
1

Modern technologies for modeling and development of
process information systems

Prof. Dr. Ivica Crnković, M.Sc. Goran Mustapić, M.Sc. Mikael Åkerholm

Mälardalen University, Department of Computer Science and Engineering,
721 23 Västerås, Sweden, http://www.idt.mdh.se/~icc

ivica.crnkovic@mdh.se, goran.mustapic@mdh.se, mikael.akerholm@mdh.se

Table of Contents

1 Introduction...2

2 Basic Concepts of Object-Oriented Approach..5

2.1 Elements of Object-Oriented Approach ..5
2.2 Object-oriented Languages ..7
2.3 Conclusion ..7

3 Unified Modeling Language ...8

3.1 UML Language Architecture...8
3.1.1 BASIC BUILDING BLOCKS OF UML ..9
3.1.2 RELATIONSHIPS...10
3.1.3 DIAGRAMS ...11
3.2 UML Example..12
3.3 Conclusion ..15

4 Component-Based Development..15

4.1 Component Specification..16
4.2 Life cycle of Component-based Systems ...16
4.3 UML and Component-Based Systems Modeling18
4.4 Interacting with Components ...19
4.5 Component Models ...20
4.5.1 COMPONENT OBJECT MODEL (COM)..20
4.5.2 MICROSOFT .NET ...21
4.5.3 ENTERPRISE JAVA BEANS (EJB)..23
4.6 Common Object Request Broker Architecture (CORBA)23

5 References ...24

2

Summary
This report gives an overview of the modern technologies used in software
development in general, and in development of process information and process
automation systems. As the systems became more complex and the software
parts of them larger, old software development technologies based on structural
type of programming had more and more difficulties to cope with this complexity.
The new technologies emerged in recent ten-fifteen years have tried to solve
these problems by focusing on a) reuse of software b) increasing the abstraction
level in the development processes. All these technologies are based on object-
oriented approach. We can see two clear directions of the development. One
direction is in a relation to modeling of software systems. During the
establishment of object-oriented languages, different methods for modeling
object-oriented systems appeared which eventually resulted in Unified Modeling
Language (UML). The second direction is related to the implementation part, i.e.
to reuse of software components already implemented. This direction is
characterized by component-based approach which includes development of
methods and different implementations of component-based models and
middlewares (for example COM, .NET, CORBA, JavaBeans, etc.). These trends
are continuing. UML is grown up in a general methodology, not only used in
object-oriented design, and component-based technologies are gaining ground
in new domains.
This report gives an overview of basic concepts of object-oriented approach,
UML and component-based technologies.

1 Introduction
In last ten years software is becoming the most important part in increasing
number of products previously considered to be pure or to large extent hardware
products. Examples of such are cars, washing machines, TV-sets, different
control systems, etc. Even more, for such products the cost of developing the
software components is a considerable proportion of the total development cost
and is increasing. For example, the development cost of software in the
industrial robot industry was one third of the total development cost ten years
ago, today it is about two thirds, see Figure 1.1.

Figure 1.1 Software and hardware development costs for the industrial robots)
1990 2000 2010

0

20

40

60

80

100

Software Costs

Hardware Costs

Total Costs %

1990 2000 2010
0

20

40

60

80

100

Software Costs

Hardware Costs

Total Costs %

3

We observe similar trends in the automotive industry, in the telecommunication
and in number of other domains.

Software is no longer marginal in technical systems but has now become a
central factor in many fields. System features based on software functionality,
rather than other characteristics, are becoming the most important factor in
competing on the market. Increasing numbers of software users are non-
experts. These trends place new demands on software. Usability, robustness,
simple installation and integration become the most important features of
software. As a consequence of the wider area of software utilization, the
demand for the integration of different areas has increased.

A consequence of all this is that software is becoming increasingly large and
complex. Traditionally, software development addressed challenges of
increasing complexity and dependence on external software by focusing on one
system at a time and on delivery deadlines and budgets, while ignoring the
evolutionary needs of the system. This has led to a number of problems: the
failure of the majority of projects to meet their deadline, budget, and quality
requirements and the continued increase in the costs associated with software
maintenance.

Software has indeed changed and improved and we can witness a continuous
change of its paradigm. With each change of the paradigm the productivity has
been increased. Figure 1.2 shows different software paradigms that have
appeared during last twenty years.

Figure 1.2. Software paradigm shift (2001 © ITEA Office Association)

Structured
programming

Object-orienteted
approach

Component-based
development

Agend-based
development

Productivity

1970 1990 2000 2010

Top/Down UML/ADLs ????
FORTRAN, C C++ C++,Java,C# Agents?
Mainfraime Distributed Client server Self-organization

Structured
programming

Object-orienteted
approach

Component-based
development

Agend-based
development

Productivity

1970 1990 2000 2010

Top/Down UML/ADLs ????
FORTRAN, C C++ C++,Java,C# Agents?
Mainfraime Distributed Client server Self-organization

4

We can distinguish different periods of software paradigms that can have been
characterized by different approaches in design methods, different languages,
different computer architectures and different system environments:

• Structured programming is characterized by a top/down design, and
structured and imperative languages such as Pascal, FORTAN and C.
The computer systems have migrated from large mainframes to
minicomputers.

• In late eighties and nineties the object-oriented approach has been

established. The object-oriented approach comprises software analysis
and design, and programming languages. The computer systems are
dominated by workstations and PCs. Object-oriented analysis and
design have included different modeling languages which eventually
merged into the Unified Modeling Language (UML).

• The object-oriented design has been shown as successful in many

application domains, but did not solve the increasing requirements for
new functions and productivity. Long ago it was realized that the key in
solving productivity problem can be solved by re-using software. Object-
oriented approach has enabled it to some extent, but it was shown that
the re-use level (i.e. re-use of classes and objects) is too low. The object-
oriented approach has evolved into a component-based approach.
Components are reusable parts that can be used in different systems,
and not strictly related to objects. Still no new languages have been
developed, but object-oriented languages have been used. Instead
different component technologies have been developed which focused on
re-use if binary components. UML has been further improved, but also
different Architectural Definition Languages have been developed.
Component-based approach is today a state of the art of software
development.

• The recent trends point to a global integration of information. It is not only

integration of information within particular domains, but dynamic and
intelligent information exchange between different types of computes
systems. The pervasive systems, intelligent embedded systems, ad-hoc
communication systems, flexible and adjustable software are
characteristics of the future systems. The basic technologies supporting
these trends are based on software agents that can migrate between
different systems and adjusted their functionalities according to available
resources, and different middleware solutions that provide support for
established a high-level communication.

This report will give a short overview of some of the technologies widely used
today. Section 2 presents some basic concepts of object-oriented approach, as
the most of the technologies used today are based on object-oriented concept.
Section 3 gives and overview of UML. Section 4 describes component-based
and middleware technologies used today as standards and de-facto standards
in software development. Section 5 will summarize the limits of these

5

technologies in particular for process information systems. Finally, section 6
concludes the report.

2 Basic Concepts of Object-Oriented Approach

Object-oriented approach includes analysis, design and programming in which
the focus is set on ‘things’ rather than on operations or functions. A software
program is not designed as a set of functions that interchange data through their
parameters and through a shared memory or global variables; an object-
oriented program consists of interacting objects. Objects maintain their own local
state and define operations on that state information. They hide information
about the representation of the state and hence limit access to it.

The characteristics of an object-oriented design are:

• In an object-oriented design a software system is designed as a set of

interacting objects that manage their own private state and offer services to
other objects. These services are often called methods, or operations.

• Objects are specified by object classes. An object is created by instantiating

an object class.

• System functionality is expressed in terms of operations or services

associated with each object. Objects interact by calling on the operations
defined by other objects.

• There are no shared data areas. Objects communicate by calling on services

offered by other objects rather than sharing variables. There is no possibility
that a program component can be affected by modifications to shared
information.

2.1 Elements of Object-Oriented Approach

The fundamental part of any object-oriented approach is a class and an object.
While a class is a form (i.e. it identifies which attributes and operations it
includes), an object is an instance of that form with concrete values of the
attributes and which performs the operations. An example of a class is shown on
Figure 2.1 in which we can see the class name (Rectangle), attributes (position,
length, with and color) and operations (translate, rotate). The attributes and the
operations belong to a particular type. For example, the position is a pair of
integer value, length and with may be integer values, etc. The types may be
primitive (such as integer, or Boolean) or complex (such as different structures
or any other object). The operations may have input parameters (such as new
coordinates) and they can return the result which is also of a pre-defined type. In
that sense the operations do not differ from the functions in non-object-oriented
languages.

6

Figure 2.1 An example of a class

From the example shown above we can see directly that we can identify objects
with many common characteristics, but some of them different. To efficiently
manage these types of objects, object-oriented approach uses terms
generalization (or inheritance). In our example we can identify a class Shape,
that contains attributes such as position and color, and then classes Rectangle,
Circle, Triangle, and so on, that all are derived from the Shape class, but have
some specific operations. Figure 4 illustrates the “generalization” term, in which
the arrow denotes “generalization”.

Figure 2.2 Class generalization

From Figure 2.2 we see that the class Shape includes two operations, translate
and rotate. It is obvious that the rules for the translation are different for every
particular shape. This is the reason why each sub-class has its own
implementation of these operations. These operations in the Shape class (i.e. in
the super-class) are only declared, but no implementation is specified. Their role
here is only to show that every sub-class of the class Shape must implement
these operations. This principle is very important as it completely specifies what
the sub-classes must include. A special case of a super-class is a class which
only includes declarations (specifications) and not implementations. Such
classes are designated as virtual classes or interfaces. Although the separation
of specification from implementation is an old principle already present in other
languages, such as Pascal, Ada and even C, the full utilization of this principle
has started with object-oriented technology and has been further developed in
new component-based technologies. In a similar way as the methods from a
sub-class can “overload” a method from a super-class, many object-oriented
languages have mechanisms to overload basic operations (such as addition,
subtraction, assignments, etc.), which provides more abstractions to them. For
example, the operation “+” may denote addition of two integer numbers, or two
matrices, depending on which objects are summed.

Rectangle
position
length, with
color

translate
rotate

Rectangle
position
length, with
color

translate
rotate

Shape
position
color
translate
rotate

Rectangle
side_a, side_b
translate
rotate

Triangle
side_c, side_b,-side_c
translate
rotate

Circle
radius
translate
rotate

Shape
position
color
translate
rotate

Shape
position
color
translate
rotate

Rectangle
side_a, side_b
translate
rotate

Rectangle
side_a, side_b
translate
rotate

Triangle
side_c, side_b,-side_c
translate
rotate

Triangle
side_c, side_b,-side_c
translate
rotate

Circle
radius
translate
rotate

Circle
radius
translate
rotate

7

2.2 Object-oriented Languages

Object-oriented approach comprises several phases of the software
development: analysis, design and implementation. The implementation part has
a strong support from many programming languages, some of them clearly
predominated used. We list here some of them, the post important in the
history of object-oriented approach and now.

• Smalltalk is the first real object-oriented language and the entire
development environment. Its basic characteristic is that literally every
element in the language is defined as an object. This approach has made
this language very efficient for programming, but unfortunately with very low
performance. Due to various reasons, most of them of the marketing natures,
Smalltalk has never reach the wide popularity.

• C++ is the first object-oriented language that has reach enormous popularity
and is today one of the most used programming languages. The reason of its
popularity is its upward compatibility with C, its ability to be used for small
and large systems, efficient compilers, and similar. C++ has also many
drawbacks, such as complexity and a lot of inconsistencies, which makes it
difficult to learn and read.

• Java is improved and simplified C++. All parts in C++ that are inherited from
C are removed and some clearer concepts have been introduced. This made
this language extremely popular, in particular in academia. Java uses a
concept of a virtual machine which interprets the java code – so called byte
code which is machine independent. By introducing virtual machine concept,
Java code has become completely portable. For this reason Java is very
suitable for applications executed on different platforms (computer systems),
and became very popular in web- and internet-based applications. On the
other hand the consequence of this concept is a poorer performance and a
lack of support of direct use of services of particular operating systems.

• C# is a relatively new language developed by Microsoft, very similar to Java,
both as a language and as the concept. The superb development
environment (Visual Studio) and run time environment (.NET) makes this
language, ad the entire technology, increasingly popular.

• There exist many other object-oriented languages, or languages with object-
oriented flavor. Some of them are: Eiffel, Objective C, MS Visual Basic,
interpreter Python, etc. They support the object-oriented approach to
different extent, including some of the principles. Some of them are also “full”
object-oriented languages, but have never reached the popularity as the
languages listed above.

2.3 Conclusion

During nineties the object-oriented approach has become dominated in software
development. The main advantage of an object-oriented approach is the ability
of mapping the real world with the programming models. An object (“a thing”) in

8

the real world defined an object in the object-oriented approach. The second
main advantage us the data and operation encapsulation. An object is
independent of rest of the system, which make such systems easier to
maintenance. Many object-oriented languages provide support for efficient
implementation of object-oriented designs. However the object-oriented
approach has not solved all the problems, it was not sufficient. The levels of the
abstractions can still be on the low level, and the reusability was not achieved in
that extent as there were hopes.

3 Unified Modeling Language

UML is a result of the evolution of object-oriented modeling languages. It was
developed by Rational Software Company, by unifying some of the leading
object-oriented modeling methods: Booch (author: Grady Booch), OMT(Object
Modeling Technique; author: Jim Raumbaugh) and OOSE (Object-Oriented
Software Engineering; author: Ivar Jacobson). The unification work started in
’94. UML 1.0 was submitted to OMG in ’97 (Object Management Group) by a
group called UML Partners which was founded by Rational Software. The
current UML version is 1.4 (published in Sep 2001) and there is an ongoing work
in OMG on a new major version 2.0.

UML is used for modeling software systems. The modeling includes a process of
analysis and deigns. By an analysis the system is first described by as set of
requirements, and then by identification of system parts. The design phase is
tightly connected to the analysis phase; it started from the identified system
parts and continues with detailed specification of these parts and their
interaction. For requirements identifications UML provides a support for
identifying and specifying use cases. System parts are identified as packages,
components and finally as objects (which are represented by classes).

3.1 UML Language Architecture
To be able to read and create UML models, one needs to understand the
conceptual model of UML language. The conceptual model of UML contains the
following elements:

• UML basic building blocks
o Things
o Relationships
o Diagrams

• Rules that dictate how building blocks can be used together
There are semantic rules for what well-formed UML models are. Those
include: naming, scope, visibility, integrity, execution. However, during
development, UML models are typically not well-formed, but tend to be
incomplete and inconsistent.

• Common mechanisms that apply consistently thought UML:
o Specifications
o UML’s graphical notation is used to visualize the model, but UML’s

specification is used to state the model’s details.

9

o Adornments. Many of the specification details can be rendered as
graphical or textual adornments (meaning of the word adornments
is similar to enhancements or decorations) to the basic notation.
Every element in the UML’s notation starts with a basic symbol.
Variety of adornments can be added to this basic symbol.

o Common divisions. Almost every building block in UML has
class/object concept. Graphically, UML uses the same symbol for
class and object, but object’s name is underlined.
There is a separation between interface and implementation.
Almost every building block in UML has this interface/
implementation concept.

o Extensibility mechanisms (stereotypes, tagged values and
constraints)

3.1.1 Basic building blocks of UML
Basic building blocks of UML are: Things, Relationships and Diagrams. Things
and relationships are building blocks for diagrams.

Types of UML things are presented in the Error! Reference source not found.
below.

Subtypes of the Things Types of
UML Things

Name Symbol Description Variations/other
related elements

Class

Description of a set of objects
that share the same:
attributes, operations,
relationships and semantics.

- actors
- signals
- utilities

Interface

A collection of operations
that specify a service of a
class or component.

Collaboration

An interaction and a society
or roles and other elements
that work together to provide
some cooperative behavior
that is bigger than the sum of
all the elements.
Represent implementation of
patterns that make up the
system.

Structural

• Nouns of
UML
models

• Conceptual
or physical

Use Case

A description of set of
sequence of actions that a
system perform that produces
an observable result of value
to a particular actor.
Used to structure behavioral
things in the model.

10

Active class

A class whose objects own a
process or execution thread
and therefore can initiate a
control activity on their own.

- processes
- threads

Component

A component is a physical
and replacable part that
conforms to and provides the
realisation of a set of
interfaces.

Node

A physical resource that
exists in run time and
represents a computational
resource.

Interaction

Set of messages exchanged
among a set of objects within
a particular context to
accomplish a specific
purpose.

- messages
- action sequences
- links

Behavioral

Dynamic parts of
UML models

State
machine

A behavior that specifies the
sequences of states an object
or an interaction goes through
during its lifetime in response
to events, together with its
responses to those events.

- states
- transitions
- events
- activities

Grouping

Organizational
parts of UML

Packages

General purpose mechanism
of organizing elements into
groups.

- frameworks
- models
- subsystems

Annotational

Explanatory parts
of UML

Note

A symbol for rendering notes
and constraints attached to an
element or a collection of
elements.

3.1.2 Relationships
Relationships are used to connect things into well-defined models.
The types of UML relationships are shown in the table below.

Subtypes of the Relationships Types of
UML
Relationships Symbol Description Specialization

Dependency

A semantic relationship between two things in
which a change to one thing may affect the
semantics of the dependent thing.

A note

package

State

message

11

Association

Structural relationship that describes a set of
links, where a link is a connection between
objects.

Aggregation and composition are “has-a”
relationship. Aggregation (white diamond) is an
association indicating that one object is
temporarily subordinate or the other, while the
composition (black diamond) indicate that an
object is a subordinate of another through its
lifetime.

Aggregation

Composition

Generalization

Specialization/generalization relationship in
which objects of the specialized element are
substitutable for objects of the generalized
element.

Realization

Semantic relationship between two classifiers,
where one or them specifies a contract and the
other guaranties to carry out the contract.
They are used between:
- interfaces and classes or components
- use cases and collaborations that realize them

3.1.3 Diagrams
A diagram is a graphical representation of a set of elements. Following types of
diagrams are defined by UML:

Types of UML Diagrams Description

Use case diagram Shows a set of use cases and actors and relationships between them.

Class diagram

Structural relationship that describes a set of links, where a link is a
connection between objects.

Object diagram

a set of objects and their relationships. This is a snapshot of instances of the
things found in the class diagrams.

Statechart diagram

Shows a state machine consisting of: states, transitions, events and
activities.

Activity diagram This is a special kind of statechart diagram, which shows the flow from
activity to activity within a system.

Sequence
diagram

Interaction

Collaboration
diagram

Interaction diagrams show set of objects and their relationships, including
messages that may be dispatched between them.

Sequence diagram emphasize the time ordering between messages.

Collaboration diagram emphasize structural ordering of objects that send
and receive messages.

Component diagram Shows organizations and dependencies among a set of components. These
diagrams address static implementation view of the system.

Deployment diagram Show the configuration of run-time processing nodes and components that
live on them.

0..1 *
employer employee

12

These are the diagrams most commonly found in the practice, but this is not a
closed list. Tools may provide other kinds of diagrams. Also, as mentioned in [4],
it is common to use combinations of these diagrams. A common example is to
combine Component and Deployment diagrams.

3.2 UML Example
We shall illustrate use of UML by a simple example.

Imagine the software system at a library. The main task should be keeping track
of all books and the status of each book (out of lone, in stock etc). In this
example we are modelling and explaining the system with a sequence of UML
diagrams.

The first step is the system analysis, and the input to the analysis is the
specification of the requirements. In an object-oriented and UML approach the
requirements are identified with help of identifying of cases of use of the system.
This is done by UML use case diagram. The main goal of this part is to identify
the most characteristics use cases, and the actors (i.e. people or other types of
“users” of the system).

In figure 3.1, a UML use case diagram shows examples of how the system is
intended to be used. To the left in the figure we have identified an actor
“Librarian”, which is a librarian. The librarian can use the system in four ways.
Firstly it is possible to add a new book to the system visualized by the
“AddNewBook” use-case. Secondly, if a book is out of loan, it is possible for the
librarian to make a reservation for a customer; this is showed by the
“ReserveBook” use-case. It should also be possible to loan books, i.e. the
“LoanBook” use-case. Finally the “ReturnBook” use case shows that a librarian
should also be able to return a book to the system when a customer hands a
previously borrowed book in.

Librarian

AddNewBook

ReserveBook

LoanBook

ReturnBook

Login

Figure 3.1, a UML use-case diagram, visualizing how a librarian can use a library booking

system.

13

The next step in the analysis and design process is to identify the objects the
system deal with. Form the problem description and use case diagrams it is
easy to identify the objects involved in the system: The library, the books, and
the librarian. In addition to this we also have a librarian system itself which we
can specify as a set of services. We specify the objects by specifying the
classes with their attributes and services (methods) they provide. In UML this is
done by a class diagram. This diagram also includes specifications of relations
between the objects.

In Figure 3.2, a UML class diagram shows the four classes “Book”, “Library”,
“LoginService” and “Librarian” and how they are related to each others. Internal
attributes and methods are also shown in the figure.

LoginService
librarians

login()

Library

getBookByTitle()
addBook()

 Librarian

Book
state

loanBook()
returnBook()
reserveBook()
unreserveBook()

Figure 3.2, UML class diagram

The UML class diagram shows the static characteristics (i.e. the structure) of the
system. The dynamic behavior of the system can be described by chart
diagrams and interaction diagrams.
Chart diagrams are used to express the states of the systems and its transition
from a state to a state triggered by a particular event. Chart diagrams are
variations of finite-state machines, a standard method used in software design
and programming.

Figure 3.3 shows UML state chart diagram showing the internal state of the
class “Book”. The diagram shows that a book can be in one of the four states “In
stock”, “Out of loan”, “Reserved and out of loan” and “Reserved and in stock”.
The starting point for a new book is marked with the black dot to the left in the
figure. When a new book is entered in the system it enters the “In stock” state,
when the method “loanBook()” is executed the book enters the “Out of loan”
state etc.

14

NewBook

In stock

Reserved and
out of loan

Out of loan

unreserveBook()

reserveBook()

returnBook()

loanBook() Reserved and
in stock

returnBook()

unreserveBook()

loanBook()

Figure 3.3, UML state-chart diagram for the class book

UML sequence diagram shows interaction between different objects in a time
sequence. The vertical line denotes time, the rectangles appearance of the
objects, and the arrows invocation of services of particular objects, or interaction
between the objects.

In Figure 3.4, the “LoanBook” use-case is further developed with a UML
interaction diagram, showing the sequence of interactions required to solve the
use-case. Firstly the Librarian has to use the “login()” method provided by the
“LoginService” class. Then a reference to the book is required, and the librarian
has to utilize the “getBookByTitle()” method provided by the “Library” class.
Finally the loaning process can be accomplished by the “loanBook” method
provided by the class representing a book.

 : Librarian : LoginService : Library : Book

login()

getBookByTitle()

loanBook()

Figure 3.4, a UML sequence diagram, solving the loan book use-case

15

3.3 Conclusion

UML has intentionally been developed as a langue for modeling object-oriented
systems. Its use has however widely been spread out. Today UML is used for
system specifications. In different domains UML (for example in distribution of
electrical power) is use for specification and standardization of different systems
or parts of the systems. This standardization makes it possible that different
vendors produce products that comply with the standard specification.

From UML it is possible to automatically generate different types of descriptions
(for example specifications in XML), or even automatic creation of software
code. UML is becoming a standard tool for software and system engineers.

4 Component-Based Development
The concept of building software from components is not new. A “classical”
design of complex software systems always begins with the identification of
system parts designated subsystems or blocks, and on a lower level modules,
classes, procedures and so on. The reuse approach to software development
has been used for many years. However, the recent emergence of new
technologies has significantly increased the possibilities of building systems and
applications from reusable components. Both customers and suppliers have had
great expectations from component-based development (CBD), but their
expectations have not always been satisfied. Experience has shown that
component-based development requires a systematic approach to and focus on
the component aspects of software development. Traditional software
engineering disciplines must be adjusted to the new approach, and new
procedures must be developed. Component-based Software Engineering
(CBSE) has become recognized as such a new sub-discipline of Software
Engineering.

The major goals of CBSE are the provision of support for the development of
systems as assemblies of components, the development of components as
reusable entities, and the maintenance and upgrading of systems by
customizing and replacing their components. The building of systems from
components and the building of components for different systems requires
established methodologies and processes not only in relation to the
development/maintenance aspects, but also to the entire component and
system lifecycle including organizational, marketing, legal, and other aspects. In
addition to specific CBSE objectives such as component specification or
composition and technologies, there are a number of software engineering
disciplines and processes which require specific methodologies for application in
component-based development. Many of these methodologies are not yet
established in practice, some are not even developed. The progress of software
development in the near future will depend very much on the successful
establishment of CBSE and this is recognized by both industry and academia.

16

4.1 Component Specification

For a common understanding of component-based development, the starting
point is an agreement of what a component is and what it is not. As a generic
term the concept is pretty clear – a component is a part of something – but this
is too vague to be useful. The definition of a component has been widely
discussed. However, we shall adopt Szyperski’s definition, which is the most
frequently used today:

A software component is a unit of composition with contractually specified
interface and explicit context dependencies only. A software component can be
deployed independently and is subject to composition by third parts.

The most important feature of a component is the separation of its interface from
its implementation. We require that the integration of a component into an
application should be independent of the component development lifecycle and
that there should be no need to recompile or re-link the application when
updating with a new component. Another important characteristic of the
separation is that the component implementation is only visible through its
interface. This is especially significant for components delivered by a third party.
An implication of this is the requirement for a complete specification of a
component including its functional interface, non-functional characteristics
(performance, resources required, etc.), use cases, tests, etc. While current
component-based technologies successfully manage functional interfaces, there
is no satisfactory support for managing other parts of a component specification.

The component definition adopted above is focused on the use of components.
It says little about how to design, implement and specify a component. There are
however, other definitions which point to other aspects of component-based
development. For example there is a strong relation between object-oriented
programming (OOP) and components. Component models (also called
component standards) COM/DCOM, .NET, Enterprise Java Beans (EJB)Error!
Reference source not found.Error! Reference source not found., and
CORBA Component Model (CCM) Error! Reference source not found. relate
Component Interface to Class Interface. Components adopt object principles of
unification of functions and data encapsulation.

4.2 Life cycle of Component-based Systems

Development with components differs from traditional development through its
focus on the identification of reusable entities and relations between them,
starting from the system requirements. Different lifecycle models, established in
software engineering, can be used in component-based development. These
models will be modified to emphasize component-centric activities. Let us
consider, for example, the waterfall model using an extreme component-based
approach. The top half of Figure 4.1 shows the phases of the waterfall model.
Underneath are shown the accompanying activities in component-based
development.

17

Figure 4.1. The development cycle compared with the waterfall model.

The characteristic features of component-based development are as follows.

The initial identification of requirements is performed as in traditional
development. However in the component-based approach, the mapping
between system and component requirements is important. As one of the goals
of component-based design approach is to reuse existing components, during
the system requirements elicitation the requirements for components should be
identified.

The early design phase focuses on two essential steps:

• The logical view of the system is specified by system architecture in terms of
components and their interaction. In this view, components are represented
by specification of their interfaces, possibly including specification of relevant
extra-functional properties (in real-time systems this includes timing
properties)

• The structural view is specified by a system architecture consisting
component implementations. Component implementations must conform to a
particular component model which assumes a particular system architecture,
component framework, and different technology-specific services. The
component model and framework may have a significant impact on the
design solution, thus in a CBD approach (where reuse of existing
components and services is assumed) they must be considered in the early
design phase.

• The implementation phase includes adapting, composing, and deploying
components, using a framework for components.

• The verification (or test) phase performs system verification (e.g., by testing).

• The maintenance phase puts extra focus on the replacement and update of
entire components, possibly during system operation.

requirements design implementation test release maintenance

find select adapt test deploy replace

create

requirementsrequirements designdesign implementationimplementation testtest releaserelease maintenancemaintenance

findfind selectselect adaptadapt testtest deploydeploy replacereplace

createcreate

18

4.3 UML and Component-Based Systems Modeling

UML can be used for both component and system modeling. Component-driven
design concentrates on interface definitions and collaboration between the
components through the interfaces. The design process continues with the
modeling of the system with physical components, which do not necessarily
match the logical structure. These may be pre-existing components, with
interface already specified and possibly in need of wrappers. One logical
component, identified in the first phase of design, may consist of several
physical components. Finally, there is a deployment aspect, the components
being executed on different computers in a distributed application. In a non-
component-base approach the first, the design phase is important, while
mapping between the conceptual and implementation level is a direct mapping,
and the deployment phase is the same for the whole application. In principle,
UML can be utilized to provide support for designing component-based systems
covering all these aspects. Interfaces are presented as multiple subsystems
(also multiple interfaces may be realized by a subsystem), which indicate the
possibility of changing the implementation without replacing the interface. An
interface can be presented in two ways (see Figure 4.2), the second alternative
being the more common presentation.

Figure 4.2 UML component

 Figure 4.3 shows the three aspects of system architecture. The conceptual
architecture is a result of a top-down system analysis and design and in at least
the first step is not different from a “non-component-based” design. In the
conceptual part the components are expressed by UML packages with the
<<subsystems>> stereotype. In the implementation architecture part, the
physical components are represented by UML components and the <<imp>>
stereotype. Note that the implementation part is not necessary only refinement
of the conceptual level, but also the structure can be changed. For example,
different packages can include the same physical components. It may also
happen that the component selection requires modifications of the conceptual
architecture.

UML is however not specialized for CBD and certain extensions to standard
UML (such as naming convention, or stereotypes) are required. The component
interfaces cannot be described by UML at such a detailed level that they can be
used directly.

<<subsystem>>
Account

<<interface>>
IAccount

+getAccount()

Canonical Form

<<subsystem>>
Account Elided FormIAccount

<<subsystem>>
Account

<<subsystem>>
Account

<<interface>>
IAccount

+getAccount()

<<interface>>
IAccount

+getAccount()

Canonical Form

<<subsystem>>
Account

<<subsystem>>
Account Elided FormIAccount

19

Figure 4.3 Examples of different aspects of component-based architecture

4.4 Interacting with Components

Components express themselves through interfaces. An interface is the connection to
the user that will interact with a component. If an interface is changed the user needs to
know that it has changed and how to use the new version of it.

Functions that are exposed to the user are usually called Application Programmable
Interface (API). If there is a change to the API, the user has to recompile his code as
well.

In an object-oriented world, an interface is a set of the public methods defined for an
object.
Usually the object can be manipulated only through its interface. In C++ the user has to
recompile the code only when an interface, referred from the code, is changed. There is
also a drawback that the user of the class must use the same programming language
throughout the whole development.

<<imp>>
ComAIComA

:ComB:SysX :ComC

<<subsystem>>
ComAIComA

<<subsystem>>
ComBIComB

<<subsystem>>
ComCIComA

Conceptual
Architecture

<<imp>>
ComBIComB

<<imp>>
ComCIComC

<<imp>>
SysXISysX

<<imp>>
ComYIComY

Implementation
Architecture

:ComA

Deployment
Architecture

:ComB

Server DataServer

<<imp>>
ComAIComA

<<imp>>
ComAIComA

:ComB:SysX :ComC

<<subsystem>>
ComAIComA

<<subsystem>>
ComBIComB

<<subsystem>>
ComCIComA

Conceptual
Architecture

<<imp>>
ComBIComB

<<imp>>
ComCIComC

<<imp>>
SysXISysX

<<imp>>
ComYIComY

Implementation
Architecture

:ComA

Deployment
Architecture

:ComB

Server DataServer

:ComB:ComB:SysX:SysX :ComC:ComC

<<subsystem>>
ComAIComA

<<subsystem>>
ComA

<<subsystem>>
ComAIComA

<<subsystem>>
ComBIComB

<<subsystem>>
ComB

<<subsystem>>
ComBIComB

<<subsystem>>
ComCIComA

<<subsystem>>
ComC

<<subsystem>>
ComCIComA

Conceptual
Architecture

<<imp>>
ComBIComB

<<imp>>
ComBIComB

<<imp>>
ComCIComC

<<imp>>
ComCIComC

<<imp>>
SysXISysX

<<imp>>
SysXISysX

<<imp>>
ComYIComY

<<imp>>
ComYIComY

Implementation
Architecture

:ComA:ComA

Deployment
Architecture

:ComB:ComB

Server DataServer

20

Separating the interface from the implementation is a way to avoid this tight coupling.
This kind of separation is made with binary interfaces as done in CORBA and COM, the
component models described in the next section. Binary interfaces are defined in an
interface definition language (IDL) and an IDL compiler, which generates stubs and
proxies, makes the applications location transparent.

An example of using the same interface but different implementations is shown in 0.4:
By a separation between the interface and the implementation it is possible to run new
clients together with old server components or vice versa. The word processor is called
the client and the dictionary is called the server since it provides functionality to the
word processor. It is possible to upgrade to new versions of the word processor and
dictionary component independent of each other.

Figure 4.4 The possible combinations between old and new clients and their components.

Even if an interface has not been changed, its implementation can be changed. This
increases flexibility of possible updates, but also introduces a possibility of having
uncontrolled effects. For this reason, it is of interest to know if the implementation has
been changed.

4.5 Component Models

The component models define the standards forms and standard interfaces between
the components. They make it possible to components to being deployed and to
communicate. The communication can be established between components on the
same node (computer) or between different nodes. For the later we are talkies about
component distribution.

4.5.1 Component Object Model (COM)

The Component Object Model provides a model for designing components that have
multiple interfaces with dynamic binding to other components. COM is an open
standard, which has been implemented on many different platforms, but the main
platform is of course Microsoft Windows for which it was first developed. Components
expose themselves through interfaces and only interfaces. The interfaces are binary
which makes it possible to implement the component in a variety of programming
languages such as C++, Visual Basic and Java. A COM component can implement and
expose multiple interfaces. A client uses COM to locate the server components and
then it queries for the wanted interfaces.

Word processor
version 1
Word processor
version 1

Word processor
version 2
Word processor
version 2

Dictionary
version 2
Dictionary
version 2

ISpellCheck

Dictionary
version 1
Dictionary
version 1

ISpellCheck
Word processor
version 1
Word processor
version 1

Word processor
version 2
Word processor
version 2

Dictionary
version 2
Dictionary
version 2

ISpellCheck

Dictionary
version 1
Dictionary
version 1

ISpellCheck

21

Figure 4.5 COM establishes the connection between client and server.

By defining interfaces as unchangeable units, COM solves the interface versioning
problem. Each time a new version of the interface is created a new interface will be
added instead of changing the older version. A basic COM rule is that you cannot
change an interface when it has been released. This makes couplings between COM
components very loose and it is easy to upgrade parts of the system indifferent from
each other.

DCOM is the protocol that is used to make COM location transparent. A client talks to a
proxy, which looks like the server and manages the real communication with the server.

COM+ is an extension to COM with technologies that support among others:
transactions, directory service, load balancing and message queuing.

4.5.2 Microsoft .NET

.NET is a language-independent environment for developing software programs that will
co-operate in a distributed environment. It is also a run-time platform with a number if
services for interpolation and dynamic integration of software components. .NET a
compiler translates the source code into an intermediate language called the Microsoft
Intermediate Language (MSIL) very similar to the Java Byte Code. The common
language runtime (CLR), very similar to a Java Virtual Machine then takes the
intermediate language and, on the fly, converts it into machine-specific instructions.

.NET includes a number of services available during development and during run-time
(see figure 4.6).

Interfaces and Assembly

.NET represents the programming language approach for component programming. It
means that the program contains the information related to the relationships with other
“components”, and that the compiler is responsible for generating the information
needed at execution. This (proprietary) approach contrasts with the OMG (open)
approach where separate formalisms (and files), are used to indicate component
related information; languages and compilers being unchanged.

What most resembles a component is an assembly; the manifest is the component
descriptor, it gathers in a single place all the information about an assembly: exported
and imported methods and events, code, metadata and resources. Because of the
programming language approach, the corresponding programming language, C#, which
looks very much like Java, includes some features of a component model: (first class)
events and extensible meta data information. The compiler not only produces MSIL

Client

Server
Application

Object

COM

Runtime

22

byte code but also generates, in the manifest, the interface description of the
component (called assembly), in the form of a list of import and export types.

Framework

.NET relies on the traditional programming approach: the framework is seen as the
language run-time support. Extra-functional aspects like distribution, security,
confidentiality, and version control are delegated at execution to the OS and loader.

Figure 4.6 Components of .NET Framework

Lifecycle

Unlike when using traditional DLLs, the .NET model includes visibility control, which
allows assemblies (and their modules) to be local to an application, and thus different
DLLs with same name can run simultaneously. Further, each assembly has versioning
information about itself and about the assemblies it depends on, provided either in the
form of attributes in the code source or as command line switches when building the
manifest. Version control is delegated to the dynamic loader, which selects the “right”
version, local or distant, based on the assembly’s version information and on a set of
default rules.

Extra-functional properties

:NET des not provide any support for analyzing extra-functional properties. The
language enables use of meta data at run-time, which gives some possibilities for
checking the properties at run-time. For example, contract-based interfaces with pre-
and post-conditions may be implemented by using this feature. .NET does not provide
any support for real-time applications. Further, the memory size and performance
excludes it from do embedded systems domain so far.

Availability

.NET is use on Microsoft Windows 2000 and XP platforms. Some parts of it are ported
to Windows CE, the Microsoft real-time systems. Mono initiative (http://go-mono.com)
develop an open source implementation of the .NET Development Framework. Mono
includes a compiler for the C# language, a runtime for the Common Language
Infrastructure and a set of class libraries. The runtime can be embedded into the
application.

Windows COM+ Services

Common Language Runtime

Base Class Library

ADO.NET and XML

ASP.NET Windows Forms

Common Language Specification

VB C++ C# JScript …

V
isual Studio.N

E
T

Windows COM+ Services

Common Language Runtime

Base Class Library

ADO.NET and XML

ASP.NET Windows Forms

Common Language Specification

VB C++ C# JScript …

V
isual Studio.N

E
T

23

4.5.3 Enterprise Java Beans (EJB)

Enterprise Java Beans is a component architecture for server-side components used to
build distributed systems with multiple clients and servers. A Java Bean is a reusable
component that support persistency and can inter-operate across all platforms
supported by Java. EJB uses Java Beans but it is a lot more than a component model.
EJB provides support for transactions and security over a neutral object communication
protocol, which gives the user the benefit to implement the application on top of a
protocol of choice. EJB is part of the Java 2 Platform Enterprise Edition (J2EE) which
includes many other technologies remote method invocation (RMI), naming and
directory interface (JNDI), database connectivity (JDBC), Server Pages (JSPs) and
Messaging services (JMS).

To make a JavaBean an Enterprise bean the JavaBean has to conform to the
specification of EJB by implementing and expose a few required methods. These
methods allow the EJB container to manage beans in a uniform way for creation,
transactions etc. A client to an enterprise bean can virtually be anything, for example a
servlet, applet or another enterprise bean. Since enterprise beans may call each other
then a complex bean task might be divided into smaller tasks and handled by a
hierarchy of beans. This is a powerful way of “divide and conquer”.

There are two different kinds of enterprise beans: session and entity beans. Session
beans live as long as the client code that calls it. Session beans represent the business
process and are used to implement business logic, business rules and workflow.

EJB is designed so it can run together with CORBA and access CORBA objects easily.

4.6 Common Object Request Broker Architecture (CORBA)

The Common Object Request Broker Architecture (CORBA) is a standard that has
been developed by the Object Management Group (OMG) in the beginning of the
nineties. The OMG provides industry guidelines and object management specifications
to supply a common framework for integrating application development. Primary
requirements for these specifications are reusability, portability and interoperability of
object based software components in a distributed environment. CORBA is part of the
Object Management Architecture (OMAwhich covers object services, common facilities
and definitions of terms.

Figure 4.7 The parts of the Object Management Architecture.

Object Request Broker

Object Services

Application
Objects

Common
Facilities

24

Object services are for instance naming, persistency, events, transactions and
relationships. These can be used when implementing applications. Common facilities
provide general-purpose services like information, task and system management. All
services and facilities are specified in IDL. An object request broker (ORB) provides the
basic mechanism for transparently making requests and receiving responses from
objects located locally or remotely. Requests can be made through the ORB without
regard to the service location or implementation. Objects publish their interfaces using
the Interface Definition Language (IDL) as defined in the CORBA specification.

Figure 4.8 Clients communicate with RPC transparently with the server.

Objects are stored in an interface repository where they can be found and activated on
demand from the clients. The stubs and proxies are generated from the IDL
specification that each object provides for its interfaces.

5 References
• Somerville I., Software Engineering, Addison-Wesely

• Perdita Stevens with Rob Pooley, Using UML: Software Engineering with Objects and
Components, Addison-Wesley

• Ivica Crnkovic and Magnus Larsson, Building Reliable Component-Based Software
Systems

Application
Object Client

Proxy Stub

RPC

