
Mälardalen University Licentiate Thesis
No.10

Reducing Pessimism and
Increasing Flexibility in the

Controller Area Network

Thomas Nolte

May 2003

Department of Computer Science and Engineering
Mälardalen University

Västerås, Sweden

Copyright c
�

Thomas Nolte, 2003
ISBN 91-88834-48-4
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

The Controller Area Network (CAN) is a widely used real-time commu-
nication network for automotive and other embedded applications. As new
applications continue to evolve, the complexity of distributed CAN based sys-
tems increase. However, CAN’s maximum speed of 1 Mbps remains fixed,
leading to performance bottlenecks. In order to make full use of this scarce
bandwidth, methods for increasing the achievable utilisation are needed.

Traditionally, real-time scheduling theory has targeted hard real-time sys-
tems, which most of the time are safety critical. Since these systems (by defini-
tion) are not allowed to have any timing flaws, analysis techniques need to take
all possible scenarios of execution combinations and execution times of the
system into consideration. This will result in a system that is configured for
the worst possible scenario. Whether this scenario is likely, or even possible,
in the real system is not considered. Hence, the result may be an unnecessarily
expensive system, with potentially overly provisioned resources.

In this thesis we address two issues. In the first part, we investigate how to
loosen up pessimistic real-time analysis in a controlled way, thereby allowing
the designer to make well-founded trade-offs between the level of real-time
guarantee and the system cost. Specifically, we investigate and model the bit-
stuffing mechanism in CAN in order to retrieve representative distributions of
stuff-bits, which we then use in the response time analysis instead of the worst-
case values normally used. We evaluate the validity of these stuff-bit distribu-
tions in two case studies, and we integrate this representation of message frame
length with the classical CAN worst-case response-time analysis.

In the second part of the thesis, we propose a novel way of scheduling
the CAN. By providing server-based scheduling, bandwidth isolation between
users is guaranteed. This increases the flexibility of CAN, by providing ef-
ficient handling of sporadic and aperiodic message streams. Server-based
scheduling also has the potential to allow higher network utilisation compared
to CAN’s native scheduling. The performance and properties of server-based
scheduling of CAN is evaluated using simulation. Also, the server-based
scheduling is applied in an end-to-end analysis.

Keywords: controller area network, CAN, real-time communication, real-time
analysis, reliability trade-off analysis, bit-stuffing, server-based scheduling

To Karin and Jürgen

Preface

The journey that has resulted in, among other things, this thesis started on a hot
summer day in Västerås, back in 2000. I was currently doing my Bachelors
degree project at Adtranz (now Bombardier Transportation), evaluating Java in
VxWorks as a suitable HMI platform. Going on my daily lunch down-town, I
ran into my supervisor at the time, Christer Norström. During lunch together
he presented the idea of a continuation of my studies towards a Ph.D. degree.
At that time the idea of postgraduate studies had never crossed my mind, but
since that day, almost 3 years ago, I know that I could not have made a better
choice. Thank you Christer, for giving me this opportunity.

The work presented in this thesis would not have been possible without
the help of my supervisors Hans Hansson and Christer Norström. You have
both believed in me, supported my work, and inspired me throughout these
years. Thank you Hans for all help and your impressive work capacity with
short notice. Thanks also to Mikael Sjödin for a huge amount of help with
structuring and reading of this thesis.

Thank you Kwei-Jay Lin for all help and support during my stay at Uni-
versity of California, Irvine. I had a really nice time during my five-month
period there. I learned a lot and met many nice friends: Sue, Angelo, Aki, and
Andy. Also, thank you Kwei-Jay Lin for arranging and for taking care of me
in Taiwan. Taipei is one of the most interesting places I have visited up until
today.

Also, I must thank some colleagues that I have met at various conferences
throughout the world. Mille grazie Lucia Lo Bello, for constructive reviewing
and help on my initial paper. Others who have inspired me a lot are Luı́s
Almeida, Alan Burns, and Iain Bate.

A big thank you goes to my study-partner Dag Nyström, who still manages

v

vi

to share office space with me. We started together in 1997 with very different
backgrounds, ending up studying daily together for 4 years, starting as Ph.D.
students together, and now, another 2 years later, defending our licentiate theses
the same day.

It has been a pleasure working at IDt, with all colleagues, especially Joel
Huselius, Anders Pettersson, Damir Isović, Daniel Sundmark, Tomas Lennvall,
Radu Dobrin, and Jonas Neander. Thank you Harriet Ekwall for support in all
sorts of practical issues. When I was constructing this list of people that I wish
to thank, I was putting virtually all names of the people working here at IDt
on it, together with a bunch of other people, so, instead of giving the complete
list, Thank you all!

Finally, and most importantly, I thank my family and my friends for sup-
porting me through these years, and I thank Carla for her love.

This work has been supported by the Swedish Foundation for Strategic
Research (SSF) via the research programme ARTES, the Swedish Foundation
for Knowledge and Competence Development (KK-stiftelsen), LM Ericsson’s
Research Foundation, and Mälardalen University.

Tusen tack!

Thomas Nolte, Västerås, April 2003.

Contents

Preface v

Contents vii

List of Publications xi

I Thesis 1

1 Introduction 3
1.1 Problem Formulation . 3
1.2 General Applicability . 5
1.3 Outline . 6

2 Basic Concepts 7
2.1 Real-Time . 9
2.2 Analysis for Priority-Based Schedulers 13

2.2.1 Utilisation-Based Tests 13
2.2.2 Response-Time Tests 14
2.2.3 Servers . 16

2.3 Summary . 16

3 Related Work 17
3.1 Fieldbuses . 17
3.2 The Controller Area Network 18
3.3 Classical Schedulability Analysis for CAN 18

3.3.1 Classical CAN Message Response-Time Analysis . . . 19
3.4 Extensions to the Classical Analysis 22

vii

viii CONTENTS

3.4.1 Reduction of Pessimism 22
3.4.2 Probabilistic Analysis 22
3.4.3 Fault Models . 22

3.5 Higher-Layer Protocols for CAN 23
3.5.1 EDF on CAN . 24
3.5.2 FTT-CAN . 24
3.5.3 TT-CAN . 25
3.5.4 Server-Based Scheduling of CAN 25

3.6 Summary . 26

4 Technical Contributions 27
4.1 Part 1: Probabilistic Analysis 27

4.1.1 Summary of Paper A 27
4.1.2 Summary of Paper B 28
4.1.3 Summary of Paper C 29

4.2 Part 2: Scheduling . 29
4.2.1 Summary of Paper D 30
4.2.2 Summary of Paper E 31

5 Conclusions 33
5.1 Summary . 33
5.2 Directions for Future Work 33

Bibliography 34

II Included Papers 41

6 Paper A: Using Bit-Stuffing Distributions in CAN Analysis 43
6.1 Introduction . 45
6.2 Traditional Schedulability Analysis of CAN Frames 46

6.2.1 Classical CAN Bus Analysis 47
6.2.2 Effects of Bit-Stuffing, Worst-Case 48
6.2.3 Independent Bit-Stuffing Model 49

6.3 Case-Study: Real CAN Traffic 49
6.4 A Simple Coding Scheme to Reduce Bit-Stuffing 51
6.5 Conclusions . 53

CONTENTS ix

7 Paper B: Minimizing CAN Response-Time Jitter by Message Ma-
nipulation 57
7.1 Introduction . 59
7.2 Traditional Schedulability Analysis of CAN Frames 60

7.2.1 Classical CAN Bus Analysis 61
7.2.2 Effects of Bit-Stuffing, Worst-Case 62

7.3 Careful Priority Usage . 63
7.4 Independent Model and a Method for Data Transformation . . 66
7.5 Combination of Techniques 67
7.6 Case-Study . 69
7.7 Conclusions . 71

8 Paper C: Probabilistic Worst-Case Response-Time Analysis for the
Controller Area Network 77
8.1 Introduction . 79
8.2 Traditional Schedulability Analysis of CAN Frames 81

8.2.1 Classical CAN Bus Analysis 82
8.2.2 The Bit-Stuffing Mechanism 83

8.3 New Approach . 85
8.3.1 Example . 86
8.3.2 Probabilistic Worst-Case Response-Time 86
8.3.3 Complexity . 88
8.3.4 Example . 88

8.4 Evaluation . 89
8.5 Conclusions . 91

9 Paper D: Server-Based Scheduling of the CAN Bus 95
9.1 Introduction . 97
9.2 Background and Related Work 98

9.2.1 The Controller Area Network 98
9.2.2 Scheduling on CAN 98

9.3 Server-Based Scheduling on CAN 100
9.3.1 Server Scheduling (N-Servers) 101
9.3.2 Medium Access (M-Server) 103

9.4 Approach to Analysis . 105
9.4.1 Message Delivery . 106

9.5 Evaluation . 107
9.5.1 Scenario 1 . 107
9.5.2 Scenario 2 . 108

x CONTENTS

9.5.3 Scenario 3 . 108
9.5.4 Discussion . 111

9.6 Conclusions . 111

10 Paper E: Distributed Real-Time System Design using CBS-based
End-to-end Scheduling 119
10.1 Introduction . 121
10.2 CBS and Real-Time Open Environment 122

10.2.1 Constant Bandwidth Server (CBS) 122
10.2.2 The Real-Time Open Environment Architecture 122

10.3 CBS-based CAN Network 123
10.3.1 The Controller Area Network 124
10.3.2 CBS on CAN . 125

10.4 CBS-based Real-Time Architecture 127
10.4.1 End-to-end Response-Time 128
10.4.2 Implementation . 129
10.4.3 Admission Control 129

10.5 Simulation Results . 130
10.6 Conclusions . 131

List of Publications

The following articles are included in this licentiate1 thesis:

A. Using Bit-Stuffing Distributions in CAN Analysis, Thomas Nolte, Hans
Hansson, Christer Norström, and Sasikumar Punnekkat2, In Proceedings
of IEEE/IEE Real-Time Embedded Systems Workshop (RTES’01), Lon-
don, England, December 2001.

B. Minimizing CAN Response-Time Jitter by Message Manipulation,
Thomas Nolte, Hans Hansson, and Christer Norström, In Proceedings
of the ����� IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS’02), San Jose, CA, USA, September 2002.

C. Probabilistic Worst-Case Response-Time Analysis for the Controller
Area Network, Thomas Nolte, Hans Hansson, and Christer Norström, In
Proceedings of the ����� IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’03), Toronto, Canada, May 2003.

D. Server-Based Scheduling of the CAN Bus, Thomas Nolte, Mikael Sjödin,
and Hans Hansson, Technical Report ISSN 1404-3041 ISRN MDH-
MRTC-99/2003-1-SE, Mälardalen Real-Time Research Centre, Mälar-
dalen University, Sweden, April 2003.

E. Distributed Real-Time System Design using CBS-based End-to-end
Scheduling, Thomas Nolte and Kwei-Jay Lin3, In Proceedings of the
����� IEEE International Conference on Parallel and Distributed Systems
(ICPADS’02), Taipei, Taiwan, ROC, December 2002.

1A licentiate degree is a Swedish graduate degree halfway between M.Sc. and Ph.D.
2Vikram Sarabhai Space Centre, Trivandrum, India.
3Department of Electrical and Computer Engineering, University of California, Irvine, CA

92697, USA.

xi

xii LIST OF PUBLICATIONS

Besides the above articles, I have (co-)authored the following scientific pa-
pers:

I. Integrating Reliability and Timing Analysis of CAN-based Systems, Hans
Hansson, Thomas Nolte, Christer Norström, and Sasikumar Punnekkat,
In IEEE Transactions on Industrial Electronics, 49(6), December 2002.

II. Effects of Varying Phasings of Message Queuings in CAN-based Sys-
tems, Thomas Nolte, Hans Hansson, and Christer Norström, In Proceed-
ings of � ��� International Conference on Real-Time Computing Systems
and Applications (RTCSA’02), Tokyo, Japan, March 2002.

III. Modeling and Analysis of Message-Queues in Multi-Tasking Systems,
Thomas Nolte and Hans Hansson, In Proceedings of ARTES Real-Time
Graduate Student Conference, Lund, Sweden, March 2001.

IV. Probabilistic Worst-Case Response-Time Analysis for the Controller
Area Network, Thomas Nolte, Hans Hansson, and Christer Norström,
Technical Report ISSN 1404-3041 ISRN MDH-MRTC-77/2002-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, Swe-
den, November 2002.

V. Efficient and Fair Scheduling of Periodic and Aperiodic Messages on
CAN Using EDF and Constant Bandwidth Servers, Thomas Nolte, Hans
Hansson, and Mikael Sjödin, Technical Report ISSN 1404-3041 ISRN
MDH-MRTC-73/2002-1-SE, Mälardalen Real-Time Research Centre,
Mälardalen University, Sweden, May 2002.

VI. Reducing Pessimism in CAN Response-Time Analysis, Thomas Nolte,
Technical Report ISSN 1404-3041 ISRN MDH-MRTC-51/2002-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, Swe-
den, March 2002.

VII. Minimizing CAN Response-Time Jitter by Message Manipulation,
Thomas Nolte, Hans Hansson, and Christer Norström, Technical Report
ISSN 1404-3041 ISRN MDH-MRTC-52/2002-1-SE, Mälardalen Real-
Time Research Centre, Mälardalen University, Sweden, March 2002.

VIII. Effects of Varying Phasings of Message Queuings in CAN-based Sys-
tems, Thomas Nolte, Hans Hansson, and Christer Norström, Technical
Report ISSN 1404-3041 ISRN MDH-MRTC-44/2001-1-SE, Mälardalen
Real-Time Research Centre, Mälardalen University, Sweden, December
2001.

I

Thesis

1

Chapter 1

Introduction

“Real-time systems are defined as those systems for which the correctness de-
pends not only on the logical result of the computation, but also on the time at
which the results are produced”, Stankovic [44].

The Controller Area Network (CAN) [10, 37] is a widely used fieldbus
in automotive and other real-time applications. CAN uses a fixed-priority
based arbitration mechanism that can provide real-time guarantees and that
is amenable to timing analysis.

Today, distributed real-time systems become more and more complex and
the number of micro-controllers attached to CAN buses continue to grow.
CAN’s maximum speed of 1 Mbps remains, however, fixed; leading to perfor-
mance bottlenecks. This is further accentuated by the steadily growing comput-
ing power of CPUs. Hence, in order to reclaim some of the scarce bandwidth
forfeited by CAN’s native scheduling mechanism, methods for increasing the
achievable utilisation are needed, e.g., novel analysis methods that allow in-
creased utilisation while guaranteeing timing requirements to be fulfilled, and
novel approaches to schedule CAN.

1.1 Problem Formulation

In this thesis we address the following two issues:

1. Probabilistic modelling of the bit-stuffing mechanism of CAN – to make
timing analysis of CAN less pessimistic.

3

4 Introduction

2. Server-based scheduling of CAN – to increase the flexibility and utilisa-
tion when scheduling CAN.

The first problem is addressed by investigating and modelling the bit-
stuffing mechanism in CAN in order to retrieve some representative distribu-
tions of stuff-bits. By using these distributions, instead of the worst-case val-
ues traditionally used, the level of pessimism in the analysis is significantly
lowered. Hence, it will be possible to make trade-offs between the level of
pessimism and reliability.

To understand the motivation of this kind of trade-off, consider traditional
real-time scheduling theory, which targets safety-critical hard real-time sys-
tems. Since these systems (by definition) are not allowed to have any timing
flaws, analysis techniques need to take all possible scenarios of execution com-
binations and execution times into consideration. This results in a system that
is configured for the worst possible scenario. Whether this scenario is likely,
or even possible, in the real system is not considered. Given that the model
assumptions are correct, this is fine from a strict hard real-time perspective, but
will result in a more expensive system (in terms of resources and hardware),
compared to if we can allow a small probability of a deadline miss.

In this thesis we will investigate how to loosen up the real-time analysis in a
controlled way, thereby allowing the designer to make well-founded trade-offs
between the level of real-time guarantee and the resource needs (system cost).
There are several motivations for this work, including:

� By also considering reliability, there is always some small probability of
system failure, regardless of the rigor of the schedulability analysis, i.e.,
it is fair to say that “there is no such thing as a hard real-time system”.

Reliability is defined as the probability that a system can perform its in-
tended function, under given conditions, for a given time interval. Miss-
ing a deadline in a hard-real time system is, just as a hardware failure,
a violation of the intended behaviour. Hence, the probability of missing
a deadline is for such a system an important aspect to consider when
calculating the overall system reliability. The aspects that need to be
considered in calculating the overall reliability, e.g., for a communica-
tion system (like CAN), are depicted in Figure 1.1.

The presented link between timing guarantees and reliability forms a
basis for making trade-offs between the two, i.e., we could allow some
deadline misses as long as their effect on the system reliability does not
invalidate the overall system reliability requirement.

1.2 General Applicability 5

System
Reliability

Hardware Software

Message
Correctness

Timely Delivery
Reliability

Growth Models
Component
Reliability

Communications

Figure 1.1: System reliability: a top-down view.

� More and more applications have real-time demands, although not as
safety-critical as traditional real-time systems, e.g., audio and video
transmissions. These new applications open the door to loosen up timing
requirements a bit, thus allowing some deadlines to be violated on rare
occasions. By using probability distributions of values instead of worst-
case values, designers are given more freedom in terms of arguments
for making well-founded trade-offs between, e.g., resource requirements
and timeliness.

For the second part of the thesis we consider server-based scheduling. By
providing server-based scheduling, bandwidth isolation between users of a re-
source is guaranteed. This allows for effective handling of sporadic and aperi-
odic message streams. However, in order to implement server-based schedul-
ing on CAN, new mechanisms to provide information to servers are needed.
When the server is scheduling the messages, it must know when they are arriv-
ing at the different nodes in the distributed system in order to make the correct
scheduling decisions. This information, however, should not be communicated
by message passing, since this would further reduce the already low band-
width offered by CAN. Instead, we present a novel and efficient approach that
is based on the characteristics of CAN message frame arbitration.

1.2 General Applicability

In this thesis we address two issues. The first issue is related to the estima-
tion of an overall system reliability. As presented in Figure 1.1, several parts
contribute to the overall reliability of a system. We propose a solution to the
communication part, applied to CAN. However, using distributions of values

6 Introduction

instead of worst-case values is applicable not only to CAN and communication
systems. It can be used generally to more accurately capture the behaviour
of essentially any system. Thereby allowing for greater degree of trade-offs
between timing and reliability.

For the second issue addressed in this thesis (to increase the flexibility of
CAN scheduling), the mechanisms proposed can be directly applied to any
priority-queue based system or subsystem. However, to stay focused, we only
implement these scheduling mechanisms on CAN.

1.3 Outline

The outline of this thesis is as follows: Chapter 2 starts by explaining and
presenting basic real-time concepts that will be used throughout this thesis, and
in Chapter 3 CAN is described together with relevant and related work. The
technical contribution of this thesis is presented in Chapter 4, and in Chapter 5
we present our conclusions and suggestions for future work. Finally, included
papers are appended in chapters 6 - 10.

Chapter 2

Basic Concepts

In real-time systems, not only the correct logical result of a computation is
of importance. Real-time systems are additionally looking into at which time
the results of these computations are produced. Over the last decades, various
analysis techniques have been developed to determine at what time, in a worst-
case scenario, a specific computation is completed.

Violating the predetermined properties in terms of timeliness can result in
a bad or sometimes catastrophic scenario. For example, consider an airbag in a
car. The purpose of an airbag system is to inflate a bag of gas that will catch the
driver of a car in case of a collision. The airbag is not to be inflated too early
or too late, since this could cause injury to the driver. A too early inflation
will allow too much gas to leave the airbag before the driver is thrown into it.
Moreover, a too late inflation will cause the driver to smash into the steering
wheel before the airbag is exploding in his face. Only the correct timing will
cause the airbag to work as intended.

In the area of real-time computing, we have a real-time system running one
or several real-time programs. The real-time system is usually connected to
some input devices, and based on the input from these devices it is controlling
a system. A real-time program consists of a set of tasks that are executing
in some resource-constrained environment. Several tasks may share the same
processor. The goal of the real-time system is to function as intended in all
possible scenarios, most importantly, also during peak-load.

The real-time system can either be executing on a single CPU or it can be
distributed over several computing nodes. The latter type of real-time system
is the main focus of this thesis. We will assume a system in which each node

7

8 Basic Concepts

is executing a number of tasks that are communicating using a fieldbus1 type
of communication network. We define these systems as Distributed Computer
Control Systems (DCCS). An overview of key issues in a DCCS is presented
in Figure 2.1 (Figure taken from Tovar [51]). This figure identifies the 9 com-
ponents that contribute to the worst-case response-time of a task in network
node A (task 1). The role of this task is to obtain data from a process sensor
located in the network node B. To do that, firstly task 1 has to be scheduled
together with the other tasks on host processor A. Once task 1 is scheduled for
execution, and it has executed until completion (1), its message is queued (2)
in the communications adapter A before it is sent on the shared broadcast bus
(3). When the message is received on node B, the communications adapter B is
putting the message in the arrival-queue (4) before it can be consumed by task
3 (which must be scheduled (5) together with the other tasks on host processor
B). Then, the procedure is repeated (6-9) for the response.

Task 1

Task 2

Task n

Host Processor A

Communications Adapter A

Task 1

Task 2

Task 3

Host Processor B

Communications Adapter B

Shared Broadcast Bus

1

2

3

8 6 4

7

5

9

Figure 2.1: A Distributed Computer Control System (DCCS).

1Examples of fieldbuses include Controller Area Network (CAN), Process Network (P-NET),
Process Field Bus (PROFIBUS), and Factory Instrumentation Protocol (FIP, later WorldFIP).

2.1 Real-Time 9

2.1 Real-Time

A real-time system consists of a set of real-time programs, which in turn con-
sists of a set of tasks. These tasks are executing in an environment with limited
resources. The tasks have different constraints in terms of time, e.g., execu-
tion times, periods, and deadlines. Several tasks can be executing on the same
processor, i.e., sharing the same processor. Important issues to determine is
whether all tasks can execute as planned during peak-load. By calculating the
response-time of the tasks in the worst-case scenarios (at peak-load) we can
determine if they will fulfil this requirement.

A real-time system can be pre-emptive or non pre-emptive. In a pre-emptive
system, tasks can pre-empt each other, always letting the task with the highest
priority execute. In a non pre-emptive system a task that has been allowed
to start will always execute until its completion. The difference between pre-
emptive and non pre-emptive execution is shown in Figure 2.2. Here, two tasks,
task A and task B, are executing on a node. Task A has higher priority than task
B. Task B arrives before task A. Scenarios for both non pre-emptive execution
(a) and pre-emptive execution (b) are shown in the figure.

High

Low

21 3 4 5 6 7 8 9

High

Low

21 3 4 5 6 7 8 9t t

P P

= Task arrival PTask A Task B = Priority t = Time

(a) (b)

Figure 2.2: Task execution in a non pre-emptive (a) and a pre-emptive (b)
system.

Tasks can be further categorised into either being periodic, sporadic, or
aperiodic. Periodic tasks are executing periodically with a specified time (pe-
riod) between task releases. Aperiodic tasks have no information saying when
the task is to execute and usually they are triggered by interrupts, whereas spo-
radic tasks, although having no period, have a known minimum inter-arrival

10 Basic Concepts

time. The difference between periodic, sporadic, and aperiodic task arrivals is
illustrated in Figure 2.3. The difference between sporadic and aperiodic tasks
is that we have a known minimum inter-arrival time for the sporadic tasks,
whereas the aperiodic tasks have no known inter-arrival time. In Figure 2.3 the
periodic task has a period equal to 2, i.e., inter-arrival time is 2, the sporadic
task has a minimum inter-arrival time of 1, and the aperiodic task has no known
inter-arrival time.

Periodic

Sporadic

2 10 184 166 148 12 t

Aperiodic

20 22

= Task arrival t = Time

Figure 2.3: Periodic, sporadic, and aperiodic task arrival.

Classifying a task into periodic, sporadic, or aperiodic is done based on its
purpose. Typically, measuring tasks are set to be periodic since they are col-
lecting some value(s) every nth time unit. A sporadic task is typically reacting
to an event that we know has a minimum inter-arrival time, e.g., an alarm or the
emergency shut down of a production robot. The minimum inter-arrival time
can be constrained by physical laws, or it can be enforced by some hardware
mechanism. If we do not know the minimum time between two consecutive
events, we must classify the event-handling task to be aperiodic.

Moreover, the task can be classified as a task with hard, soft, or safety-
critical real-time requirements. Hard real-time tasks have high demands on
their ability to fulfil their properties in terms of timeliness, and violation of
these requirements may have severe consequences. If the violation is catas-
trophic, the task is classified as safety-critical. The failure of a safety-critical
real-time task can cause loss of human life. However, many tasks have real-
time demands although violation of these is not so severe, and in some cases
violation can be tolerated. Examples of real-time systems including such tasks
are robust control systems and systems that contain audio/video streaming.

A central problem when dealing with real-time systems is to determine
how long time a real-time task will execute, in the worst case. The task is
usually assumed to have a worst-case execution time (WCET). This is a field of

2.1 Real-Time 11

research in its own, which has not yet come to consensus, although there exists
several techniques for estimation of the worst-case execution time [35, 12].

Scheduling
policies

Offline analysis Online analysis

Priority-based
scheduler

Table-driven
scheduler

Best-effort
scheduler

Planning-based
scheduler

Dynamic priority Fixed priority

Figure 2.4: Different types of schedulability analysis.

A real-time scheduler schedules the real-time tasks sharing the same re-
sources. The goal of the scheduler is to fulfil the requirements of these tasks
in terms of timeliness. There are several different policies determining the be-
haviour of a real-time scheduler. The scheduler decides, based on the available
task constraints, which task is to execute or to use the resource desired. Schedu-
lability analysis is used to determine whether or not a set of tasks can share a
resource without violating any task-constraints, e.g., deadlines. The theory of
real-time schedulability analysis can be divided into two major groups; online
schedulability analysis and offline schedulability analysis, as illustrated in Fig-
ure 2.4. Using online schedulability analysis, the schedulability of the task-set
is determined at run-time, whereas when using offline-schedulability analysis,
the schedulability of the task-set is done prior to run-time.

Scheduling policies that use online schedulability analysis can be classified
as either planning-based schedulers or best-effort schedulers. Planning-based
schedulers try to re-define the schedule upon arrival of a new task. If it finds
the new task-set to be feasible, the new task can be accepted. Otherwise the
new task will be rejected. Best-effort schedulers accept all new tasks and tries
to perform as good as possible in terms of fulfilling task-constraints.

The schedulability analysis can be made offline for table-driven schedulers
and priority-based schedulers. The table-driven schedulers create a schedule
(the table) before the system is started, and are most often used in applications
that have very high safety-critical demands. At runtime, a dispatcher follows

12 Basic Concepts

the schedule. Therefore the behaviour of table-driven schedulers is very de-
terministic. However, since the schedule is created offline, the flexibility is
very limited, in the sense that as soon as the system will change (due to, e.g.,
adding of functionality or change of hardware), a new schedule has to be cre-
ated and given to the dispatcher. Using priority-based schedulers, the flexibility
is increased, since the schedule is created online, based on the current task-
constraints, and it can cope with some changes, as long as the schedulability
of the task-set is not violated. However, the exact behaviour of priority-based
schedulers is harder to predict. Therefore, these schedulers are not used as
often in the most safety-critical applications.

Two common priority-based scheduling policies are Fixed Priority Schedul-
ing (FPS) and Earliest Deadline First (EDF). The difference between these
scheduling policies is whether the priorities of the real-time tasks are fixed or
if they can change during execution.

In FPS, the task with the highest priority is scheduled for execution, and
priorities can be arbitrary assigned to the tasks before execution. However,
it can be proven that some priority assignments are better than others. For
instance, for a simple task model with strictly periodic non-interfering tasks
with deadlines equal to the period of the task, a Rate Monotonic (RM) priority
assignment has been shown by Liu and Layland [22] to be optimal, in the
sense that if this priority assignment leads to any missed deadline, then any
other priority assignment will also lead to some missed deadline(s). In RM,
the priority is assigned based on the period of the task. The shorter the period
is, the higher priority will be assigned to the task.

In FPS, the priorities are fixed. Using EDF, the task with the nearest (earli-
est) deadline among all available tasks is selected for execution. Therefore the
priority is not fixed, it changes with time.

In order for the priority-based schedulers to cope with aperiodic tasks, dif-
ferent service methods have been presented. The objective of these service
methods are to give a good average response-time for aperiodic requests, while
preserving the requirements demanded by hard real-time tasks. These services
are implemented as servers. In the scheduling literature many types of servers
are described. Using FPS, for instance, the Sporadic Server (SS) is presented
by Sprunt et al. [39]. SS has a fixed priority chosen according to the RM pol-
icy. Using EDF, Spuri and Buttazzo [42, 43] extended SS to Dynamic Sporadic
Server (DSS). Other EDF-based schedulers are the Constant Bandwidth Server
(CBS), presented by Abeni [1], and the Total Bandwidth Server (TBS) by Spuri
and Buttazzo [42, 41]. Each server is characterized partly by its unique mecha-
nism for assigning deadlines, and partly by a set of variables used to configure

2.2 Analysis for Priority-Based Schedulers 13

the server. Examples of such variables are bandwidth, period, and capacity.
The work in this thesis is strictly based on priority-based schedulers. Hence,

schedulability analysis methods for these types of schedulers are presented in
the following section.

2.2 Analysis for Priority-Based Schedulers

Basically, there are two different approaches for pre-run-time analysis of the
offline scheduling approaches (schedulability tests). The first approach is based
on the utilisation of the task-set under analysis (utilisation-based tests), and the
second approach is based on calculating the worst-case response-time for each
task in the task-set (response-time tests). However, utilisation-based tests can
not be used for complicated task models, as shown by Tindell et al. [46, 48].

The task model notation used throughout this chapter is presented in Ta-
ble 2.1.

Number of tasks in the task set
�

WCET �
Period �

Blocking-time �
Response-time �

Task under analysis �
Task � has priority higher than task � ���
	���
����

Task � has priority lower than or equal to task � ����������
����
Table 2.1: Task model notation.

2.2.1 Utilisation-Based Tests

In [22], Liu and Layland present a utilisation-based test for the RM priority
assignment. The task model they use consists of independent periodic tasks
with deadline equal to their periods. If the test succeeds, the tasks will always
meet their deadlines. The test is as follows:�� � ��� �

�
�
��� � �"!$#%�'& �)(+*-,

(2.1)

14 Basic Concepts

This test only guarantees that a task-set will not violate its deadlines if it
passes this test. However, there are task-sets that may not pass the test, yet
they will meet all their deadlines. Later on, Lehoczky developed an exact anal-
ysis [19]. However, the test developed by Lehoczky is a much more complex
inequality compared to (2.1).

Inequality (2.1) has been extended in various ways, e.g., by Sha et al. [38]
to also cover blocking-time, when higher priority tasks are blocked by lower
priority ones.

Liu and Layland [22] also present a utilisation-based test for EDF (assum-
ing the same type of task model as for RM):�� � ��� �

�
�
��� *

(2.2)

This inequality is a necessary and sufficient condition for the task-set to be
schedulable. Baker [6] extends inequality (2.2) to also include blocking peri-
ods, and deadlines shorter than the period. Additional extensions include work
by Zheng [52] to cover sporadic tasks.

2.2.2 Response-Time Tests

Joseph and Pandya presented the first response-time test for real-time systems
[17]. They present a response-time test for pre-emptive fixed-priority systems.
The worst-case response-time is calculated as follows:

�
��� � � � � � (2.3)

where
� �

is defined as: � ��� ����
��� 	 �

�
� � �� ��� � � ��� (2.4)

where 	���
���� is the set of tasks with higher priority than task � .
The worst-case response-time is found when all tasks are released syn-

chronously at time 0, the so-called critical instant.
The processors level-i busy period is defined as the period preceding the

completion of task i, i.e., the time in which task � and all other higher priority
tasks still not yet have executed until completion. To solve Equation (2.4), it
can be rewritten as:

2.2 Analysis for Priority-Based Schedulers 15

��� � ��
� ����

��� 	 �

�
� � ��� � � � � � � � � � (2.5)

Note that equation (2.5) is a recurrence relation, where the approximation to
the
�� � * � th value is found in terms of the � th approximation. The first ap-
proximation is set to � ��

�
�
�
. A solution is reached when the
�� � * � th

value is equal to the � th, i.e., when � � � ��
�
� �� . The recurrence relation will

terminate given that inequality (2.2) is fulfilled.
The work of Joseph and Pandya [17] has been extended by Audsley et

al. [5] to also include a blocking factor and cover for the non pre-emptive
fixed-priority context. The difference is that in a non pre-emptive system, the
processors level-i busy period is not including the task � itself:

� � � ��
�
�
� � ����

��� 	 �

�
� � �� (� �� � � � � � � � � � (2.6)

where �
�

is defined as follows:

�
������ 	�
 if ������
����

�
���
max� ��� � � 	 �
�� � ��� if ������
������

�
���
(2.7)

where ������
���� is the set of tasks with priority less or equal than task � . The
recurrence relation (2.6) is solved in the same way as equation (2.5). Note that
we must re-define the critical instant. The maximum interference now occurs
when task � and all other higher priority tasks are synchronously released just
after the release of the longest lower priority task (other than task �).

In dynamic priority systems, the worst-case response-time for a task-set
is not necessarily obtained considering the critical instant, i.e., releasing all
tasks at time 0. Instead, Spuri [40] find the worst-case response-time in the
processors deadline-i busy period. This is similar to the processors level-i busy
period as presented in equation 2.5. However, in dynamic-priority systems the
worst-case response-time can be found when all tasks, but i, are released at
time 0. Then, we have to examine multiple scenarios when task i is released at
time a.

For non pre-emptive EDF scheduling, George et al. [13] introduce an anal-
ysis where the deadline-i busy period is not including the task � .

16 Basic Concepts

2.2.3 Servers

In the second part of this thesis we use a simplified version of TBS, as well
as CBS. The server assigns a deadline to an arriving task or message, which
is then scheduled according to EDF. This deadline will be kept, if the total
aperiodic utilization does not exceed what is allocated by the server. A TBS, � ,
is characterized by the variable

���
, which is the server utilization factor, i.e.,

its allocated bandwidth. When the nth request arrives to server � at time � � , it
will be assigned a deadline according to

� �
�

max
�� �
�
� ��� � � � � ��	� (2.8)

where � � is the resource demand (can be execution time or, as in this thesis,
message transmission time). The initial deadline is

� � �
 .
2.3 Summary

In this chapter we presented basic concepts regarding real-time scheduling the-
ory that will be used in the rest of the thesis.

Chapter 3

Related Work

In this chapter we present relevant related work that is the basis for the contri-
butions of this thesis. A brief overview of fieldbuses is given and the Controller
Area Network (CAN) is presented in some detail, followed by response-time
analysis methods and higher-layer protocols running on top of CAN.

3.1 Fieldbuses

Fieldbuses are a family of factory communication networks that have evolved
as a response to the demand to reduce cabling costs in factory automation sys-
tems. Moving from a situation in which every controller has its own cables
connecting the sensors to the controller (parallel interface), to controllers shar-
ing a bus (serial interface), costs could be cut and flexibility could be increased.
Pushing for this evolution of technology was both the fact that the number of
cables in the system increased as the number of sensors and actuators grew,
together with controllers moving from being specialised with their own mi-
crochip, to sharing a microprocessor with other controllers. Fieldbuses were
soon ready to handle the most demanding applications on the factory floor.

Several fieldbus technologies, usually very specialised, were developed by
different companies to meet the demands of their applications. Not until the
mid 90’s the standardisation process stabilized. In 1993 CAN was standardised
by the International Standardisation Organisation (ISO) [37].

17

18 Related Work

3.2 The Controller Area Network

The Controller Area Network (CAN) [37, 10] is widely used in automotive
and other real-time applications. CAN uses a fixed-priority based arbitration
mechanism that can provide timing guarantees and that is amenable to FPS
type of analysis, Tindell et al. [47, 49, 50].

3.3 Classical Schedulability Analysis for CAN

CAN is a broadcast bus designed to operate at speeds of up to 1 Mbps. Data is
transmitted in frames containing between 0 and 8 bytes of data and a number of
control bits. Depending on the CAN format (standard or extended) the number
of control bits are either 44 or 64. Between CAN frames sent on the bus, there
is also a 3 bit inter-frame space. The standard CAN frame format (and the
inter-frame space) is shown in Figure 3.1.

Arbitration field

S
O
F

0

11-bit identifier
R
T
R

DLC 4-
bit

Control field Data field

0-8 bytes 15 bit CRC

0

r
0

1

CRC field

I
D
E

0

Ack End of frame

1 1 1 1 1 1 1

Int

1 1 11

Bits exposed to bit-stuff ing (34 control bits and 0-8 bytes of data -> 34-98 bits)

0 0 CRC delimiter bit

Known bit-values (standard format data frame)

Figure 3.1: CAN frame layout (standard format data frame).

The difference between the standard and the extended format is that the
extended format has 29 identifier bits instead of the 11 bits used in the standard
format. The identifier is required to be unique, in the sense that two simulta-
neously active frames originating from different sources (i.e., nodes or CAN-
controllers) must have distinct identifiers. The identifier serves two purposes:
(1) assigning a priority to the frame, and (2) enabling receivers to filter frames.
For a more detailed explanation of the different fields in the CAN frame, please
consult [37, 10].

CAN is a collision-avoidance broadcast bus, which uses deterministic col-
lision resolution to control access to the bus (so called CSMA/CA). The basis
for the access mechanism is the electrical characteristics of a CAN bus: if mul-
tiple stations are transmitting concurrently and one station transmits a ‘0’ then
all stations monitoring the bus will see a ‘0’. Conversely, only if all stations
transmit a ‘1’ will all processors monitoring the bus see a ‘1’. During arbitra-

3.3 Classical Schedulability Analysis for CAN 19

tion, competing stations are simultaneously putting their identifiers, one bit at
the time, on the bus. By monitoring the resulting bus value, a station detects if
there is a competing higher priority frame and stops transmission if this is the
case. Because identifiers are unique within the system, a station transmitting
the last bit of the identifier without detecting a higher priority frame must be
transmitting the highest priority queued frame, and hence can start transmitting
the body of the frame.

3.3.1 Classical CAN Message Response-Time Analysis

Tindell et al. [47, 49, 50] present analysis to calculate the worst-case latencies
of CAN frames. This analysis is based on the standard FPS response-time
analysis for CPU scheduling presented by Audsley et al. [5] (Section 2.2.2).

The task model notation is used throughout this chapter is presented in
Table 3.1.

Priority (defined by the message frame identifier) �
Worst-case transmission time �

Period �
Blocking-time �

Jitter �
Response-time (latency) �

Task under analysis �
Task � has priority higher than task � ���
	���
����
Task � has priority lower than task � � �
� ��
����

Table 3.1: Task model notation.

Calculating the response-times requires a bounded worst-case queuing pat-
tern of frames. The standard way of expressing this is to assume a set of traffic
streams, each generating frames with a fixed priority. The worst-case behaviour
of each stream, in terms of network load, is to send as many frames as they are
allowed, i.e., to periodically queue frames. In analogue with CPU schedul-
ing, we obtain a model with a set � of streams (corresponding to CPU tasks).
Each �

�
��� is a triple ���

� �
�
���
�
�
� . The worst-case latency �

�
of a CAN

frame sent on stream �

�
is, if we assume the minimum variation in queuing

time relative to �
�

to be 0, defined by

�
���
�

� �	� � � � � (3.1)

20 Related Work

where �

�
is the queuing jitter of the frame, i.e., the maximum variation in

queuing-time relative to the start of �
�
, inherited from the sender task which

queues the frame, and
�
�

represents the effective queuing-time, given by

� ��
�
�
� � ����

��� 	 �

� � ��� �� � � � ����� � �� � �
 � � ������� � � � (3.2)

where

� �
���

max� ��� � 	 �

 � � � �������
�
� is the worst-case blocking-time of frames sent

on �

�
. This definition of the blocking-time is the same as presented in

Section 2.2.2. However, since identifiers are required to be unique, there
are no message frames with priority equal to the message frame under
analysis.

� ���
�
� (the bit-time) caters for the difference in arbitration start-times at the

different nodes due to propagation delays and protocol tolerances.

� � � is the transmission time of message � . How to calculate � � is pre-
sented in the Section 3.3.1.

� �����
�
� represents the inter-frame space (traditionally, Tindell et al. [47,

49, 50], the inter-frame space was considered a part of the data frame,
but separating it removes a small source of pessimism in the equations,
as pointed out by Broster et al. [7]).

Note that Equation 3.2 is a recurrence relation, where the approximation to
the
�� � * � th value is found in terms of the � th approximation, with the first
approximation set to

� �� �
 . A solution is reached either when the
�� � * � th
value is equal to the � th, or when �

�
exceeds its message deadline or period.

The recurrence relation will terminate given that the total bus utilization is
� *

,

i.e., �
	�� ��
 !�� � ������� � �� � , � * .
Bit-Stuffing Mechanism

In CAN, six consecutive bits of the same polarity (
* * * * * *

or

) are used
for error and protocol control signalling. To avoid these special bit-patterns in
transmitted frames, a bit of opposite polarity is inserted after five consecutive
bits of the same polarity. By reversing the procedure, these bits are then re-
moved at the receiver side. This technique, which is called bit-stuffing, implies

3.3 Classical Schedulability Analysis for CAN 21

that the actual number of transmitted bits may be larger than the size of the
original frame, corresponding to an additional transmission delay which needs
to be considered in the analysis.

Let us first define the number of bits, beside the data part in the frame, that
are exposed to the bit-stuffing mechanism as ��� � ���

� � � � . This since we have
either

���
(CAN standard format) or

� �
(CAN extended format) bits (besides

the data part of the frame), which are exposed to the bit-stuffing mechanism.
10 bits in the CAN frame are not exposed to the bit-stuffing mechanism (see
Figure 3.1). Now let us define the number of bytes of data in CAN message
frame � as �

�
���

�
��� . Recall, a CAN message frame can contain 0 to 8 bytes

of data. Hence, the total number of bits in a CAN frame before bit-stuffing is

� � *
 � �	�
�

(3.3)

where 10 is the number of bits in the CAN frame not exposed to the bit-stuffing
mechanism. Since only � � �	�

�
bits in the CAN frame are subject to bit-

stuffing, the total number of bits after bit-stuffing can be no more than

� � *
 � �	�
� ��
 � � �	�

� (+*� � (3.4)

Intuitively the above formula captures the number of stuff-bits in the worst-
case scenario, shown in Figure 3.2.

111110000111100001111....before stuffing

stuffed bits

11111000001111100000111110....after stuffing

Figure 3.2: The worst-case scenario when stuffing bits.

Let
���
�
� be the worst-case time taken to transmit a bit on the bus – the so-

called bit-time. Hence, the worst-case time taken to transmit a given frame �
is

�
��� � � � *
 � �	�

� ��
 � � �	�
� (+*� � � ��� � � (3.5)

22 Related Work

3.4 Extensions to the Classical Analysis

Several researchers have extended the classical response-time analysis for CAN,
and in this section we give an overview of the most important work.

3.4.1 Reduction of Pessimism

Broster et al. [7] propose to reduce the pessimism in the original classical CAN
analysis. The inter-frame space is separated from the CAN frame in order
to remove a small source of pessimism by considering that the CAN frame
is available as soon as the last bit of the previous frame is sent, rather than
only after the inter-frame space following the completion of the sending of the
previous frame.

3.4.2 Probabilistic Analysis

One of the contributions of this thesis is an extension of the classical analysis
where we model the CAN frame length using distributions of stuff-bits. By
using distributions of stuff-bits, instead of the worst-case value, pessimism is
reduced, allowing for trade-offs regarding timeliness and reliability.

Reliability is defined as the probability that a system can perform its in-
tended function, under given conditions, for a given time interval. A major
issue is how to compose hardware reliability, software reliability, environmen-
tal model, and timely correctness to arrive at reasonable estimates of overall
system reliability, as discussed in Section 1.1.

In [27] we present a model and a method that take the bit-stuffing mech-
anism into consideration by representing the number of stuff-bits as a distri-
bution. We extended this work in [28] where whole CAN frames are covered.
Finally, in [29] we put the result into the classical analysis presented in Sec-
tion 3.3.1. The details of this work are presented in Chapter 6, Chapter 7, and
Chapter 8.

Several probabilistic approaches for schedulability analysis of real-time
systems have been presented, e.g., Atlas et al. [4] and Manolache [24]. How-
ever, none of these specifically address CAN.

3.4.3 Fault Models

In order to handle faults, the original analysis can be extended in order to han-
dle the effect of errors in the channel. However, the fault model used by Tindell

3.5 Higher-Layer Protocols for CAN 23

et al. [49] is very simple and thus not really appropriate to describe real faults.
Only strictly periodic interference is modelled. An extension to the original
fault model is presented by Punnekkat et al. [34]. Here faults can be mod-
elled as specific patterns. Basically, periodic bursts and multiple sources of
interference can be modelled.

So far the fault models were based on an assumption of minimum inter-
arrival time, i.e., bounded number of faults in a specified interval. However,
several sources of interference, e.g., electromagnetic interference, are more ac-
curately described as a random pulse train following a Poisson distribution [9].
Trying to represent this using minimum inter-arrival times is not easy. Rather,
a probabilistic approach would be more suitable. Navet et al. [26] present a
probabilistic fault model, where the faults are described as stochastic processes.
These stochastic processes consider both the frequency of the faults and their
gravity. Both single-bit faults and bursts of faults can be represented. How-
ever, the approach presented by Navet et al. [26] is very pessimistic. Broster
et al. [8] present a more accurate probabilistic approach, where distributions of
worst-case response-times can be obtained when there are probabilistic events
in the system, e.g., faults.

Hansson et al. [14] present a completely different approach. Here the fea-
sibility of the system is determined using simulation. Using simulation even
more complex sources of interference can be used, achieving a more realis-
tic result compared to the analytic approaches described above. However, the
weakness of using simulation is to determine whether or not the coverage of
the simulation is good enough for the application under evaluation.

3.5 Higher-Layer Protocols for CAN

Several higher-layer (3 and above) protocols have been developed for CAN.
The reason for having a higher-layer protocol is most often to use another
scheduling policy than the one offered by CAN. Original CAN is suitable
to handle periodic real-time traffic according to the FPS approach. Limiting
CAN to periodic traffic, the timing analysis can easily be applied and feasibil-
ity checked. However, due to the limitations of FPS scheduling, adaptations to
allow other scheduling policies have been done. As an alternative to the fixed-
priority mechanisms offered by CAN some higher-layer protocols have been
developed to implement dynamic-priority schemes as well as time-triggered
traffic.

24 Related Work

3.5.1 EDF on CAN

As an alternative to the fixed-priority mechanisms offered by CAN, Zuberi et
al. [53] developed an approach for EDF. They propose the usage of a Mixed
Traffic Scheduler (MTS), which attempts to give a high utilisation (like EDF)
while using CAN’s 11-bit format for the identifier. Using the MTS, the mes-
sage identifiers are manipulated in order to reflect the current deadline of each
message. However, since each message is required to have a unique message
identifier, they suggested the division of the identifier field into three sub-fields.

Other suggestions for scheduling CAN according to EDF include the work
by Livani et al. [23] and Di Natale [25]. These solutions are all based on
manipulating the identifier of the CAN frame, and thus they reduce the number
of possible identifiers to be used by the system designers. Restricting the use
of identifiers is often not an attractive alternative, since it interferes with other
design activities, and is even sometimes in conflict with adopted standards and
recommendations [16].

Using FTT-CAN (described in next section), Pedreiras and Almeida [33]
show how it is possible to send periodic messages according to EDF using
the synchronous window of FTT-CAN. Also, they have developed a method
for calculating the worst-case response-time of the messages using the asyn-
chronous window [32]. Using their approach, greater flexibility is achieved
since the scheduling is not based on manipulating the identifiers. Instead, there
is a master node performing the global scheduling of the CAN bus.

3.5.2 FTT-CAN

Almeida proposes Flexible Time Triggered communication on CAN (FTT-
CAN) [2, 3] as a way to schedule CAN in a time-triggered fashion. In FTT-
CAN, time is partitioned into Elementary Cycles (ECs) which are initiated by
a special message, the Trigger Message (TM). This message triggers the start
of the EC and it contains the schedule for the synchronous traffic that shall
be sent within this EC. The schedule is calculated and sent by a master node.
FTT-CAN supports both periodic and aperiodic traffic by dividing the EC into
two parts. In the first part, the asynchronous window, the aperiodic messages
are sent, and in the second part, the synchronous window, traffic is sent ac-
cording to the schedule delivered by the TM. More details of the EC layout are
provided in Figure 3.3.

3.5 Higher-Layer Protocols for CAN 25

TM AM1 AM25 SM1 SM3 SM8 SM9 TM AM29 AM31 SM2 SM5 SM11

0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0

Elementary Cycle (EC) [i] Elementary Cycle (EC) [i+1]

Async. Window Sync. Window

bit 1 bit 3 bit 8 bit 9 bit 2 bit 5 bit 11

Figure 3.3: EC layout and TM data contents (FTT-CAN approach).

3.5.3 TT-CAN

Time-Triggered communication on CAN is specified by TT-CAN [36], a stan-
dardised session layer extension to original CAN. In TT-CAN, the exchange of
messages is controlled by the temporal progression of time, and all nodes are
following a pre-defined static schedule. One node, the master node, is periodi-
cally (or on the occurrence of a specific event) transmitting a specific message,
the reference message, which acts as a reference in time. All nodes in the
system are synchronising with this message, which gives a reference point in
the temporal domain for the static schedule of the message transactions. The
static schedule is based on a time division (TDA) scheme, where message ex-
changes may only occur during specific time slots or in time windows. Hence,
the master’s view of time is referred to as the network’s global time.

TT-CAN appends a set of new features to the original CAN, and being
standardised, several semiconductor vendors have started manufacturing TT-
CAN compliant devices.

3.5.4 Server-Based Scheduling of CAN

Server-based scheduling [30] is one of the contributions of this thesis, pre-
sented in detail in Paper D (Chapter 9). The main motivation for server-based
scheduling of CAN is that it provides fairness and bandwidth isolation among
the users of the network. In server-based CAN, steams of messages are sched-
uled together on a master node. Time is partitioned into ECs, which are ini-
tiated by a TM (as with FTT-CAN), and the scheduling is performed on the
master node based on EDF. Using server-based scheduling, we can schedule
for unknown aperiodic and sporadic messages by assuming that they are arriv-
ing, and if me make an erroneous guess, we are not wasting any bandwidth.

26 Related Work

3.6 Summary

In this section we presented an overview of relevant and related work. Since of
the first part of the work presented in this thesis, the original response-time
based schedulability analysis for CAN was presented. Moreover, we have
presented extensions made to the classical analysis, such as reduction of pes-
simism, probabilistic analysis, and fault models. The second part of the work
presented in this thesis proposes a higher-layer protocol to enable server-based
scheduling of CAN. Hence, several other existing higher-layer protocols for
CAN are presented.

Chapter 4

Technical Contributions

This chapter summarizes the main contributions of each paper in this thesis.

4.1 Part 1: Probabilistic Analysis

The bit-stuffing mechanism of CAN causes the message frame length to vary,
depending on the original bit-pattern of the CAN frame (as presented in Sec-
tion 3.3.1). This is not good, since firstly, it is a source of jitter that might
have degrading affects on the performance of control systems, as discussed by
Decotignie [11], and secondly, to include this behaviour into the analysis, a
worst-case assumption is traditionally made [47, 49, 50]. This assumption is
very pessimistic, as indicated by our experiments.

We have, in Paper A [27] and Paper B [28], addressed this pessimism and
presented a new analysis in Paper C [29], using message frame length distri-
butions that are taking the behaviour of the bit-stuffing mechanism into con-
sideration. Also, in Paper A, we have presented a way to actually decrease the
number of stuff-bits in a CAN frame.

4.1.1 Paper A (Chapter 6)

Thomas Nolte, Hans Hansson, Christer Norström, and Sasikumar Punnekkat1,
Using Bit-Stuffing Distributions in CAN Analysis, In Proceedings of IEEE/IEE

1Vikram Sarabhai Space Centre, Trivandrum, India.

27

28 Technical Contributions

Real-Time Embedded Systems Workshop (RTES’01), London, England, De-
cember 2001.

Summary This paper investigates the level of pessimism in the traditional
schedulability analysis for CAN, caused by the bit-stuffing mechanism. We
model the bit-stuffing mechanism and use bit-stuffing distributions instead of
worst-case bit-stuffing. This allows us to obtain bus utilisation values more
close to reality.

We introduce a model and a method that relaxes the pessimism of the worst-
case bit-stuffing assumption, and we show the validity of our method by con-
sidering both an artificial traffic model and samples of real CAN traffic. Also,
we propose a simple coding scheme that substantially reduces the number of
stuff-bits in the considered real traffic. The coding scheme transforms the bit-
pattern using the logical operation exclusive or (XOR). It should be noted that
by using the XOR operation, it is not possible to completely eliminate bad bit-
patterns in a general CAN message frame. However, it is possible to transform
one type of bit-patterns to another type. Hence, if bad bit-patterns are common
in an application, these can be transformed to more harmless ones using the
XOR operation with a suiting bit-mask.

My contribution This work is based on joint ideas. I am the main author
of this paper and have done essentially all work under supervision of, and in
discussion with, my supervisors.

4.1.2 Paper B (Chapter 7)

Thomas Nolte, Hans Hansson, and Christer Norström, Minimizing CAN
Response-Time Jitter by Message Manipulation, In Proceedings of the � ���
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’02), San Jose, CA, USA, September 2002.

Summary Here the work presented in Paper A is extended to cover the whole
CAN message frame. We show that by introducing some restrictions, such as
a small reduction of available frame identifiers, the number of stuff-bits in a
CAN frame can be reduced. To further reduce the number of stuff-bits in the
worst case, we make use of the restriction of identifiers together with the work
presented in Paper A. We show the actual penalty introduced by forbidding
some frame identifiers, and we show the overall improvement by using these
techniques in a small case-study.

4.2 Part 2: Scheduling 29

My contribution The main ideas in this paper are mine, and I have done es-
sentially all work under supervision of, and in discussion with, my supervisors.

4.1.3 Paper C (Chapter 8)

Thomas Nolte, Hans Hansson, and Christer Norström, Probabilistic Worst-
Case Response-Time Analysis for the Controller Area Network, In Proceedings
of the ����� IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS’03), Toronto, Canada, May 2003.

Summary The methods presented in Paper A and Paper B, to model the stuff-
bits using distributions, is put into the framework of classical FPS response-
time analysis presented by Tindell et al. [47, 49, 50]. By doing this, the mod-
elled response-times will be less pessimistic compared to the traditional worst-
case ones, and since we are lowering the bandwidth usage of the messages,
we will also be able to schedule more messages in the same system. However,
this comes at the cost of introducing some optimism, which can cause dead-
line failures. The actual probability of these failures to occur is selected to be
satisfactory low for the desired system.

By using distributions of stuff-bits, instead of the worst-case number of
stuff-bits, we obtain a distribution of response-times, allowing us to calculate
less pessimistic (compared to traditional worst-case) response-times.

My contribution The ideas in this paper are mine, but originating from a re-
mark by Alan Burns. I have done all work in this paper, aided by useful and
constructive discussions with my supervisors.

4.2 Part 2: Scheduling

In the real-time scheduling research community there exists several different
types of scheduling. We can divide the classical scheduling paradigms pre-
sented in Chapter 2 into the following 3 groups:

1. Priority-driven (e.g., FPS or EDF) [22].

2. Time-driven (table-driven) [18, 15].

3. Share-driven [31, 45].

30 Technical Contributions

For CAN, priority-driven scheduling is the most natural scheduling method
since it is supported by the CAN protocol, and FPS response-time tests for de-
termining the schedulability of CAN message frames have been presented by
Tindell et al. [47, 49, 50]. This analysis is based on the standard fixed-priority
response-time analysis for CPU scheduling presented by Audsley et al. [5]. TT-
CAN [36] provides time-driven scheduling for CAN, and Almeida et al. present
Flexible Time-Triggered CAN (FTT-CAN) [2, 3], which supports priority-
driven scheduling in combination with time-driven scheduling. These schedul-
ing methods are presented in more detail in Section 3.5. However, share-driven
scheduling for CAN has not yet been investigated. The server-based scheduling
presented in this thesis provides the first share-driven scheduling approach for
CAN. By providing the option of share-driven scheduling of CAN, designers
are given more freedom in designing an application.

4.2.1 Paper D (Chapter 9)

Thomas Nolte, Mikael Sjödin, and Hans Hansson, Server-Based Scheduling of
the CAN Bus, Technical Report ISSN 1404-3041 ISRN MDH-MRTC-99/2003-
1-SE, Mälardalen Real-Time Research Centre, Mälardalen University, Swe-
den, April 2003.

Summary One of the strongest properties of server-based scheduling tech-
niques (based on EDF), such as Total Bandwidth Server (TBS) by Spuri et
al. [42, 41], or Constant Bandwidth Server (CBS) by Abeni [1], is that fairness
among message streams is guaranteed (i.e., “misbehaving” aperiodic processes
cannot starve well-behaved processes).

Paper D presents a general approach to server-based scheduling for CAN.
Using servers, the whole network will be scheduled as one resource, providing
bandwidth isolation as well as fairness among the users of the communication
network.

My contribution The paper is based on my ideas. I am the main author and
have done essentially all work, but I have had a very constructive collaboration
with Mikael Sjödin, in particular regarding the structuring of the paper. Hans
Hansson has helped with constructive reviewing.

4.2 Part 2: Scheduling 31

4.2.2 Paper E (Chapter 10)

Thomas Nolte and Kwei-Jay Lin2, Distributed Real-Time System Design using
CBS-based End-to-end Scheduling, In Proceedings of the � ��� IEEE Interna-
tional Conference on Parallel and Distributed Systems (ICPADS’02), Taipei,
Taiwan, ROC, December 2002.

Summary This paper presents an implementation of the concepts of Paper
D. Here an approach for end-to-end analysis is presented for a distributed real-
time system design scheme using CBS. The scheduling scheme utilizes CBS
to allocate both CPU shares and network bandwidth to a distributed real-time
application when it arrives at the system. Hence, using the same scheduling
paradigm for both resources we believe the system can have a more consistent
scheduling objective and may achieve a tighter schedulability condition.

My contribution The paper is based on an idea of Kwei-Jay Lin. I am re-
sponsible for the CAN and server parts, and Kwei-Jay Lin for the rest.

2Department of Electrical and Computer Engineering, University of California, Irvine, CA
92697, USA.

Chapter 5

Conclusions

5.1 Summary

We have presented a new response-time analysis for the Controller Area Net-
work (CAN), which take the CAN bit-stuffing mechanism into consideration.
By representing the number of stuff-bits as a distribution, the level of pes-
simism is significantly lowered which allows for a greater degree of trade-offs
between timing and reliability.

We have also presented a novel way of scheduling CAN. By providing
server-based scheduling, bandwidth isolation between users of the communi-
cation network is guaranteed, which allows for efficient handling of sporadic
and aperiodic message streams.

5.2 Directions for Future Work

The overall reliability of a system consists of several parts, as discussed in Sec-
tion 1.1, and we have in this thesis addressed the communication part. A future
direction would be to look into the branch covering software executing on the
nodes, as well as the combination of software and communication. Preliminary
work in that direction is presented in [14].

There are also more direct extensions to the work presented in the papers
in this thesis. For instance, the work presented in Paper C (based on the work
in Paper A and Paper B) only focuses on a single aspect, namely a probabilistic
worst-case response-time, based on using bit-stuffing distributions. There are

33

34 Conclusions

other parameters, including execution times and phasings of message queuings,
which have similar variations and effects on the response-time analysis. The
analysis of Paper C could be extended to also cover these aspects.

Moreover, the analysis of Paper C has no fault model. Therefore, extending
it with some of the work presented in Section 3.4.3 could be useful. This since,
in order to use this type of timing analysis for safety-critical systems, faults
must also be considered.

Regarding the server-based scheduling approach; when we have a system
running the server-based scheduling of the CAN bus it would be interesting
to investigate if it is possible to increase the performance in terms of meeting
deadlines and bandwidth throughput by applying bandwidth sharing, as pre-
sented by Lipari et al. [21] and Lin et al. [20]. Since all state information kept
to run the servers are located in one node in the distributed system (central-
ized approach), it is easy to exchange parameters between the servers. If one
or more servers are using less than their reserved bandwidth, some of their
bandwidth could be temporarily be given to some of the others.

Bibliography

[1] L. Abeni. Server Mechanisms for Multimedia Applications. Technical
Report RETIS TR98-01, Scuola Superiore S. Anna, Pisa, Italy, 1998.

[2] L. Almeida, J.A. Fonseca, and P. Fonseca. Flexible Time-Triggered
Communication on a Controller Area Network. In Proceedings of the
Work-In-Progress Session of the

*
� ��� IEEE Real-Time Systems Sympo-

sium (RTSS’98), Madrid, Spain, December 1998. IEEE Computer Soci-
ety.

[3] L. Almeida, J.A. Fonseca, and P. Fonseca. A Flexible Time-Triggered
Communication System Based on the Controller Area Network: Experi-
mental Results. In Proceedings of the International Conference on Field-
bus Technology (FeT’99), Magdeburg, Germany, September 1999.

[4] A. Atlas and A. Bestavros. Statistical Rate Monotonic Scheduling. In
Proceedings of the

*
����� IEEE Real-Time Systems Symposium (RTSS’98),

pages 123–132, Madrid, Spain, December 1998. IEEE Computer Society.

[5] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings.
Applying New Scheduling Theory to Static Priority Pre-emptive Schedul-
ing. Software Engineering Journal, 8(5):284–292, September 1993.

[6] T. Baker. Stack-Based Scheduling of Real-Time Processes. Real-Time
Systems, 3(1):67–99, March 1991.

[7] I. Broster and A. Burns. Timely Use of the CAN Protocol in Critical Hard
Real-Time Systems With Faults. In Proceedings of the

* � ��� Euromicro
Conference on Real-Time Systems (ECRTS’01), pages 95–102, Delft, The
Netherlands, June 2001. IEEE Computer Society.

35

36 BIBLIOGRAPHY

[8] I. Broster, A. Burns, and G. Rodrı́gues-Navas. Probabilistic Analysis of
CAN with Faults. In Proceedings of the

�����
IEEE Real-Time Systems

Symposium (RTSS’02), pages 269–278, Austin, Texas, USA, December
2002. IEEE Computer Society.

[9] M. J. Buckingham. Noise in Electronic Devices and Systems. Series in
Electrical and Electronic Engineering, Ellil Horwood/Wiley, 1983.

[10] CAN Specification 2.0, Part-A and Part-B. CAN in Automation (CiA),
Am Weichselgarten 26, D-91058 Erlangen. http://www.can-cia.de/, 2002.

[11] J.D. Decotignie. Some Future Directions in Fieldbus Research and De-
velopment. In Proceedings of the International Conference on Fieldbus
Technology (FeT’99), Magdeburg, Germany, September 1999.

[12] J. Engblom. Processor Pipelines and Static Worst-Case Execution Time
Analysis. PhD thesis, Uppsala University, Dept. of Information Technol-
ogy, Box 337, Uppsala, Sweden, April 2002.

[13] L. George, N. Rivierre, and M. Spuri. Preemptive amd Non-Preemptive
Real-Time Uni-Processor Scheduling. Rapport de Recherche RR-2966,
INRIA, Le Chesnay Cedex, France, 1996.

[14] H. Hansson, T. Nolte, C. Norström, and S. Punnekkat. Integrating Reli-
ability and Timing Analysis of CAN-based Systems. IEEE Transaction
on Industrial Electronics, 49(6), December 2002.

[15] C.-W. Hsueh and K.-J. Lin. An Optimal Pinwheel Scheduler Using the
Single-Number Reduction Technique. In Proceedings of the

*��
��� IEEE

Real-Time Systems Symposium (RTSS’96), pages 196–205, Los Alamitos,
CA, USA, December 1996. IEEE Computer Society.

[16] SAE J1938. Design/Process Checklist for Vehicle Electronic Systems.
SAE Standards, May 1998.

[17] M. Joseph and P. Pandya. Finding Response Times in a Real-Time Sys-
tem. The Computer Journal - British Computer Society, 29(5):390–395,
October 1986.

[18] H. Kopetz. The Time-Triggered Model of Computation. In Proceedings
of the

*
����� IEEE Real-Time Systems Symposium (RTSS’98), pages 168–

177, Madrid, Spain, December 1998. IEEE Computer Society.

BIBLIOGRAPHY 37

[19] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with
Arbitrary Deadlines. In Proceedings of the

* *
��� IEEE Real-Time Systems

Symposium (RTSS’90), pages 201–209, Lake Buena Vista, Florida, USA,
December 1990. IEEE Computer Society.

[20] K.-J. Lin, S. Wang, T.-Y. Kuan, and S. Cho. The Implementation of Hier-
archical CBS Schedulers in RED-Linux. In Proceedings of the � ��� Inter-
national Conference on Real-Time Computing Systems and Applications
(RTCSA’02), pages 287–294, Tokyo, Japan, March 2002.

[21] G. Lipari and S. Baruah. A Hierarchical Extension to the Constant
Bandwidth Server Framework. In Proceedings of the

�
��� IEEE Real-

Time Technology and Applications Symposium (RTAS’01), pages 26–35,
Taipei, Taiwan, ROC, May 2001. IEEE Computer Society.

[22] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment. Journal of the ACM, 20(1):40–
61, 1973.

[23] M. Livani and J. Kaiser. EDF Consensus on CAN Bus Access for Dy-
namic Real-Time Applications. In Proceedings of the � ��� International
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS’98),
Orlando, Florida, USA, March 1998.

[24] S. Manolache. Schedulability Analysis of Real-Time Systems with
Stochastic Task Execution Times. Licentiate Thesis No. 985, Dept. of
Computer and Information Science, IDA, Linköping University, Sweden,
December 2002.

[25] M. Di Natale. Scheduling the CAN Bus with Earliest Deadline Tech-
niques. In Proceedings of the

* � � IEEE Real-Time Systems Symposium
(RTSS’00), pages 259–268, Orlando, Florida, USA, November 2000.
IEEE Computer Society.

[26] N. Navet, Y.-Q. Song, and F. Simonot. Worst-Case Deadline Failure Prob-
ability in Real-Time Applications Distributed over Controller Area Net-
work. Journal of Systems Architecture, 7(46):607–617, September 2000.

[27] T. Nolte, H. Hansson, and C. Norström. Using Bit-Stuffing Distributions
in CAN Analysis. In Proceedings of the IEEE/IEE Real-Time Embed-
ded Systems Workshop (RTES’01) at the

� � IEEE Real-Time Systems
Symposium (RTSS’01), London, England, December 2001.

38 BIBLIOGRAPHY

[28] T. Nolte, H. Hansson, and C. Norström. Minimizing CAN Response-
Time Analysis Jitter by Message Manipulation. In Proceedings of the � ���
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’02), pages 197–206, San Jose, CA, USA, September 2002. IEEE
Computer Society.

[29] T. Nolte, H. Hansson, and C. Norström. Probabilistic Worst-Case
Response-Time Analysis for the Controller Area Network. In Proceed-
ings of the ����� IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS’03), Toronto, Canada, May 2003. IEEE Com-
puter Society.

[30] T. Nolte, M. Sjödin, and Hans Hansson. Server-Based Scheduling of
the CAN Bus. Technical report, ISSN 1404-3041 ISRN MDH-MRTC-
99/2003-1-SE, Mälardalen Real-Time Research Centre, Mälardalen Uni-
versity, Sweden, April 2003.

[31] A.K Parekh and R.G. Gallager. A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Networks: The Single-
Node Case. IEEE/ACM Transactions on Networking, 1(3):344–357, June
1993.

[32] P. Pedreiras and L. Almeida. Combining Event-triggered and Time-
triggered Traffic in FTT-CAN: Analysis of the Asynchronous Messaging
System. In Proceedings of the

�����
IEEE International Workshop on Fac-

tory Communication Systems (WFCS’00), pages 67–75, Porto, Portugal,
September 2000. IEEE Industrial Electronics Society.

[33] P. Pedreiras and L. Almeida. A Practical Approach to EDF Scheduling
on Controller Area Network. In Proceedings of the IEEE/IEE Real-Time
Embedded Systems Workshop (RTES’01) at the

� � IEEE Real-Time
Systems Symposium (RTSS’01), London, England, December 2001.

[34] S. Punnekkat, H. Hansson, and C. Norström. Response Time Analysis
under Errors for CAN. In Proceedings of the � ��� IEEE Real-Time Tech-
nology and Applications Symposium (RTAS’00), pages 258–265, Wash-
ington DC, USA, June 2000. IEEE Computer Society.

[35] P. Puschner and A. Burns. A Review of Worst-Case Execution-Time
Analysis. Real-Time Systems, 18(2/3):115–128, May 2000.

BIBLIOGRAPHY 39

[36] Road Vehicles - Controller Area Network (CAN) - Part 4: Time-
Triggered Communication. International Standards Organisation (ISO).
ISO Standard-11898-4, December 2000.

[37] Road Vehicles - Interchange of Digital Information - Controller Area Net-
work (CAN) for High-Speed Communication. International Standards
Organisation (ISO). ISO Standard-11898, Nov 1993.

[38] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols:
An Approach to Real-Time Synchronization. IEEE Transactions on Com-
puters, 39(9):1175–1185, September 1990.

[39] B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic Task Scheduling for Hard
Real-Time Systems. Real-Time Systems, 1(1):27–60, 1989.

[40] M. Spuri. Analysis of Deadline Scheduled Real-Time Systems. Techni-
cal report, Rapport de Recherche RR-2772, INRIA, Le Chesnay Cedex,
France, 1996.

[41] M. Spuri, G. C. Buttazzo, and F. Sensini. Robust Aperiodic Scheduling
under Dynamic Priority Systems. In Proceedings of the

*
� ��� IEEE Real-

Time Systems Symposium (RTSS’95), pages 210–219, Pisa, Italy, Decem-
ber 1995. IEEE Computer Society.

[42] M. Spuri and G.C. Buttazzo. Efficient Aperiodic Service under Earli-
est Deadline Scheduling. In Proceedings of the

* � ��� IEEE Real-Time
Systems Symposium (RTSS’94), pages 2–11, San Juan, Puerto Rico, De-
cember 1994. IEEE Computer Society.

[43] M. Spuri and G.C. Buttazzo. Scheduling Aperiodic Tasks in Dynamic
Priority Systems. Real-Time Systems, 10(2):179–210, March 1996.

[44] J.A. Stankovic. Misconceptions About Real-Time Computing. IEEE
Computer, 21(10):10–19, October 1988.

[45] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and G. Plax-
ton. A Proportional Share Resource Allocation Algoritm for Real-Time,
Time-Shared Systems. In Proceedings of

*��
��� IEEE Real-Time Systems

Symposium (RTSS’96), pages 288–299, Los Alamitos, CA, USA, Decem-
ber 1996. IEEE Computer Society.

40 BIBLIOGRAPHY

[46] K. W. Tindell. An Extendible Approach for Analysing Fixed Priority
Hard Real-Time Tasks. Technical Report YCS 189, Dept. of Computer
Science, University of York, York, England, December 1992.

[47] K. W. Tindell and A. Burns. Guaranteed Message Latencies for Dis-
tributed Safety-Critical Hard Real-Time Control Networks. Technical
Report YCS 229, Dept. of Computer Science, University of York, York,
England, June 1994.

[48] K. W. Tindell, A. Burns, and A. J. Wellings. An Extendible Approach
for Analysing Fixed Priority Hard Real-Time Tasks. Real-Time Systems,
6(2):133–151, March 1994.

[49] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area
Network (CAN) Message Response Times. Control Engineering Prac-
tice, 3(8):1163–1169, 1995.

[50] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing Real-Time
Communications: Controller Area Network (CAN). In Proceedings of* � ��� IEEE Real-Time Systems Symposium (RTSS’94), pages 259–263,
San Juan, Puerto Rico, December 1994. IEEE Computer Society.

[51] E. Tovar. Supporting Real-Time Communications with Standard Factory-
Floor Networks. PhD thesis, Faculdade de Engenharia da Universidade
do Porto, July 1999.

[52] Q. Zheng. Real-Time Fault-Tolerant Communication in Computer Net-
works. PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1993.

[53] K.M. Zuberi and K.G. Shin. Non-Preemptive Scheduling of Messages
on Controller Area Network for Real-Time Control Applications. In Pro-
ceedings of the

* �
� IEEE Real-Time Technology and Applications Sym-

posium (RTAS’95), pages 240–249, Chicago, IL, USA, May 1995. IEEE
Computer Society.

II

Included Papers

41

Chapter 6

Paper A: Using Bit-Stuffing
Distributions in CAN
Analysis

Thomas Nolte, Hans Hansson, Christer Norström, and Sasikumar Punnekkat1

In Proceedings of IEEE/IEE Real-Time Embedded Systems Workshop
(RTES’01), London, UK, December 2001.
Technical Report, Department of Computer Science, University of York.

1Vikram Sarabhai Space Centre, Trivandrum, India.

43

Abstract

This paper investigates the level of pessimism of traditional schedulability
analysis for the Controller Area Network (CAN). Specifically, we investigate
the effects of considering bit-stuffing distributions instead of worst-case bit-
stuffing. This allows us to obtain bus utilisation values more close to reality.
On the other hand, since our analysis is based on assumptions concerning dis-
tributions of stuff-bits, our response-times will only be met with some proba-
bility.

We introduce a model and a method, that relaxes the pessimism of the
worst-case analysis, and we show the effect of our method by considering both
an artificial traffic model and samples of real CAN traffic. Our conclusion from
this investigation is that actual frame sizes, with a very high probability, is in
the order of 10% smaller than the worst cases used in traditional analysis. Also,
we propose a simple coding scheme that substantially reduces the number of
stuff-bits in the considered real traffic.

6.1 Introduction 45

6.1 Introduction

During the last decade real-time researchers have extended schedulability anal-
ysis to a mature technique which for non-trivial systems can be used to deter-
mine whether a set of tasks executing on a single CPU or in a distributed sys-
tem will meet their deadlines or not [1, 2, 8, 12]. The essence of this analysis
is to investigate if deadlines are met in a worst-case scenario. Whether this
worst-case actually will occur during execution, or if it is likely to occur, is not
normally considered.

In contrast with schedulability analysis, reliability modelling involves study
of fault models, characterisation of distribution functions of faults and devel-
opment of methods and tools for composing these distributions and models in
estimating an overall reliability figure for the system.

This separation of deterministic (0/1) schedulability analysis and stochastic
reliability analysis is a natural simplification of the total analysis. The schedu-
lability analysis is, however, quite pessimistic, since it assumes that a missed
deadline in the worst-case is equivalent to always missing the deadline for all
instances of a task, whereas the stochastic analysis extend the knowledge of
the system by providing information on how often a deadline is violated. Fur-
thermore, the failure semantics could be extended allowing the system to miss
some deadlines and still not classify it as a failure.

There are many other sources of pessimism in the analysis, including con-
sidering worst-case execution times and worst-case phasings of executions, as
well as the usage of pessimistic fault models.

In our previous work [6], we proposed a model for calculating worst-case
latencies of Controller Area Network (CAN) [7] frames (messages) under error
assumptions. This model is pessimistic, in the sense that there are systems
that the analysis determines unschedulable, even though deadlines will only be
missed in extremely rare situations with pathological combinations of errors.

In [4, 5] we have reduced the level of pessimism by introducing a better
fault model, and in [3] we also consider variable phasings between message
queuing, in order to make the model more realistic.

In this paper we focus on another source of pessimism, namely bit-stuffing
of CAN frames. We will use distributions of frame lengths after stuffing in-
stead of the traditional worst-case stuffed frame lengths. We will look into two
different scenarios:

1. Bit-stuffing distributions based on assuming independent bit-values of
the data before encoding, i.e., equal probability of a bit having value

*

46 Paper A

or
 . With this information we create a model for making assumptions
about the number of stuff-bits in a packet of data.

2. Bit-stuffing distributions extracted from real CAN-bus traffic.

Since the number of stuff-bits in the real traffic is substantially larger than
that of our model, we additionally propose a simple (and efficient) method to
align the real traffic data with the model. The result is a substantial reduction
of the number of stuff-bits in the real traffic.

The outline of this paper is as follows. Section 6.2 specifically discusses
the scheduling of frame sets in CAN under a general fault model. Further,
it describes the theory behind bit-stuffing and we present the effects of bit-
stuffing distributions along with our model. In section 6.3 we investigate some
real CAN traffic and in Section 6.4 we give a proposal of how to align the real
traffic to our model. Finally Section 6.5 presents our conclusions and future
work.

6.2 Traditional Schedulability Analysis of CAN-
Frames

The Controller Area Network (CAN) [7] is a broadcast bus designed to operate
at speeds of up to 1 Mbps. Data is transmitted in frames containing between
0 and 8 bytes of data and 472 control bits. Among those control bits there
is an 11-bit identifier associated with each frame. The identifier is required
to be unique, in the sense that two simultaneously active frames originating
from different sources must have distinct identifiers. The identifier serves two
purposes: (1) assigning a priority to the frame, and (2) enabling receivers to
filter frames.

CAN is a collision-avoidance broadcast bus, which uses deterministic col-
lision resolution to control access to the bus (so called CSMA/CA). The basis
for the access mechanism is the electrical characteristics of a CAN bus: if mul-
tiple stations are transmitting concurrently and one station transmits a ‘0’ then
all stations monitoring the bus will see a ‘0’. Conversely, only if all stations
transmit a ‘1’ will all processors monitoring the bus see a ‘1’. During arbitra-
tion, competing stations are simultaneously putting their identifiers, one bit at
the time, on the bus. By monitoring the resulting bus value, a station detects if
there is a competing higher priority frame and stops transmission if this is the

2Standard format CAN frame. There is also an extended format.

6.2 Traditional Schedulability Analysis of CAN Frames 47

case. Because identifiers are unique within the system, a station transmitting
the last bit of the identifier without detecting a higher priority frame must be
transmitting the highest priority queued frame, and hence can start transmitting
the body of the frame.

6.2.1 Classical CAN Bus Analysis

Tindell et al. [9, 10, 11] present analysis to calculate the worst-case latencies
of CAN frames. This analysis is based on the standard fixed-priority response-
time analysis for CPU scheduling [1].

Calculating the response-times requires a bounded worst-case queuing pat-
tern of frames. The standard way of expressing this is to assume a set of traffic
streams, each generating frames with a fixed priority. The worst-case behaviour
of each stream, in the sense of network load, is to assume that each frame is
periodically queued. In analogue with CPU scheduling, we obtain a model
with a set � of streams (corresponding to CPU tasks). Each �

�
� � is a triple

� �

� �
�
���
�
�
� , where �

�
is the priority (defined by the frame identifier), �

�
is

the period and �
�

the worst-case transmission time of frames sent on stream
�

�
. The worst-case latency �

�
of a CAN frame sent on stream �

�
is defined by

�
���
�

� �	� � � � � (6.1)

where �

�
is the queuing jitter of the frame, i.e., the maximum variation in

queuing-time relative �
�
, inherited from the sender task which queues the frame,

and
�
�

represents the effective queuing-time, given by

� � � ��
�
�
� � ����

��� 	 �

� � �� � � � ����� � �� � � � � ���
 � � � � � � (6.2)

where the term �
�

is the worst-case blocking-time of frames sent on �

�
, 	���
����

is the set of streams with priority higher than �

�
,
���
�
� (the bit-time) caters for

the difference in arbitration start-times at the different nodes due to propaga-
tion delays and protocol tolerances, and

�
 �
� � � � � is an error term denoting

the time required for error signalling and recovery. The reason for the blocking
factor is that transmissions are non pre-emptive, i.e., after a bus arbitration has
started, the frame with the highest priority among competing frames will be
transmitted till completion, even if a frame with higher priority gets queued
before the transmission is completed. However, in case of errors a frame can

48 Paper A

be interrupted/pre-empted during transmission, requiring a complete retrans-
mission of the entire frame. The extra cost for this is catered for in the error
term

�
above.

Note that (6.2) is a recurrence relation, where the approximation to the
value of

� � � �� is found in terms of the nth approximation, with the first approx-
imation set to zero. A solution is reached when

� � � ��
�
� �
�

.

6.2.2 Effects of Bit-Stuffing, Worst-Case

In CAN, six consecutive bits of the same polarity (
* * * * * *

or

) is used
for error signalling. To avoid these special bit-patterns in transmitted frames, a
bit of opposite polarity is inserted after five consecutive bits of the same polar-
ity. By reversing the procedure, these bits are then removed at the receiver side.
This technique, which is called bit-stuffing, implies that the actual number of
transmitted bits may be larger than the size of the original frame, corresponding
to an additional transmission delay which need to be considered in the analysis.

According to the CAN standard [7], the total number of bits in a CAN
frame before bit-stuffing is

� � � � � (6.3)

where � is the number of bytes of payload data (�

�
�

�
���) and

� �
is the number

of control bits in a CAN frame. The frame layout is defined such that only
���

of these
� �

bits are subject to bit-stuffing. Therefore the total number of bits
after bit-stuffing can be no more than

� � � � � ��
 ���
� � �
(+*� � (6.4)

Intuitively the above formula captures the number of stuff-bits in the worst-
case scenario, as shown in Figure 6.1.

111110000111100001111....before stuffing

stuffed bits

11111000001111100000111110....after stuffing

Figure 6.1: The worst-case scenario when stuffing bits.

6.3 Case-Study: Real CAN Traffic 49

Let
���
�
� be the worst-case time taken to transmit a bit on the bus – the

so-called bit-time. The time taken to transmit a given frame � is therefore

�
��� �

� �

� � � � ��
 ���
� � �

� (+*� � � ��� � � (6.5)

If we put �

� �
� into the equation, and assume a bus speed of 1Mbit/sec

(
���
�
� = 1 � s), we get �

� � * � �
� � . This is a good figure to remember: the

largest frame takes 135 bit-times to send.

6.2.3 Independent Bit-Stuffing Model

If we look into how bit-stuffing actually transforms the data instead of using
the worst-case method as presented above, we will get a very different result.
The length of a frame, before bit-stuffing, can be at most 111 bits (8 bytes
data and 47 control bits), and among them 98 bits are exposed to bit-stuffing.
By assuming equal probability of bit-value 1 and 0 among the bits and no
dependency among bits, we can calculate the actual probabilities of having
a certain frame length after bit-stuffing. These probabilities are for different
frame sizes (number of bits) shown in Figure 6.2. The graph is a result of an
exhaustive analysis of all possible frame patterns. The nine different frame
lengths (0-8 bytes of data) are visualised in the graph as vertical lines. Note
that only the first 8 cases of stuff-bits (1-8 stuff-bits in the frame) are visible
in the graph, since the probability of getting more than 8 stuff-bits is very low.
For example, the probability of getting exactly 10, 15 and 20 stuff-bits never
exceeds

*
 � � ,
*
 � � , and

*
 � ��� , respectively.

6.3 Case-Study: Real CAN Traffic

In real industrial situations the 50/50 ratio does not apply, since we can not
always assume independence among bits. In order to make the above reasoning
more realistic we have gathered some traffic from a real automotive system
developed by one of our industrial partners.

What we know by experience is that the probability of having consecutive
0:s or 1:s in real frames is quite high, since the data sent often are low integer
numbers or frames used for control, e.g., coded as 0 or -1, thus leaving a large
number of consecutive bits with the same polarity. For example if we use a 16-
bit integer representation and send a “1”, we will send “0000000000000001”,
i.e., 15 consecutive 0:s.

50 Paper A

Number of data-bytes in frame

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0 8 16 24 32 40 48 56 64 72 80 88 96
Size of frame in bits

P
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8

exactly one stuff-bit

exactly two stuff-bits

exactly three stuff-bits

exactly four stuff-bits

exactly f ive stuff-bits

...

Figure 6.2: Probability of a specific number of stuff-bits in a frame, assuming
our probabilistic frame model. The 9 frame lengths are marked as vertical
lines.

The conclusion of this is that the actual number of stuff-bits in our real
traffic is higher compared to the previous section where we assumed a 50/50
ratio between 1:s and 0:s.

In our investigation of real CAN traffic, we considered some 25 000 frames.
Due to the format of the obtained data, we investigated only the data part of
the frames, which in this case were 8 bytes for all frames. The rest of the CAN
frames (control fields and so on) was not considered. The obtained distribution
of stuff-bits is shown in Figure 6.3 (”Real traffic”). Worth noticing is that the
actual worst-case here is 13 bits, to be compared with the worst-case result of
15 stuff-bits when applying traditional analysis for a frame size of 64 bits. The
figure also shows the distribution obtained with our 50/50 model (”50/50”), as
well as the distribution obtained for the real-traffic when applying the coding
(”Real traffic using XOR”) that we will present next.

6.4 A Simple Coding Scheme to Reduce Bit-Stuffing 51

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of stuff-bits

P
ro

ba
bi

lit
y 50/50

Real traffic

Real traffic using XOR

Figure 6.3: Probability density functions, PDF:s, showing the number of stuff-
bits in a 64 bit frame. We show here our independent 50/50 model, the real
CAN traffic and the manipulated real CAN traffic.

6.4 A Simple Coding Scheme to Reduce Bit-Stu-
ffing

In order to reduce the number of stuff-bits in the real CAN traffic, we can use
some kind of bit-operation on the original data to remove consecutive 1:s and
0:s. The general idea of this transformation is to align the real-traffic distribu-
tion with that of our 50/50 model.

A B eXclusive OR
0 0 0
0 1 1
1 0 1
1 1 0

Table 6.1: XOR operation.

52 Paper A

For example, we can use a simple coding scheme in which the original
frame is XORed with a particular bit-pattern, the bit-mask. XOR (shown in Ta-
ble 6.1), is a logical operation performed in a single operation by most CPUs.
In our case we use the bit-pattern 101010101010... in order to kill sequences
of 1:s and 0:s. On the receiving side, the same XOR operation is performed,
with the same bit-mask, to decode the data. Figure 6.4 illustrates the encod-
ing/decoding process.

original frame

bit mask

encoded frame

transmitted frame

encoded frame

bit-mask

original frame1111100001101010

1010101010101010

0101001011000000

01010010110000010

1111100001101010

1010101010101010

0101001011000000
bit-

stuffing
de

-
st

uf
fin

g

XOR operation

XOR operation

stuffed
bit

Figure 6.4: Encoding/decoding process for the proposed method.

Our choice of bit-pattern is just an example. The actual bit-pattern needed
to get the maximum reduction in the number of stuff-bits is dependent on the
characteristics of the transferred data. In fact, it may even be desirable to use
different bit-patterns for different frames. The details of how this can be re-
alised is, however, outside the scope of this paper.

We have applied the simple XOR-coding to our 25 000 automotive CAN
frames. The result is presented in Figure 6.3 (“Real traffic using XOR”). Here
we compare the number of stuff-bits in a frame of size 64 bits, i.e., 8 bytes.
Our 50/50 independent model give us quite good result, since we will seldom
(probability in the order of

*
 � �

) have frames extended with more than 8 bits,
i.e., 46% smaller than the traditional worst-case figure. For the frames obtained
after the XOR transformation we did not find any frame with more than 3
extra bits, i.e., 80% smaller than the worst case. Compared to the original real
traffic, we will now transmit one byte less. (All of this should of course be
compared with the worst-case analysis result of 15 bits.) It should be noted
that with the XOR we now have even better performance than our previously
suggested 50/50 model. The reason is that our real CAN data contains many
long sequences of consecutive 1:s and 0:s, and by masking this data using our

6.5 Conclusions 53

bit-pattern, we will almost eliminate the occurrence of bit-stuffing. But in the
general case, we will get a performance closer to the 50/50 model.

6.5 Conclusions

In dimensioning safety critical-systems, a central activity is to validate that
sufficient resources are allocated to provide required behavioural, timing, and
reliability guarantees. The method that we present here provides information
on distributions of stuff-bits in transmitted Controller Area Network (CAN)
frames. This information can be used to obtain more accurate reliability anal-
ysis, which by allowing occasional deadline misses may substantially reduce
the resource demands, without violating the system requirements. Reducing
utilisation is essential, since it may allow the use of cheaper solutions.

Since the validation of a system or a product typically is based on a model
of a system, it is important to reduce the modelled utilisation, i.e., the utilisation
given by the model. This can be achieved either by more accurate modelling,
or by reducing the actual utilisation of the system. Focusing on bit-stuffing in
CAN, we have in this paper presented both a method to increase the accuracy
in the modelling, and a coding method which reduces the actual bus utilisation.

We achieved increased accuracy in the modelling by taking bit-stuffing dis-
tributions into consideration. This allowed us to reduce the frame size used
when performing timing analysis of the CAN bus. This may have dramatic
effects on the calculated response-times, e.g., a system, which with traditional
worst-case analysis is deemed unschedulable, may be shown to, with a very
high probability, meet its deadlines.

We have shown with a case-study, including 25 000 messages from a real
automotive system, that the observed worst-case number of stuff-bits is 13
compared to the worst-case of 15 bits derived by traditional worst-case analy-
sis. Furthermore, our model indicated that it is relatively safe to assume at most
8 stuff-bits because the probability for more stuff-bits is very low. Addition-
ally, by using our XOR coding scheme we can reduce the number of stuff-bits
to 3.

In our future work we plan to investigate the exact effects of this further,
including the integration bit-stuffing effects in our framework for analysing re-
liability and timing trade-offs [3]. On a more detailed level, we will investigate
the effects of bit-stuffing the control fields of CAN frames. This includes the
effects of fixed fields in the CAN control frame, as well as the bit-stuffing of
the arbitration field.

54 Paper A

Acknowledgements

The authors wish to express their gratitude to Lucia Lo Bello for useful discus-
sions and to the anonymous reviewers for their helpful comments. The work
presented in this paper was supported by the Swedish Foundation for Strategic
Research (SSF) via the research programme ARTES, the Swedish Foundation
for Knowledge and Competence Development (KK-stiftelsen), and Mälardalen
University.

Bibliography

[1] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings.
Applying New Scheduling Theory to Static Priority Pre-emptive Schedul-
ing. Software Engineering Journal, 8(5):284–292, September 1993.

[2] A. Burns. Preemptive Priority Based Scheduling: An Appropriate Engi-
neering Approach. Technical Report YCS 214, University of York, York,
England, 1993.

[3] H. Hansson, T. Nolte, C. Norström, and S. Punnekkat. Integrating Reli-
ability and Timing Analysis of CAN-based Systems. IEEE Transaction
on Industrial Electronics, 49(6), December 2002.

[4] H. Hansson, C. Norström, and S. Punnekkat. Integrating Reliability and
Timing Analysis of CAN-based Systems. In Proceedings of the

� ���
IEEE

International Workshop on Factory Communication Systems (WFCS’00),
pages 165–172, Porto, Portugal, September 2000. IEEE Industrial Elec-
tronics Society.

[5] H. Hansson, C. Norström, and S. Punnekkat. Reliability Modelling of
Time-Critical Distributed Systems. volume 1926 of Lecture Notes in
Computer Science (LNCS). Springer-Verlag, � ��� International Sympo-
sium, FTRTFT 2000, Pune, India, September 2000.

[6] S. Punnekkat, H. Hansson, and C. Norström. Response Time Analysis
under Errors for CAN. In Proceedings of the � ��� IEEE Real-Time Tech-
nology and Applications Symposium (RTAS’00), pages 258–265, Wash-
ington DC, USA, June 2000. IEEE Computer Society.

[7] Road Vehicles - Interchange of Digital Information - Controller Area Net-
work (CAN) for High-Speed Communication. International Standards
Organisation (ISO). ISO Standard-11898, Nov 1993.

55

56 BIBLIOGRAPHY

[8] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols:
An Approach to Real-Time Synchronization. IEEE Transactions on Com-
puters, 39(9):1175–1185, September 1990.

[9] K. W. Tindell and A. Burns. Guaranteed Message Latencies for Dis-
tributed Safety-Critical Hard Real-Time Control Networks. Technical
Report YCS 229, Dept. of Computer Science, University of York, York,
England, June 1994.

[10] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area
Network (CAN) Message Response Times. Control Engineering Prac-
tice, 3(8):1163–1169, 1995.

[11] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing Real-Time
Communications: Controller Area Network (CAN). In Proceedings of* � ��� IEEE Real-Time Systems Symposium (RTSS’94), pages 259–263,
San Juan, Puerto Rico, December 1994. IEEE Computer Society.

[12] J. Xu and D. L. Parnas. Priority Scheduling Versus Pre-Run-Time
Scheduling. Real-Time Systems, 18(1):7–23, January 2000.

Chapter 7

Paper B: Minimizing CAN
Response-Time Jitter by
Message Manipulation

Thomas Nolte, Hans Hansson, and Christer Norström
In Proceedings of the ����� IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’02), San Jose, CA, USA, September 2002.

57

Abstract

Delay variations (jitter) in computations and communications cause degrada-
tion of performance in, e.g., control applications. There are many sources of
jitter, including variations in execution time and bus contention.

This paper presents methods to reduce the variation of frame (message)
transmission time caused by the bit-stuffing mechanism in the Controller Area
Network (CAN). By introducing some restrictions, such as a small reduction
of available frame priorities, we are able to reduce the number of stuff-bits in
the worst case. We also combine this with some of our previous work that
reduces the number of stuff-bits in the data part of the frame. We show the
actual penalty introduced by forbidding priorities, and we show the overall
improvement by using these techniques together in a small case-study.

7.1 Introduction 59

7.1 Introduction

During the last decade real-time researchers have extended schedulability anal-
ysis to a mature technique which for non-trivial systems can be used to deter-
mine whether a set of tasks executing on a single CPU or in a distributed sys-
tem will meet their deadlines or not [1, 3, 16, 21]. The essence of this analysis
is to investigate if deadlines are met in a worst-case scenario. Whether this
worst-case actually will occur during execution, or if it is likely to occur, is not
normally considered.

In contrast with schedulability analysis, reliability modelling involves stu-
dy of fault models, characterisation of distribution functions of faults and de-
velopment of methods and tools for composing these distributions and models
in estimating an overall reliability figure for the system.

This separation of deterministic (0/1) schedulability analysis and stochas-
tic reliability analysis is a natural simplification of the total analysis. This is
because the deterministic schedulability analysis unfortunately is quite pes-
simistic, since it only considers the worst-case, i.e., it does not distinguish the
case when the deadline is only missed in the (possibly very rare) worst-case
from the case when the deadline is always missed.

There are many other sources of pessimism in the analysis, including con-
sidering worst-case execution times and worst-case phasings of executions, as
well as the usage of pessimistic fault models.

In our previous work [14], we have proposed a model for calculating worst-
case latencies of Controller Area Network (CAN) [15] frames under error
assumptions. This model is pessimistic, in the sense that there are systems
that the analysis determines unschedulable, even though deadlines will only be
missed in extremely rare situations with pathological combinations of errors.
In [10, 11] we have reduced the level of pessimism by introducing a better
fault model, and in [9] we also consider variable phasings between message
queuings, in order to make the model more realistic. In [13] we reduced the
pessimism introduced by the worst-case analysis of CAN message response-
times, by using bit-stuffing distributions instead of the traditional worst-case
frame sizes.

In this paper we provide a method that will minimize the variations of frame
lengths caused by bit-stuffing. The number of stuff-bits in a CAN frame can
vary between 0 and 29, depending on the CAN format (standard or extended),
the frame length (the number of data bytes in the frame), and the frame bit-
pattern. This variation of frame length is problematic for, e.g., control ap-
plications based on event-triggered architectures. Problems and degradation

60 Paper B

of performance caused by jitter in control applications have been shown in
[5, 12, 17].

Hence, it is desirable to minimize this variation of frame lengths, as shown
in [8]. To do this, we make use of our previous work [13] where we presented
a method to reduce the number of stuff-bits in the data part of the CAN frame.
We will here extend this work by also considering the control part of the CAN
frame. We show how bit-stuffing can be eliminated in the header part of the
CAN frame and we show how to combine this with our previous work, in order
to have a method that minimizes the variations in frame length for the whole
CAN frame.

There has been work done to reduce jitter caused by variations in queuing
times for CAN frames using genetic algorithms [2, 6, 7]. This is done by giving
periodic messages initial phasings, found by using genetic algorithms. These
phasings can be set both offline and online, although the technique requires a
relatively high computational overhead. Our method, on the other hand, fo-
cuses on the jitter caused by variations of frame lengths. Our approach is done
mostly offline, and the online part requires very little CPU-time.

Outline: Section 7.2 specifically discusses the scheduling of frame sets in
CAN under a general fault model, and describes the theory behind bit-stuffing.
In Section 7.3 we show how we can eliminate the occurrence of stuff-bits in the
header part of the CAN frame and in Section 7.4 we present our independent
bit-stuffing model along with a method for data transformation which signif-
icantly reduces the number of stuff-bits in the data part of the CAN frame.
In Section 7.5 we combine the techniques described in Section 7.3 and Sec-
tion 7.4, and in Section 7.6 we show the result of using our methods and mod-
els in a case-study. Finally Section 7.7 presents our conclusions and outlines
future work.

7.2 Traditional Schedulability Analysis of CAN-
Frames

The Controller Area Network (CAN) [15] is a broadcast bus designed to oper-
ate at speeds of up to 1 Mbps. CAN is extensively used in automotive systems,
as well as in other applications. CAN transmits data in frames containing be-
tween 0 and 8 bytes of data and 47 control bits, as shown in Figure 7.1. (There
is also an extended format, which contains 20 more control bits. The main
difference is that the extended format has 29 identifier bits instead of 11 bits.
Please consult [4] for more details.)

7.2 Traditional Schedulability Analysis of CAN Frames 61

Arbitration field

S
O
F

0

11-bit identifier
R
T
R

DLC 4-
bit

Control field Data field

0-8 bytes 15 bit CRC

0

r
0

1

CRC field

I
D
E

0

Ack End of frame

1 1 1 1 1 1 1

Int

1 1 11

Bits exposed to bit-stuff ing (34 control bits and 0-8 bytes of data -> 34-98 bits)

0 0 CRC delimiter bit

Known bit-values (standard format data frame)

Figure 7.1: CAN frame layout (standard format data frame).

Among the control bits there is an 11-bit identifier associated with each
frame (plus another 18 when using the extended format). The identifier is re-
quired to be unique, in the sense that two simultaneously active frames originat-
ing from different sources must have distinct identifiers. The identifier serves
two purposes: (1) assigning a priority to the frame, and (2) enabling receivers
to filter frames. For a more detailed explanation of the different fields in the
CAN frame, please consult [15] or [4].

CAN is a collision-avoidance broadcast bus, which uses deterministic col-
lision resolution to control access to the bus (so called CSMA/CA). The basis
for the access mechanism is the electrical characteristics of a CAN bus: if mul-
tiple stations are transmitting concurrently and one station transmits a ‘0’ then
all stations monitoring the bus will see a ‘0’. Conversely, only if all stations
transmit a ‘1’ will all processors monitoring the bus see a ‘1’. During arbitra-
tion, competing stations are simultaneously putting their identifiers, one bit at
the time, on the bus. By monitoring the resulting bus value, a station detects
if there is a competing higher priority frame and stops transmission if this is
the case. Because identifiers are required to be unique within the system, a sta-
tion transmitting the last bit of the identifier without detecting a higher priority
frame must be transmitting the highest priority queued frame, and hence can
start transmitting the body of the frame.

7.2.1 Classical CAN Bus Analysis

Tindell et al. [18, 19, 20] present analysis to calculate the worst-case latencies
of CAN frames. This analysis is based on the standard fixed-priority response-
time analysis for CPU scheduling [1].

Calculating the response-times requires a bounded worst-case queuing pat-
tern of frames. The standard way of expressing this is to assume a set of traffic
streams, each generating frames with a fixed priority. The worst-case behaviour
of each stream, in terms of network load, is to send as many frames as they are

62 Paper B

allowed, i.e., to periodically queue frames. In analogue with CPU scheduling,
we obtain a model with a set � of streams (corresponding to CPU tasks). Each
�

�
� � is a triple � �

���
�
� �
�
�
� , where �

�
is the priority (defined by the frame

identifier), �
�

is the period and �
�

the worst-case transmission time of frames
sent on stream �

�
. The worst-case latency �

�
of a CAN frame sent on stream

�

�
is, if we assume the minimum variation in queuing time relative �

�
to be 0,

defined by

�
���
�

� �	� � � � � (7.1)

where �

�
is the queuing jitter of the frame, i.e., the maximum variation in

queuing-time relative �
�
, inherited from the sender task which queues the frame,

and
�
�

represents the effective queuing-time, given by

� � � ��
�
�
� � ����

��� 	 �

� � �� � � � ����� � �� � � � � ���
 � � � � � � (7.2)

where the term �
�

is the worst-case blocking-time of frames sent on �

�
, 	���
����

is the set of streams with priority higher than �

�
,
���
�
� (the bit-time) caters for

the difference in arbitration start-times at the different nodes due to propaga-
tion delays and protocol tolerances, and

�
 �
� � � � � is an error term denoting

the time required for error signalling and recovery. The reason for the block-
ing factor is that transmissions are non pre-emptive, i.e., after a bus arbitration
has started the frame with the highest priority among competing frames will be
transmitted until completion, even if a frame with higher priority gets queued
before the transmission is completed. However, in case of errors a frame can
be interrupted/pre-empted during transmission, requiring a complete retrans-
mission of the entire frame. The extra cost for this is catered for in the error
term

�
above.

Note that (7.2) is a recurrence relation, where the approximation to the
value of

� � � �� is found in terms of the nth approximation, with the first approx-
imation set to zero. A solution is reached when

� � � ��
�
� �
�

.

7.2.2 Effects of Bit-Stuffing, Worst-Case

In CAN, six consecutive bits of the same polarity (
* * * * * *

or

) are used
for error and protocol control signalling. To avoid these special bit-patterns in
transmitted frames, a bit of opposite polarity is inserted after five consecutive
bits of the same polarity. By reversing the procedure, these bits are then re-
moved at the receiver side. This technique, which is called bit-stuffing, implies

7.3 Careful Priority Usage 63

that the actual number of transmitted bits may be larger than the size of the
original frame, corresponding to an additional transmission delay which needs
to be considered in the analysis.

According to the CAN standard [15], the total number of bits in a CAN
frame before bit-stuffing is

� � � � � * � (7.3)

where � is the number of bytes of payload data (�

�
�

�
���) and � � * �

is
the number of bits in the control part of the CAN frame. The frame layout
is defined such that only � of these � � * � bits are subject to bit-stuffing (see
Figure 7.1). In the standard format �

�
���

and in the extended format �
� � �

.
Therefore the total number of bits after bit-stuffing can be no more than

� � � � � * � ��
 � � � �
(+*� � (7.4)

Intuitively the above formula captures the number of stuff-bits in the worst-
case scenario, shown in Figure 7.2.

111110000111100001111....before stuffing

stuffed bits

11111000001111100000111110....after stuffing

Figure 7.2: The worst-case scenario when stuffing bits.

Let
���
�
� be the worst-case time taken to transmit a bit on the bus – the so-

called bit-time (including the inter-frame space). The worst-case time taken to
transmit a given frame � is therefore

�
��� �

� �

� � � � * � ��
 � � � �

� (+*� � � ��� � � (7.5)

7.3 Careful Priority Usage

In this section we will investigate how it is possible to avoid/minimize stuff-
bits in the header part of the CAN frame. For simplicity we will focus on the

64 Paper B

Arbitration field

S
O
F

0

11-bit identifier
R
T
R

DLC 4-
bit

Control f ield

0

r
0

I
D
E

0 0
Known bit-values (standard

format data frame)

Figure 7.3: CAN frame header, the first 6 fields of the CAN frame (standard
format).

Number of Number of bytes of data in the CAN message frame
stuff-bits
 * # (� � (�

�
0

 � � � * * � *
1

* � � # * � � �
* � �
 *

 � �

� �
2 � ��� � �
 � #
 # � � * � �
3 �

* � * � � *
�

�

4
* *

Table 7.1: Amount of remaining priorities for various data lengths and their
corresponding number of stuff-bits (standard format).

standard format, but the same reasoning holds for the extended format. The
obtained data for the extended format is shown in the end of this section.

The priority of the standard format CAN frame, which is also the arbitration
field, consists of 11 bits (as can be seen in Figure 7.3), which are subject to bit-
stuffing before the frame is actually transmitted.

By carefully selecting priorities we can avoid the effect of stuff-bits in the
frame header, i.e., by excluding the identifiers that lead to bit-stuffing we can
a priori make sure that there will be no stuff-bits in any of the fields shown
in Figure 7.3. The drawback of this is that we have forbidden the usage of
some selected priorities, which obviously comes at a cost, since originally we
could use all 11 bits to represent the priority and identity of the CAN frame,
which gave us

���
(2048) different priorities, and after the removal of selected

priorities, it turns out that we have either of the following two scenarios: (1)
we can eliminate the number of stuff-bits in the CAN header, or (2) we can

7.3 Careful Priority Usage 65

Number of Number of bytes of data in the CAN message frame
stuff-bits
 * # (� � (�

�
0

 * � �
 � # # � � *
1

#
�

�
���

#
�

�
��� �
 � * � � � � �
 � �

�
�
�

2
�
 �
 � �
 � � � � * �
 � � * � � � #

�

� � �
3

� �
 * # # � � � # * �
� � * � � � � �

�
�
#

4
�
� � � �

� �	� � � � � �
�
� � * �

�
�

5
* � � * * �

 � � �
 � � �
 � # �

6
 � * � �

�
 *
 �
 �
 �
 �
 �
 *

7
 �
 * �

�
 * �

�
 * �

�
 * �

�
 *
8 �

�
 * �

�
 * �

�
 * �

�
 * �

�
 *
9 �

�
 *

Table 7.2: Amount of remaining priorities for various data lengths and their
corresponding number of stuff-bits (extended format). Due to large numbers,
only percentages are shown (percentages of

��� � ���
).

minimize the number of stuff-bits in the CAN header to 1.
The actual numbers of stuff-bits, by forbidding priorities, are described

in Table 7.1. Worth noticing is that the number of stuff-bits depends on the
number of data bytes in the frame. This since the DLC field, see Figure 7.3,
consists of 4 bits describing the number of bytes of data in the frame. Thus, this
bit pattern will affect the number of stuff-bits generated in the frame header (all
frame fields before the data part of the CAN frame, as shown in Figure 7.3).

What we can see in Table 7.1 is that we have 3 different groups of scenarios:

1. The first group is when we have 0-3 bytes of data. Here it is impossible
to eliminate the occurrence of stuff-bits in the CAN header, but we can
make sure that we will only have at most one stuff-bit. However, by
forbidding priorities, the number of priorities that we can use decrease
to 1332 (0 bytes of data), 1436 (1 byte of data) or 1490 (for 2-3 bytes of
data).

2. The second scenario is when we have 4-7 bytes of data. Here we can
eliminate the number of stuff-bits in the CAN header by forbidding pri-
orities, leaving 745 usable priorities. One can argue that forbidding pri-
orities would be the same as to use redundant bits as “virtual stuff-bits”
(since the number of usable priorities require less bits for representation

66 Paper B

original frame

bit mask

encoded frame

transmitted frame

encoded frame

bit-mask

original frame1111100001101010

1010101010101010

0101001011000000

01010010110000010

1111100001101010

1010101010101010

0101001011000000

bit-

stuffing
de

-
st

uf
fin

g

XOR operation

XOR operation

stuffed
bit

Figure 7.4: Encoding/decoding process for the proposed method.

compared to the number of bits that are allocated for describing the pri-
ority; some bits are left “unused”). Although there is some truth in this
reasoning, the CAN header has a fixed number of bits. Hence, even if
we are using fewer priorities, the number of bits in the CAN header stays
the same.

3. The third and final scenario is when we have 8 bytes of data. Also here
we can eliminate the stuff-bits by forbidding priorities. The number of
usable priorities is then 1131.

Conclusions of what is presented in Table 7.1 is that we can eliminate the
occurrences of stuff-bits in the CAN header (when the message contains 4-8
bytes of data) by forbidding priorities, and the cost for this is a reduction of the
number of available priorities. Therefore we believe that this method can be
used, depending on the application’s need of priorities, to eliminate the effect
of bit-stuffing in the header part of the CAN message frame.

Corresponding values for the extended format are shown in Table 7.2.

7.4 Independent Bit-Stuffing Model and a Method
for Data Transformation

In our previous paper [13] we propose a method to reduce the effect of bit-
stuffing in the data part of the CAN frame. The motivation is to investigate the
level of pessimism of traditional schedulability analysis for CAN.

7.5 Combination of Techniques 67

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of stuff-bits

P
ro

ba
bi

lit
y 50/50

Real traffic

Real traffic using XOR

Figure 7.5: Probability density functions, PDF:s, showing the number of stuff-
bits in a 64 bit frame. We show here our independent 50/50 model, the real
CAN traffic and the manipulated real CAN traffic.

The method, show in Figure 7.4, reduces the actual number of stuff-bits in
the CAN data frame by transforming the message using an XOR operation on
the data together with a bit-mask. By doing this, we showed with a case-study
that the actual number of stuff-bits was significantly reduced, as can be seen
in Figure 7.5. Here we can see (Real traffic) the number of stuff-bits in an
industrial application (samples taken from one of our automotive partners). In
relation to this, we also see the number of stuff-bits in artificial data generated
by assuming independent and equal probability of a ’1’ and ’0’ in each bit
position (50/50), and the number of stuff-bits in the same industrial data, but
after using the method described above (Real traffic using XOR).

7.5 Combination of Techniques

The methods described in Section 7.3 and Section 7.4 can be combined in
order to significantly reduce the variation of CAN message frame lengths, i.e.,
reducing the jitter. We will in this section additionally integrate the last field in

68 Paper B

Nof data bytes 0 1 2 3 4 5 6 7 8
Nof bits 0 8 16 24 32 40 48 56 64

Total (CRC + data) 15 23 31 39 47 55 63 71 79

0 6.76E-01 4.85E-01 3.61E-01 2.69E-01 2.00E-01 1.49E-01 1.11E-01 8.25E-02 6.14E-02
1 2.29E-01 3.88E-01 4.07E-01 3.91E-01 3.57E-01 3.15E-01 2.71E-01 2.29E-01 1.90E-01
2 3.23E-02 1.12E-01 1.84E-01 2.41E-01 2.78E-01 2.96E-01 2.99E-01 2.90E-01 2.73E-01
3 6.10E-04 1.41E-02 4.23E-02 8.10E-02 1.24E-01 1.64E-01 1.98E-01 2.23E-01 2.40E-01
4 0 6.93E-04 5.18E-03 1.62E-02 3.46E-02 5.90E-02 8.73E-02 1.17E-01 1.45E-01
5 0 0 3.20E-04 1.96E-03 6.31E-03 1.45E-02 2.70E-02 4.37E-02 6.35E-02
6 0 0 8.27E-06 1.38E-04 7.54E-04 2.48E-03 6.04E-03 1.21E-02 2.09E-02
7 0 0 4.94E-08 5.11E-06 5.76E-05 2.94E-04 9.82E-04 2.50E-03 5.29E-03
8 0 0 0 8.01E-08 2.65E-06 2.38E-05 1.16E-04 3.91E-04 1.03E-03
9 0 0 0 2.27E-10 6.54E-08 1.27E-06 9.80E-06 4.60E-05 1.57E-04
10 0 0 0 0 6.76E-10 4.11E-08 5.77E-07 4.02E-06 1.84E-05
11 0 0 0 0 1.46E-12 7.16E-10 2.26E-08 2.56E-07 1.65E-06
12 0 0 0 0 0 5.17E-12 5.43E-10 1.15E-08 1.12E-07
13 0 0 0 0 0 7.44E-15 7.00E-12 3.45E-10 5.56E-09
14 0 0 0 0 0 0 3.68E-14 6.36E-12 1.96E-10
15 0 0 0 0 0 0 3.66E-17 6.25E-14 4.64E-12
16 0 0 0 0 0 0 0 2.46E-16 6.75E-14
17 0 0 0 0 0 0 0 1.76E-19 5.19E-16
18 0 0 0 0 0 0 0 0 1.57E-18
19 0 0 0 0 0 0 0 0 8.30E-22

Table 7.3: Number of stuff-bits, with corresponding probability of occurrence
(�
���

equals �
� *
��).

the CAN frame, the CRC field, in the jitter reduction.
With the first method, we reduced the worst-case number of stuff-bits in

the frame header to 0 or 1 (depending on the number of data bytes in the CAN
frame) from 4, which is the theoretical value that we have to use in a safe
worst-case analysis.

Combining this with the second method we further reduce the number of
stuff-bits. As can be seen in Figure 7.5 we have reduced the number of stuff-
bits in an 8 byte data part of a frame to 3 from 13 (analytically 15).

Finally, the last part of the CAN frame to investigate is the CRC field at
the end of the frame, shown in Figure 7.1. We believe, since CRC-generation
essentially coincides with pseudo random binary sequence generation, that the
50/50 model described in [13] and in Section 7.4 is suitable for describing these
bits, i.e., we assume that the CRC essentially is a sequence of bits with equal
and independent probability for bit value 0 and 1, respectively. The model
assumes independence among bits and equal probability for having bit-value 0
or 1. What we do then is that we use our model for both the data part and the
CRC field of the CAN frame. According to the model, the number of stuff-
bits and their corresponding probabilities for the data and the CRC part of the
frame are described in Table 7.3.

By using our model we can see, when for example using 8 bytes of data,
that the number of stuff-bits is reduced from, analytically 24 to 11 when the
acceptable probability of exceeding the maximum frame size is in the order of

7.6 Case-Study 69

Nof bits Head Data CRC Entire frame Entire w prio. Data XOR New CRC Entire XOR Entire w XOR+prio
0 0 0 0.36618 0 0 0.78605 0.87834 0 0.69409
1 0 0 0.41301 0 0 0.14786 0.11973 0 0.21820
2 0.59550 0 0.22081 0 0 0.01449 0.00193 0.51457 0.02668
3 0.38962 0.00020 0 0 0 0.05160 0 0.23032 0.06047
4 0.00469 0.00341 0 0 0.00225 0 0 0.17338 0.00056
5 0.01019 0.01505 0 0 0.00678 0 0 0.01942 0
6 0 0.01613 0 0.00225 0.02291 0 0 0.06211 0
7 0 0.04057 0 0.00325 0.01677 0 0 0.00020 0
8 0 0.22984 0 0.00863 0.09020 0 0 0 0
9 0 0.22972 0 0.03419 0.11608 0 0 0 0
10 0 0.18682 0 0.02387 0.30644 0 0 0 0
11 0 0.00389 0 0.18076 0.16419 0 0 0 0
12 0 0.21551 0 0.22410 0.11556 0 0 0 0
13 0 0.05886 0 0.07700 0.07696 0 0 0 0
14 0 0 0 0.26021 0.05622 0 0 0 0
15 0 0 0 0.07824 0.02564 0 0 0 0
16 0 0 0 0.05132 0 0 0 0 0
17 0 0 0 0.05618 0 0 0 0 0

Table 7.4: Number of stuff-bits in the samples, with corresponding probability
of occurrence.

*
 � � , since � ����� � � � � �
� � *
 � � where �

� �
probability of having exactly �

stuff-bits. Therefore, we have significantly reduced the maximum number of
stuff-bits and thus, the interval between maximum and minimum number of
stuff-bits is smaller, i.e., we have reduced the considered jitter.

We must also remember that these values are based on our model. When
using our method to decrease the number of stuff-bits in a real system the actual
number of stuff-bits can be even smaller, as shown in Figure 7.5.

7.6 Case-Study

In order to validate our method and model, we make use of samples taken
from one of our industrial partners. Firstly, we investigate the actual number
of stuff-bits in some 25 000 CAN frames (extended format). This result is then
compared with the same CAN frames, both with and without the usage of the
methods described in this paper.

The number of stuff-bits in the CAN frame, both with the XOR manip-
ulation as described in Section 7.4, and without manipulation, are shown in
Figure 7.6. What we can read from the figure is that the actual worst-case
number of stuff-bits has dropped from 17 to 7, this as a result of removing pat-
terns of consecutive bits in the data part of the CAN frame. We used the same
bit-pattern for the mask, as shown in Figure 7.4. Note that we have not used
the method for selecting priorities yet.

In order to further reduce the number of stuff-bits in the CAN frame we

70 Paper B

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Number of stuff-bits

P
ro

ba
bi

lit
y Real traffic

Real traffic using XOR

Figure 7.6: Probability density functions, PDF:s, showing the number of stuff-
bits in a CAN frame (extended format). We show here real traffic along with
the same traffic but manipulated with XOR.

also make use of the method based on forbidding some priorities, as described
in Section 7.3. The result of this is shown in Figure 7.7 along with the inde-
pendent model described in Section 7.4 (also shown as the right most column
of Table 7.3). Note here that with the knowledge of elimination of stuff-bits in
the CAN header, we use the 50/50 model only for the data part and the CRC
part of the CAN frame. The result of carefully selecting priorities gives us even
less stuff-bits. We have now reduced the actual worst-case number of stuff-bits
from 17 to 4, as can be seen in Figure 7.7.

The results from all experiments within the case-study are shown in Ta-
ble 7.4. Here we can see the number of stuff-bits in the header, data and CRC
part of the original frame as well as the number of stuff-bits in the whole CAN
frame. Furthermore, the number of stuff-bits in the data and CRC part of the
frame after the XOR method are shown. Finally, the number of stuff-bits in
the whole CAN frame, after applying both the XOR method and the priority
selection, is shown.

This case-study shows that we can, by using the methods described in this

7.7 Conclusions 71

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Number of stuff-bits

P
ro

ba
bi

lit
y 50/50 model with priority selection

Real traffic using XOR with priority selection

Figure 7.7: Probability density functions, PDF:s, showing the number of stuff-
bits in a CAN frame (extended format). We show here real traffic manipulated
with XOR and careful priority selecting. Our independent model is also shown
with respect to the careful priority select.

paper, substantially reduce the worst-case number of stuff-bits in a message; in
our case from 17 to 4. This should be compared to the analytical value of 29,
which is the theoretical value that we must use in a worst-case analysis. Also
worth noticing is that the variation of frame length has decreased a lot, i.e., the
jitter is substantially reduced.

7.7 Conclusions

In dimensioning safety-critical systems, a central activity is to validate that
sufficient resources are allocated to provide required behavioural, timing, and
reliability guarantees. Reducing utilization is essential, since it may allow the
use of cheaper solutions in applications. Since the validation of a system or
a product typically is based on a model of a system, it is important to reduce
the modelled utilisation, i.e., the utilisation given by the model. This can be
achieved either by more accurate modelling, or by reducing the actual utilisa-

72 Paper B

tion of the system. Focusing on bit-stuffing in the Controller Area Network
(CAN), we have in this paper presented a method that both increases the accu-
racy of the modelling, and reduces the actual bus utilisation. What we achieve
by doing this is an improvement in terms of reducing jitter. By lowering the
maximum number of stuff-bits that can occur in a frame, we have significantly
reduced the jitter caused by the varying number of stuff-bits in a CAN frame.

We achieved increased accuracy in the modelling by taking bit-stuffing dis-
tributions into consideration. This allowed us to reduce the frame size used
when performing timing analysis of the CAN bus. This may have dramatic
effects on the calculated response-time, e.g., a system that with traditional
worst-case analysis is deemed unschedulable may be shown to with a very
high probability meet its deadlines.

We have also carefully selected a number of valid priorities, among all
possible priorities, in order to eliminate the number of stuff-bits in the frame
header. The combination of these two methods gives us a method to decrease
the number of stuff-bits in the whole CAN frame. The true effects of our
methods have been shown in a case-study.

From a strict hard real-time perspective, our contribution is that we illus-
trate the level of inherent pessimism in such analysis. From a more pragmatic
industrial perspective, our results indicate the feasibility of sufficiently safe
analysis methods, which at the penalty of just a slight and controllable opti-
mism has a potential to substantially reduce the system resource requirements,
compared to the resource requirements suggested by the hard real-time analy-
sis.

In our future work we plan to investigate this further, by examining if it is
possible to completely eliminate the occurrence of stuff-bits in the data part of
the frame. Furthermore, it would be interesting to see the result by combining
this method with the work done in [2, 6, 7] in order to reduce the jitter caused
by the blocking of other messages.

We also want to set up a real system to test the methods with respect to
latency.

Our ultimate goal is to combine all of this into a complete engineering
method for making well founded trade-offs between levels of timing guarantees
and reliability.

7.7 Conclusions 73

Acknowledgements

The authors wish to express their gratitude to the anonymous reviewers for
their helpful comments. The work presented in this paper was supported by the
Swedish Foundation for Strategic Research (SSF) via the research programme
ARTES, the Swedish Foundation for Knowledge and Competence Develop-
ment (KK-stiftelsen), and Mälardalen University.

Bibliography

[1] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings.
Applying New Scheduling Theory to Static Priority Pre-emptive Schedul-
ing. Software Engineering Journal, 8(5):284–292, September 1993.

[2] J. Barreiros, E. Costa, J. A. Fonseca, and F. Coutinho. Jitter Reduc-
tion in a Real-Time Message Transmission System Using Genetic Al-
gorithms. In Proceedings of the IEEE Congress on Evolutionary Compu-
tation (CEC’00), volume 2, pages 1095–1102, La Jolla, CA, USA, July
2000. IEEE Computer Society.

[3] A. Burns. Preemptive Priority Based Scheduling: An Appropriate Engi-
neering Approach. Technical Report YCS 214, University of York, York,
England, 1993.

[4] CAN Specification 2.0, Part-A and Part-B. CAN in Automation (CiA),
Am Weichselgarten 26, D-91058 Erlangen. http://www.can-cia.de/, 2002.

[5] CAN Specification Version 2.0. Robert Bosch GmbH, Postfach 50, D-
7000 Stuttgart 1, Germany. 1991.

[6] F. Coutinho, J. A. Fonseca, J. Barreiros, and E. Costa. Jitter Minimiza-
tion with Genetic Algorithms. In Proceedings of the

� ���
IEEE Interna-

tional Workshop on Factory Communication Systems (WFCS’00), pages
267–273, Porto, Portugal, September 2000. IEEE Industrial Electronics
Society.

[7] F. Coutinho, J. A. Fonseca, J. Barreiros, and E. Costa. Using Genetic
Algorithms to Reduce Jitter in Control Variables Transmitted over CAN.
In Proceedings of the

�
��� International CAN Conference (ICC’00), Am-

sterdam, The Netherlands, October 2000.

74

BIBLIOGRAPHY 75

[8] J.D. Decotignie. Some Future Directions in Fieldbus Research and De-
velopment. In Proceedings of the International Conference on Fieldbus
Technology (FeT’99), Magdeburg, Germany, September 1999.

[9] H. Hansson, T. Nolte, C. Norström, and S. Punnekkat. Integrating Reli-
ability and Timing Analysis of CAN-based Systems. IEEE Transaction
on Industrial Electronics, 49(6), December 2002.

[10] H. Hansson, C. Norström, and S. Punnekkat. Integrating Reliability and
Timing Analysis of CAN-based Systems. In Proceedings of the

� ���
IEEE

International Workshop on Factory Communication Systems (WFCS’00),
pages 165–172, Porto, Portugal, September 2000. IEEE Industrial Elec-
tronics Society.

[11] H. Hansson, C. Norström, and S. Punnekkat. Reliability Modelling of
Time-Critical Distributed Systems. volume 1926 of Lecture Notes in
Computer Science (LNCS). Springer-Verlag, � ��� International Sympo-
sium, FTRTFT 2000, Pune, India, September 2000.

[12] S. H. Hong. Scheduling Algorithm of Data Sampling Times in the In-
tegrated Communication and Control Systems. IEEE Transactions on
Control Systems Technology, 3(2):225–230, June 1995.

[13] T. Nolte, H. Hansson, and C. Norström. Using Bit-Stuffing Distributions
in CAN Analysis. In Proceedings of the IEEE/IEE Real-Time Embed-
ded Systems Workshop (RTES’01) at the

� � IEEE Real-Time Systems
Symposium (RTSS’01), London, England, December 2001.

[14] S. Punnekkat, H. Hansson, and C. Norström. Response Time Analysis
under Errors for CAN. In Proceedings of the � ��� IEEE Real-Time Tech-
nology and Applications Symposium (RTAS’00), pages 258–265, Wash-
ington DC, USA, June 2000. IEEE Computer Society.

[15] Road Vehicles - Interchange of Digital Information - Controller Area Net-
work (CAN) for High-Speed Communication. International Standards
Organisation (ISO). ISO Standard-11898, Nov 1993.

[16] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols:
An Approach to Real-Time Synchronization. IEEE Transactions on Com-
puters, 39(9):1175–1185, September 1990.

76 BIBLIOGRAPHY

[17] A. Stothert and I.M. MacLeod. Effect of Timing Jitter on Distributed
Computer Control System Performance. In Proceedings of the

* � ���
IFAC Workshop on Distributed Computer Control Systems (DCCS’98),
September 1998.

[18] K. W. Tindell and A. Burns. Guaranteed Message Latencies for Dis-
tributed Safety-Critical Hard Real-Time Control Networks. Technical
Report YCS 229, Dept. of Computer Science, University of York, York,
England, June 1994.

[19] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area
Network (CAN) Message Response Times. Control Engineering Prac-
tice, 3(8):1163–1169, 1995.

[20] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing Real-Time
Communications: Controller Area Network (CAN). In Proceedings of* � ��� IEEE Real-Time Systems Symposium (RTSS’94), pages 259–263,
San Juan, Puerto Rico, December 1994. IEEE Computer Society.

[21] J. Xu and D. L. Parnas. Priority Scheduling Versus Pre-Run-Time
Scheduling. Real-Time Systems, 18(1):7–23, January 2000.

Chapter 8

Paper C: Probabilistic
Worst-Case Response-Time
Analysis for the Controller
Area Network

Thomas Nolte, Hans Hansson, and Christer Norström
In Proceedings of the ����� IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’03), Toronto, Canada, May 2003.

77

Abstract

This paper presents a novel approach for calculating a probabilistic worst-case
response-time for messages in the Controller Area Network (CAN). CAN uses
a bit-stuffing mechanism to exclude forbidden bit-patterns within a message
frame. The added bits eliminate the forbidden patterns but cause an increase in
frame length. How much the length is increased depends on the bit-pattern of
the original message frame.

Traditional response-time analysis methods assume that all frames have a
worst-case number of stuff-bits. This introduces pessimism in the analysis.

In this paper we introduce an analysis approach based on using probability
distributions to model the number of stuff-bits. The new analysis additionally
opens up for making trade-offs between reliability and timeliness, in the sense
that the analysis will provide a certain probability for missing deadlines, which
in the reliability analysis can be treated as a probability of failure. We evaluate
the performance of our method using a subset of the SAE1 benchmark.

1See [11] for details.

8.1 Introduction 79

8.1 Introduction

During the last decade real-time researchers have extended schedulability anal-
ysis to a mature technique which for non-trivial systems can be used to deter-
mine whether a set of tasks executing on a single CPU or in a distributed sys-
tem will meet their deadlines or not [2, 4, 12, 16]. The essence of this analysis
is to investigate if deadlines are met in a worst-case scenario. Whether this
worst-case actually will occur during execution, or if it is likely to occur, is not
normally considered.

In contrast with schedulability analysis, reliability modelling involves study
of fault models, characterization of distribution functions of faults and devel-
opment of methods and tools for composing these distributions and models in
estimating an overall reliability figure for the system.

This separation of deterministic (0/1) schedulability analysis and stochastic
reliability analysis is a natural simplification of the total analysis. However the
deterministic schedulability analysis is unfortunately quite pessimistic, since
it assumes that a missed deadline in the worst-case is equivalent to always
missing the deadline. There are also other sources of pessimism in the analysis,
including considering worst-case execution times and the usage of pessimistic
fault models.

Reliability is defined as the probability that a system can perform its in-
tended function, under given conditions, for a given time interval. A major
issue is how to compose hardware reliability, software reliability, environmen-
tal model, and timely correctness to arrive at reasonable estimates of overall
system reliability, as depicted in Figure 8.1.

System
Reliability

Hardware Software

Message
Correctness

Timely Delivery
Reliability

Growth Models
Component
Reliability

Communications

Figure 8.1: System reliability: a top-down view.

The Controller Area Network (CAN) is extensively used in small scale dis-
tributed systems, such as automotive, medical and industrial applications. In

80 Paper C

this paper we provide a probabilistic response-time analysis method for mes-
sages in CAN. Several probabilistic approaches for schedulability analysis of
real-time systems have been presented, e.g., [1, 7]. However, none of these
specifically address CAN.

We have in our previous work presented a method to model the number of
stuff-bits in a CAN message frame [8, 9]. Stuff-bits are extra bits added by
the CAN protocol. There is a built in mechanism in the CAN protocol, which
removes forbidden bit-patterns (e.g., patterns used for error signalling and the
communication protocol) within the message frame by “inserting” stuff-bits at
specific positions. This mechanism causes a variation in the CAN message
frame length.

When performing worst-case response-time analysis, the worst-case num-
ber of stuff-bits is traditionally used. In this paper we will introduce a worst-
case response-time analysis method, which uses distributions of stuff-bits in-
stead of the worst-case values. This makes the analysis less pessimistic in the
sense that we obtain a distribution of worst-case response-times corresponding
to all possible combinations of stuff-bits of all message frames involved in the
response-time analysis. Using a distribution rather than a fixed value makes
it possible to select a worst-case response time based on a desired probabil-
ity � of violation, i.e., the selected worst-case response-time is such that the
probability of a response-time exceeding it is

� � . Our main motivation for
calculating such probabilistic response-times is that they allow us to reason
about trade-offs between reliability and timeliness.

However, it should be noted that this paper focuses on a single aspect,
namely a probabilistic worst-case response-time, based on using bit-stuffing
distributions. There are other parameters, including execution times and phas-
ings of message queuings, that have similar variations and effects on the
response-time analysis. However, our calculations are based on the “critical
instant” worst-case scenario.

Outline: Section 8.2 presents the traditional schedulability analysis for
CAN. In Section 8.3 we present the new probabilistic response-time analy-
sis, and in Section 8.4 the analysis is evaluated using the SAE [11] benchmark.
Finally Section 8.5 concludes the paper and presents some future work.

8.2 Traditional Schedulability Analysis of CAN Frames 81

Arbitration field

S
O
F

0

11-bit identifier
R
T
R

DLC 4-
bit

Control field Data field

0-8 bytes 15 bit CRC

0

r
0

1

CRC field

I
D
E

0

Ack End of frame

1 1 1 1 1 1 1

Int

1 1 11

Bits exposed to bit-stuff ing (34 control bits and 0-8 bytes of data -> 34-98 bits)

0 0 CRC delimiter bit

Known bit-values (standard format data frame)

Figure 8.2: CAN frame layout (standard format data frame).

8.2 Traditional Schedulability Analysis of CAN-
Frames

The Controller Area Network (CAN) [10] is a broadcast bus designed to op-
erate at speeds of up to 1 Mbps. Data is transmitted in frames containing
between 0 and 8 bytes of data and a number of control bits. Depending on the
CAN format (standard or extended) the number of control bits are either 44
or 64. Between CAN frames sent on the bus, there is also a 3 bit inter-frame
space. The standard format CAN frame (and the inter-frame space) is shown
in Figure 8.2.

The difference between the standard and the extended format is that the
extended format has 29 identifier bits instead of the 11 bits used in the standard
format. The identifier is required to be unique, in the sense that two simulta-
neously active frames originating from different sources (i.e., nodes or CAN-
controllers) must have distinct identifiers. The identifier serves two purposes:
(1) assigning a priority to the frame, and (2) enabling receivers to filter frames.
For a more detailed explanation of the different fields in the CAN frame, please
consult [10, 5].

CAN is a collision-avoidance broadcast bus, which uses deterministic col-
lision resolution to control access to the bus (so called CSMA/CA). The basis
for the access mechanism is the electrical characteristics of a CAN bus: if mul-
tiple stations are transmitting concurrently and one station transmits a ‘0’ then
all stations monitoring the bus will see a ‘0’. Conversely, only if all stations
transmit a ‘1’ will all processors monitoring the bus see a ‘1’. During arbitra-
tion, competing stations are simultaneously putting their identifiers, one bit at
the time, on the bus. By monitoring the resulting bus value, a station detects if
there is a competing higher priority frame and stops transmission if this is the
case. Because identifiers are unique within the system, a station transmitting
the last bit of the identifier without detecting a higher priority frame must be

82 Paper C

transmitting the highest priority queued frame, and hence can start transmitting
the body of the frame.

8.2.1 Classical CAN Bus Analysis

Tindell et al. [13, 14, 15] present analysis to calculate the worst-case latencies
of CAN frames. This analysis is based on the standard fixed-priority response-
time analysis for CPU scheduling [2].

Calculating the response-times requires a bounded worst-case queuing pat-
tern of frames. The standard way of expressing this is to assume a set of traffic
streams, each generating frames with a fixed priority. The worst-case behaviour
of each stream, in terms of network load, is to send as many frames as they are
allowed, i.e., to periodically queue frames. In analogue with CPU scheduling,
we obtain a model with a set � of streams (corresponding to CPU tasks). Each
�

�
� � is a triple � �

� �
�
���
�
�
� , where �

�
is the priority (defined by the mes-

sage frame identifier), �
�

is the period and �
�

the worst-case transmission time
of frames sent on stream �

�
. The worst-case latency �

�
of a CAN frame sent

on stream �

�
is, if we assume the minimum variation in queuing time relative

to �
�

to be 0, defined by

�
���
�

� �	� � � � � (8.1)

where �

�
is the queuing jitter of the frame, i.e., the maximum variation in

queuing-time relative start of �
�
, inherited from the sender task which queues

the frame, and
�
�

represents the effective queuing-time, given by

� ��
�
�
� � ����

��� 	 �

� � ��� �� � � � ����� � �� � �
 � � ������� � � � (8.2)

where

� �
���

max� ��� � 	 �

 � � � �������
�
� is the worst-case blocking-time of frames sent

on �

�
, where � ��
���� is the set of streams with priority lower than �

�
. The

reason for the blocking factor is that transmissions are non pre-emptive,
i.e., after bus arbitration has started the frame with the highest priority
among competing frames will be transmitted until completion, even if a
frame with higher priority gets queued before the transmission is com-
pleted.

� 	���
���� is the set of streams with priority higher than �

�
.

8.2 Traditional Schedulability Analysis of CAN Frames 83

� ���
�
� (the bit-time) caters for the difference in arbitration start-times at the

different nodes due to propagation delays and protocol tolerances.

� � � is the transmission time of message � . How to calculate � � is pre-
sented in the next section.

� �����
�
� represents the inter-frame space (traditionally [13, 14, 15], the inter-

frame space was considered a part of the data frame, but separating it [3]
removes a small source of pessimism in the equations).

Note that Equation 8.2 is a recurrence relation, where the approximation to
the
�� � * � th value is found in terms of the � th approximation, with the first
approximation set to

� �� �
 . A solution is reached either when the
�� � * � th
value is equal to the � th, or when �

�
exceeds its message deadline or period.

The recurrence relation will terminate given that the total bus utilization is
� *

,

i.e., �
	�� ��
 !�� � ������� � �� � , � * .
We rewrite Equation 8.1 and Equation 8.2 into a single expression since

our probabilistic equations, in the following section, will be based on having
such an expression. Having a single expression we will be able to separate
the “fixed size” part of the calculations from the “varying size part” based on
distributions. The new expression is

� ��
�
�

� � � � � � � � ����
��� 	 �
 � ��� ����� �� (�

� (�
���

 � � ������� � � � (8.3)

where
� �
��'� is defined as the worst-case number of periodic message releases,

for a message � , in a time interval of �� �
��'� � � � � � � ����� � �� � � (8.4)

where � � is the worst-case release jitter, and � � is the period of the message.
As Equation 8.2, Equation 8.3 is a recurrence relation. The only difference

is that the first approximation is in this case set to � ��
�
�

� � � � .
8.2.2 The Bit-Stuffing Mechanism

In CAN, six consecutive bits of the same polarity (
* * * * * *

or

) is used
for error and protocol control signalling. To avoid these special bit-patterns in
transmitted frames, a bit of opposite polarity is inserted after five consecutive

84 Paper C

bits of the same polarity. By reversing the procedure, these bits are then re-
moved at the receiver side. This technique, which is called bit-stuffing, implies
that the actual number of transmitted bits may be larger than the size of the
original frame, corresponding to an additional transmission delay which needs
to be considered in the analysis.

Let us first define the number of bits, beside the data part in the frame,
which are exposed to the bit-stuffing mechanism as � � � ���

� � � � . This since
we have either

���
(CAN standard format) or

� �
(CAN extended format) bits

(beside the data part in the frame) which are exposed to the bit-stuffing mecha-
nism. 10 bits in the CAN frame are not exposed to the bit-stuffing mechanism
(see Figure 8.2). Now let us define the number of bytes of data in CAN mes-
sage frame � as �

�
� �

�
��� . Recall, a CAN message frame can contain 0 to 8

bytes of data. According to the CAN standard [10], the total number of bits in
a CAN frame before bit-stuffing is therefore

�	�
� � � � *
 (8.5)

where 10 is the number of bits in the CAN frame not exposed to the bit-stuffing
mechanism. Since only � � �	�

�
bits in the CAN frame are subject to bit-

stuffing, the total number of bits after bit-stuffing can be no more than

�	�
� � � � *
 ��
 � � �	�

� (+*� � (8.6)

Intuitively the above formula captures the number of stuff-bits in the worst-
case scenario, shown in Figure 8.3.

111110000111100001111....before stuffing

stuffed bits

11111000001111100000111110....after stuffing

Figure 8.3: The worst-case scenario when stuffing bits.

Let
���
�
� be the worst-case time taken to transmit a bit on the bus – the

so-called bit-time. The worst-case time taken to transmit a given frame � is
therefore

�
��� �

�	�
� � � � *
 ��
 � � �	�

� (+*� � � ��� � � (8.7)

8.3 New Approach 85

8.3 New Approach

The expression (8.6) describes the length of a CAN frame in the worst case.
However, in our previous work [8, 9] we represent the number of stuff-bits as
a distribution. By using a distribution of stuff-bits instead of the worst-case
number of stuff-bits, we obtain a distribution of response-times allowing us to
calculate less pessimistic (compared to traditional worst-case) response-times
based on probability.

Firstly, let us define � as the distribution of stuff-bits in a CAN message
frame. � is a set of pairs containing the number of stuff-bits with correspond-
ing probability of occurrence. Each pair is defined as
 �

�
��
 � �'� ��� , where

��
 � � is the probability of exactly � stuff-bits in the CAN frame. Note that
���� � � ��
 � �

� *
.

From [9] we can extract 9 different distributions of stuff-bits depending on
the number of bytes of data in the CAN message frame. We define ��� � as the
distribution representing a CAN frame containing �

�
bytes of data. Recall that�

�
is the number of bytes of data (0 to 8) in a message frame � .
We define �

�
�
 � � as the worst-case number of stuff-bits, � , to expect

with a probability � based on the stuff-bit distribution � , i.e., ���� � � � � ��
 � �
�

� , or to express it in another way, the probability of finding more than � stuff-
bits, based on the stuff-bit distribution � , is

� � .
Note that the selection of a probability � should be done based on the re-

quirements of the application. With a proper value for � , the worst-case mean
time to failure should sufficiently exceed what is required.

Finally, by assuming (as in [9]) that CAN message frames are independent
in the sense of number of stuff-bits, we can define � � � as the joint distribu-

tion corresponding to the combination of � distributions of stuff-bits, i.e., the
number of stuff-bits caused by a sequence of � messages sent on the bus is
described by � � �

�
� � � �	�
�
� � �� ��
 �� , where

�
denotes multiplicative com-

bination of discrete distributions, as illustrated in the example below. If the

distributions happens to be equal, �� � � is defined as the joint distribution of �
equal distributions of stuff-bits, i.e., the number of data bytes are the same for
all messages considered by the expression.

86 Paper C

8.3.1 Example

As an illustration, let us use an example where we assume �
�
�

�
 � * �
�

 *
�
 � �%�

�

 #
�
 � * � � . Calculating �� � � is done by multiplying the probabilities for

all combinations of stuff-bits, i.e.,
��
�
��
�� �'���
 �

�
��
 � �'�

�

�� � � � ��
�� ��� ��
 � �'�

where �
� � � �

� * � # � . The result of a multiplication is a new number of stuff-
bits with a corresponding probability. In our example the multiplication yields

�� � �
�
�

�
 �
 * �
�

 *
�
 �
 �%�

�

 #
�
 �
 * �

�

 *
�
 �
 �%�

�

 #
�
 � � � �

�

 �
�
 �
 �%�

�

 #
�
 �
 * �

�

 �
�
 �
 �%�

�

 �
�
 �
 * � � (8.8)

However, all probabilities in �� � � of equal number of stuff-bits are added to-

gether leaving

�� � �
�
�

�
 �
 * �
�

 *
�
 � * �%�

�

 #
�
 � � �%�

�

 �
�
 � * �%�

�

 �
�
 �
 * � � (8.9)

In our example, with �
� *
 � � , �
 � � � * and

�
�� � � �
 � � � �

.

8.3.2 Probabilistic Worst-Case Response-Time

In order to include the bit-stuffing distributions in Equation 8.3 we need to
redefine �

�
and �
�

to �
�

 � � and �

�

 � � where

� �
�

 � � is the transmission time of message �

�
�

 � �

��� � � � � �
 � � ��� � � (8.10)

where � � � is the distribution of stuff-bits in the message, and

�-�
is the

transmission time of message � excluding stuff-bits� ���

��	�
� � � � *
 � ��� � � (8.11)

where 10 is the number of bits in the CAN frame not exposed to the
bit-stuffing mechanism.

8.3 New Approach 87

� �
�

 � � is the blocking-time caused by message � having to wait for a

lower priority message sent on the bus. Since the bus is non pre-emptive,
the worst-case scenario is that the biggest (in size) lower priority mes-
sage just started its transmission when message � becomes ready to trans-
mit. Thus we can define the blocking-time of a message � as

�
�

 � �

� � � � �
max����� ��� � � 	 � �

 � � ��� � � (8.12)

where � max����� ��� � � 	 � �
 is the distribution of stuff-bits of the blocking mes-

sage � (the biggest lower priority message), and
� �

is the blocking-time
not considering the bit-stuffing mechanism

� � �
max� ��� � 	 �

� � � ������� � � (8.13)

where
�����
�
� is the inter-frame space. Note that (8.12) is pessimistic in

the sense that we always assume that we will be blocked by a message.
Taking probability of blocking actually occurring into consideration as
well as not always assuming biggest blocking message would give a less
pessimistic result. However, since we are basing the analysis on a “crit-
ical instant”, we create a worst-case scenario but we use distributions of
values instead of worst-case ones when calculating the response-time.

Taking the probabilistic definitions of Equation 8.10 and Equation 8.12 into
consideration we can reformulate Equation 8.3 as

�
�
�
 � �

�
�

� � � � � � � � ����
��� 	 �
 � �
��

�
��� �
 � � (�

� (� � �

� � ������� �

� � �
	
�

 � � ���
�
�

(8.14)
where

	
�

is defined as the distribution of the total number of stuff-bits of all
messages involved in the response-time analysis for message �

	
� �

� max����� ��� � � 	 � �
 � � � � � ����
��� 	 �
 ��

�
� 	 � � 	 �
 � � � ��� �
 � � � (8.15)

where � max����� ��� � � 	 � �
 is the distribution of stuff-bits caused by the longest lower

priority blocking message, � � � is the distribution of stuff-bits in the message

88 Paper C

under analysis, and ����
��� 	 �
 ���
� 	 � � 	 �
 � � � ��� �
 � � � is the distribution of stuff-bits

in all interfering messages of higher priority sent before message � will be sent,
i.e., the higher priority messages sent causing message � to be queued.

Having the distribution
	
�
, a proper total number of stuff-bits is selected

depending on the desired probability of response-time violation � , i.e., for ev-
ery step in the recurrence relation (8.14), a value

	
�

 � � must be extracted from

Equation 8.15.

8.3.3 Complexity

Regarding the complexity of the analysis, the dominating component is the
calculation in Equation 8.15. Since all parameters in Equation 8.15 are dis-
tributions, and distributions are multiplied together causing multiplications of
all combinations of stuff-bits, the complexity of solving the expression is as
follows

�
 � � � (8.16)

where � is the number of messages involved in Equation 8.15, and � is the
number of stuff-bits in the biggest size message, having largest number of stuff-
bits in its distribution. However, due to the iterative nature of the equations,
solving Equation 8.15 can be done with a much lower complexity. In fact, the
complexity of calculating the joint distribution can be reduced to

�
�� � � � � (8.17)

since we in each iteration can reduce the number of considered values to � � �
by adding all values with equal number of stuff-bits together, as illustrated in
Section 8.3.1.

8.3.4 Example

To illustrate our method we use a small example with 3 messages, message 1-
3, where message 1 has the highest priority, and message 3 the lowest priority.
We assume that we have no jitter, i.e., �

�
 for all messages, and that all
messages have the same size. Note that the assumption regarding the message
length to be equal is just for simplicity for the reader. This is not a requirement.
We assume

� � *
 , � � � � � * , and � is as in Section 8.3.1. Finally, again for

8.4 Evaluation 89

simplicity, all message periods are so big causing Equation 8.4 never to exceed
1, i.e.,

�
��'� � * .
Based on our assumptions, the worst-case scenario for message 2 would be

as illustrated in Figure 8.4, i.e., message 2 is blocked by message 3 (the lowest
priority message) and delayed by message 1 (the highest priority message).

Message 3

c3 + τbitϒL3

Blocking message

Message 1

c1 + τbitϒL1

Higher priority
message

Message 2

c2 + τbitϒL2

Message under
analysis

Message 3

c3 + τbitϒL3

Blocking message

Message 3

c3 + τbitϒL3

Blocking message

Message 1

c1 + τbitϒL1

Higher priority
message

Message 1

c1 + τbitϒL1

Higher priority
message

Message 2

c2 + τbitϒL2

Message under
analysis

Figure 8.4: Worst-case message sequence for message 2.

Using Equation 8.14 we can calculate the response-time � �
 � � as

� �
 � �
� � � � � � �
 � � ������� � � � � 	 �
 � � ���

�
� (8.18)

where
� � ���

� � ����� �
� and

	 � � � ��� � � ��� � � ��� � �� � � (since � �
�
� �

�
� �) where �� � � is calculated to be

��
� �

�
�

�
 �

 * �
�

 *
�
 �
 # � �

�

 #
�
 � * � � �

�

 �
�
 � � �%�

�

 �
�
 � * � � �

�

 �
�
 �
 # � �

�

 �
�
 �

 * � � (8.19)

We select an acceptable probability of worst-case response-time violation � to
be
*
 � � . Based on � , 	 �
 � �

� �
, causing � �
 � �

�

 *
 � � � � *
 �
 *
 � � � �� � �
 .

8.4 Evaluation

In order to demonstrate the performance of our new approach for calculating
a probabilistic worst-case response-time we make use of the widely published

90 Paper C

���������
	�� ���
��������	
Priority Bytes ��� ��� ��� ��� ����� ��� gain ����� ��� gain ��� � ��

(ID) (ms) (ms) (ms) (ms) (ms) (%) (ms) (%) (ms)
17 1 0.480 1000 5 1.416 1.384 2.26 1.328 6.21 0.680
16 2 0.560 5 5 2.016 1.936 3.97 1.864 7.54 1.240
15 1 0.480 5 5 2.536 2.448 3.47 2.360 6.94 1.720
14 2 0.560 5 5 3.136 3.032 3.32 2.920 6.89 2.280
13 1 0.480 5 5 3.656 3.536 3.28 3.424 6.35 2.760
12 2 0.560 5 5 4.256 4.120 3.20 4.000 6.02 3.320
11 6 0.864 10 10 5.016 4.840 3.51 4.720 5.90 4.184
10 1 0.480 10 10 8.376 5.368 35.91 5.248 37.34 4.664
9 2 0.560 10 10 8.976 8.480 5.53 8.336 7.13 5.224
8 2 0.560 10 10 9.576 9.144 4.51 9.000 6.02 8.424
7 1 0.480 100 100 10.096 9.728 3.65 9.592 4.99 8.904
6 4 0.712 100 100 19.096 15.256 20.11 10.304 46.04 9.616
5 1 0.480 100 100 19.616 18.472 5.83 18.176 7.34 10.096
4 1 0.480 100 100 20.136 19.224 4.53 18.968 5.80 18.320
3 3 0.632 1000 1000 28.976 19.928 31.23 19.704 32.00 18.952
2 1 0.480 1000 1000 29.496 27.920 5.34 20.400 30.84 19.432
1 1 0.480 1000 1000 29.520 28.352 3.96 27.944 5.34 19.912

Table 8.1: SAE CAN messages.

simplification [14] of the Society of Automotive Engineers (SAE) benchmark
[11].

We use a bus speed of 125kbit/s, and we select the acceptable probability
of violating the calculated worst-case response-time, � , to be

*
 � � � and
*
 � � �

respectively. Then, we calculate the worst-case response-time both according
to the traditional approach (8.1) and the probabilistic approach (8.14). The
response-times of all messages of the subset of SAE messages are shown in
Table 8.1, where �

�
denotes the results of traditional analysis and �

�

 � � the

results of our new probabilistic analysis. To have some “real” response-times
to compare the analytic ones with, we simulated the SAE message set using
the worst-case transmission times. The system was simulated for 2000000 ms.
The worst-case measured response-time is presented as � �

�
�
�

in the rightmost
column of Table 8.1. Note that the difference between the simulated value and
the analytic worst-case is due to that in the simulation all messages are released
at time “0”. Hence, the worst-case blocking as defined by Equation 8.12 might
not occur due to the phasings of messages.

What we see in Table 8.1 is that the probabilistic response-times �
�

 � �

are significantly lower than the traditional worst-case response-times �
�
. An

interesting observation is that the gain is substantially higher for some mes-

8.5 Conclusions 91

0

5

10

15

20

25

30

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Priority

R
es

po
ns

e
tim

e WC

p=10-24

p=10-12

Sim

Figure 8.5: Message response-times (priority is the message ID as in Ta-
ble 8.1).

sages. The reason for this is that a slight additional interference, e.g., caused
by an additional stuff-bit, will in these cases extend the response-time such that
transmission will be delayed by one or more additional higher priority message
transmissions. Note that all calculated probabilistic response-times are never
optimistic in comparison with the simulation result (as seen in Figure 8.5). This
even though we are using worst-case transmission times. Using bit-stuffing
distributions in the simulation would give even shorter response-times.

8.5 Conclusions

In this paper we have presented a new probabilistic approach to calculate
response-times for messages in the Controller Area Network (CAN). The key
element to this approach is that we use bit-stuffing distributions instead of
worst-case values. The performance of our method is evaluated using a subset
of the SAE benchmark.

92 Paper C

Our main motivation for calculating probabilistic response-times is that
they allow us to reason about trade-offs between reliability and timeliness.
We have in [6] presented a method for such analysis of CAN subject to ex-
ternal interference. An obvious next step would be to integrate the bit-stuffing
distribution-based analysis presented here with that analysis.

Acknowledgements

The authors wish to express their gratitude to the anonymous reviewers for
their helpful comments. The work presented in this paper was supported by the
Swedish Foundation for Strategic Research (SSF) via the research programme
ARTES, the Swedish Foundation for Knowledge and Competence Develop-
ment (KK-stiftelsen), and Mälardalen University.

Bibliography

[1] A. Atlas and A. Bestavros. Statistical Rate Monotonic Scheduling. In
Proceedings of the

*
����� IEEE Real-Time Systems Symposium (RTSS’98),

pages 123–132, Madrid, Spain, December 1998. IEEE Computer Society.

[2] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings.
Applying New Scheduling Theory to Static Priority Pre-emptive Schedul-
ing. Software Engineering Journal, 8(5):284–292, September 1993.

[3] I. Broster and A. Burns. Timely Use of the CAN Protocol in Critical Hard
Real-Time Systems With Faults. In Proceedings of the

* � ��� Euromicro
Conference on Real-Time Systems (ECRTS’01), pages 95–102, Delft, The
Netherlands, June 2001. IEEE Computer Society.

[4] A. Burns. Preemptive Priority Based Scheduling: An Appropriate Engi-
neering Approach. Technical Report YCS 214, University of York, York,
England, 1993.

[5] CAN Specification 2.0, Part-A and Part-B. CAN in Automation (CiA),
Am Weichselgarten 26, D-91058 Erlangen. http://www.can-cia.de/, 2002.

[6] H. Hansson, T. Nolte, C. Norström, and S. Punnekkat. Integrating Reli-
ability and Timing Analysis of CAN-based Systems. IEEE Transaction
on Industrial Electronics, 49(6), December 2002.

[7] S. Manolache. Schedulability Analysis of Real-Time Systems with
Stochastic Task Execution Times. Licentiate Thesis No. 985, Dept. of
Computer and Information Science, IDA, Linköping University, Sweden,
December 2002.

93

94 BIBLIOGRAPHY

[8] T. Nolte, H. Hansson, and C. Norström. Using Bit-Stuffing Distributions
in CAN Analysis. In Proceedings of the IEEE/IEE Real-Time Embed-
ded Systems Workshop (RTES’01) at the

� � IEEE Real-Time Systems
Symposium (RTSS’01), London, England, December 2001.

[9] T. Nolte, H. Hansson, and C. Norström. Minimizing CAN Response-
Time Analysis Jitter by Message Manipulation. In Proceedings of the � ���
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS’02), pages 197–206, San Jose, CA, USA, September 2002. IEEE
Computer Society.

[10] Road Vehicles - Interchange of Digital Information - Controller Area Net-
work (CAN) for High-Speed Communication. International Standards
Organisation (ISO). ISO Standard-11898, Nov 1993.

[11] SAE. Class C Application Requirement Considerations-SAE J2056/1.
SAE Handbook, pages 23.366–23.371, June 1993.

[12] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Protocols:
An Approach to Real-Time Synchronization. IEEE Transactions on Com-
puters, 39(9):1175–1185, September 1990.

[13] K. W. Tindell and A. Burns. Guaranteed Message Latencies for Dis-
tributed Safety-Critical Hard Real-Time Control Networks. Technical
Report YCS 229, Dept. of Computer Science, University of York, York,
England, June 1994.

[14] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area
Network (CAN) Message Response Times. Control Engineering Prac-
tice, 3(8):1163–1169, 1995.

[15] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing Real-Time
Communications: Controller Area Network (CAN). In Proceedings of* � ��� IEEE Real-Time Systems Symposium (RTSS’94), pages 259–263,
San Juan, Puerto Rico, December 1994. IEEE Computer Society.

[16] J. Xu and D. L. Parnas. Priority Scheduling Versus Pre-Run-Time
Scheduling. Real-Time Systems, 18(1):7–23, January 2000.

Chapter 9

Paper D: Server-Based
Scheduling of the CAN Bus

Thomas Nolte, Mikael Sjödin, and Hans Hansson,
Technical Report ISSN 1404-3041 ISRN MDH-MRTC-99/2003-1-SE, Mälar-
dalen Real-Time Research Centre, Mälardalen University, Sweden, April 2003.

95

Abstract

In this paper we present a new share-driven server-based method for scheduling
messages sent over the Controller Area Network (CAN). Share-driven methods
are useful in many applications, since they provide both fairness and bandwidth
isolation among the users of the resource. Our method is the first share-driven
scheduling method proposed for CAN. Our server-based scheduling is based on
Earliest Deadline First (EDF), which allows higher utilization of the network
than using CAN’s native fixed-priority scheduling approach.

We use simulation to show the performance and properties of server-based
scheduling for CAN. The simulation results show that the bandwidth isolation
property is kept, and they show that our method provides a Quality-of-Service
(QoS), where virtually all messages are delivered within a specified time.

9.1 Introduction 97

9.1 Introduction

The Controller Area Network (CAN) [18, 5] is widely used in automotive
and other real-time applications. CAN uses a fixed-priority based arbitration
mechanism that can provide timing guarantees and that is amenable to timing
analysis [24, 25, 26]. However, studies have shown that CAN’s fixed-priority
scheduling (FPS) allows for lower network utilization than Earliest Deadline
First (EDF) scheduling [10, 16].

Today, distributed real-time systems become more and more complex and
the number of micro-controllers attached to CAN buses continue to grow.
CAN’s maximum speed of 1 Mbps remains, however, fixed; leading to per-
formance bottlenecks. This bottleneck is further accentuated by the steadily
growing computing power of CPUs. Hence, in order to reclaim some of the
scarce bandwidth forfeited by CAN’s native scheduling mechanism, novel ap-
proaches to scheduling CAN are needed.

In optimising the design of a CAN-based communication system (and es-
sentially any other real-time communication system) it is important to both
guarantee the timeliness of periodic messages and to minimize the interference
from periodic traffic on the transmission of aperiodic messages.

Therefore, in this paper we propose the usage of server-based scheduling
techniques (based on EDF) such as Total Bandwidth Server (TBS) [21, 20],
or Constant Bandwidth Server (CBS) [1], which improves existing techniques
since: (1) Fairness among users of a resource is guaranteed (i.e., “misbehaving”
aperiodic processes cannot starve well-behaved processes), and (2) in contrast
with other proposals, aperiodic messages are not sent “in the background” of
periodic messages or in separate time-slots [15]. Instead, aperiodic and peri-
odic messages are jointly scheduled using servers. This substantially facilitates
meeting response-time requirements, for both aperiodic and periodic messages.

As a side effect, by using servers, the CAN identifiers assigned to mes-
sages will not play a significant role in the message response-time. This greatly
simplifies the process of assigning message identifiers (which is often done in
an ad-hoc fashion at an early stage in a project). This also allows migration
of legacy systems (where identifiers cannot easily be changed) into our new
framework.

The paper is organized as follows: In Section 9.2 related work is presented.
In Section 9.3 we present the server-based CAN network. Section 9.4 presents
an approach to analysis, and in Section 9.5 the proposed method is evaluated
using simulation. Finally, in Section 9.6 we conclude and present future work.

98 Paper D

9.2 Background and Related Work

In this section we will give an introduction to CAN and present previously
proposed methods for scheduling CAN.

9.2.1 The Controller Area Network

The Controller Area Network (CAN) [18, 5] is a broadcast bus designed to
operate at speeds of up to 1Mbps. CAN is extensively used in automotive sys-
tems, as well as in other applications. CAN is a collision-avoidance broadcast
bus, which uses deterministic collision resolution to control access to the bus
(so called CSMA/CA). CAN transmits data in frames containing a header and
0 to 8 bytes of data.

The CAN identifier is required to be unique, in the sense that two simul-
taneously active frames originating from different sources must have distinct
identifiers. Besides identifying the frame, the identifier serves two purposes:
(1) assigning a priority to the frame, and (2) enabling receivers to filter frames.

The basis for the access mechanism is the electrical characteristics of a
CAN bus. During arbitration, competing stations are simultaneously out-
putting their identifiers, one bit at the time, on the bus. Bit value “0” is the
dominant value. Hence, if two or more stations are transmitting bits at the
same time, and one station transmit a “0”, then the value of the bus will be “0”.
By monitoring the resulting bus value, a station detects if there is a competing
higher priority frame (i.e., a frame with a numerically lower identifier) and
stops transmission if this is the case. Because identifiers are unique within the
system, a station transmitting the last bit of the identifier without detecting a
higher priority frame must be transmitting the highest priority active frame,
and can start transmitting the body of the frame. Thus, CAN behaves as a
priority based queue since, at all nodes, the message chosen during arbitration
is always the active message with the highest priority.

9.2.2 Scheduling on CAN

In the real-time scheduling research community there exist several different
types of scheduling. We can divide the classical scheduling paradigms into the
following three groups:

1. Priority-driven (e.g., FPS or EDF) [9].

2. Time-driven (table-driven) [8, 6].

9.2 Background and Related Work 99

3. Share-driven [14, 23].

For CAN, priority-driven scheduling is the most natural scheduling method
since it is supported by the CAN protocol, and FPS response-time tests for
determining the schedulability of CAN message frames have been presented
by Tindell et al. [24, 25, 26]. This analysis is based on the standard fixed-
priority response-time analysis for CPU scheduling presented by Audsley et
al. [4]. TT-CAN [17] provides time-driven scheduling for CAN, and Almeida
et al. present Flexible Time-Triggered CAN (FTT-CAN) [2, 3], which supports
priority-driven scheduling in combination with time driven-scheduling. FTT-
CAN is presented in more detail below. However, share-driven scheduling for
CAN has not yet been investigated. The server-based scheduling presented
in this paper provides the first share-driven scheduling approach for CAN. By
providing the option of share-driven scheduling of CAN, designers are given
more freedom in designing an application.

Flexible Time-Triggered Scheduling

Pedreira and Almeida present a method to combine event-triggered traffic with
time-triggered [15]. The approach is based on FTT-CAN (Flexible Time-
Triggered communication on CAN) [2, 3]. In FTT-CAN, time is partitioned
into Elementary Cycles (ECs) which are initiated by a special message, the
Trigger Message (TM). This message contains the schedule for the synchronous
traffic that shall be sent within this EC. The schedule is calculated and sent by
a master node. FTT-CAN supports both periodic and aperiodic traffic by di-
viding the EC in two parts. In the first part, the asynchronous window, the
aperiodic messages are sent, and in the second part, the synchronous window,
traffic is sent according to the schedule delivered by the TM. More details of
the EC layout are provided in Figure 9.1.

EDF Scheduling

As an alternative to the fixed-priority mechanisms offered by CAN, an ap-
proach for EDF was developed by Zuberi et al. [27]. They propose the usage
of a Mixed Traffic Scheduler (MTS), which attempts to give a high utiliza-
tion (like EDF) while using CAN’s 11-bit identifiers for arbitration. Using the
MTS, the message identifiers are manipulated in order to reflect the current
deadline of each message. However, since each message is required to have
a unique message identifier, they suggested the division of the identifier field
into three sub-fields.

100 Paper D

TM AM1 AM25 SM1 SM3 SM8 SM9 TM AM29 AM31 SM2 SM5 SM11

0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0

Elementary Cycle (EC) [i] Elementary Cycle (EC) [i+1]

Async. Window Sync. Window

bit 1 bit 3 bit 8 bit 9 bit 2 bit 5 bit 11

Figure 9.1: EC layout and TM data contents (FTT-CAN approach).

Other suggestions for scheduling CAN according to EDF include the work
by Livani et al. [10] and Di Natale [11]. These solutions are all based on
manipulating the identifier of the CAN frame, and thus they reduce the number
of possible identifiers to be used by the system designers. Restricting the use
of identifiers is often not an attractive alternative, since it interferes with other
design activities, and is even sometimes in conflict with adopted standards and
recommendations [7].

Using FTT-CAN, Pedreiras and Almeida [16] show how it is possible to
send periodic messages according to EDF using the synchronous window of
FTT-CAN. Their method is based on periodic message sets with fixed dead-
lines. Pedreiras and Almeida have also developed a method for calculating
the worst-case response-time of the messages using the asynchronous window
[15]. Using their approach, greater flexibility is achieved since the scheduling
is not based on manipulating the identifiers. Instead, there is a master node
performing the scheduling of the CAN bus.

The drawback of all these methods, for achieving EDF, is that they require
each message to have a fixed, a priori known, deadline. Thus, using these
methods, it is impossible to implement a server-based scheduler, since, when
using a server, the message deadlines are not a priori known, but assigned by
the server at the time of message arrival.

9.3 Server-Based Scheduling on CAN

In order to provide guaranteed network bandwidth for real-time messages, we
propose the usage of server-based scheduling techniques instead of the previ-
ously proposed methods described above. We have previously studied CBS
end-to-end system design [13], and we also gave a brief presentation of a CBS-

9.3 Server-Based Scheduling on CAN 101

based scheduling approach for CAN in [12]. In this paper we will take a more
general approach to server-based scheduling, and describe the basic mecha-
nisms in detail.

Using servers, the whole network will be scheduled as a single resource,
providing bandwidth isolation as well as fairness among the users of the servers.
However, in order to make server-scheduling decisions, the server must have
information on when messages are arriving at the different nodes in the system,
so that it can assign them a deadline based on the server policy in use. This
information should not be based on message passing, since this would further
reduce the already low bandwidth offered by CAN. Our method, presented
below, will provide a solution to this.

9.3.1 Server Scheduling (N-Servers)

In real-time scheduling, a server is a conceptual entity that controls the ac-
cess to some shared resource. Sometimes multiple servers are associated with
a single resource. For instance, in this paper we will have multiple servers
mediating access to a single CAN bus.

A server has one or more users. A user is typically a process or a task
that requires access to the resource associated with the server. In this paper,
a user is a stream of messages that is to be sent on the CAN bus. Typically,
messages are associated with an arrival pattern. For instance, a message can
arrive periodically, aperiodically, or it can have a sporadic arrival pattern. The
server associated to the message handles each arrival of a message.

In the scheduling literature many types of servers are described. Using FPS,
for instance, the Sporadic Server (SS) is presented by Sprunt et al. [19]. SS has
a fixed priority chosen according to the Rate Monotonic (RM) policy. Using
EDF, Spuri and Buttazzo [21, 22] extended SS to Dynamic Sporadic Server
(DSS). Other EDF-based schedulers are the Constant Bandwidth Server (CBS)
presented by Abeni [1], and the Total Bandwidth Server (TBS) by Spuri and
Buttazzo [21, 20]. Each server is characterized partly by its unique mechanism
for assigning deadlines, and partly by a set of variables used to configure the
server. Examples of such variables are bandwidth, period, and capacity.

In this paper we will describe a general framework for server scheduling of
the CAN bus. As an example we will use a simplified version of TBS. A TBS,
� , is characterized by the variable

���
, which is the server utilization factor, i.e.,

its allocated bandwidth. When the nth request arrives to server � at time � � , it
will be assigned a deadline according to

102 Paper D

� �
�

max
�� �
�
� ��� � � � � ��	� (9.1)

where � � is the resource demand (can be execution time or, as in this paper,
message transmission time). The initial deadline is

� � �
 .
Server Characterization

Each node on the CAN bus will be assigned one or more network servers (N-
Servers). Each N-Server, � , is characterized by its period � � , and it is allowed
to send one message every server period. The message length is assumed to be
of worst-case size. A server is also associated with a relative deadline � �

�
� � .

At any time, a server may also be associated with an absolute deadline
� �

, de-
noting the next actual deadline for the server. The server deadlines are used
for scheduling purposes only, and are not to be confused with any deadline
associated with a particular message. (For instance, our scheduling method,
presented below, will under certain circumstances miss the server deadline. As
we will show, however, this does not necessarily make the system unschedula-
ble.)

Server State

The state of a server � is expressed by its absolute deadline
� �

and whether the
server is active or idle. The rules for updating the server state is as follows:

1. When an idle server receives message � at time � � it becomes active and
the server deadline is set so that

� � �
�

max
�� � � � �
�
� ��� �� � (9.2)

2. When an active server sends a message and still has more messages to
send, the server deadline is updated according to

� � �
�
� ��� �� � � �

(9.3)

3. When an active server sends a message and has no more messages to
send, the server becomes idle.

9.3 Server-Based Scheduling on CAN 103

9.3.2 Medium Access (M-Server)

The native medium access method in CAN is strictly priority-based. Hence,
it is not very useful for our purpose of scheduling the network with servers.
Instead we introduce a master server (M-Server) which is a piece of software
executing on one of the network nodes. Scheduling the CAN bus using a ded-
icated “master” has been previously proposed [16], although in this paper the
master’s responsibilities are a bit different. Here the M-Server has two main
responsibilities:

1. Keep track of the state of each N-Server.

2. Allocate bandwidth to N-Servers.

The first responsibility is handled by guessing whether or not N-Servers
have messages to send. The initial guess is to assume that each N-Server has
a message to send (e.g., initially each N-Server � is assigned a deadline

� �
�

� �
). Later we will see how to handle erroneous guesses.
In fact, the N-Servers’ complete state is contained within the M-Server.

Hence, the code in the other nodes does not maintain N-Server states. The
code in the nodes only has to keep track of when bandwidth is allocated to
them (as communicated by the M-Server).

The M-Server divides time into Elementary Cycles (ECs), similar to the
FTT-CAN approach presented in Section 9.2.2. We use ��� � to denote the
nominal length of an EC. ��� � is the temporal resolution of the resource sched-
uled by the servers, in the sense that N-Servers can not have their periods
shorter than ��� � . When scheduling a new EC, the M-Server will (using the
EDF principle based on the N-Servers’ deadline) select the N-Servers that are
allowed to send messages in the EC. Next, the M-Server sends a Trigger Mes-
sage (TM). The TM contains information on which N-Servers that are allowed
to send one message during the EC. Upon reception of a TM, the N-Servers
allowed to send a message will enqueue a message in their CAN controllers.
The messages of the EC will then be sent using CAN’s native priority access
protocol. Due to the arbitration mechanism, we do not know when inside an
EC a specific message is sent. Hence, the bound on the delay of message trans-
missions will be proportional to the size of the EC.

Once the TM has been sent, the M-Server has to determine when the bus is
idle again, so the start of a new EC can be initiated. One way of doing this is to

104 Paper D

send a stop1 message (STOP) with the lowest possible priority2. After sending
the STOP message to the CAN controller, the M-Server reads all messages
sent on the bus. When it reads the STOP message it knows that all N-Servers
have sent their messages. Figure 9.2 presents the layout of the EC when using
servers. Note that the servers that are allocated to transmit a message in the
EC are indicated by a ’1’ in the corresponding position of the TM, and that the
actual order of transmission is determined by the message identifiers, and not
by the server number.

bit 6

TM M9 M7 M6 M1 M3 TM M1 M2 M0 M7 M10

0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 1

Elementary Cycle (EC) [i]

S M11 S

Elementary Cycle (EC) [i+1]

slack

bit 9 bit 7 bit 1 bit 3
bit 8 - miss

Figure 9.2: EC layout and TM data contents (server approach).

After reading the STOP message the EC is over and the M-Server has two
tasks to complete before starting the next EC:

1. Update the state of the N-Servers scheduled during the EC.

2. Decide how to reclaim the unused bandwidth (if any) during the EC.

The following two sections describe how these tasks are solved.

Updating N-Server States

At this point it is possible for the M-Server to verify whether or not its guess
that N-Servers had messages to send was correct, and to update the N-Servers’
state accordingly. For each N-Server that was allocated a message in the EC
we have two cases:

1A small delay before sending STOP is required. We need to make sure that this message is
not sent before the other nodes have both processed the TM (in order to find out whether they are
allowed to send or not), and (if they are allowed to send) enqueued the corresponding message.

2Another way of determining when the EC is finished would be that the CAN controller itself
is able to determine when the bus becomes idle. If this is possible, there is no need for the STOP
message. However, by using a STOP message we are able to use standard CAN controllers.

9.4 Approach to Analysis 105

1. The N-Server sent a message. In this case the guess was correct and the
M-Servers next guess is that the N-Server has more messages to send.
Hence it updates the N-Server’s state according to rule 2 in Section 9.3.1.

2. The N-Server did not send a message. In this case the guess was incorrect
and the N-Server was idle. The new guess is that a message now has
arrived to the N-Server, and the N-Server state is set according to rule 1
in Section 9.3.1.

Reclaiming Unused Bandwidth

It is likely that not all bandwidth allocated to the EC has been completely used.
There are three sources for unused bandwidth (slack):

1. An N-Server that was allowed to send a message during the EC did not
have any message to send.

2. One or more messages that were sent was shorter than the assumed
worst-case length of a CAN message.

3. The bit-stuffing that took place was less than the worst-case scenario.

To not reclaim the unused bandwidth would make the M-Server’s guessing
approach of always assuming that N-Servers have messages to send extremely
inefficient. Hence, for our method to be viable we need a mechanism to reclaim
this bandwidth.

In the case that the EC ends early (i.e., due to unused bandwidth) the M-
Server reclaims the unused bandwidth by reading the STOP message and im-
mediately initiating the next EC so no bandwidth is lost.

9.4 Approach to Analysis

The server-based scheduling proposed in this paper provides a high level of
Quality-of-Service (QoS), in the sense that N-Servers, � , almost always deliver
their messages within the bound � � � ��� � . A condition for providing this
QoS is that the N-Servers in the system have a total utilisation that fulfils in-
equality 9.4. We can not allocate N-Servers with a total utilisation higher than
inequality 9.4, since such an allocation of N-Servers could cause the system
to be overloaded. Hence, the total utilisation of the system is not allowed to
exceed

106 Paper D

�
� �

� � ���� � � � � � � ��� � (
�� � � � ��� � �
� � ��� � � (9.4)

where � is the network speed in bits/second,
�

is the length of a message
(typically worst-case which is 135 bits), � � is the period of the N-Server, and��� � is the length of the EC in seconds. TM and STOP are the sizes of the TM
and the STOP messages in bits, typically 135 and 55 bits.

9.4.1 Message Delivery

Due to the nature of scheduling with ECs, we never know exactly when inside
an EC the message is delivered. This is because all messages allowed to be sent
within an EC will be sent to the CAN controllers, where the CAN arbitration
mechanism decides the order in which the messages will be delivered.

Since the deadline of an N-Server may not be on the boundary between
ECs and we have no control of message order within an EC it may be the case
that an N-Server misses its deadline. Thus, even if an N-Server is scheduled
within the EC where its deadline is, it may be the case that the N-Server misses
its deadline with as much as ��� � .

Also affecting the message delivery time is the effectiveness of the M-
Server’s guesses about N-Server states. When the system is not fully utilised
(e.g., when one or more N-Servers do not have any messages to send), the EC
will terminate prematurely and cause a new EC to be triggered. This, in turn,
increases the protocol overhead (since more TM and STOP messages are being
sent). However, it should be noted that this increase in overhead only occurs
due to unutilised resources in the system. Hence, when the system is fully
utilised no erroneous guesses will be made and the protocol overhead is kept
to a minimum.

However, when a system goes from being under-utilised to being fully
utilised (for instance when a process that was sleeping is woken up and starts to
send messages to its server) we may experience a temporary overload situation
due to the protocol overhead. If inequality 9.4 holds for the system then we are
guaranteed that this overload will eventually be recovered. However, during
the time it takes for the overload to be recovered the M-Server may be unable
to schedule each N-Server in the EC where its deadline is. Hence, occasionally
an N-Server may miss its deadline with as much as

� ��� � .

9.5 Evaluation 107

9.5 Evaluation

In order to evaluate the performance of our server approach we have performed
simulations. We chose to perform two different experiments and, for each ex-
periment, investigate three different scenarios. We have investigated both close
to maximum usage of the bandwidth, and somewhat lower than maximum us-
age of the bandwidth. Hence, the difference between the two experiments is
the total bandwidth usage by the N-Servers.

Experiment 1 Experiment 2
Network speed (bits/ms) 125 125

EC size (in messages) 5 4
EC period (including TM & STOP) (ms) 6.92 5.84

Message transmission time (ms) 1.08 1.08
TM transmission time (ms) 1.08 1.08

STOP transmission time (ms) 0.44 0.44
Number of N-Servers 15 15

Maximum utilisation (inequality 9.4) 0.780347 0.739726
Utilisation of simulation (N-Servers) 0.614244 0.727838

Utilisation of simulation (% of maximum) 78.71 93.27
Simulation time (ms) 20000 20000

Table 9.1: Properties of the two experiments.

Each simulation was executed for 20000 milliseconds (ms) and all message
response times were measured. The properties of the simulations are sum-
marised in Table 9.1.

9.5.1 Scenario 1

In this scenario only 2 of the totally 15 N-Servers are having messages to send.
N-Server 14 has one message to send every server period. N-Server 1 also
has one message to send every server period from time 7500 to time 12500.
Both N-Servers deliver their messages within their periods. The result of the
first experiment is shown in Figure 9.3, where the N-Server periods (ms) are� �

� * * �
���

�
� � �

� � �

�
� #

, and the result of the second experiment is shown in
Figure 9.4, where the N-Server periods (ms) are � �

� * � � � � � � � � � �	� � � � .
What we see in this scenario is that even though we have a huge amount

of erroneous guesses (since 13 of the N-Servers have no messages to send, the

108 Paper D

M-Server will always make an erroneous guess for them), the N-Servers which
have messages to send are being served as intended, i.e., allowed to send a mes-
sage every server period. Hence, the measured response-times never exceed the
N-Server period. Note that the response-time for N-Server 14 decreases when
N-Server 1 has messages to send. This is due to that the number of erroneous
guesses is less, decreasing the overhead of the protocol.

9.5.2 Scenario 2

In this scenario all N-Servers, except N-Server 8, have a message to send
in each server period. N-Server 8 has one message to send each server pe-
riod from time 7500 to time 12500. The result of the first experiment is
shown in Figure 9.5, where the period (ms) of N-Servers 1, 8, and 14 are� �

� * * �
���

�
� �

� # � � # � � � � � � �

�
� #

. The result of the second experiment
is shown in Figure 9.6, where the period (ms) of N-Servers 1, 8, and 14 are� �

� * � � � � � � � � ��� � �

�
� � �

� �	� � � � . For simplicity, only N-Servers 1, 8, and
14 are shown in the graph.

What we can see in the first experiment, is that even though the bandwidth
usage is quite high, the bandwidth isolation property is kept and all three N-
Servers deliver their messages within their respective � � . Looking at the whole
set of N-Servers, only 3 of the servers deliver a total number of 5 messages
(N-Server 5 and N-Server 7) as late as � � � ��� � . In the whole simulation a
total of 10947 messages were sent.

When running the second experiment, with the close to maximum band-
width requirement, all N-Servers deliver messages as late as � � � ��� � , and
one of the servers (N-Server 4) deliver one message in � � � # � ��� � . We be-
lieve this is due to the increased protocol overhead caused by erroneous guesses
done by the M-Server regarding message readiness, as described in Section 9.4.
Note that only 1 message from a total of 12964 messages was delivered as late
as � � � # � ��� � .

9.5.3 Scenario 3

In this scenario all N-Servers have a message to send in each server period.
In the first experiment, which consisted of a total of 11380 messages, only 3
messages (all from N-Server 10) were delivered at a time later than � � . The
3 late messages were all delivered in � � � ��� � , i.e., the EC following their
server’s deadline.

9.5 Evaluation 109

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Simulation Time

R
es

p
on

se
 T

im
e N-Server 1

N-Server 14

Figure 9.3: Experiment 1 (medium bandwidth usage) – scenario 1.

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Simulation Time

R
es

p
on

se
 T

im
e N-Server 1

N-Server 14

Figure 9.4: Experiment 2 (high bandwidth usage) – scenario 1.

110 Paper D

0

5

10

15

20

25

30

35

40

45

50

55

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Simulation Time

R
es

p
on

se
 T

im
e N-Server 1

N-Server 8

N-Server 14

Figure 9.5: Experiment 1 (medium bandwidth usage) – scenario 2.

0

5

10

15

20

25

30

35

40

45

50

55

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Simulation Time

R
es

p
on

se
 T

im
e N-Server 1

N-Server 8

N-Server 14

Figure 9.6: Experiment 2 (high bandwidth usage) – scenario 2.

9.6 Conclusions 111

When running the second experiment, with the close to maximum band-
width requirement, all N-Servers have some messages delivered in an EC fol-
lowing the server’s deadline. Also, a total of 20 messages (the simulation had
a total of 13477 messages) deliver a message in � � � # � ��� � .

9.5.4 Discussion

The data obtained from all 3 scenarios under both experiments is presented in
Table 9.2, where S is the scenario (1-3), � � is the N-Server period, � � � is the
worst-case measured response-time, � � � is the best-case measured response-
time, � is the number of messages sent through the N-Server, “

� *
” is the

number of messages which were delivered in � � � ��� � , and “
� #

” is the number
of messages which were delivered in � � � # � ��� � .

Since deadlines occur inside an EC, it is natural that some messages are
delivered at a time of � � � ��� � , since we never know exactly when a specific
message is sent inside an EC (as discussed in Section 9.4.1). Therefore, occa-
sionally, a message is the last message delivered within an EC, even though its
corresponding N-Server’s deadline is earlier.

For the second experiment, some messages are delivered at a time of � � �#
� ��� � . This is caused by bandwidth overload due to erroneous guesses,
and messages have to be scheduled in a later EC than the one containing their
N-Server’s deadline (as discussed in Section 9.4.1). However, this is a rare
phenomenon that only occurs in the second experiment when the bandwidth
demand by the N-Servers is near to the theoretical maximum expressed by
inequality 9.4.

9.6 Conclusions

In this paper we have presented a new approach for scheduling of the Controller
Area Network (CAN). The difference between our approach and existing meth-
ods is that we make use of server-based scheduling (based on Earliest Deadline
First (EDF)). Our approach allows us to utilize the CAN bus in a more flexible
way compared to other scheduling approaches such as native CAN, and Flexi-
ble Time-Triggered communication on CAN (FTT-CAN). Servers provide fair-
ness among the streams of messages as well as timely message delivery.

The strength of server-based scheduling for CAN, compared to other
scheduling approaches, is that we can cope with streams of aperiodic mes-
sages. Aperiodic messages on native CAN would make it (in the general case)

112 Paper D

Experiment 1 Experiment 2
N-Server S

��� � � � � � � � � � � � ��� � � � � � � � � � � �
0 1 13.84 0 0 0 0 0 11.68 0 0 0 0 0

2 13.84 9.00 3.24 1446 0 0 11.68 12.56 3.24 1713 3 0
3 13.84 9.04 3.24 1446 0 0 11.68 12.52 4.36 1713 23 0

1 1 13.84 2.84 1.12 362 0 0 11.68 2.60 1.12 429 0 0
2 13.84 7.92 2.16 1446 0 0 11.68 12.68 2.16 1713 11 0
3 13.84 7.96 2.16 1446 0 0 11.68 12.72 3.28 1713 48 0

2 1 13.84 0 0 0 0 0 11.68 0 0 0 0 0
2 13.84 6.84 1.08 1446 0 0 11.68 12.64 1.08 1712 16 0
3 13.84 6.88 1.08 1446 0 0 11.68 12.76 2.20 1712 57 0

3 1 20.76 0 0 0 0 0 17.52 0 0 0 0 0
2 20.76 10.72 1.64 964 0 0 17.52 18.40 1.12 1142 1 0
3 20.76 11.40 2.16 964 0 0 17.52 24.20 1.16 1141 262 14

4 1 20.76 0 0 0 0 0 17.52 0 0 0 0 0
2 20.76 11.84 1.08 964 0 0 17.52 23.68 4.84 1141 257 1
3 20.76 10.84 1.08 964 0 0 17.52 25.08 5.60 1141 319 2

5 1 27.68 0 0 0 0 0 23.36 0 0 0 0 0
2 27.68 28.12 1.76 723 4 0 23.36 27.88 9.92 856 87 0
3 27.68 27.60 2.76 723 0 0 23.36 29.88 7.08 856 146 3

6 1 27.68 0 0 0 0 0 23.36 0 0 0 0 0
2 27.68 27.04 4.68 723 0 0 23.36 29.00 12.52 856 51 0
3 27.68 26.52 1.68 723 0 0 23.36 28.84 10.24 856 110 0

7 1 34.60 0 0 0 0 0 29.20 0 0 0 0 0
2 34.60 34.68 8.44 578 1 0 29.20 33.24 15.04 685 21 0
3 34.60 34.20 9.24 578 0 0 29.20 34.76 12.80 685 34 0

8 1 34.60 0 0 0 0 0 29.20 0 0 0 0 0
2 34.60 28.76 2.88 145 0 0 29.20 32.16 17.20 172 16 0
3 34.60 33.12 8.16 578 0 0 29.20 35.00 15.68 685 71 0

9 1 41.52 0 0 0 0 0 35.04 0 0 0 0 0
2 41.52 40.80 25.00 482 0 0 35.04 39.64 22.36 570 27 0
3 41.52 40.84 26.60 482 0 0 35.04 39.32 20.80 570 36 0

10 1 41.52 0 0 0 0 0 35.04 0 0 0 0 0
2 41.52 39.72 25.76 482 0 0 35.04 40.12 24.96 570 52 0
3 41.52 43.80 25.52 482 3 0 35.04 39.68 24.48 570 75 0

11 1 48.44 0 0 0 0 0 40.88 0 0 0 0 0
2 48.44 47.52 21.96 413 0 0 40.88 44.72 27.48 489 15 0
3 48.44 47.60 23.08 413 0 0 40.88 47.08 24.60 489 18 1

12 1 48.44 0 0 0 0 0 40.88 0 0 0 0 0
2 48.44 46.44 22.6 413 0 0 40.88 44.12 29.24 489 23 0
3 48.44 46.52 22.00 413 0 0 40.88 46.00 27.20 489 45 0

13 1 55.36 0 0 0 0 0 46.72 0 0 0 0 0
2 55.36 52.32 29.44 361 0 0 46.72 49.16 32.92 428 2 0
3 55.36 52.36 30.36 361 0 0 46.72 51.40 30.32 428 17 0

14 1 55.36 41.52 37.2 361 0 0 46.72 39.12 31.92 428 0 0
2 55.36 51.24 30.36 361 0 0 46.72 50.20 35.52 428 28 0
3 55.36 51.28 29.28 361 0 0 46.72 50.32 34.08 428 51 0

Table 9.2: Summary of simulation results.

impossible to give any real-time guarantees for the periodic messages shar-
ing the bus. In FTT-CAN the situation is better, since periodic messages can
be scheduled according to EDF using the synchronous window of FTT-CAN,

9.6 Conclusions 113

thus guaranteeing real-time demands. However, no fairness can be guaranteed
among the streams of aperiodic messages sharing the asynchronous window of
FTT-CAN.

One penalty for using the server method is an increase of CPU load in the
master node, since it needs to perform the extra work for scheduling. Also,
compared with FTT-CAN, we are sending one more message, the STOP mes-
sage, which is reducing the available bandwidth for the system under heavy
aperiodic load. However, the STOP message is of the smallest size possible
and therefore it should have minimal impact on the system. However, if the
CAN controller is able to detect when the bus is idle (and pass this information
to the master node), we could skip the STOP message, and the overhead caused
by our protocol would decrease (since this would make it possible to use our
server-based scheduling without STOP-messages).

As we see it, each scheduling policy has both good and bad properties. To
give the fastest response-times, native CAN is the best choice. To cope with
fairness and bandwidth isolation among aperiodic message streams, the server-
based approach is the best choice, and, to have support for both periodic and
aperiodic messages (although no fairness among aperiodic messages) and hard
real-time, FTT-CAN is the choice.

Using server-based scheduling, we can schedule for unknown aperiodic
or sporadic messages by guessing that they are arriving, and if we make an
erroneous guess, we are not wasting much bandwidth. This since the STOP
message, together with the arbitration mechanism of CAN, allow us to detect
when no more messages are pending so that we can reclaim potential slack in
the system and start scheduling new messages without wasting bandwidth.

However, the approach presented in this paper is not suitable for handling
background traffic, since all bandwidth is allocated for the proposed proto-
col. Traditionally, background traffic could be assigned priority lower than
real-time traffic. Hence, traffic without real-time demands could use unused
bandwidth without interfering with the real-time traffic.

One future direction is to provide an upper bound on message delivery.
Moreover, we want to investigate whether unused bandwidth may be shared
among servers. Also it would be interesting to see how the number of allowed
messages to be sent within an EC, assigned to each server, can be varied in
order to provide for example better response-times for the aperiodic messages.

Bibliography

[1] L. Abeni. Server Mechanisms for Multimedia Applications. Technical
Report RETIS TR98-01, Scuola Superiore S. Anna, Pisa, Italy, 1998.

[2] L. Almeida, J.A. Fonseca, and P. Fonseca. Flexible Time-Triggered
Communication on a Controller Area Network. In Proceedings of the
Work-In-Progress Session of the

*
� ��� IEEE Real-Time Systems Sympo-

sium (RTSS’98), Madrid, Spain, December 1998. IEEE Computer Soci-
ety.

[3] L. Almeida, J.A. Fonseca, and P. Fonseca. A Flexible Time-Triggered
Communication System Based on the Controller Area Network: Experi-
mental Results. In Proceedings of the International Conference on Field-
bus Technology (FeT’99), Magdeburg, Germany, September 1999.

[4] N. C. Audsley, A. Burns, M. F. Richardson, K. Tindell, and A. J. Wellings.
Applying New Scheduling Theory to Static Priority Pre-emptive Schedul-
ing. Software Engineering Journal, 8(5):284–292, September 1993.

[5] CAN Specification 2.0, Part-A and Part-B. CAN in Automation (CiA),
Am Weichselgarten 26, D-91058 Erlangen. http://www.can-cia.de/, 2002.

[6] C.-W. Hsueh and K.-J. Lin. An Optimal Pinwheel Scheduler Using the
Single-Number Reduction Technique. In Proceedings of the

*��
��� IEEE

Real-Time Systems Symposium (RTSS’96), pages 196–205, Los Alamitos,
CA, USA, December 1996. IEEE Computer Society.

[7] SAE J1938. Design/Process Checklist for Vehicle Electronic Systems.
SAE Standards, May 1998.

114

BIBLIOGRAPHY 115

[8] H. Kopetz. The Time-Triggered Model of Computation. In Proceedings
of the

*
����� IEEE Real-Time Systems Symposium (RTSS’98), pages 168–

177, Madrid, Spain, December 1998. IEEE Computer Society.

[9] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment. Journal of the ACM, 20(1):40–
61, 1973.

[10] M. Livani and J. Kaiser. EDF Consensus on CAN Bus Access for Dy-
namic Real-Time Applications. In Proceedings of the � ��� International
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS’98),
Orlando, Florida, USA, March 1998.

[11] M. Di Natale. Scheduling the CAN Bus with Earliest Deadline Tech-
niques. In Proceedings of the

* � � IEEE Real-Time Systems Symposium
(RTSS’00), pages 259–268, Orlando, Florida, USA, November 2000.
IEEE Computer Society.

[12] T. Nolte, H. Hansson, and M. Sjödin. Efficient and Fair Scheduling of Pe-
riodic and Aperiodic Messages on CAN Using EDF and Constant Band-
width Servers. Technical Report ISSN 1404-3041 ISRN MDH-MRTC-
73/2002-1-SE, Mälardalen Real-Time Research Centre, Mälardalen Uni-
versity, Sweden, May 2002.

[13] T. Nolte and K.-J. Lin. Distributed Real-Time System Design using CBS-
based End-to-end Scheduling. In Proceedings of the � ��� IEEE Inter-
national Conference on Parallel and Distributed Systems (ICPADS’02),
pages 355–360, Taipei, Taiwan, ROC, December 2002. IEEE Computer
Society.

[14] A.K Parekh and R.G. Gallager. A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Networks: The Single-
Node Case. IEEE/ACM Transactions on Networking, 1(3):344–357, June
1993.

[15] P. Pedreiras and L. Almeida. Combining Event-triggered and Time-
triggered Traffic in FTT-CAN: Analysis of the Asynchronous Messaging
System. In Proceedings of the

�����
IEEE International Workshop on Fac-

tory Communication Systems (WFCS’00), pages 67–75, Porto, Portugal,
September 2000. IEEE Industrial Electronics Society.

116 BIBLIOGRAPHY

[16] P. Pedreiras and L. Almeida. A Practical Approach to EDF Scheduling
on Controller Area Network. In Proceedings of the IEEE/IEE Real-Time
Embedded Systems Workshop (RTES’01) at the

� � IEEE Real-Time
Systems Symposium (RTSS’01), London, England, December 2001.

[17] Road Vehicles - Controller Area Network (CAN) - Part 4: Time-
Triggered Communication. International Standards Organisation (ISO).
ISO Standard-11898-4, December 2000.

[18] Road Vehicles - Interchange of Digital Information - Controller Area Net-
work (CAN) for High-Speed Communication. International Standards
Organisation (ISO). ISO Standard-11898, Nov 1993.

[19] B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic Task Scheduling for Hard
Real-Time Systems. Real-Time Systems, 1(1):27–60, 1989.

[20] M. Spuri, G. C. Buttazzo, and F. Sensini. Robust Aperiodic Scheduling
under Dynamic Priority Systems. In Proceedings of the

*
� ��� IEEE Real-

Time Systems Symposium (RTSS’95), pages 210–219, Pisa, Italy, Decem-
ber 1995. IEEE Computer Society.

[21] M. Spuri and G.C. Buttazzo. Efficient Aperiodic Service under Earli-
est Deadline Scheduling. In Proceedings of the

* � ��� IEEE Real-Time
Systems Symposium (RTSS’94), pages 2–11, San Juan, Puerto Rico, De-
cember 1994. IEEE Computer Society.

[22] M. Spuri and G.C. Buttazzo. Scheduling Aperiodic Tasks in Dynamic
Priority Systems. Real-Time Systems, 10(2):179–210, March 1996.

[23] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehrke, and G. Plax-
ton. A Proportional Share Resource Allocation Algoritm for Real-Time,
Time-Shared Systems. In Proceedings of

*��
��� IEEE Real-Time Systems

Symposium (RTSS’96), pages 288–299, Los Alamitos, CA, USA, Decem-
ber 1996. IEEE Computer Society.

[24] K. W. Tindell and A. Burns. Guaranteed Message Latencies for Dis-
tributed Safety-Critical Hard Real-Time Control Networks. Technical
Report YCS 229, Dept. of Computer Science, University of York, York,
England, June 1994.

[25] K. W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area
Network (CAN) Message Response Times. Control Engineering Prac-
tice, 3(8):1163–1169, 1995.

BIBLIOGRAPHY 117

[26] K. W. Tindell, H. Hansson, and A. J. Wellings. Analysing Real-Time
Communications: Controller Area Network (CAN). In Proceedings of* � ��� IEEE Real-Time Systems Symposium (RTSS’94), pages 259–263,
San Juan, Puerto Rico, December 1994. IEEE Computer Society.

[27] K.M. Zuberi and K.G. Shin. Non-Preemptive Scheduling of Messages
on Controller Area Network for Real-Time Control Applications. In Pro-
ceedings of the

* �
� IEEE Real-Time Technology and Applications Sym-

posium (RTAS’95), pages 240–249, Chicago, IL, USA, May 1995. IEEE
Computer Society.

Chapter 10

Paper E: Distributed
Real-Time System Design
using CBS-based End-to-end
Scheduling

Thomas Nolte, and Kwei-Jay Lin1

In Proceedings of the ����� IEEE International Conference on Parallel and Dis-
tributed Systems (ICPADS’02), Taipei, Taiwan, ROC, December 2002.

1Department of Electrical and Computer Engineering, University of California, Irvine, CA
92697, USA.

119

Abstract

Distributed real-time applications share a group of processors connected by
some local area network. A rigorous and sound methodology to design real-
time systems from independently designed distributed real-time applications is
needed. In this paper, we study a distributed real-time system design scheme
using CBS-based end-to-end scheduling. The scheduling scheme utilizes CBS
to allocate both CPU shares and network bandwidth to a distributed real-time
application when it arrives at the system. Our proposed solution uses the same
scheduling paradigm for both resources. In this way, we believe the system
can have a more consistent scheduling objective and may achieve a tighter
schedulability condition.

10.1 Introduction 121

10.1 Introduction

There has been an increasing demand on distributed systems with real-time re-
quirements. In distributed systems, many real-time applications may be devel-
oped independently and then run on a distributed computing system by sharing
a group of processors connected by some local area network. For example,
an automated factory control system may have several hard real-time sensor
monitoring applications and several robot control tasks running concurrently
in a distributed computing environment. Although each hard real-time appli-
cation may have been verified to meet its deadlines when running by itself, its
performance may not be as predictable when it is running concurrently with a
dynamic set of real-time applications. We need a rigorous and sound method-
ology to compose complex real-time systems from independently designed dis-
tributed real-time applications.

The Constant Bandwidth Server (CBS) [1] is a scheduling algorithm based
on reserving a fraction of the processor bandwidth to serve aperiodic jobs.
CBS uses a deadline postponing mechanism to efficiently provide bandwidth
isolation, and is able to achieve per-server performance guarantees.

In this paper, we study a distributed real-time system design scheme us-
ing CBS-based end-to-end scheduling. The scheduling scheme utilizes CBS
to allocate both CPU shares and network bandwidth to a distributed real-time
application when it arrives at the system. An admission server will be used
to monitor the system workload on all processors and the network. If the sys-
tem has enough capacity, and the total worst-case delay from all computing
components (CPU’s and network) can meet the application requirement, the
application will be admitted. In this way, hard real-time constraints can always
be met.

Our proposed solution differs from earlier work in the following ways.
First, most previous work concentrates on either CPU or network scheduling.
To our knowledge, very few work study integrated CPU and network schedul-
ing. Second, we use the same scheduling paradigm for both resources. In this
way, we believe the system can have a more consistent scheduling objective.
Third, by using CBS, we provide the capability to serve both periodic and ape-
riodic applications at the same time. This is very desirable for most real-time
systems that require interactive control while monitoring periodic events.

The paper is organized as follows. In Section 10.2 we review the back-
ground on CBS and real-time open environment. We also review the CBS-
based CAN protocol in Section 10.3. Section 10.4 presents our proposed CBS-
based real-time computing architecture. Some simulation results are presented

122 Paper E

in Section 10.5 and the paper is concluded in Section 10.6.

10.2 CBS and Real-Time Open Environment

In this paper, we propose a CBS-based distributed real-time system architec-
ture. Before we present our idea, let us review previous work on CBS schedul-
ing and also real-time open architecture.

10.2.1 Constant Bandwidth Server (CBS)

A CBS server [1] is defined by
 �
� �
�
�
� , where �

�
is the period of the server and�

�
is the maximum budget in each period. The ratio

�
� ���

�� � is the fraction of
CPU bandwidth reserved for the server. At run time, each server �

�
maintains

a pair of parameters:

� ���

�
�
� , where

� �
is the current budget available, and

�
�

is
current scheduling deadline. Each application is associated with a CBS server.
During run time when the application has a job waiting to be executed, it is
executed only if the server still has any budget left. If so, the current server
deadline is assigned to be the current job deadline.

The system is assumed to have � CBS servers and a kernel scheduler based
on EDF. Each server has a job list which includes the jobs to be served on this
server. In CBS, all tasks in this system are assumed to be independent from
one another; in other words, they do not share any resources.

The most important property of CBS is the bandwidth isolation property
which ensures that each server �

�
is guaranteed at least

�
�

of the total system
utilization regardless of other servers’ loads. The misbehavior of some task
will not jeopardize other tasks’ bandwidth allocations. Another property of
CBS is the hard schedulability property in that the schedulability test can be
independently performed for each real-time task.

10.2.2 The Real-Time Open Environment Architecture

Rate-driven scheduling has been an active research topic in the past decade.
Researchers have proposed various rate-driven scheduling algorithms for peri-
odic and sporadic processes based on the notion of General Processor Sharing
(GPS) [1, 5, 10]. GPS is a scheduling algorithm based on the concept of the
reservation ratio of processor computation time. Suppose a GPS server exe-
cutes at a fixed rate � (which is usually one), and each process

�
�

has a reser-
vation ratio �

�
which is a positive real number. Each process

�
�

is guaranteed

10.3 CBS-based CAN Network 123

to be served at a rate of �
� �

�
�

� � � � �
independent of the actual workloads of other processes.

Using the guaranteed CPU sharing scheme similar to GPS, Liu et al. [3]
propose the open real-time environment architecture to integrate independently
developed hard real-time applications on EDF kernel schedulers. In an open
real-time environment, real-time and non-real-time applications are allowed to
join and leave the system dynamically. However, the schedulability of each
real-time application must be guaranteed independent of any other applica-
tions in the system. A two-level hierarchical scheduling scheme following the
idea of the GPS scheduling scheme is proposed to provide a fair sharing of
computing budget among applications running on the same processor. Appli-
cations are scheduled for execution by a Constant Utilization Server (CUS) [3].
Each CUS server has its reserved CPU budget and is scheduled by an Earliest
Deadline First (EDF) scheduler [6] in the kernel. Using the reserved comput-
ing budget for the servers, the schedulability for real-time applications with or
without shared global resources can be guaranteed [3].

Our proposed system architecture is similar to the work by [3] except we
use CBS instead of CUS. Moreover, in our study, we extend the scheduling
from CPU only to include both CPU and network. By using CBS on Con-
troller Area Network (CAN) [9, 2], we are able to support real-time network
scheduling with an efficient bandwidth control.

10.3 CBS-based CAN Network

We propose a system with a central admission controller which, at new appli-
cation arrival, verifies that there exits enough computing power in the system
as well as network bandwidth demanded by the application. Each application
is assumed to have more than one job running on different nodes. If admitted,
some CBS servers will be created, at the nodes decided by the admission con-
trol, to schedule jobs in the application. Also, a Network-CBS (described in
the following section) will be created if the application also needs some guar-
anteed network bandwidth. The global scheduler will decide which nodes to
execute the application, and, in turn, the servers needed.

For distributed systems with loosely-coupled processors, the process mi-
gration cost is significant. We therefore assume that each job will be executed
only on one processor. We also assume that any job considered in this paper

124 Paper E

will require no more than one CPU at a time. Since each job executes on only
one computing node, the system scheduler must assign the CBS for each job
to a computing node if the application passes the admission control. After that,
the scheduling issue for the CBS will be the same as in the uniprocessor case.

In order to provide guaranteed network bandwidth for real-time messages
between jobs, we make use of the Controller Area Network (CAN) [9, 2]. By
using the method described in [7] we can assign all nodes in a distributed sys-
tem with a Network CBS (N-CBS) which is used for non-real-time traffic as
well as messages used to implement the centralized admission control. There-
fore, the whole network can be scheduled as one resource, providing bandwidth
isolation as well as fairness among the users of the network. In the following
sections we will describe CAN and N-CBS proposed in [7].

10.3.1 The Controller Area Network

CAN is a broadcast bus designed to operate at speeds of up to 1Mbps. CAN
is extensively used in automotive systems, as well as in other applications.
CAN is a collision-avoidance broadcast bus, which uses deterministic collision
resolution to control access to the bus (so called CSMA/CA). CAN transmits
data in frames containing between 0 and 8 bytes of data. The CAN identifier
is required to be unique, in the sense that two simultaneously active frames
originating from different sources must have distinct identifiers. The identifier
serves two purposes: (1) assigning a priority to the frame, and (2) enabling
receivers to filter frames. For a more detailed explanation of the different fields
in the CAN frame, please consult [9, 2].

The basis for the access mechanism is the electrical characteristics of a
CAN bus. During arbitration, competing stations are simultaneously putting
their identifiers, one bit at the time, on the bus. By monitoring the resulting
bus value, a station detects if there is a competing higher priority frame and
stops transmission if this is the case. Because identifiers are unique within the
system, a station transmitting the last bit of the identifier without detecting a
higher priority frame must be transmitting the highest priority queued frame,
and hence can start transmitting the body of the frame. Thus, CAN behaves as
a priority based queue since at all nodes, the message chosen for arbitration is
always the highest priority message.

10.3 CBS-based CAN Network 125

10.3.2 CBS on CAN

In order to support fair network scheduling with bandwidth isolation we make
use of an approach [7] to implement the CBS on the CAN. The method sup-
ports fairness and potentially hard deadlines among the messages sent on the
network. In [7] periodic and aperiodic messages are treated separately but
scheduled together on a Master Node. Aperiodic messages are scheduled us-
ing CBS servers and periodic messages get exclusive service. However, in this
paper we only consider scheduling CBS servers. Both periodic and aperiodic
messages are sent using these servers.

All messages are scheduled together on a central node called Master Node.
In order to handle periodic and aperiodic messages, all nodes that are sending
messages are assigned with one or more Network CBS servers (N-CBS).

Using N-CBS servers, the messages are scheduled based on their dead-
lines according to EDF. In order to implement EDF scheduling on the network,
we need to have a feedback mechanism to the centralized network scheduler
(located on the Master Node), so that it can deduce the internal deadline for
each N-CBS. This feedback is not based on message passing, since this would
further reduce the already low bandwidth offered by CAN. In our design, the
Master Node is maintaining all network information (e.g., N-CBS state vari-
ables) and performing the message scheduling. The slaves in the system, are
just “dumb” nodes following the schedule provided by the Master Node. In the
following section we will describe how it works.

Scheduling

The Master Node maintains an internal state for each N-CBS in the system.
This state is never explicitly sent from slaves to the master. Instead it is the
Master’s job to try to predict and track this state. Thus, N-CBS servers assigned
to different nodes in the system can be thought of as virtual N-CBS servers.

When scheduling messages, time is divided into intervals called Elemen-
tary Cycles (ECs). The length of an EC is denoted by ��� � . The states of N-
CBS servers initially are based on the assumption that messages always arrive
at each N-CBS. The EC-schedule is then constructed by selecting messages
(in deadline order) from all “arrived” messages to fit in the next EC. Then, the
schedule is encoded in a Trigger Message (TM) and sent to slaves. After re-
ception of this TM message eligible nodes will start to send their messages on
the CAN bus.

126 Paper E

Maintaining N-CBS Server States

Since we assume that every CBS always has one message arrival, there may
be some messages allocated in an EC which actually are not there. We now
describe a scheme to reclaim this potential slack. We use the following mech-
anism to “prematurely” terminate the EC when the bus becomes idle.

After a TM has been sent, the Master sends a stop message (STOP) in the
EC.2 The STOP message is defined to have the lowest priority possible. After
sending the STOP message to the CAN controller, the Master Node reads all
messages sent on the bus. When it reads the STOP message it knows that all
eligible messages in the EC have been sent (since the CAN bus behaves like a
priority-based queue). The remaining time before the end of the EC will be the
slack.

There are basically two approaches to do with the slack: either to just con-
sider the EC completed and start the next EC immediately, or to maintain the
original EC periodicity and add the slack to the next EC, thus making the length
of the upcoming EC longer. Both approaches have their advantages and dis-
advantages. By keeping the original periodicity and by expressing all message
periods as multiples of ��� � , we can eliminate the possibility of a message
having a deadline inside an EC. This is undesirable since messages scheduled
within an EC do not follow the deadline order. A message with an earlier dead-
line than the end of EC will get a penalty in terms of message response time (to
be described later). The other approach, by keeping fixed-size EC, will loose
the periodicity and thus making it impossible to avoid having deadlines within
an EC. In this paper we keep the periodicity. After taking care of the slack, the
Master immediately initiates the next EC.

With the help of the STOP message, we have eliminated the slack in the
EC (note that this approach takes care of slack both due to slaves not sending
messages and due to messages smaller than the maximum allowed size). Using
this scheme, the Master needs to look at all the messages that have been sent
within the EC and identify them. In this way the Master will know which N-
CBS servers that have utilized their scheduled bandwidth within the EC and
which have not. Thus the state of the servers can easily be updated by using
the CBS scheduling rules for message arrival. The message identification can
be made by either having a lookup table mapping messages to N-CBS servers,
or by assigning ranges of priorities to the different N-CBS servers.

2We need to make sure that this message is not sent before the other nodes in the system have
processed the TM in order to find out whether they are allowed to send or not.

10.4 CBS-based Real-Time Architecture 127

Response-Time

An important issue is to decide the length of the EC. In fact, the length of the
EC is the temporal resolution for the message delivery since the CAN arbi-
tration mechanism decides when, within an EC, a message will be delivered.
When we deliver the schedule for the upcoming EC we tell which nodes that are
allowed to send messages. All nodes will submit their messages immediately.
However, when exactly each message is delivered within the EC, depends on
the competing messages within the EC.

By assigning an application �
�

with some bandwidth, characterised by a
N-CBS with period �

�
and capacity �

�
, we have some scenarios. If messages

arriving at an N-CBS do not exceed the reserved bandwidth, all messages may
be delivered in the deadline containing (deadline = period) EC. However, since
messages may arrive to the network in the middle of an EC, they may have to
wait until the next EC before they are treated. In other words, messages will be
delivered by time

�
���
�
� � ��� � (10.1)

On the other hand, the early termination of EC may cause a higher band-
width consumption by the protocol (due to the more frequent trigger messages
and stop messages). If the system has a high utilisation, this behaviour can
cause overload and cause messages to be scheduled in a later EC.

If the message traffic is not periodic we can make use of leaky buckets in
order to shape the traffic to the N-CBS servers. Then, the queuing time

�
�

of
the leaky bucket must also be considered, giving us a response-time of

�
���
�
� � � � � ��� � (10.2)

The queuing time
�
�

is determined based on the bucket size � and the N-

CBS. Hence,
�
����� 	 ��� �
�� �� ��� � �

�
, where

�
is the worst-case message size. The

bucket size � is typically decided based on the bursty characteristics of �
�
,

10.4 CBS-based Real-Time Architecture

At system startup, all nodes are equipped with one N-CBS to handle non-real-
time traffic as well as control messages used to implement the admission con-
trol (described below). We let the Master Node be the node performing both
the admission control and the network scheduling. This way we can easily ex-
change parameters from the admission control to the network scheduler, e.g.,

128 Paper E

adding N-CBS servers of new applications in the system and removing N-CBS
servers of terminated applications.

10.4.1 End-to-end Response-Time

By using the concept of CBS in the whole system the end-to-end response-time
is easily calculated. We will examine the scenario of one producer application� � and one consumer application � � . Depending of their characteristics we
have a number of scenarios. Note that since we use CBS servers, we have band-
width isolation and thus we do not need to consider interference from other
users of the distributed system (as long as we do not use shared resources).

Firstly, lets assume that � � is a periodic application. In order to make the
worst-case response-time as small as possible, we should make the periods of
the servers, � � � � � � � � 	 and � � as short as possible. The end-to-end response-
time for the distributed system consists of 3 parts; the time it takes to produce
the message at the producer, the time it takes to transfer that message and the
time it takes to read that message and perform execution. Naturally, the first
part is as follows

� � � � � �� � � � � � (10.3)

where �
�

and �
�

are the CBS parameters assigned for � � .
The second part is described in Section 10.3.2. By selecting proper param-

eters for the N-CBS based on the behaviour of � � the network is characterized
by (10.1).

The third part is derived the same way as (10.3) where � is the CBS assigned
to the consumer application � � .

� �
� � � �� � � � � � (10.4)

However, (10.4) is valid if the consumer is event-triggered. If the consumer is
time-triggered, then we need to add � � to (10.4). Assuming the consumer is
event-triggered we get the following end-to-end response time:

�
� � � �� � � � � � � � � � � � 	 � ��� � � � � �� � � � � � (10.5)

If the producer application is not periodic we can use (10.5) to calculate
the worst-case end-to-end response-time based on the assumption of known

10.4 CBS-based Real-Time Architecture 129

burst size, i.e., we assume that � requests for the producer occur at the same
time. We simply exchange � � with � � � � to get the response-time of the nth
message together with having proportional bandwidth allocation on both nodes
as well as the network, i.e., at any time � , the network can service at least as
many end-to-end requests as the producer and the consumer can service at least
as many end-to-end requests as the network.

10.4.2 Implementation

The admission process is as follows:

� When a new application �
�

arrives at a distributed system on node � ,
the Controller Task of node � sends an Application Arrival message to
the Master Node, which performs the admission control. Note that if the
node of arrival, � , is the Master Node, the request for admission is simply
passed to the admission control directly without involving the network.

� The Master Node performs the admission as described in Section 10.4.3
and sends an Admission Result message back to node � . The result of
the admission is either approval or denial. If the application is approved,
information on which node(s) � the application �

�
shall execute on is

extracted from the Admission Result message.

– If the node of approval, � , is not the same as arrival, � , (� �
�
�) the

application is migrated to the node of approval.

– If the admission is denied, the Controller Task of node � rejects the
application request.

� If requested, the N-CBS is created at the Master Node and the network
scheduler is notified which message identifiers application � � are using.

� The Controller Task of node � creates the CBS used to schedule appli-
cation �

�
and the application is started.

� When �
�

is finished, the CBS and the N-CBS used by �
�

are removed
from the system.

10.4.3 Admission Control

To guarantee that all real-time applications can meet their deadlines, an open
environment must conduct admission control before any real-time application

130 Paper E

is deployed in the distributed system. Since no CBS, i.e., application, may
migrate across computing nodes, and each CBS executes on one processor,
the admission control problem of new applications is, in fact, a bin packing
problem [4, 8].

Let a new real-time (or non-real-time) application �
�

with processor uti-
lization factor equal to

�
�

and network bandwidth requirement �
�

arrive at
a distributed system with

�
computing nodes. The application �

�
typically

consists of a set of � jobs. Each of these jobs has some processor utilization
requirement � � and bandwidth requirement

� � . Note that ��� � �
�
�

and
� � � �

�
�
. Furthermore, each job may be run on a subset of nodes, � � , in

the distributed system that have the specific capability or devices for the job’s
execution. The application �

�
is admitted if the following two conditions are

true:

� For all � jobs in application �
�
, there must exist a node � � � � where

� � � � � � � *

�� .

� Based on all � existing N-CBS servers, there must be network bandwidth
available so � � � � � � � *

�� .

In this paper, we only provide a general admission control mechanism. We
refer interested readers to previous research results on the bin packing problem,
e.g., [4, 8]. In the worst-case, the processor capacity may be only 50% utilized
if all applications need a utilization slightly more than 50% of any single-CPU
utilization. However, the network may be fully utilized.

10.5 Simulation Results

In order to verify the performance of a CBS end-to-end system we performed
some simulation. The most interesting part is the CBS performance of the
network, since CBS CPU scheduling has been studied and verified before. The
theoretical upper bound for the network utilisation is derived from the length
of the EC in seconds, ��� � , and the network speed in bits/second, � , by the
following expression (note that TM and STOP are the sizes of the TM and the
STOP messages in bits, typically 135 and 55 bits):

� � ��� � (
�� � � � ��� � �
� � ��� � (10.6)

We simulated a 125 Kbps network. The size of the EC is chosen to contain
10 messages which gives us a theoretical system load upper bound of 0.876623.

10.6 Conclusions 131

In the simulation we randomised (with rectangular distribution) a set of 32
periodic messages. These message periods are selected within specific ranges.
Messages 1-4 have a period of 1 to 2 ��� � , messages 5-16 have a period of
2 to 4 ��� � , and messages 17-32 have a period of 4 to 6 ��� � . A valid set
of messages was specified to have a total utilisation less than the maximum
theoretical utilisation + 5%.

The valid set of messages was simulated for 20 seconds, typically generat-
ing some 500 to 1500 instances of messages and the message response-times
were recorded. When the system load is less than 80% all messages are deliv-
ered within their period. But when the system load approaches the theoretical
upper bound typically 1 to 3 messages have a worst measured response-time
of � � ��� � . The reason is that, we believe, pessimistic assumption regarding
message readiness at all system nodes causes increased bandwidth usage by
the protocol. This leads to shorter periods, and system loads greater than the
theoretical upper bound, thus causing some messages to be scheduled in the
following EC. However, in most cases messages are never delivered at a time
later than the message period.

Knowing that the network is performing as we expected, together with
the CBS CPU scheduling performance, we believe that the CBS end-to-end
scheduling presented in this paper is a feasible approach.

10.6 Conclusions

In this paper we study distributed real-time system design. In this work, we
concentrate on automated systems where all nodes are connected using the
Controller Area Network (CAN). The N-CBS algorithm [7] is used since it
provides bandwidth isolation as well as real-time performance on CAN. How-
ever, other networks with similar properties may also be used. Our design uses
the same scheduling scheme, i.e., Constant Bandwidth Server (CBS), for both
CPU and network scheduling. In this way, it is easy for us to derive the end-
to-end delay for application execution. We plan to continue the performance
study on a practical CAN bus system in the near future.

Acknowledgements

Thomas Nolte was supported by the Swedish Foundation for Strategic Re-
search (SSF) via the research programme ARTES, the Swedish Foundation
for Knowledge and Competence Development (KK-stiftelsen), LM Ericsson’s

132 Paper E

Research Foundation, and Mälardalen University. Kwei-Jay Lin was supported
in part by NSF CCR-9901697.

Bibliography

[1] L. Abeni and G. Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. pages 4–13, Madrid, Spain, December 1998. IEEE
Computer Society.

[2] CAN Specification 2.0, Part-A and Part-B. CAN in Automation (CiA),
Am Weichselgarten 26, D-91058 Erlangen. http://www.can-cia.de/, 2002.

[3] Z. Deng and J.W.-S. Liu. Scheduling Real-Time Applications in an Open
Environment. In Proceedings of the

*
����� IEEE Real-Time Systems Sym-

posium (RTSS’97), pages 308–319, San Francisco, CA, USA, December
1997. IEEE Computer Society.

[4] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman & Company, Publishers,
San Francisco, CA, USA, 1979.

[5] T.-W. Kuo, W.-R. Yang, and K.-J. Lin. EGPS: A Class of Real-Time
Scheduling Algorithms Based on Processor Sharing. In Proceedings of
the
*
 ��� Euromicro Conference on Real-Time Systems (ECRTS’98, pages

27–34, Berlin, Germany, June 1998. IEEE Computer Society.

[6] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard Real-Time Environment. Journal of the ACM, 20(1):40–
61, 1973.

[7] T. Nolte, H. Hansson, and M. Sjödin. Efficient and Fair Scheduling of Pe-
riodic and Aperiodic Messages on CAN Using EDF and Constant Band-
width Servers. Technical Report ISSN 1404-3041 ISRN MDH-MRTC-
73/2002-1-SE, Mälardalen Real-Time Research Centre, Mälardalen Uni-
versity, Sweden, May 2002.

133

134 BIBLIOGRAPHY

[8] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity. Prentice-Hall, Inc, 1982.

[9] Road Vehicles - Interchange of Digital Information - Controller Area Net-
work (CAN) for High-Speed Communication. International Standards
Organisation (ISO). ISO Standard-11898, Nov 1993.

[10] M. Spuri and G.C. Buttazzo. Scheduling Aperiodic Tasks in Dynamic
Priority Systems. Real-Time Systems, 10(2):179–210, March 1996.

