-37-

Plug-In Based Aperiodic Task Handling for Diverse Real-Time Systems

Bjom Lindberg and Gerhard Fohler
Department of Computer Engineering
Milardalen University
P.O. Box 883, SE 721-23 Visteras, Sweden

{ble, gfr}@mdh.se

1 Introduction

Functionality for various services of scheduling algo-
rithms is typically provided as extensions to a basic algo-
rithm. Aperiodic task handling, guarantees, etc. are inte-
grated with a specific basic scheme, such as earliest dead-
line first, rate monotonic, or off-line scheduling. Put in an-
other way, various scheduling functionality comes in pack-
ages of scheduling schemes, fixed to a certain methodology,
confronting designers with an “all-or-nothing” alternative.

This contrasts actual industrial demands: designers want
to select various types of functionality without considera-
tion of which “package” they come from. They are reluc-
tant to abandon trusted methods and “to switch packages”
for the sake of an additional functional module only. In-
stead, there is a need to seamlessly integrate new function-
ality with a developed system, enabling designers to choose
the best of various “packages”.

In this paper, we propose the use of a “plug-in” approach
to add functionality to existing scheduling schemes. In par-
ticular, we present a software module for aperiodic task han-
dling. A number of methods have been presented [9, 8, 7],
but within their respective “packages” only. Instead of ex-
tending an existing scheduling “package”, we concentrate
the functionality into a module, define an interface and dis-
cuss its application to off-line and on-line scheduling meth-
ods as examples.

]
i

2  Plug-In Definition

A plug-in can be thought of as a hardware or software
module that adds a specific feature or service to an existing
system. The purpose of a plug-in is to add functionality
without calling for redesign or extensive modifications. To
accomplish this it must be clear what services the plug-in
provides and an interface between the plug-in and the target
system must be defined.

Set or modify wake-up point

P

Scheduler

Activption

Wake-Up

' Dispatcher a5 | Calendar

Scheduler

Figure 1. The target system and the plug-in.

2.1 Target System Model

Before discussing our plug-in for aperiodic task handling
in a real-time system, we must define a target system model.
The model, depicted in figure 1, consists of three separate
modules: a scheduler, a dispatcher, and a wake-up calendar.

The scheduler’s responsibility is to schedule real-time
tasks for execution according to some algorithm. The re-
quirement on this algorithm is that tasks are scheduled on
an earliest start time and deadline basis. As depicted in fig-
ure 1, the plug-in processes aperiodic tasks and puts them
into the ready-queue. The scheduler deals with the tasks in
the ready-queue, not being concerned as to whether they are
aperiodic or not.

The dispatcher allocates the CPU to tasks selected by the
scheduler and activates the scheduler as described below.

The wake-up calendar is a module that invokes the dis-
patcher at so called wake-up points. A wake-up point is a
point in time when the dispatcher must wake up and activate
the scheduler. Such a point could, for example, be a system
tick or a point when the dispatcher wakes up to make sure

11th EUROMICRO WORKSHOP ON REAL-TIME SYSTEMS: WORK-IN-PROGRESS



-38-

that a task does not execute more than it is supposed to.
2.2 Plug-In Interface

The interface between the plug-in and the scheduling
module is just a set of primitives for adding and removing
tasks to and from the ready-queue. The order of the ready-
queue is always conserved. The plug-in also needs to make
use of the services offered by the wake-up calendar to set
and modify wake-up points.

3 Plug-In Based Aperiodic Task Handling

Our plug-in for aperiodic task handling is meant to be
“plugged into” a scheduling module that makes scheduling
decisions based on earliest start times and deadlines. The
plug-in works independently of the scheduling module and
can be seen as a layer on top of it. '

At all times the scheduling module schedules tasks that
are ready to execute, that is, tasks that are present in the
ready-queue. The plug-in deals with the aperiodic tasks
and places them in the ready-queue. The scheduling mod-
ule then processes the aperiodic tasks as it would any other
tasks in the system.

The plug-in’s mechanisms for aperiodic task handling
are based on the slot shifting [2] algorithm, taking advan-
tage of resources not needed by non-aperiodic tasks and us-
ing them to schedule aperiodic tasks.

3.1 Task Model and Terminology

e All tasks T have an earliest possible start time denoted
by est(T).

e The maximum execution time [5] of a task T is de-
noted by mazt(T).

e A task T’s deadline is denoted by dI(T').

o Aperiodic tasks T'a have unknown arrival times. The
earliest start time of an aperiodic task is equal to its ar-
rival time. Aperiodic tasks with known maximum ex-
ecution times and deadlines are termed firm aperiodic.
These tasks need to be completed before their dead-
lines. Aperiodic tasks without deadlines and possibly
without known maximum execution times are termed
soft aperiodic.

3.2 Off-Line Preparations

Before system run-time, the plug-in mechanisms are ini-
tialised in an off-line phase. Input to this phase is simply
a set of n non-aperiodic tasks S = {T;|¢ = 0,...,n — 1}
where, for each task T; € S, est(T;), dl(T;), and mazt(T;)
are known. For this set we create a corresponding set of

Io I
To Ty
D O ]
o 1 2 3 4 5
Interval start(I) end(I) 1 mazt(l) sc(I) wu(l)
Ig 0 2 2 1 ! !
n 2 s 3 1 2 4

Figure 2. Two intervals and their attributes.

disjoint execution intervals. Each interval, see figure 2,
I : 5 =0,...,k — 1 is characterised by the following
properties.

o The end of the interval: end(I;). All tasks T; € S
where dI(T;) = end(I;) are said to belong to I;. The
fact that a task T; belongs to interval J; is denoted by
Ti el j-

o The start time of the interval: start(I;).

o The length of the interval: |I;| = end(I;) — start(I;).

¢ The maximum execution time of all tasks belonging to
the interval:
mazt(l;) = Yy, mazt(Ty).

o The spare capacity of the interval: sc(I;) = |I;| —
mazt(l;) + min(sc(lj+1),0). The spare capacity of
an interval is the amount of resources not used by non-
aperiodic tasks in that or subsequent intervals.

e The wake-up point of the interval: wu(l;) =
start(I;) + sc(I;). All wake-up points are registered
in the wake-up calendar. The wake-up point wu(l;) of
interval J; is a point in time when the execution of any
task T ¢ I; must be preempted as to not violate dead-
lines of tasks T' € I;. These initial wake-up points are
identical to the critical slot concept of [3].

Further details can be found in [1, 2].
3.3 Guarantee Algorithm

When a firm aperiodic task arrives at the system we ap-
ply a guarantee test on it. The task is either accepted and
completed before its deadline or rejected.

Assume that at time ¢ a firm aperiodic task T'a arrives
at the system. We define I, : start(l.) < t < end(l.)
to be the current interval and Iy : start(l;) < dl(Ta) <
end(Iy) to be the final interval.

If the sum of all interval spare capacities between I, and
I; is greater than or equal to T'a’s maximum execution time
Ta is guaranteed; otherwise it is rejected.

If successful, we update interval spare capacities and
wake-up points going from Iy towards I.. This is because
the resources that have been allocated to Ta are no longer
available for other tasks.

11th EUROMICRO WORKSHOP ON REAL-TIME SYSTEMS: WORK-IN-PROGRESS




-39.-

If di(Ta) # end(lIy), the interval Iy needs to be split
into two intervals Iy; : [start(Iy),dl(T,)) and Iy,
[dI(T,), end(If)). The spare capacities and wake-up points
of all intervals I; : j =c,..., f2 are then updated. Finally
Ta belongs to Iy or If; depending if Iy needed to be split
or not. See [1] for details.

3.4 On-Line Activities

When the plug-in is activated, it updates the intervals in
conformity with the last task execution and checks if there
are any pending aperiodic tasks. If so, it processes them and
puts one or more of them into the ready-queue.

To be able to update the intervals, the plug-in must keep
track of which task executed last and when it started its lat-
est execution. Using this information regarding how much
time the last task consumed, the plug-in updates interval
spare capacities and possibly also wake-up points. Details
follow. :

Let ¢t be the current time and I, be the current inter-
val. We define Tj,5: to be the last executing task and
t1as¢ the time when T}, began its latest execution. Let
Spirm = {Takli =0,...,k = 1A dl(Ta}) < dl(Ta}™)}
be the set of pending firm aperiodic tasks and Ssop: =
{Tdili = 0,...,m — 1 Aest(Ta}) < est(Ta;*')} be
the set of pending soft aperiodic tasks.

First we update interval spare capacities according to one
of the following three cases.

1. Tiast € Ssoft V Tlase = idle:
sc(I.) = sc(I.)—[t—tiast—max(start(l.) —tiase, 0)].
2. Tiast € Ic:
sc(l;) = sc(1.) + max(start(l;) — tiast,0).
3. Tiast € I; # I. Aend(I;) > end(I.):
sc(I.) = sc(l;)—[t—tiase —max(start(Il.) —tiast, 0)].
sc(I;) = sc(I;) + (t — tiast)-
Interval spare capacities and wake-up points are then
updated going from I; towards /.

For case 2 we also update the wake-up point of I.

2. 3T : T € I. AT not completed A sc(I.;) > 0:
wu(le) =t + sc(le).
If, after updating, sc(lc) = 0 A Tiast € Ssoft then Tigse is
removed! from the ready-queue and put back in’ Sso rt- We
then check if there are aperiodic tasks pending.

e Stirm # 0: there are firm aperiodic tasks present. We
apply the guarantee algorithm to the first task in S¢irm,
if successful to the second one, and so on. Each guar-
anteed task is inserted into the ready-queue.

e Sso5t # 0: there are soft aperiodic tasks present. If,
after guaranteeing firm aperiodic tasks, sc(I;) > 0 we

IThe task is only removed if it has not yet completed its execution. If
completed, the task is no longer present in the queue.

insert the first task in S,,s; at the head of the ready-
queue, provided no soft aperiodic task is already in the
queue.

When the above steps have been completed the plug-in sus-
pends and consequently the scheduling module takes over.

3.5 Target System Diversity and Plug-In Applica-
bility

If no aperiodic tasks are present in the system, the plug-
in will not make any modifications to the ready-queue. Thus
it will not interfere with the original scheduler.

Depending on the target system, the plug-in needs to be
initialised in different ways. For an event-triggered system
where the scheduling module processes a set of tasks char-
acterised by earliest start times, maximum execution times,
and deadlines, it is straightforward to create a correspond-
ing set of intervals, as described in section 3.2.

In an event-triggered system using the EDF [4] schedul-
ing algorithm, the plug-in is set up in the off-line phase and
during run-time it will be activated by the dispatcher when
tasks finish their execution, when aperiodic tasks arrive, and
at interval wake-up points.

A target system using an off-line generated [6] sched-
ule usually has more stringent task requirements, such as
precedence constraints, than an on-line scheduled, event-
triggered counterpart. In an off-line generated schedule,
tasks have fixed starting and finishing times. Thus before
setting up the plug-in, the off-line schedule needs to be
transformed into a task set in which tasks are distinguished
by earliest start times, deadlines, and maximum execution
times. Such a transformation technique can be found in [1].
The plug-in off-line initialisation phase then continues. At
run-time the plug-in will be activated in the same way as for
an event-triggered system.

4 An Example

To illustrate how the plug-in works, we provide the fol-
lowing example.

Assume a set § = {Ao, By, A1, B1, A2, Bo} of six task
instances scheduled on a system by the EDF algorithm.
Each task A;, B; € S, wherei = 0,...,2, has the fol-
lowing properties.

e mazt(A4;) =1.

o mazt(B;) = 2.
est(A;) = est(B;) = 4i.

dl(A;) = dl(B;) =4(i + 1).

For this task set, three intervals Iy, I, and I, are created.
These intervals are shown in figure 3. Plug-in run-time ac-
tivities and a trace of task executions are given in figure 4.

11th EUROMICRO WORKSHOP ON REAL-TIME SYSTEMS: WORK-IN-PROGRESS




- 40 -

7 8 9 10 11 12

Interval

start(l)

sc(I) wu(l)

Io

0

I

4

T2

Figure 3. The intervals and their initial at-

tributes.

¢ R Stirm Ssoft Plug-in Actions

0 | {A0.Bo} ° L None

1 | (Bo) 0 {Tas} | % 2 =  sc(ly) =
1, wu(lg) = 2,R =
{Ta,. Bg}

2 {Tas, Bg} '] ) Case | = sc(lg) =
sc(lg) =1 = O.R =
{Bo}

4 {A1.B1} [) {Ta,} R = {Ta,, A1,B}

5 {41,.B1} [} '] Case | = ac(ly) =
se(I1)=-1=0

6 | {B1) ° '} Case2=> se(ly) =0

8 {A2, B3} {Tal) (] guarantee(Tay), R =
{Tay, A2, B2}

Tag : mazt(Ta,) =2

/
Ta,

Tay : mazt(Tay) =1,dl(Tay) = 12

“ Ta'. .A), By : Ta! A2 | Bz
| 1 1
0 1 2 3 4 E) 6 7 8 9 10 11 12

Ao

Figure 4. Execution trace and plug-in actions.

Attime ¢t = 0 the ready-queue R = {A4g, By }. No aperi-
odics are present and the plug-in suspends itself. As shown
in figure 4, the EDF scheduler selects task Aq for execution.

Attime t = 1, a soft aperiodic task T'a, : mazt(Ta,) =
2 arrives at the system. The plug-in updates the spare ca-
pacity and wake-up point of Iy according to case 2. Since
sc(Io) > 0A Sso5t = {Tas}, Ta, is inserted at the head of
the ready-queue and is executed. When the plug-in wakes
up at time t = 2, T'a, is preempted in favour of task By
which will miss its deadline unless it begins executing at
this time. ’

At time t = 8, a firm aperiodic task Tay
mazt(Tay) = 1,dl(Tay) = 12 arrives at the system.
Since at this time sc(lz) = 1, the task is guaranteed and
inserted into the ready-queue. From this point on until the
start of the next schedule instance the plug-in makes no
modifications to the ready-queue.

5 Conclusions and Further Work

In this paper we addressed the need for adding function-
ality to systems, in particular scheduling algorithms, with-
out need for abandoning trusted methods or major revisions.
We proposed a “plug-in” approach for aperiodic task han-
dling. Our method concentrates the aperiodic task function-
ality into a software module with a defined interface. As
the functionality of the plug-in is independent of the basic
scheduling scheme and the interface is very small, we can
insert and apply the “aperiodic plug-in” to both off-line and
online scheduling methods. We are currently implementing
the plug-in for use in various systems with diverse schedul-
ing algorithms. Further research will go into extending the
applicability to a wider range of systems and algorithms.

6 Acknowledgements

The authors wish to thank Sasi Punnekkat, Damir Isovi¢,
and Anders Ingelsson for their useful comments.

References

[1] G. Fohler. Flexibility in Statically Scheduled Hard Real-Time
Systems. PhD thesis, Technische Universitit Wien, Apr. 1994.

[2] G. Fohler. Joint scheduling of distributed complex periodic
and hard aperiodic tasks in statically scheduled systems. In
Proceedings of the 16th Real-Time Systems Symposium, Pisa,
Italy, Dec. 1995.

[3] D. Isovi¢ and G. Fohler. Handling sporadic tasks in off-line
scheduled distributed real-time systems. In Proceedings of the
11th Euromicro workshop on real-time systems, York, Eng-
land, Jun. 1999.

[4] C.Liu and J. W. Layland. Scheduling algorithms for multi-
programming in a hard real-time environment. Journal of the
ACM, 20, 1, pages 4661, Jan. 1973.

[5] P.Puschner and C. Koza. Calculating the maximum execution
time of real-time programs. RT Systems, 1(2), pages 159176,
Sep. 1989.

[6] K. Ramamritham. Allocation and scheduling of complex pe-

riodic tasks. In Proceedings of the 10th Int. Conf. on Dis-

tributed Computing Systems, pages 108-11S5, 1990.

S. Ramos-Thuel and J. P. Lehoczky. On-line scheduling

of hard deadline aperiodic tasks in fixed priority systems.

In Proceedings of the IEEE Real-Time Systems Symposium,

Raleigh-Durham, North Carolina, Dec. 1993.

M. Spuri and G. Buttazzo. Efficient aperiodic service under

earliest deadline scheduling. In Proceedings of the 15th IEEE

Real-Time Systems Symposium, Portorico, Dec. 1994.

M. Spuri and G. Buttazzo. Scheduling aperiodic tasks in dy-

namic priority systems. The Journal of Real-Time Systems,

10(2):179-210, Mar. 1996.

(7

(8]

9

11th EUROMICRO WORKSHOP ON REAL-TIME SYSTEMS: WORK-IN-PROGRESS




