Mirandola. Towards
quality driven exploration of model transformation spaces. In Procs.
of the 14th Int. Conf. on Model Driven Engineering Languages and
Systems, MODELS’11, pages 2–16, Berlin, Heidelberg, 2011. Springer-
Verlag.

[21] Joachim Denil, Maris Jukss, Clark Verbrugge, and Hans Vangheluwe.
System Analysis and Modeling: Models and Reusability: 8th Interna-
tional Conference, SAM 2014, Valencia, Spain, September 29-30, 2014.
Proceedings, chapter Search-Based Model Optimization Using Model
Transformations, pages 80–95. Springer International Publishing, 2014.

[22] Sandeep Neema, Janos Sztipanovits, Gabor Karsai, and Ken Butts.
Embedded Software: Third International Conference, EMSOFT 2003,
Philadelphia, PA, USA, October 13-15, 2003. Proceedings, chap-
ter Constraint-Based Design-Space Exploration and Model Synthesis,
pages 290–305. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[23] Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. Foundations
of Computer Software. Modeling, Development, and Verification of
Adaptive Systems: 16th Monterey Workshop 2010, Redmond, WA, USA,
March 31- April 2, 2010, Revised Selected Papers, chapter An Approach
for Effective Design Space Exploration, pages 33–54. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[24] Rick Salay, Michalis Famelis, and Marsha Chechik. Language in-
dependent refinement using partial modeling. In Proceedings of the
15th International Conference on Fundamental Approaches to Soft-
ware Engineering, FASE’12, pages 224–239, Berlin, Heidelberg, 2012.
Springer-Verlag.

[25] Tripti Saxena and Gabor Karsai. Model Driven Engineering Languages
and Systems: 13th International Conference, MODELS 2010, Oslo,
Norway, October 3-8, 2010, Proceedings, Part I, chapter MDE-Based
Approach for Generalizing Design Space Exploration, pages 46–60.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[26] Abdoulaye Gamatié, Sébastien Le Beux, Éric Piel, Rabie Ben Atitallah,
Anne Etien, Philippe Marquet, and Jean-Luc Dekeyser. A model-driven
design framework for massively parallel embedded systems. ACM
Trans. Embed. Comput. Syst., 10(4):39:1–39:36, November 2011.

[27] Twan Basten, Martijn Hendriks, Nikola Trčka, Lou Somers, Marc
Geilen, Yang Yang, Georgeta Igna, Sebastian Smet, Marc Voorhoeve,
Wil Aalst, Henk Corporaal, and Frits Vaandrager. Model-Based Design
of Adaptive Embedded Systems, chapter Model-Driven Design-Space
Exploration for Software-Intensive Embedded Systems, pages 189–244.
Springer New York, New York, NY, 2013.


