
MECHAniSer - A Timing Analysis and Synthesis
Tool for Multi-Rate Effect Chains with

Job-Level Dependencies
Matthias Becker∗, Dakshina Dasari†, Saad Mubeen∗, Moris Behnam∗, Thomas Nolte∗

∗MRTC / Mälardalen University, Sweden {matthias.becker, saad.mubeen, moris.behnam, thomas.nolte}@mdh.se
† Research and Technology Centre, Robert Bosch, India dakshina.dasari@in.bosch.com

Abstract—Many industrial embedded systems have timing con-
straints on the data propagation through a chain of independent
tasks. These tasks can execute at different periods which leads to
under and oversampling of data. In such situations, understand-
ing and validating the temporal correctness of end-to-end delays
is not trivial. Many industrial areas further face distributed
development where different functionalities are integrated on the
same platform after the development process. The large effect
of scheduling decisions on the end-to-end delays can lead to
expensive redesigns of software parts due to the lack of analysis at
early design stages. Job-level dependencies is one solution for this
challenge and means of scheduling such systems are available. In
this paper we present MECHAniSer, a tool targeting the early
analysis of end-to-end delays in multi-rate cause effect chains
with specified job-level dependencies. The tool further provides
the possibility to synthesize job-level dependencies for a set of
cause-effect chains in a way such that all end-to-end requirements
are met. The usability and applicability of the tool to industrial
problems is demonstrated via a case study.

I. INTRODUCTION

Many application domains for embedded systems are sub-
ject to timing constraints in order to fulfill their requirements.
Such real-time systems are well studied and several tools
are available to analyze these properties. However, for many
systems it is not only important that the individual tasks
execute within their specified deadlines, but also that data
propagates through a chain of tasks within a specified end-to-
end delay constraint. In the automotive industry such chains
are called cause-effect chains [1], [2]. The tasks in such a
chain can have different activation periods which makes the
calculation of such end-to-end delays a challenging task since
over and undersampling effects need to be considered.

Currently it is left to the discretion of the system designer to
guarantee that all end-to-end delay constraints are met in the
system. While this is viable in small applications, the growing
complexity of industrial applications renders this approach
increasingly difficult. Automotive applications for example
contain several multi-rate cause-effect chains [3]. Additionally,
one task can be part of several chains which increases the
problem complexity further.

This highlights the need for tool support during the system
design, giving the designer viable input during early stages
of the development where only limited or even no concrete
knowledge of the schedule is present. This need is further
increased since applications of several suppliers may be in-
tegrated on the same Electronic Control Unit (ECU) during

the system integration which is usually done by the Origi-
nal Equipment Manufacturer (OEM). Changes in the system
design can be very expensive at this stage. Having means
to obtain end-to-end delay bounds for the data propagation
through a chain of tasks before the system integration can
thus provide valuable information and reduce the risk of costly
design changes in the later development phases.

One way to reduce the possible data propagation among
tasks of different rate is the use of job-level dependencies [4].
A job-level dependency introduces a constraint in the data
propagation between two tasks and is specified on job-level.
Several works address the scheduling problem of systems with
specified job-level dependencies. These works cover fixed-
priority and dynamic priority scheduled systems [5], [6], as
well as time triggered schedules [7], [8]. The problem of ana-
lyzing such systems and to synthesize job-level dependencies
is addressed in [9].

A. Contributions

Several available tools support the end-to-end delay analysis
of cause-effect chains, which are primarily based on the princi-
ples proposed in [10]. They however assume that knowledge of
the task schedule is available when the system is analyzed. In
contrast, the proposed tool MECHAniSer can be helpful in the
early design phases where the exact task schedule is unknown.
Its key features include analysis to i) compute bounds on the
end-to-end delays ii) synthesize job-level dependencies when
specified timing constraints are violated iii) compute end-
to-end analysis in the systems where job-level dependencies
are specified. To facilitate a faster system design, the tool
implements a heuristic to place job-level dependencies in a
system consisting of several, possibly interconnected, cause-
effect chains. This is done in a way such that the maximum
data age delay of each cause-effect chain is met.

B. Paper Layout

The rest of the paper is organized as follows, in Sec-
tion II the system architecture and background information
is provided. In Section III the calculations to obtain the data
age delay are described before the tool itself is discussed
in Section IV. The tool is evaluated based on a case study
in Section V, followed by a discussion of related tools in
Section VI and the conclusions and future work in Section VII.



!"

!#

!$
t

Hyperperiod

2 4 6
Maximum	Data	Age

Task	arrival
Task	execution
Data	propagation
Overwritten	data

Fig. 1: Data propagation between tasks of a cause-effect chain in a real-time
system with maximum data age specified.

II. SYSTEM ARCHITECTURE AND BACKGROUND

A. System Model

The system is comprised of a set of periodic tasks Γ. Each
task τi ∈ Γ can be described by the tuple {Ci, Ti}, where
Ci is the task’s Worst Case Execution Time (WCET), and
Ti is the task’s period. All tasks have implicit deadlines, i.e.
the deadline of τi is equal to Ti. For all tasks executing on a
processor, the hyperperiod can be defined as the least common
multiple of all periods, HP = LCM(∀Ti, i ∈ Γ). Hence, a
task τi executes a number of jobs during one HP , where its
jth job is denoted by τi,j .

B. Communication Model

In this work inter task communication is realized via
shared registers, a model commonly used in the industrial
domain [10], [11]. With this, a sending task writes an output
value to a shared register, which is then read by the receiving
task without the need for any signaling between the commu-
nicating tasks. Also, the receiving task always consumes the
newest value present in the shared register.

In order to facilitate determinism, a read-execute-write
semantic is followed in which a task reads all its input values
into local copies before the execution starts. It then executes
by acting on these local copies and writes the output values
after the execution back to the shared registers, making them
available to other tasks. In short, reading and writing of input
and output values is done at deterministic points in time, i.e.
at the beginning and end of the tasks execution respectively.
This is a common communication mechanism found in several
industrial standards (i.e. in AUTOSAR this model is defined
as implicit communication [12], the standard IEC 61131-3
for automation systems defines similar communication mech-
anisms [13]).

C. End-to-End Timing Requirements

A cause-effect chain is typically specified by an end-to-
end timing requirement, as defined for automotive systems
in [1], [2]. In this work the data age, the most important
timing requirement in control systems, is examined. A detailed
discussion of corresponding end-to-end delays is provided
in [10]. For data age, the maximum time from sampling an
initial input value at the beginning of the cause-effect chain,
until the last time this value has influence on the produced
output of the cause-effect chain is of interest. Fig. 1 depicts
an example with three tasks, τ1, τ2, and τ3. All tasks are part
of a cause-effect chain in this order. Note that τ1 and τ3 are

Ci

t

RIi,k+1

DIi,k

DIi,k+1DIi,k�1

RIi,k+2

Ci

RIi,k

Ci

Figure 1: Read and data intervals of consecutive jobs of ⌧i.
Fig. 2: Read and data intervals of consecutive jobs of τi if no scheduling
information is available.

activated with a period of T = 2, while τ2 is activated with
a period of T = 4. This leads to over- and under-sampling
between the different tasks. While the output value of the first
instance of τ1 is consumed by the first instance of τ2, the data
produced by the second instance of τ1 is overwritten before
τ2 has the chance to consume it. Similarly, data produced by
the first instance of τ2 is consumed by the first instance of
τ3. Since no new data is produced before the second instance
of τ3 is scheduled the same data is consumed by τ3 again.
In the example, this constitutes the maximum data age, from
sampling of the first instance of τ1 until the last appearance
of the data at the output of the second instance of τ3.

D. Job-Level Dependency
A job-level dependency is similar to the rate transition

operator of PRELUDE [4]. Defined between two tasks, a job-
level dependency specifies which job of a task needs to finish
its execution before a certain job of the successor task can
start.

A job level dependency is described as τi
(k,l)−−−→ τj , meaning

that the kth job of τi needs to proceed the lth job of τj . This
also implies that the dependency between the two jobs applies
for the duration of the hyperperiod of the two jobs only, e.g.
LCM(τi, τj).

III. CALCULATING LATENCIES

In this section, we recapitulate the calculation of data
propagation paths for systems without prior knowledge of the
schedule. For a more in depth explanation a reader is referred
to [9]. Several properties of tasks under register communi-
cation are observed to determine reachability between jobs.
Based on this the different data propagation paths of the cause-
effect chain can be calculated.

A. Reachability between Jobs
The concepts of read interval and data interval are central

to decide if data can be propagated between two distinct jobs.
For a job τi,j , the read interval is defined as the interval
starting from the earliest time τi,j can potentially read its
input data (Rmin(τi,j)) until the last possible time τi,j can
do so without violating its timing constraints (Rmax(τi,j)).
Similarly, the data interval is defined as the interval from
the earliest time the output data of τi,j can be available
(Dmin(τi,j)) up to the latest time a predecessor job of the
same task overwrites the data (Dmin(τi,j)). Hence, the read
interval RIi,j is the interval [Rmin(τi,j), Rmax(τi,j)], and the
data interval is [Dmin(τi,j), Dmax(τi,j)). These concepts are
depicted in Fig. 2 for jobs of a task τi. For a system without
any knowledge of the scheduling decisions, one has to assume
that a job can be scheduled anywhere, as long as it starts not



Fig. 3: Main view of the tool.

(a) Window to add a task.

(b) Window to add a dependency.

Fig. 4: Windows to add new elements.

before its release and finishes not after its deadline. In [9], the
notations to define the intervals are as follows:

Rmin(τi,j) = (j − 1) · Ti
Rmax(τi,j) = Rmin(τi,j+1)− Ci
Dmin(τi,j) = Rmin(τi,j) + Ci

Dmax(τi,j) = Rmax(τi,j+1) + Ci

1) Deciding Reachability between Jobs: In order for a job
τk,l to consume data of a job τi,j the data interval of τi,j
must intersect with the read interval of τk,l. The function
Follows(τi,j , τk,l) is defined to return true if this is the case:

Follows(τi,j , τk,l) =

{
true, if RIi,j ∩DIi,j 6= ∅
false, otherwise

2) Adjusting the Data Interval for Long Chains: In order to
capture the characteristics of data propagation in a cause-effect
chain of length > 2, the data interval needs to be modified.
Assume the first job of τi, as shown in Fig. 2 is followed by a
job of a task τk. τk is released with same period as τi, but its
execution time is shorter than the one of τk. Follows(τi,1, τk,1)
returns true and indicates that τi,1 can potentially consume the
data of τk,1. However, in order to decide reachability between
the τk,1 and a third task in the chain the data interval of τk,1
must be modified. This is the case because τk,1 can consume
the data of τi,j earliest at time Dmin(τi,j). Consequently, this
data can earliest be available as output data of τk,l at time
Dmin(τi,j) +Ck. D′

min(τk,l, τi,j) defines the starting time of
the data interval of τk,l if the data produced by τi,j shall be
considered as well:

D′
min(τk,l, τi,j) = max(Dmin(τi,j) + Ck, Dmin(τk,l))

Note that the data interval only needs to be adjusted if
Dmin(τk,l) is smaller than Dmin(τi,j) + Ck. These modifi-
cations are local for the specific data path, hence, if another

combination of jobs is involved the original data interval must
be used.

B. Calculating Data Paths
To calculate all possible data propagation paths in a system,

a recursive function is used. This function constructs all
possible data propagation paths from a job of the first node in
a cause-effect chain up to the job of a last node of the chain.
Consequently this needs to be done for all jobs of the first
task of a chain, inside the hyperperiod of the chain.

As a result a set of data propagation paths is provided, where
each path comprises an ordered list of involved jobs.

C. Constructing Data Propagation Paths and Max. Data Age
For a given data path, the maximum end-to-end latency and

the data age, is computed. Given τstart is a job of the first
task of the cause-effect chain, and τstop is a job of the last
task of a cause-effect chain:

AgeMax(τstart, τend) = (Rmax(τend)+Cτend
)−Rmin(τstart)

In order to compute the maximum data age for any possible
path in the system, AgeMax() must be computed for all data
paths. The maximum of these values is the maximum data age
of the cause-effect chain.

IV. TOOL LAYOUT AND USAGE

This section briefly outlines the different forms of data input
to the tool. Further the tool layout and its usage are discussed
and a closer look is provided into the different visualization
options.

A. Input Formats
The tool specifies its own XML format to save a current

project. Additionally it is possible to import projects designed
with AMALTHEA V1.0[14]. AMALTHEA is an open tool
platform for the design of multi-core systems in the automotive
domain. The implementations for the support of additional



(a) The graph view in MECHAniSer. Edges between nodes depict possible data propagation while dashed edges show paths leading to larger
data age then specified with the age constraint. The same chain with generated job-level dependencies is shown in the right window.

(b) The trace-view of MECHAniSer depicts the read- and data-interval of each involved job and visualizes the
minimum and maximum data age of initial jobs as well as their possible data propagation range (in yellow).

Fig. 5: The two different visualization options for a cause-effect chain.

tools (i.e., AMALTHEA V1.1, Rubus ICE [15]) are currently
ongoing and will be made available in the future.

B. Layout and Usage
The tool is built around a main panel which is shown in

Fig 3. The panel depicts the chain under analyis and also
provides clickable interfaces to additional features of the tool.

1) The Main Panel and its Parts: The main window
displays information about all tasks of the system, in the
”Tasks”-table, as well as on all specified job-level depen-
dencies in the ”Job-Level Dependency”-table. The selected
chain is graphically visualized, as shown in Fig. 3, while the
”Cause-Effect Chain”-table describes the different parameters
of the chain. This chain can further be analyzed and modified.
The left column also provides means to manage job-level
dependencies. The additional views can also be opened here
via the button ”Data Propagation Graph” and ”Trace View”.
Output for the user is provided in the text-box at the bottom
part of the window.

A user can add or delete a task over the ”Application”-
menu (see Fig. 4a) with the ”Add Task” and ”Delete Task”
buttons. Note that the tool also displays the number of chains
and the number of job-level dependencies that a task is part
of. In order to keep the system consistent, a task must first be
removed from all cause-effect chains and from all job-level
dependencies before it can be removed from the system.

The chain which needs to be analyzed is selected via
the button ”Change Chain”. This action pops up a window
wherein a user can select the desired cause-effect chain. Once
approved, the tool updates the related views. A new task can be
added to the chain by selecting the respective task in the task
table and then clicking the left-arrow button which appends

the task to the chain. The correct position of a task is set by
selecting the task in the chain table and then clicking the up-
and down-button which alter the tasks position. A task can be
removed from the chain by selecting the task followed by the
button ”Remove from Chain”.

Finally a maximum data age constraint can be specified on
the chain by clicking on the button ”Add Age Constraint”.
This pops up a window where the age constraint can be
specified. Note that this new input overwrites any previously
specified constraint. A constraint can be removed by specify-
ing a maximum data age of 0.

2) Calculating Minimum and Maximum Data Age: The
minimum and maximum data age of the currently selected
cause-effect chain under consideration of all specified job-
level dependencies can be computed by clicking on the button
”Calculate Delays”. This action computes delays by applying
the analysis presented in [9]. All data propagation paths
are calculated, implying all possible paths that the data can
propagate, when read from any of the initial jobs of the chain.

An initial job is defined as any job that the first task of
the cause-effect chain releases during the first hyperperiod of
the chain. Since the number of possible paths depends on the
number of involved tasks as well as on the involved periods, a
large number of data propagation paths might be generated. A
user has hence the possibility to uncheck the option ”Calculate
All Paths” which will only calculate the data propagation path
for the minimum and maximum job at each chain level. Hence
this reduces the complexity of the calculation and simplifies
the post processing by the system designer.

3) Adding and Synthesizing Job-Level Dependencies: The
second strength of the tool is to handle job-level dependencies.



The left column of the main window provides means to add
a job-level dependency manually as well as to synthesize job-
level dependencies for all cause-effect chains in the system.
The button ”Add Dependency” opens a new window (see
Fig. 4b) which allows to select the two involved tasks and
the dependent instances. Note that first the two tasks need to
be selected before the menu for the involved jobs becomes
active. This is the case since, depending on the selected tasks,
the available job instances change.

The button ”Generate Dependencies” triggers a heuris-
tic [9] which adds job-level dependencies to the system in
a way that all specified age-constraints are met. Already spec-
ified dependencies are not affected. The main intuition behind
the heuristic is that a placement of a job-level dependency
can prune a branch of the data propagation tree. Hence the
heuristic adds dependencies in a way such that all branches
which lead to larger end-to-end delays than specified are
removed.

4) The Graph View: The graph view, as shown in Fig. 5a,
depicts the data propagation tree of the currently selected
chain. Each data path originating from the different initial
nodes is colored differently for a more effective visual pre-
sentation. The different jobs of the involved tasks are drawn
in a way that the data always propagates from top to bottom,
i.e. the beginning of the chain is at the top and the last task of
the chain is at the bottom. Branches which lead to end-to-end
delays larger than the specified constraint are shown in dashed
lines. These branches need to be removed in order to meet the
specified constraints. Note that this representation depicts no
time information, the execution of the jobs depends on the
exact path a data propagates and hence cannot be shown in
this overview. However, jobs are grouped such that jobs of the
same hyperperiod are arranged together and separated by the
vertical dashed lines. A user can obtain further information of
the different nodes by clicking on them which then displays
an information box.

5) The Trace View: The trace view is shown in Fig. 5b. This
view visualizes the read- and data-interval of all jobs of one
chain (see Fig. 2 for a description). Initially the first initial job
is selected and the propagation of the calculated data paths is
visualized via yellow overlay. Additionally the minimum and
maximum data age of these data paths are shown. A user can
change this view to any other initial job by clicking on the
respective read interval.

C. Implementation and Distribution
To be platform independent, the tool is developed in Java.

The main development is performed under OSX which might
cause a diverging visual appearance on other platforms. The
tool is freely available online1. A user documentation and
examples are provided under the same link.

V. CASE STUDY

The applicability of the presented tool is demonstrated on
a case study of an Engine Management System (EMS). This
case study is adapted from the results presented in [11]. The
EMS consists of several subsystems which control the air

1http://www.mechaniser.com

MAF_S AirMFlow IgnTime_C

5	ms 20	ms 10	ms

Ignition	System

MAF

ES

IgnTime_A

5	ms

ITS

CI

… …

TG1

TG8

Cause-Effect	Chain	!",	Age	Constraint	=	25ms

Cause-Effect	Chain	!#,	Age	Constraint	=	20ms

Fig. 6: Tasks and specified cause-effect chains of the IS and ITS.

and gas mixture which is injected into the cylinders. The Air
Intake System (AIS) controls the amount of air via the throttle
position, while the Fueling System (FS) controls the amount
of gas which is injected per stroke. The Ignition System (IS)
controls the exact time of the ignition, both FS and IS feed into
the Injection Time and Ignition Time Actuation System (ITS).
For a smooth and energy efficient operation of the vehicle,
several age constraints must be met. The complete EMS of this
case study comprises 16 different tasks which three different
periods (5 ms, 10 ms, and 20 ms)

Due to space limitations, we discuss only part of the
complete EMS. The case study includes two cause-effect
chains, ζ1, and ζ2, which are specified from the Mass Air
Flow (MAF) input to the output for Ignition Time of cylinder
1 to 8 (TG1-8). The cause-effect chain ζ2 is specified from
the Engine Speed (ES) input up to TG1-8. Both chains span
from the IS to the output of the ITS. 4 tasks with 3 different
periods are involved (see Fig. 6) and WCETs of all tasks are
set to 1 ms. We refer to [9] for a case study of the AIS.

A. Analysis of Latencies using MECHAniSer
Both specified cause-effect chains contain a number of

runnables which are triggered at different periods. For the
chain ζ1 all four tasks are involved. The calculation of all data
propagation paths results in 70 different paths, a minimum data
age of 4 ms, and a maximum data age of 55 ms. The maximum
possible data age exceeds the specified age constraint of 25 ms
and the chain is not directly schedulable by the system. In
the next step we will show how the tool generates job-level
dependencies to remove the data propagation paths which
exceed the constraint.

The second chain ζ2 consists only of two tasks. Hence, the
number of data propagation paths is smaller. Four paths are
identified, with a minimum data age of 2 ms and a maximum
data age of 20 ms. Here the specified age constraint of 20 ms
is met without the need to specify job-level dependencies.

The required computation time for the analysis of the two
chains is 5 ms and 2 ms for ζ1 and ζ2 respectively.

B. Synthesizing Job-Level Dependencies
The initial analysis of the two cause-effect chains revealed

that, while ζ2 meets its age constraint, ζ1 does not. Hence
job-level dependencies need to be generated in order to meet
the constraint.

The tool generated three different job level dependencies in
order to meet the constraint of the cause-effect chain. One job-
level dependency was generated between each consecutive pair
of tasks. This successfully reduces the maximum data age to
25 ms, allowing the cause-effect chain to meet its constraint.



The presence of the job-level dependencies further reduces
the number of data propagation paths to 13. The required
computation time is 19 ms. Since ζ2 is subset of ζ1, the
specified job-level dependency between the last two tasks of
the cause-effect chain can have influence on ζ2, hence ζ2
needs to be revalidated as well. The job-level dependency
specified for the two tasks is defined between the first job
of task IgnTime C to the second job of task IgnTime A, the
parameters are not influenced and the latency stays at 20 ms
with 4 different data propagation paths.

VI. RELATED TOOLS

Many industrial standards specify constraints for the propa-
gation of data through a chain of tasks [1], [2]. A detailed
discussion of end-to-end delays is provided in [10]. The
authors formally specify age- and reaction delays in multi-
rate systems which communicate via register-communication
and further develop a method to calculate end-to-end delays
in such systems.

Several commercially available tools support the analysis
of end-to-end delays in cause-effect chains. Examples are
SymTA/S TraceAnalyzer for ECUs [16], Rubus ICE [15], and
Timing Architects Inspector [17].

To the best of our knowledge the analysis presented in [10]
is implemented in these tools [18], [19]. EELAP [20] is an
open source end-to-end analyzer for the ProCom [21] real-time
component model. The tool is built on the analysis of [10].
All these tools however require an existing schedule in order
to analyze the system. Hence, the calculation of end-to-end
delays in early design phases is not supported.

Several works address systems where job-level dependen-
cies are specified [5], [6], [7], [8]. The application model
in these works is specified by the prelude language [4]
which specifies the rate-transition operation. On task level
this operation is equivalent to a job-level dependency. The
prelude compiler is available [22] and can generate synchro-
nized multi-task C-code which then can be executed by the
supported target OS. To the best of our knowledge, no tool
exists that can automatically generate job-level dependencies
in order to meet the end-to-end timing constraints.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented MECHAniSer, the first tool for
the analysis and synthesis of multi-rate cause-effect chains
with specified job-level dependencies. The tool allows to ana-
lyze systems at early design phases, where detailed scheduling
knowledge is not available. Further, the tool synthesizes job-
level dependencies for a set of cause-effect chains in a way
that all their end-to-end timing constraints are met. This allows
such systems to be scheduled on any platform which supports
these concepts [5], [6], [7], [8].

The tool provides its own XML format to store the project
configurations but it also provides the possibility to import
projects from existing tools and hence eases the design pro-
cess. Multiple graphical views are provided to support the
system designer and to ease the understanding of the data
propagation in multi-rate cause-effect chains. Several exten-
sions to the tool are possible. One limitation of the current

implementation is the time granularity. Future versions of the
tool will allow to specify time values in smaller granularity
than ms. Besides data age, many industrial applications specify
reaction constraints. Analysis for this type of constraint is
currently not supported but will be part of future work.

ACKNOWLEDGMENT

The work presented in this paper is supported by the Swedish
Knowledge Foundation (KKS) through the projects PREMISE and
DPAC; and the Swedish Foundation for Strategic Research (SSF)
through the projects PRESS.

REFERENCES

[1] AUTOSAR - Spec. of Timing Extensions, AUTOSAR Std. 4.2.2, 2014.
[2] EAST-ADL - Domain Model Specification, EAST-ADL Association Std.

V2.1.12, 2014.
[3] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive

benchmarks for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems, 2015.

[4] J. Forget, F. Boniol, D. Lesens, and C. Pagetti, “A real-time architecture
design language for multi-rate embedded control systems,” in ACM
Symposium on Applied Computing, 2010, pp. 527–534.

[5] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and C. Pagetti, “Scheduling
dependent periodic tasks without synchronization mechanisms,” in 16th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, 2010, pp. 301–310.

[6] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens, “Multi-
task implementation of multi-periodic synchronous programs,” Discrete
Event Dynamic Systems, vol. 21, no. 3, pp. 307–338, 2011.

[7] W. Puffitsch, E. Noulard, and C. Pagetti, “Off-line mapping of multi-
rate dependent task sets to many-core platforms,” Real-Time Systems,
vol. 51, no. 5, pp. 526–565, 2015.

[8] ——, “Mapping a multi-rate synchronous language to a many-core
processor,” in 19th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2013, pp. 293–302.

[9] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthe-
sizing job-level dependencies for automotive multi-rate effect chains,”
in Proceedings of the 22th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), [Online]
http://www.es.mdh.se/publications/4368-, 2016.

[10] N. Feiertag, K. Richter, J. Norlander, and J. Jonsson, “A compositional
framework for end-to-end path delay calculation of automotive systems
under different path semantics,” in Int. Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems, 2008.

[11] P. Frey, “Ulmer Informatik Berichte Nr 2010-03 - Case Study: Engine
Control Application,” University Ulm, Tech. Rep., 2010.

[12] AUTOSAR - Specification of RTE, AUTOSAR Std. 4.2.2, 2014.
[13] IEC 61131-3, International Electrotechnical Commission Std., 2003.
[14] AMALTHEA, “An Open Platform Project for Embedded Multicore

Systems,” [Online] http://www.amalthea-project.org/index.php/contact,
last visited 16.05.2016.

[15] Arcticus Systems, “Rubus ICE,” [Online] https://www.arcticus-
systems.com/products/, last visited 16.05.2016.

[16] Symtavision GmbH, “SymTA/S and TraceAnalyzer for ECUs,” [On-
line] https://www.symtavision.com/products/ecu-timing/, last visited
16.05.2016.

[17] Timing Architects, “Timing Architects Inspector,” [Online]
https://www.timing-architects.com/ta-tool-suite/inspector/, last visited
16.05.2016.

[18] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System level performance analysis - the symta/s approach,” IEE Pro-
ceedings - Computers and Digital Techniques, vol. 152, no. 2, pp. 148–
166, 2005.

[19] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for end-to-end
response-time and delay analysis in the industrial tool suite: Issues,
experiences and a case study,” Computer Science and Information
Systems, vol. 10, no. 1, 2013.

[20] J. Kuncar, R. Inam, and M. Sjödin, “End-to-end latency analyzer for
ProCom - EELAP,” Tech. Rep. ISSN 1404-3041 ISRN MDH-MRTC-
272/2013-1-SE, 2013.

[21] R. Inam and M. Sjödin, “Implementing and evaluating communication-
strategies in the procom component technology,” SIGBED Rev., vol. 9,
no. 4, pp. 41–44, 2012.

[22] Prelude, “programming critical real-time systems,” [Online]
http://www.lifl.fr/%7Eforget/prelude.html, last visited 16.05.2016.


