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Abstract

Safety-critical systems usually need to be accompanied by an explained and
well-founded body of evidence to show that the system is acceptably safe.
While reuse within such systems covers mainly code, reusing accompanying
safety artefacts is limited due to a wide range of context dependencies that
need to be satisfied for safety evidence to be valid in a different context.
Currently, the most commonly used approaches that facilitate reuse lack
support for systematic reuse of safety artefacts.

To facilitate systematic reuse of safety artefacts we provide a method to
generate reusable safety case argument-fragments that include supporting ev-
idence related to compositional safety analysis. The generation is performed
from safety contracts that capture safety-relevant behaviour of components in
assumption/guarantee pairs backed up by the supporting evidence. We eval-
uate the feasibility of our approach in a real-world case study where a safety
related component developed in isolation is reused within a wheel-loader.
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1. Introduction

A recent study within the US Aerospace Industry shows that reuse is more
present when developing embedded systems than non-embedded systems [1].
The study reports that code is reused most of the time, followed by require-
ments and architectures in significantly smaller scale than code. Aerospace
industry, as most other safety-critical industries such as automotive, needs
to follow a domain specific safety standard that requires additional artefacts
to be provided alongside the code to show that the code is acceptably safe
to operate in a given context. The costs of producing the verification arte-
facts are estimated at more than 100 USD per code line, while for highly
critical applications the costs can reach up to 1000 USD per line [2]. We
refer to the process of achieving compliance with a particular standard as
the certification process.

In most cases, the certification efforts are required to include a safety case,
which is rather time-consuming and expensive task to provide. A safety case
is documented in form of an explained and well-founded structured argu-
ment to clearly communicate that the system is acceptably safe to operate
in a given context [3]. While a safety case includes all the artefacts (e.g.,
code, requirements, results of failure analyses or verification evidence) pro-
duced during the system lifecycle, a safety case argument represents means
to communicate the reasoning behind the safety case to why the system is
acceptably safe to operate in a given context (Figure 1).

Most safety standards are starting to acknowledge the need for reuse,
hence the latest versions of both aerospace (DO-178C) and automotive (ISO
26262) industry standards explicitly support notions that enable reuse, e.g.,
the notion of Safety Element out of Context (SEooC) within automotive [4]
and Reusable Software Components (RSC) within aerospace [5]. This allows
for easier integration of reusable components, such as Commercial off the
shelf (COTS), but it also means that some safety artefacts of the reused
components should be reused as well if we are to fully benefit from the reuse
and safely integrate the reused component into the new system.

The difficulty that hinders reuse within safety-critical systems is that
safety is a system property. This means that hazard analysis and risk as-
sessment used to analyse what can go wrong at system level, as required by
the standards, can only be performed in a context of the specific system.
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Figure 1: The role of safety argumentation within a safety case

To overcome this difficulty compositional approaches are needed. CHESS-
FLA [6] is a plugin within the CHESS toolset1 that enables execution of
Failure Logic Analysis (FLA) such as Fault Propagation and Transformation
Calculus (FPTC). FPTC allows us to calculate system level behaviour given
the behaviour of the individual components established in isolation in form
of FPTC rules. Such compositional failure analyses enable reuse of safety
artefacts within safety-critical systems.

Component-based Development (CBD) is the most commonly used ap-
proach to achieve reuse within embedded systems of the aerospace indus-
try [1]. While CBD is successfully used to support reuse of software com-
ponents, it lacks means to support systematic reuse of safety case artefacts

1CHESS-toolset, http://www.chess-project.org/page/download
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Figure 2: Running example

(argument-fragments and supporting evidence), alongside the software com-
ponents. As a part of an overall system safety argument, argument-fragments
for software components present safety reasoning used to develop a particular
component and its safety-relevant behaviour, e.g., failure behaviour.

Systematic reuse of safety case artefacts can be achieved by generating
artefacts for a specific system from specifications written in a domain spec-
ification language, often referred to as generative reuse [7]. For example,
a safety-relevant component developed out-of-context together with a safety
argument is reused in a particular system. Since such an argument could con-
tain information that might be irrelevant for the particular system in which
the component is reused, system-specific information should be captured in
specifications so that system-specific safety argument could be generated for
the particular system.

In our previous work we developed the notion of safety contracts re-
lated to software components to promote reuse of the components developed
out-of-context together with their certification data [8]. Moreover, we have
proposed a (semi)automatic method to generate argument-fragments for the
software components from their associated safety contracts [9]. In this work
we propose a method called FLAR2SAF that uses failure logic analysis results
(FLAR) to generate safety case argument-fragments (SAF). More specifically,
we derive safety contracts for a component from FLAR. Then, we adapt our
method for generation of argument-fragments to provide better support for
reuse of the argument-fragments and the evidence they contain.

In particular, the input/output behaviour of a component developed out-
of-context can be captured by FPTC rules. Figure 2 shows a running exam-
ple we will use throughout the paper. The example consists of the Estimator
component that takes a sensor value and a single parameter as inputs, and
provides the estimated sensor value as output. Such component can be used
when the sensor values are expected to fluctuate frequently, e.g., a sensor for
estimating liquid fuel level in the tank of a vehicle. The Converter component
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converts the sensor value based on the input parameter, while the Filter com-
ponent normalises the sensor value and mitigates coarse/great value failures.
The FPTC rule describing the specific Filter failure behaviour can be spec-
ified as: I1.valueCoarse → O1.noFailure. We can use these behaviours
obtained by FPTC analysis to derive safety contracts that can be further
supported by evidence and used to form clear and comprehensive argument-
fragments. For example, if coarse value failures on the output of Estimator
are considered hazardous, then the corresponding argument-fragment should
argue that the valueCoarse failure mode is sufficiently handled in the con-
text of the particular system and attach supporting evidence for that claim.
For generating argument-fragments associated to the failure behaviour of the
components we use an established argument pattern [10].

The main contribution of this paper is a method for the design and prepa-
ration for certification of reusable COTS-based safety-critical architectures.
First, we propose a Safety Element out-of-context Meta-Model (SEooCMM)
aligned with the standardised argumentation and evidence meta-models.
Next, we provide a conceptual mapping of FPTC rules to safety contracts.
Finally, we extend the argument-fragment generation method to generate
reusable argument-fragments based on an existing argumentation pattern.
We evaluate the feasibility of our approach in a real-world case study. .

1.1. Outline

The rest of the paper is organised as follows: In Section 2 we provide back-
ground information. We present the SEooCMM in more detail in Section 3.
In Section 4 we present the rationale behind our approach and methods
to derive safety contracts from FPTC analysis and generate corresponding
argument-fragments. In Section 5 we evaluate the feasibility of FLAR2SAF
by applying it to a real-world case. We present the related work in Section 6,
and conclusions and future work in Section 7.

2. Background

In this section we briefly provide some background information on COTS-
based safety-critical architectures and safety contracts. Furthermore, we
recall essential information concerning the CHESS-FLA plugin within the
CHESS toolset, together with a brief introduction to safety cases, safety
case modelling and the ISO 26262 safety standard. Finally, we present the
standardised assurance case argumentation and evidence meta-models.
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2.1. COTS-based safety-critical architectures

In the context of safety critical systems, COTS-driven development is be-
coming more and more appealing. The typical V model that constitutes the
reference model for various safety standards is being combined with the typ-
ical component-based development. As Figure 3 depicts, the top-down and
bottom-up approach meet in the gray zone. Initially a top-down approach
is carried out. The typical safety process starts with hazards identifica-
tion which is conducted by analysing (brainstorming on) failure propagation,
based on an initial description of the system and its possible functional ar-
chitecture. If a failure at system level may lead to intolerable hazards, safety
requirements are formulated and decomposed onto the architectural compo-
nents, as a basis for designing mitigation means. Safety requirements are
assigned with Safety Integrity Levels (SILs) as a measure of quantified risk
reduction. Iteratively and incrementally the system architecture is changed
until a satisfying result is achieved (i.e. no intolerable behaviour at sys-
tem level). More specifically, once the safety requirements are decomposed
onto components (hardware/software), COTS (developed via a bottom-up
approach) can be selected to meet those requirements. If the selected com-
ponents do not fully meet the requirements, some adaptations can be intro-
duced.

Safety Requirements 

System Design System Integration 

Sw/Hw Safety 
Requirements 

Sw/Hw Unit 
Design Sw/Hw Unit 

Implementation 

Sw/Hw Unit 
Integration and Test 

Sw/Hw Safety Req. 
Verification 

COTS Select Adapt Test 

System Test 
…

 

Figure 3: Safety-critical system development/COTS-driven development

To ease the selection of components, contracts play a crucial role. In
our previous work, we have proposed a contract-based formalism with strong
〈A,G〉 and weak 〈B,H〉 contracts to distinguish between context-specific
properties and those that must hold for all contexts [8]. A traditional compo-
nent contract C = 〈A,G〉 is composed of assumptions (A) on the environment
of the component and guarantees (G) that are offered by the component if
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Figure 4: Component and safety contract meta-model [9]

the assumptions are met. The strong contract assumptions (A) are required
to be satisfied in all contexts in which the component is used, hence the
corresponding strong guarantees (G) are offered in all contexts in which the
component can be used. For example, a strong assumption could be the
minimum amount of memory a component requires to operate. The weak
contract guarantees (H) are offered only in those contexts where, in addition
to the strong assumptions, the corresponding weak assumptions (B) are sat-
isfied as well. This makes the weak contracts context specific, e.g., a timing
behaviour of a component on a specific platform could be captured by a weak
contract.

We denote a contract capturing safety-relevant behaviour as a safety con-
tract. In our previous work [9] we introduced a component meta-model
(Figure 4) that connects safety contracts with supporting evidence, which
provides a base for evidence artefact reuse together with the contracts. The
component meta-model specifies a component in an out-of-context setting
composed of safety contracts, evidence and the assumed safety requirements.
Each safety requirement is satisfied by at least one safety contract, and each
contract can be supported by one or more evidence. For example, if we as-
sume that a value failure on the output of the component can be hazardous,
then we define an assumed safety requirement that specifies that value fail-
ures should be appropriately handled. This requirement is addressed by a
contract that captures in its assumptions the identified properties that need
to hold for the component to guarantee that the value failure is appropri-
ately handled. If such a contract is derived from FPTC analysis, then we
can further support the contract with the analysis results.
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2.2. CHESS-FLA within the CHESS toolset

CHESS-FLA [6] is a plugin within the CHESS toolset that includes two
Failure Logic Analysis (FLA) techniques:

• Fault Propagation and Transformation Calculus (FPTC) [11] - a com-
positional technique to qualitatively assess the dependability of com-
ponent-based systems, and

• A Formalism for Incompletion, Inconsistency, Interference and Imper-
manence Failures’ Analysis (FI4FA) [12] - an FPTC extension that
allows for analysis of mitigation behaviour in the specific context of
transaction-based computations.

In this paper we limit our attention to the FPTC technique, which allows
users to calculate the behaviour at system-level, based on the specification
of the behaviour of individual components.

The behaviour of the individual components is established by studying
the components in isolation. This behaviour is expressed by a set of logical
expressions (FPTC rules) that relate output failure modes (occurring on
output ports) to combinations of input failure modes (occurring on input
ports). These behaviours can be classified as:

• a source (e.g., a component generates a failure due to internal faults),

• a sink (e.g., a component is capable to detect and correct a failure
received on the input),

• propagational (e.g., a component propagates a failure it received on the
input to its output), and

• transformational (e.g., a component generates a different type of failure
from the input failure).

Input failures are assumed to be propagated or transformed deterministi-
cally, i.e., for a combination of failures on the input, there can be only one
combination of failures on the output.

The syntax supported in CHESS-FLA to specify the FPTC rules is shown
in Figure 5. The example of a compliant expression “I1.valueCoarse →
O1.noFailure” mentioned in Section 1 demonstrates the sink behaviour of
the Filter component (Figure 2) and should be read as follows: if the com-
ponent receives on its input port I1 a coarse (i.e. clearly detectable) value
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behaviour = expression + expression = LHS ’→’ RHS
LHS = portname’.’ bL | portname ’.’ bL (’,’ portname ’.’ bL) +
RHS = portname’.’ bR | portname ’.’ bR (’,’ portname ’.’ bR) +
failure = ’early’ | ’late’ | ’commission’ | ’omission’ | ’valueSubtle’ | ’valueCoarse’
bL = ’wildcard’ | bR
bR = ’noFailure’ | failure

Figure 5: FPTC syntax supported in CHESS-FLA

failure (a failure that manifests itself as a failure mode by exceeding the
allowed range), it generates no failure on its output port O1.

To use the FPTC rules of an individual component for FPTC analysis in
a specific system, all possible failure modes that have been considered in the
particular system must be considered by the FPTC rules of the component.
Since the list of failure modes is not fixed, it can be customised for different
systems. Moreover, since specifying all the failure combinations for a com-
ponent with a greater number of input ports is tedious and error-prone, it
is not necessary to specify rules for all the combinations if there is a default
interpretation of such missing rules. One such interpretation is that all miss-
ing combinations will simply behave as propagators, considering that this is
the worst-case scenario [11]. For example, if the set of FPTC rules for the
Filter component does not consider late failure mode on the input port I1,
according to this interpretation the late failure on I1 would result in late
failure on the output port O1.

Another way to reduce the amount of explicitly specified rules for all the
failure mode combinations is through the wildcard keyword on an input port,
which is used to indicate that the output behaviour is the same regardless of
the failure mode on the corresponding input port. For example, the omission
failure mode on the output of the Converter component (Figure 2) occurs if
the I1 input port exhibits omission, regardless of the state of the I2 input
port. Instead of writing a set of FPTC rules combining the omission on I1
with all the different considered failure modes on the I2 input, a single rule
with a wildcard keyword can be used to cover all the different failure modes
on the I2 port, e.g.: “I1.omission, I2.wildcard→ O1.omission”.

2.3. Safety cases and safety case modelling

A Safety case in form of an explained (argued about) and well-founded
(evidence-based) structured argument is often required to show that the sys-
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Figure 6: Hazardous Software Failure Mode absence pattern for type value failure

tem is acceptably safe to operate in a given context [3]. A safety case is com-
posed of all the work products produced during the development of a safety-
critical system, which includes a safety argument that connects the safety
requirements and the evidence supporting and justifying those requirements.
The Goal Structuring Notation (GSN) is a graphical argumentation notation
for representing the safety case [13]. GSN can be used to represent the indi-
vidual elements of any safety argument and the relationships between these
elements. The argument usually starts with a top-level claim/goal stating
absence of a failure, as in Figure 6 the argument starts with a goal identi-
fied by AbsHSFMValue. The goals can be further decomposed to sub-goals
with supportedBy relations denoting inference between goals or connecting
supporting evidence with a goal. The decomposition can be described using
strategy elements e.g., ArgFailureMech in Figure 6. To define the scope and
context of a goal or provide its rationale, elements such as context and jus-
tification are attached to a goal with inContextOf relations. For example,
context CauseValHaz is used to clarify the AbsHSFMValue goal by pro-
viding the list of known causes of the value failure mode. The AllCauses
justification is used to justify why the ArgFailureMech strategy is sufficient
to address the AbsHSFMValue top goal. The undeveloped element symbol
indicates elements that need further development. For more details on GSN
see [13].

GSN was initially used to communicate a specific argument for a particu-
lar system. Since similar rationale exists behind specific argument-fragments
in different contexts, argument patterns of reusable reasoning are defined by
generalising the specific details of a specific argument [13]. In this work we use
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the argument pattern for Handling of Software Failure Modes (HSFM) [10],
a portion of which is shown in Figure 6, to structure the generated argument-
fragments related to value failure modes. To build an argument, the HSFM
pattern requires information about known causes of the failure mode and
failure mechanisms that address those causes. Moreover, the failure mech-
anisms can be classified into three categories: (1) Primary failures within a
Contributory Software Functionality (CSF) that can cause the failure; (2)
Secondary failures relating to other components within the system on which
the CSF is dependent; and (3) Failures caused by items controlling the CSF
e.g., the scheduler.

2.4. ISO 26262

ISO 26262 [4] is a functional safety standard for the automotive domain.
The current version of the standard is aimed at passenger vehicles up to
3500 kilograms. Despite that, industries that produce heavy vehicles, such
as trucks and construction vehicles, are making efforts in aligning their de-
velopment processes with ISO 26262 since future versions of the standard are
planned to cover heavy vehicles as well [14, 15].

The ISO 26262 safety standard has been developed as a guidance to pro-
vide assurance that any unreasonable residual risks from malfunctioning E/E
systems have been avoided. It explicitly requires a safety case in form of a
clear and comprehensible argument to be built. Moreover, it sets the verifica-
tion objectives that should be provided after each phase of the development
process. The verification means includes combination of reviews, analyses
and tests. Furthermore, the standard requires tool qualification for any tool
that eliminates, reduces or automates any of the processes prescribed by the
standard. For example, ISO 26262 requires software integration tests to be
applied to demonstrate that the software components comply with the soft-
ware architectural design (ISO 262626-6:2011, Clause 10) [16]. Moreover, the
standard requires structural coverage analysis of the tests to evaluate their
completeness. In case a tool for automated testing is used, an additional
evidence should be provided to establish the tool qualification. While the
software architectural design qualifies as the immediate evidence, the results
of its testing are the direct evidence, while the tool qualification evidence of
the tool used for automated testing is regarded as indirect evidence [17].

As mentioned in Section 1, the standard provides support for reuse of
safety components developed out-of-context through the notion of Safety
Element out-of-context (SEooC). SEooC is a notion that has been developed
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specifically for reuse according to ISO 26262. Besides SEooC, the standard
supports two more reuse scenarios: (1) pre-existing elements not necessarily
developed for reuse or according to ISO 26262 that have to be qualified for
integration, and (2) elements that qualify for reuse as proven-in-use. In this
work we focus on the SEooC reuse scenario.

2.5. Assurance case meta-model

Assurance case is a generic term for any case where an argument is used to
connect the requirements with the supporting evidence (e.g., a safety or a se-
curity case). An assurance case is defined as “a collection of auditable claims,
arguments, and evidence created to support the contention that a defined sys-
tem/service will satisfy the particular requirements.” [18]. Structured Assur-
ance Case Meta-model (SACM) is an Object Management Group (OMG)
standard that specifies a meta-model for representing structured assurance
cases [18]. The purpose of the standardised meta-model is to provide better
portability and exchange of the safety arguments used to represent the assur-
ance cases. SACM consists of an argumentation meta-model and an evidence
meta-model. The meta-model defines the assurance case as a composition
of the argumentation captured by the argumentation meta-model and the
evidence captured by the evidence meta-model.

Figure 7 shows the SACM argumentation meta-model (elements repre-
sented with solid borders). According to this meta-model, argumentation can
be either an atomic argumentation, argument element, or a composition of
different argumentations and/or argument elements. The argument element
metaclass is a generalisation of citation elements for both evidence and other
argument elements, and reasoning elements that include argument reasoning
and assertions. While the argument reasoning captures the structure of the
argumentation, the assertions metaclass represents generalisation of claims
and the relationship between different argument elements. Since this meta-
model captures the basic argumentation elements and their relationships,
it can be used to instantiate different compliant meta-models for different
argumentation notations such as GSN [13] and Claims-Arguments-Evidence
(CAE) [20]. The purpose of such a common meta-model is to facilitate in-
terchange of the structured argumentation documents produced by different
tools that use different argumentation notations.

12



ModelElement

-id : String

ArgumentationElement

Argumentation

InformationCitationElement

-url : String

ArgumentElement

ReasoningElement

ArgumentReasoning

ArgumentCitationElement

Assertion

Claim

AssertedRelationship

AssertedCounterEvidence

AssertedChallenge

AssertedEvidenceAssertedInterface

AssertedContext

0..*

0..*

hasStructure

GSN_Claim

-toBeInstantiated : Boolean

-undeveloped : Boolean

GSN_Goal

GSN_Context

GSN_Justification

GSN_AssumptionGSN_SupportedBy GSN_InContextOf

GSN_Solution
GSN_AwayGoal

Evidence:EvidenceItem

0..*

hasSource

hasTarget

1cites

0 *

0 *

0 *

GSN_Strategy

Figure 7: SACM argumentation meta-model with a subset of GSN elements (dashed
borders) [19]

2.5.1. GSN meta-model

On top of the existing SACM argumentation meta-model elements, Fig-
ure 7 shows the meta-model extension that includes a subset of GSN el-
ements (represented with dashed borders). The meta-model asserted rela-
tionships include the GSN inContextOf and supportedBy relationships, while
the meta-model claim element includes the different GSN claims in form of
propositions such as goals, justifications, assumptions and contexts. The in-
formation citation element of the meta-model is a generalisation of the GSN
solution element, while the argument citation element is a generalisation of
the GSN away goal element.
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2.5.2. Evidence meta-model

As mentioned in Section 2.3, the evidence is one of the main pillars of
safety cases alongside the requirements they support and the argument which
connects the two. Evidence is information or an objective artefact offered
in support of one or more claims [18]. Anything that supports a claim can
be referred to as evidence. Evidence is usually based on established facts
or expert judgement. Generic examples of evidence in the context of safety
cases are test results, system architecture, and tool/personnel competence.

Evidence can be categorised with respect to different characteristics such
as nature of support and quality of information it offers [18], or based on
the characteristics of the document that is the source of the information [17].
We focus on the categorisation of evidence based on the nature of support it
offers [17], i.e., proximity of the evidence to the product it supports, which
categorises evidence as immediate, direct and indirect evidence. The im-
mediate evidence represents the original artefacts that is being evaluated as
evidence such as source code, specifications and requirements. The direct
evidence represents the direct properties of immediate artefacts and is typ-
ically sufficient on its own to support a claim, e.g., test results, hazard and
failure logic analyses. The indirect evidence (also referred to as circumstan-
tial evidence) represents information related to the direct evidence and is
typically not sufficient to support a claim on its own, but require introduc-
tion of additional evidence. Typical examples of indirect evidence include
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tool/personnel qualifications and development process.
While the SACM argumentation meta-model can be used as a standalone

specification, it can be used in combination with the evidence meta-model
that provides additional support for evidence management within assurance
cases. Figure 8 presents a portion of the SACM evidence meta-model [18].
The main logical parts of the evidence meta-model are the evidence items
and evidence assertions. The evidence item defines the physical evidence
such as those provided in form of documents, while the evidence assertion
defines various statements about the essential properties of evidence items.
Some of the main groups of such statements include evidence evaluations,
evidentiary support and statements related to the fundamental properties
of the evidence independent of the particular assurance case. The evidence
evaluations include statements about the relationship between the evidence
items and the argumentation claims. The evidentiary support statements
are made on the nature of support that evidence items confer on the claims
they support (e.g., direct or indirect support). The fundamental properties
of the evidence that are independent of particular assurance case include
information such as the author of the statement, media of a document, and
the current custodian of the document.

3. Safety Element out-of-context Meta-Model

In this section we first present the Safety Element out-of-context Meta-
Model (SEooCMM) and then we discuss its relationship with the SACM
evidence meta-model. Finally, we present how a SEooCMM compliant source
model can be transformed into a SACM compliant target model.

3.1. SEooCMM

The SEooCMM (Figure 9) represents an extension of the component
meta-model presented in Section 2.1. It adds support for modelling the ba-
sic argumentation elements (undeveloped element, context, justification) and
provides standardised support for evidence management. The Safety Con-
tract metaclass is enriched to include explicit support for specifying that the
contract is not fully validated, i.e., only partial evidence is provided with the
contract and additional evidence should be provided. This is achieved with
the needsFurtherSupport attribute. The meta-model does not provide ex-
plicit support for modelling argumentation assumptions, but all assumptions
should be captured within the contract assumptions.
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Figure 9: SEooCMM extension with the connecting elements to SACM argumentation
and evidence meta-models

The main extension to the component meta-model is support for fine-
grained modelling of the supporting elements and statements. The abstract
metaclass Support Element is used for modelling the evidence items that can
be used to support the contracts and the related assumed safety require-
ments. Evidence management in SEooCMM is supported by establishing
a connection with the SACM evidence meta-model. The Evidence Citation
metaclass refers to a single EvidenceItem metaclass from the SACM evidence
meta-model, which establishes the support relationship between the evidence
elements in the SACM evidence meta-model and the safety contracts and
requirements in SEooCMM. Explicit support for specification of the GSN ar-
gumentation Context and Justification elements (described in Section 2.3) is
achieved through the Support Statements metaclass, i.e., its sub-metaclasses
Context Statement and Justification Statement.

Table 1 represents an example of a SEooCMM compliant specification for
the running example introduced in Section 1. The Estimator component is
described by the allocated safety requirement SR1, 〈A,G〉Estimator−1 contract,
and the EEstimator−1 evidence citation. The specified contract is clarified with
the context statement CEstimator−1, while the evidence citation EEstimator−1

is described by the statement EEstimator−1(desc). Furthermore, the evidence
EEstimator−1 is further supported by a tool qualification argument-fragment
EEstimator−1(supporting argument). The NFSEstimator−1 flag indicates that
the contract is fully validated. The needsFurtherSupport flag is false by
default, unless specified otherwise.
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Table 1: An example of a SEooCMM compliant specification

SR1: The estimatedSensorValue shall be normalised with the max-
imum error margin ±5%;

AEstimator−1: sensorValue within [0, 5] AND parameter1 within [230, 1000]
AND sensorValue error margin within ±10% AND sensor-
Value consecutive value failures less than 3;

GEstimator−1: estimatedSensorValue error margin within ±2%;
NFSEstimator−1: false;

CEstimator−1: The error margin established with respect to an ideal sensor;

EEstimator−1: name: Estimator Simulation Results;
desc: Simulation performed under the assumed conditions;
supporting argument : Simulator qualifications arg;

3.2. Evidence management in SEooCMM

The connection between the three meta-models is shown in Figure 10.
As mentioned in Section 2.5, the main benefit of support for SACM compli-
ant modelling is the standardised format which facilitates portability. The
portability is an important aspect for reuse. Reuse of software components is
not sufficient without reuse of the “other knowledge” [21], which has particu-
lar significance for safety-critical systems where the safety-relevant artefacts
about the component can incur significant costs as mentioned in Section 1.
To support portability of evidence items within SEooCMM we use the Evi-
dence Container compliant to the SACM evidence meta-model for capturing
the information related to the evidence. We use automated transformations
to generate GSN argumentation from a SEooCMM compliant specification.
Since SEooCMM captures information out-of-context, the transformation
of the SEooCMM compliant specification results in a set of different GSN
argument-fragments, depending on the context for which the transformation
is performed. Moreover, the generated argument-fragments can be combined
in different ways to compile GSN arguments with different architectures.
Since both the GSN argumentation model and the SEooCMM compliant
model use evidence container compliant to the same SACM evidence meta-
model, portability of evidence together with the generated argumentation is
made easier.

To capture the nature of the evidentiary support of the contracts, we
enrich the connection between a safety contract and evidence by relating
the SEooCMM to the SACM evidence meta-model. As mentioned in Sec-
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Figure 10: Connection between the SEooCMM and SACM meta-models

tion 2.5.2, based on the nature of the evidentiary support we distinguish
between immediate, direct and indirect evidence. The evidence that is used
to support the safety contracts qualifies as the direct evidence. The nature of
the support of such evidence to the contracts can be further detailed to dis-
tinguish between evidence that supports contract consistency, completeness
and correctness [9].

SEooCMM allows evidence items to be supported by other support-
ing elements including other evidence items such as indirect evidence (e.g.,
EEstimator−1(supporting argument) in Table 1), and supporting statements
about the evidence (e.g., EEstimator−1(desc)). The captured evidence-related
information is used to provide additional clarification of the connection be-
tween the evidence and the claims generated from the contracts that are
supported by this evidence. Clarification of confidence in the evidence it-
self can be made in two different ways: either by supporting the direct
evidence with another evidence; or by using the supporting statements to
clarify or justify why this evidence is sufficient to address a particular con-
tract. Supporting an evidence item with other evidence can be done either
by directly relating direct evidence with an indirect evidence (e.g., compe-
tence of person performing the failure analysis can be found in document x);
or by pointing to an already developed goal, called an away goal [13], which
presents the indirect evidence and the supporting information (we could have
a repository of generic argument-fragments related to staff competence and
tool-qualification [22]). SEooCMM, through SACM evidence meta-model,
supports capturing of attributes of the evidence items in form of evidence
assertions, while the evidentiary support that the evidence items provide to
the safety contracts is established through the evidence evaluations elements.
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Algorithm 1 M2M Transformation from SEooCMM to GSN SACM argu-
mentation meta-model
SEooCMM2SACM(in SEooCMM, out SACM){
for each satisfied SafetyContract sc in SEooCMM do

sc2claim(in SEooCMM::SafetyContract, out SACM::GSN Goal);
scCont(in SEooCMM::Context, out SACM::GSN Context);
scJust(in SEooCMM::Justification, out SACM::GSN Justification);
addSubGoals(in SEooCMM::SafetyContract, out SACM::GSN Goal);
sc2context(in SEooCMM::SafetyContract, out SACM:: GSN Context);
for each satisfied Strong/Weak Assumption a in sc do

a2claim(in SEooCMM::SafetyContract, out SACM::GSN Goal);
away2a (in SEooCMM::SafetyContract, out SACM::GSN AwayGoal);

end for
for each EvidenceCitation ec supporting sc do

ec2claim(in SEooCMM::EvidenceCitation, out SACM::GSN Goal);
ecSol(in Evidence::EvidenceItem, out SACM::GSN Solution);
ecCont(in SEooCMM::Context, out SACM::GSN Context);
ecJust(in SEooCMM::Justification, out SACM::GSN Justification);

end for
end for

}

3.3. SEooCMM to SACM argumentation meta-model transformation

Transforming the information captured within a model compliant with
SEooCMM to a GSN argumentation model compliant with the SACM ar-
gumentation meta-model results in a set of argumentation-fragments about
contract satisfaction that can be organised in different ways, for instance to
argue that the safety requirements allocated to the component have been
satisfied by the contracts [9]. Regardless of the organisation of the generated
argument-fragments, there are certain transformation rules that are common
for generation of all the resulting argument-fragments.

The common transformation rules are summarised by means of pseudo-
code in Algorithm 1. The SEooCMM2SACM model-to-model (M2M) trans-
formation generates a set of argument-fragments, one for each satisfied safety
contract. The algorithm is composed of three main steps:

• Step 1 – The guarantees of the contract are transformed to claims in
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sc2claim and further decomposed in addSubGoals onto the two sub-
goals to separate goals related to assumptions satisfaction and eviden-
tial support. The initial goal is further clarified with context statements
regarding the originating safety contract in sc2context, while any sup-
porting elements are associated with the goal in scCont and scJust.

• Step 2 – For each of the contract’s satisfied assumptions a goal is cre-
ated in a2claim to argue over satisfaction of the assumption. The goal
that presents the satisfaction of the contract satisfying the assumption
is associated to the assumption goal via an away goal in away2a.

• Step 3 – For each evidence element associated with a contract a goal
is created from the evidence citation element in ec2claim, and then
supported with solutions in ecSol, and with other supporting elements
in ecCont and ecJust.

4. FLAR2SAF

In this section we present FLAR2SAF, a method to generate reusable
safety case argument-fragments. We first provide the rationale of the ap-
proach in Section 4.1. We provide a method to translate FPTC rules into
safety contracts in Section 4.2, and we adapt and extend the method for
semi-automatic generation of argument-fragments from safety contracts in
Section 4.3.

4.1. Rationale

In our work we use safety contracts to facilitate reuse of safety-relevant
software components. The method to semi-automatically generate argument-
fragments from safety contracts, mentioned in Section 2.1, can be used to
support the reuse of certification-relevant artefacts from previously specified
contracts. Just as direct evidence needs to be provided with a reusable com-
ponent to increase confidence in the component itself, in some cases indirect
evidence needs to be provided to increase trustworthiness of the direct evi-
dence [23]. To reuse evidence-related artefacts together with the argument
fragments, SEooCMM captures the additional information about linking the
artefacts and the safety contracts. Furthermore, SEooCMM addresses the
issue of trustworthiness of such evidence by allowing evidence items to be
supported by other evidence and supporting statements. For example, in
case we need to describe the competence of the engineers that performed a
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particular analysis or qualification of the analysis tool, the analysis results
evidence item can be supported by the indirect evidence about the person-
nel/tool qualification.

FLAR2SAF based on SEooCMM and FPTC analysis can be performed
by the following steps:

1. Model the component architecture in CHESS-FLA;

2. Specify failure behaviour of a component in isolation using FPTC rules;

3. Translate the FPTC rules into corresponding safety contracts and at-
tach FPTC analysis results as initial evidence (model compliant with
SEooCMM);

4. Support the contracts with additional V&V evidence and enrich the
contract assumptions accordingly;

5. Upon component selection and satisfaction of the strong safety con-
tracts, depicted in Figure 3 in Section 2.1:

(a) Perform FPTC analysis on the system level;
(b) Translate the results of FPTC analysis to system-level safety con-

tracts;
(c) Support and enrich the contracts with additional V&V evidence;

6. Use the approach to semi-automatically generate an argument-fragment
based on the argument pattern presented in Section 2.3 (SACM com-
pliant).

The generated argument-fragment is tailored for the specific system so that
only contracts satisfied in the particular system are used to form the argu-
ment, and accordingly only evidence associated to such contracts is reused to
support confidence in the contracts. Particular evidence can only be reused
if all the captured assumptions within the associated contract are met by the
system.

4.2. Contractual interpretation of the FPTC rules

In this section we focus on the step of translating the FPTC rules to safety
contracts. We use the running example (Figure 2) to explain the translation
process and provide a set of steps that can be used to perform the translation.
In Table 2 we have FPTC rules specified for the subcomponents of the Es-
timator component, and the calculated Estimator FPTC rules. When either
of the inputs sensorValue (sV) or parameter1 (p1) exhibit omission failure,
the Converter propagates the failure further to the Filter component, which
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Table 2: FPTC rules of the Estimator, Converter, and Filter components

Converter: I1.omission, I2.wildcard→ O1.omission;
I1.wildcard, I2.omission→ O1.omission;
I1.valueCoarse, I2.noFailure→ O1.valueCoarse;
I1.noFailure, I2.valueCoarse→ O1.valueCoarse;
I1.valueCoarse, I2.valueCoarse→ O1.valueCoarse;

Filter: I1.valueCoarse→ O1.noFailure;
I1.omission→ O1.omission;

Estimator: sV.omission, p1.wildcard→ eSV.omission;
sV.wildcard, p1.omission→ eSV.omission;
sV.valueCoarse, p1.noFailure→ eSV.noFailure;
sV.noFailure, p1.valueCoarse→ eSV.noFailure;
sV.valueCoarse, p1.valueCoarse→ eSV.noFailure;

propagates further omission failure to the estimatedSensorValue (eSV) out-
put of the Estimator component. While Converter propagates valueCoarse
failures as well, the Filter component mitigates these failures and acts as a
sink by transforming them to noFailure. The FPTC analysis of the Estima-
tor component indicates that if omission occurs on any of its input ports, the
component propagates the omission failure to the output, while it mitigates
any valueCoarse failures that may occur on the input ports.

Three different types of safety contracts for these components can be
made based on the FPTC rules. When translating the rules into contracts
we consider two types of rules with respect to each failure mode: rules that
describe when a failure happens (e.g., the second FPTC rule of the Filter
component) and rules that describe behaviours that mitigate a failure (e.g.,
the first FPTC rule of the Filter component). We translate the first type
of rules by guaranteeing with the contract that the failure described by the
rule will not happen, under assumptions that the behaviour that causes the
failure does not happen. The contract 〈B,H〉Estimator−3 shown in Table 3,
guarantees that eSV will not exhibit omission if both inputs sV and p1 do not
exhibit omission failures. This type of contracts is specified as weak since,
unlike for strong contracts, their satisfaction in every context should not be
mandatory. For example, if we use the Estimator component for estimating
fuel level in the tank of a vehicle, then omitting to display the value would
be safer than displaying the wrong value.

We translate the second type of rules differently as they do not identify
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Table 3: The translated contract examples for the Estimator component

AEstimator−1: {sV, p1}.failure within {omission, valueCoarse};
GEstimator−1: eSV.failure within{omission} AND not eSV.valueCoarse;

AEstimator−2: -;
GEstimator−2: sV.valueCoarse, p1.valueCoarse → eSV.noFailure;

BEstimator−3: not sV.omission and not p1.omission;
HEstimator−3: not eSV.omission;

causes of failures, but they specify behaviours that help mitigate failures in
certain cases. Since these contracts specify safety behaviour of components
that should be satisfied in every context, without imposing assumptions on
the environment, they are expressed by strong contracts. The corresponding
contracts state in which cases the component guarantees that it will not
exhibit a failure. We do this by guaranteeing the rule that describes this
behaviour, as shown in Table 3 for the 〈A,G〉Estimator−2 contract.

The third type of safety contracts that we translate from FPTC rules
are related to the failures that have been mitigated and do not occur on
the output port in any of the specified FPTC rules (e.g., valueCoarse failure
for the Estimator component). An example of a such contract is shown in
Table 3 for the 〈A,G〉Estimator−1 contract where assumptions are made on
the failure modes on the input ports considered by the FPTC rules. The
component guarantees that if no other failures occur on the inputs than the
ones considered by the FPTC rules, then only the omission failure can occur
on the specific output, while the valueCoarse failure will not occur on the
output. The guarantee explicitly specifies which failure will not occur on
the specific output based on the current FPTC analysis to avoid an implicit
interpretation that all failures that do not occur on the output are mitigated
by the component. The assumptions for this contract represent the set of
failure modes explicitly considered within the FPTC rules for each of the
input ports. As mentioned in Section 2.2, to use FPTC rules of a compo-
nent developed in isolation in a particular system, the set of failure modes
considered for the component and the system should be the same. Since it
is not always reasonable to consider all failure modes for all ports [11], the
assumptions of this contract ensure that if a failure mode not considered by
the FPTC rules can occur on the corresponding port of the component in
the particular system, then such FPTC rules cannot be used until they are
updated to take in consideration the missing failure mode.
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As shown on the example of translating FPTC rules from Table 2 to
contracts in Table 3, the translation can be performed in the following way
for each failure:

• Identify the FPTC rules that are directly related to the failure mode
(either describing when it happens or describing behaviour that pre-
vents it);

• For the rules describing when the failure mode happens:

– Add the negation of the combination of the input failures to the
contract assumptions. Connect with other assumptions with AND
operator;

– Use the absence of the failure mode as the contract guarantee;

• For the rules that describe behaviours that prevent the failure mode:

– Use the rule within the contract guarantee to state that the com-
ponent guarantees the behaviour described by the rule;

• For the third type of contracts:

– Identify the list of all the distinct explicitly specified failure modes
for each of the input ports and add them as assumptions connected
with AND operator;

– For each of the output ports:

∗ Add a guarantee stating the set of failure modes that can
occur on the specific output connected with AND operator;

∗ Calculate the set difference of the set of considered failure
modes on the inputs with respect to the set of failure modes
that occur on the output and add the negation of those failure
modes for the particular ports as guarantees connected with
AND operator;

The abstract behaviour specified within the FPTC rules can be further
refined so that more concrete behaviours of the component are described. For
example, a refined contract related to timing failures would include concrete
timing behaviour of the component in a particular context and additional
assumptions related to the timing properties of the concrete system should
be made.
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4.3. Argument-fragment generation

As mentioned in Section 2, safety relevant components usually need to
provide argument and associated evidence regarding absence of particular
failures. We generate the required argument-fragment based on an already
established argument pattern for presenting absence of value failure mode,
briefly recalled in Section 2.3. By providing means to generate context-
specific argument-fragments, i.e., argument-fragments that include only in-
formation related to those contracts satisfied in the particular context, we
allow for reuse of certain evidence related to the satisfied contracts.

To build an argument based on the HSFM pattern, we identify the known
causes of primary and secondary failures from the corresponding FPTC rules.
We identify the primary failures from the contracts translated from FPTC
rules that describe behaviours that mitigate a failure mode. The secondary
failures are captured within the contracts translated from FPTC rules that
describe when a failure mode happens. All causes and assumptions not cap-
tured by the corresponding FPTC rules should additionally be added to
the safety contracts, e.g., scheduler policy constraints. We construct the
argument-fragment by using the reasoning from the HSFM pattern. The
top-most goal, claiming absence of the failure mode, is decomposed into
three sub-goals focusing on primary, secondary and controlling failures as
described in Section 2.3. We adapt the top-level argument-fragment from [9]
to further develop the sub-goals.

We use the safety contracts to generate the supporting sub-arguments for
the primary and secondary failures and leave the goal related to controlling
failures undeveloped. Supporting sub-arguments for both primary and sec-
ondary failures are composed from the argument-fragments generated from
the satisfied safety contracts. The argument-fragments for each of the con-
tracts argues that the corresponding safety contract is satisfied with sufficient
confidence. The sufficient confidence is determined based on the specific SIL
of the requirements allocated on the component and may require additional
evidence in case of higher SILs. We use the transformation rules presented
in Section 3.3 for the generation of the argument-fragments for satisfaction
of the contract, where we make a claim that the contract is satisfied with
sufficient confidence, i.e., that the guarantee of the contract is offered. We
further decompose the claim into two supporting goals:

• an argument providing the supporting evidence for confidence in the
claim in terms of completeness of the contract, and
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• an argument showing that the assumptions stated in the contract are
met by the contracts of other components.

We further focus on the first sub-goal related to evidence which includes the
additionally specified information about the evidence artefacts.

For every evidence attached to a safety contract we create a sub-goal to
support confidence in the corresponding safety contract. At this point we
can use the additional information about the rationale connecting evidence
and the safety contract and present it in form of a context statement to
clarify how this particular evidence contributes to increasing confidence in
the corresponding safety contract. The evidence can be further backed up
by the related trustworthiness arguments that can be attached directly to a
particular evidence. If the evidence trustworthiness information is provided
in a descriptive form then additional context statements are added to the
solutions, otherwise an away goal is created to point to the argument about
the trustworthiness of the evidence, e.g., an argument presenting competence
of a person that conducted the analysis which resulted in the corresponding
evidence.

To achieve the argument-fragment generation we extended the approach
for generation of argument-fragments from safety contracts [9] to allow for
argument-fragment generation in the specific form of the selected pattern.
While the core of the generation are the argument-fragments for each of the
contracts, the way these argument-fragments are organised into a larger argu-
ment can differ. The approach is adapted to generate an argument-fragment
that clearly separates and argues over primary, secondary and controlling
failures as described above, and to include additional information related to
the evidence.

While the benefits of reusing evidence are substantial, a major risk can
be to falsely reuse evidence. This may result in false confidence and a po-
tentially unsafe system. It must be noted that deriving safety contracts from
safety analyses does not necessarily result in complete contracts. To increase
confidence in reuse of safety artefacts, additional assumptions should be cap-
tured within the safety contracts to guarantee the specified behaviour with
sufficient confidence. While this will limit reuse of the particular contract
and the associated evidence, the weak safety contracts notion allows us to
specify a number of alternative contracts describing particular behaviour in
different contexts.
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5. Case Study

In this section we first briefly present the case study methodology in
Section 5.1, and then introduce the case of study in Section 5.2. In Section 5.3
we apply CHESS-FLA/FPTC analysis on a reusable component and use the
translation steps from Section 4.2 to translate the FPTC analysis results to
the contracts. Next, we finalise the CHESS-FLA/FPTC analysis in context
of a specific system and present the system level contracts in Section 5.4. We
present the generated argument-fragment in Section 5.5. In Section 5.6 we
provide a discussion and then examine the case study validity in Section 5.7.

5.1. Case Study Methodology

Case study is an empirical method for investigating a contemporary phe-
nomenon in its real-world context [24]. Software engineering research often
relies on case study methodology for different purposes. For example, ex-
ploratory case studies are used to generate new ideas, while explanatory case
studies are used to seek for a solution to a problem. Regardless of the pur-
pose of a case study, its crucial part is the case [25]. The case is the object
of study and should be a sufficiently complex component investigated in its
natural and real-world context.

The objective of our case study is to apply FLAR2SAF on a real-world
case commonly found in industry and evaluate the feasibility of reuse and
generation of safety artefacts related to FPTC analysis within the construc-
tion vehicles domain. More specifically, we conduct an explanatory case
study to answer the following research questions:

• RQ1: Can FPTC analysis be performed if inputs of all components
under analysis do not consider the same set of failures?

• RQ2: Is reuse of FPTC-related safety artefacts achievable when the set
of failures considered in the FPTC analysis of the reusable component
does not match the set of failures from the FPTC analysis of the system
in which the component is reused?

We consider a case where a component is developed independently of
a single system and then reused in a system that is a part of a family
of products. More specifically, a functionality of a Loading Arm Control
Unit (LACU) is reused within a wheel-loader product-line, i.e. heavy equip-
ment machines used in construction to move/load material onto/into other

27



Figure 11: LACU model in CHESS

types of vehicles. The functionality being reused is an independently devel-
oped Loading Arm Automatic Positioning (LAAP) component that supports
FLAR2SAF.

We have selected this particular case based on industrial needs. Compa-
nies that develop ranges of products with similar functionalities often face a
similar scenario: they reuse components in different products, but not the
accompanying safety artefacts. In cooperation with our industrial partners,
we have defined the case scenario and developed it further based on an ab-
stracted model of the system. Although we did not have access to the actual
implementation of the system, we have been able to apply FLAR2SAF since
we had sufficient knowledge of the failure behaviour of the system.

5.2. The Case

Wheel-loaders are usually equipped with a loading arm, which can per-
form up and down movements. In this case we are focusing on the develop-
ment of a Compact Wheel-loader (CWL), which is often used for tasks that
require high precision of the arm movement. Moreover, CWL is not used only
in construction sites, but often for public service in areas with pedestrians.

LACU is a software control unit that based on sensory data and user
input calculates the arm movement commands and issues them to a hydraulic
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controller that moves the arm physically. The software architecture of LACU
modelled in CHESS is shown in Figure 11. LACU is composed of three
subcomponents: the Monitor component that keeps track of the dual angle
sensor of the loading arm; the LAAP component that handles automatic
arm positioning; and the ArmController component that issues the final arm
positioning command. The LAAP component is developed independently of
this system as an out-of-context reusable component [26].

The hazard analysis of the loading arm has identified a vehicle level haz-
ard H1: unintended movement of the lifting arm, which can be dangerous in
different operational situations in which CWL is used. Angle sensor value
failure is identified as a contributor to the hazard H1. As one of the safety
measures implemented to mitigate this hazard, the angle sensor is duplicated
and monitored in software to protect against value failures. The values of
both angle sensors are compared by the monitor component both to each
other, and to earlier sensor data to detect value anomalies. While the two
sensors can have different accuracy and the sensed values can slightly differ,
we do not consider such minor deviations as failures within our FPTC anal-
ysis. Furthermore, an error-detecting code is used to detect any accidental
changes to the stored variables, such as the predefined position to which the
arm should be moved.

Unlike the Monitor component, LAAP is developed out-of-context, with
FPTC analysis performed and the resulting failure behaviour captured in
safety contracts. The LAAP component enriched with contracts and the
accompanying evidence is reused in the context of CWL. In the next section
we will focus on the FPTC analysis of LAAP and present its contracts and
the accompanying evidence.

5.3. LAAP Failure Logic Analysis

The LAAP component is highlighted in the LACU architecture in Fig-
ure 11. LAAP is activated with the LAAPRequest signal issued by the oper-
ator. Provided that the angleSensor, groundSpeed, and operatorControlLever
are within the specified boundaries, LAAPActive is set to true, and the calcu-
lated arm movement command is provided through the LAAPFlow output.
In the reminder of this section we focus on the FPTC analysis part of the
LAAP out-of-context development [26], and detail the translated contracts.

The FPTC rules representing the LAAP failure behaviour are shown in
Figure 12. The first set of rules describes that the component does not return
a failure in case it detects that any of the input values is omitted. Moreover,
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Figure 12: A subset of LAAP FPTC rules

the component is not a source of failures, hence if there are no failures on the
inputs, there will be no failures on the outputs of the component. The second
and the third set of rules indicate that valueCoarse/valueSubtle failures of the
LAAPFlow command can occur when either angleSensor, LAAPSetpoint, or
both exhibit the corresponding valueCoarse/valueSubtle failure. Finally, the
last set of FPTC rules describes when the component exhibits commission
failures on both of its output ports. Since whenever LAAPActive exhibits
commission, the command LAAPFlow is calculated and also provided when
not supposed to, hence the commission of both of the ports is handled jointly.
The commission of the two outputs occurs when either the groundSpeed sen-
sor or operatorControlLever exhibit value failures, or when the LAAPRequest
command is issued inadvertently. For example, the LAAP component has a
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Table 4: A subset of the translated LAAP strong contracts with the associated evidence

ALAAP−1: {groundSpeed, operatorControlLever, angleSensor, LAAPSet-
point}.failure within {omission, valueSubtle, valueCoarse} AND
LAAPRequest.failure within {omission, commission};

GLAAP−1: LAAPFlow.failure within {valueSubtle, valueCoarse, commis-
sion} AND LAAPActive.failure within {commission} AND not
LAAPFlow.omission AND not LAAPActive.omission;

CLAAP−1: The contract is derived from the FPTC analysis results for the
LAAP component;

ELAAP−1: name: LAAP FPTC analysis report
description: FPTC analysis is performed in CHESS-toolset.
supporting argument : FPTC rules conf;

ALAAP−2: -;
GLAAP−2: groundSpeed.omission, operatorControlLever.wildcard, angleSen-

sor.wildcard, LAAPRequest.wildcard, LAAPSetpoint.wildcard →
LAAPFlow.noFailure, LAAPActive.noFailure;

CLAAP−2: The contract is derived from the FPTC analysis results for the
LAAP component; Unit testing is used to validate that the con-
tracts are sufficiently complete with respect to the implementation;

ELAAP−2:

name: LAAP FPTC analysis report
description: FPTC analysis is performed in CHESS-toolset.
supporting argument : FPTC rules conf;

name: Unit testing results
description: -
supporting argument : Unit test conf;

built in mechanism to deactivate itself if the operator control lever is active.
In this case, an incorrect control lever value can postpone deactivation of the
loading arm which results in both signals LAAPActive and LAAPFlow being
issued when not supposed to.

From the LAAP FPTC rules we translate the three types of contracts de-
tailed in Section 4.2. The translated strong contracts are shown in Table 4.
Since the FPTC rules do not consider all possible failures on its inputs – only
those deemed feasible or relevant – the strong contract is used to ensure that
the component can be used even though it does not consider all possible fail-
ures on its inputs. To achieve this, the strong contract 〈A,G〉LAAP−1 imposes
restrictions on the environment of the component by making assumptions
that the component can receive on its input ports only those failures con-
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Table 5: The translated LAAP weak contracts with the associated evidence
BLAAP−1: not angleSensor.valueCoarse AND not LAAPSet-

point.valueCoarse;
HLAAP−1: not LAAPFlow.valueCoarse;

CLAAP−1: The contract is derived from the FPTC analysis results for the
LAAP component;

ELAAP−1: name: LAAP FPTC analysis report
description: FPTC analysis is performed in CHESS-toolset.
supporting argument : FPTC rules conf;

BLAAP−2: not angleSensor.valueSubtle AND not LAAPSetpoint.valueSubtle;
HLAAP−2: not LAAPFlow.valueSubtle;

CLAAP−2: The contract is derived from the FPTC analysis results for the
LAAP component;

ELAAP−2: name: LAAP FPTC analysis report
description: FPTC analysis is performed in CHESS-toolset.
supporting argument : FPTC rules conf;

BLAAP−3: not groundSpeed.valueSubtle AND not groundSpeed.valueCoarse
AND not operatorControlLever.valueSubtle AND not operatorCon-
trolLever.valueCoarse AND not LAAPRequest.commission;

HLAAP−3: not LAAPFlow.commission AND not LAAPActive.commission;

CLAAP−3: The contract is derived from the FPTC analysis results for the
LAAP component;

ELAAP−3: name: LAAP FPTC analysis report
description: FPTC analysis is performed in CHESS-toolset.
supporting argument : FPTC rules conf;

sidered within the FPTC analysis for this component. More specifically, the
component considers omission and commission on LAAPRequest, and omis-
sion, valueSubtle and valueCoarse on other input ports. The strong contract
then indicates that the component guarantees that it will not exhibit omis-
sion failures, while it can exhibit value and commission failures. If these
strong assumptions are not satisfied, then the LAAP FPTC analysis and the
translated contracts should be revisited. The second strong contracts is an
example of a contract where the FPTC rule is guaranteed and its validity is
supported by different types of evidence.

The FPTC rules that indicate when valueCoarse, valueSubtle, and com-
mission failures occur are translated to the weak contracts shown in Ta-
ble 5. The FPTC rules about the valueCoarse failure of the LAAPFlow port
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combined are translated to the contract 〈B,H〉LAAP−1. The contract states
that for the LAAP component not to exhibit valueCoarse failure on the
LAAPFlow port, the environment in which the component is used should
ensure that the angleSensor and the LAAPSetpoint values do not exhibit
coarse value failures. Similarly, the contract 〈B,H〉LAAP−2 states that for
the LAAP component not to exhibit valueSubtle failure, the environment
should ensure that the angleSensor and the LAAPSetpoint values do not
exhibit subtle value failures. Finally, the third contract 〈B,H〉LAAP−3 indi-
cates that to prevent commission of both of the outputs, there should be no
value failures on groundSpeed and operatorControlLever ports, as well as no
commission failure on the LAAPRequest port. All three contracts are sup-
ported by the FPTC analysis report from which the contracts are derived.
Moreover, an additional argument is attached to support the confidence in
the specified FPTC rules.

5.4. LACU Failure Logic Analysis

As mentioned in the Section 5.2, the LACU hazard analysis indicates that
the value failures of the angle sensor can lead to the hazard H1. Hence, when
selecting the subcomponents for this system, their failure behaviour related
to the value failures needs to be investigated to ensure that value failures are
contained. The contracts derived from the FPTC rules show which conditions
need to be satisfied for a particular component not to exhibit such failures,
e.g., valueCoarse failure. To be able to reuse the LAAP component in the
context of LACU and perform FPTC analysis, the strong contract of LAAP
needs to be satisfied, i.e., there should be no failures occurring on the inputs
of LAAP other than those specified in the assumptions of the 〈A,G〉LAAP−1

contract. Although LAAP does not consider all possible failures on its input,
the FPTC analysis can still be performed and its results are valid in the sys-
tems that satisfy such strong contract assumption. For example, the LAAP
FPTC rules do not consider value failures of the LAAPRequest port. As long
as the system provides guarantees that the received failures on LAAPRequest
can only be omission or commission, the analysis can be performed. If the
component is reused in a system that allows LAAPRequest to exhibit value
failures, then the corresponding FPTC rules of LAAP need to be updated to
examine the consequences on the output ports.

Since the strong assumptions are satisfied, we then examine the value fail-
ure behaviour of LAAP. We can identify from the contracts 〈B,H〉LAAP−1
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Figure 13: The set of Monitor FPTC rules

Figure 14: A subset of the ArmController FPTC rules

and 〈B,H〉LAAP−2 that LACU should ensure that angleSensor and LAAPSet-
point values should not be erroneous for the LAAP component not to exhibit
the valueCoarse and valueSubtle failures. As mentioned in Section 5.2, the
software monitor and the error-detecting code have been implemented to
ensure that the contracts 〈B,H〉LAAP−1 and 〈B,H〉LAAP−2 are satisfied.

The Monitor FPTC rules are shown in Figure 13. If either value or
occurrence error is detected on both inputs, the output is omitted. For a
value to be provided to the other components at least one of the inputs
should not exhibit a failure. The Monitor output is provided to both the
LAAP and ArmController components. Unlike Monitor, the components
LAAP and ArmController simply propagate value failures received on their
inputs, while they guarantee that they are not sources of such failures. A
subset of the ArmController FPTC rules related to the valueCoarse failure
of the armFlow command is shown in Figure 14.

To perform the FPTC analysis on the LACU modelled in the CHESS-
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Table 6: A subset of the translated LACU strong contracts with the associated evidence

ALACU−1: lockingSwitch noFailure AND {driveDirection, ground-
Speed}.failure within {omission, commission, valueSubtle,
valueCoarse} AND {armPositionAngle1, armPositionAngle2,
LAAPSetpoint, operatorControlLever}.failure within {omission,
valueSubtle, valueCoarse} AND LAAPRequest.failure within
{omission, commission};

GLACU−1: {PWMFlow, lockingSwitchPosition}.failure within{commission}
AND not PWMFlow.valueCoarse AND not PWMFlow.valueSubtle
AND not PWMFlow.omission AND not lockingSwitchPosi-
tion.omission;

CLACU−1: The contract is derived from the FPTC analysis results for the
LACU component;

ELACU−1: name: LACU FPTC analysis report
description: FPTC analysis is performed in CHESS-toolset.
supporting argument : FPTC rules conf;

ALACU−2: -;
GLACU−2: lockingSwitch.noFailure, driveDirection.noFailure, arm-

PositionAngle1.valueCoarse, armPositionAngle2.noFailure,
LAAPSetpoint.noFailure, LAAPRequest.noFailure, ground-
Speed.noFailure, operatorControlLever.noFailure → lock-
ingSwitchPosition.noFailure, PWMFlow.noFailure

CLAAP−2: Unit testing is used to validate that the contracts are sufficiently
complete with respect to the implementation;

ELAAP−2: name: Unit testing results
description: -
supporting argument : Unit test conf;

toolset, FPTC specifications on the input ports of LACU need to be specified.
These specifications indicate which failures can occur on the input ports. As
can be seen in Figure 11, noFailure is specified for most of the inputs to
indicate that failures on those ports are handled outside of LACU itself.
Conversely, value and occurrence failures are examined for the angle sensor
and ground speed ports as they are handled by the LACU component.

Based on the FPTC rules for the subcomponents and the FPTC specifi-
cations on the input ports, the FPTC analysis of LACU indicates that on the
PWMflow output value and occurrence failures do not occur. While omis-
sion is handled within the component, absence of commission depends on
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Table 7: A translated LACU weak contract with the associated evidence
BLACU−1: not lockingSwitch.commission AND not groundSpeed.valueSubtle

AND not groundSpeed.valueCoarse AND not operatorCon-
trolLever.valueSubtle AND not operatorControlLever.valueCoarse
AND not LAAPRequest.commission;

HLACU−1: not PWMFlow.commission AND not lockingSwitchPosi-
tion.commission;

CLACU−1: The contract is derived from the FPTC analysis results for the
LACU component;

ELACU−1: name: LACU FPTC analysis report
description: FPTC analysis is performed in CHESS-toolset.
supporting argument : FPTC rules conf;

the component environment. For commission not to occur the environment
needs to fulfil certain assumptions (Table 7), such as locking switch should
not exhibit failures, which is indicated by the FPTC specifications. Similarly
as for the LAAP component, a strong contract for LACU is translated from
the FPTC analysis to indicate which failures are mitigated by the component
and which can still occur (Table 6), while a weak contract is translated to
indicate which conditions need to be met for the occurring failures (in this
case commission) to be mitigated (Table 7).

5.5. The resulting argument-fragment

Based on the LACU contract specification compliant to SEooCMM we
have applied the transformation rules presented in Section 3 to generate the
argument-fragment that argues absence of value failure mode in the LACU.
A part of the resulting argument-fragment is shown in Figure 15. In contrast
to the total argument-fragment, the argument snippet for the 〈A,G〉LACU−1

contract lacks only some of the away goals pointing to the contracts in the
environment of LACU that satisfy the assumptions of 〈A,G〉LACU−1.

The AbsValPrimary goal is supported by the satisfied contracts that are
related to mitigation of value failures by the LACU, while the AbsValSec-
ondary goal addresses the weak contracts that require the environment of
LACU to ensure that the value failure mode for the LACU do not result
in value failures. The strong contracts 〈A,G〉LACU−1 and 〈A,G〉LACU−2 are
identified as contributing to mitigation of the primary causes of the value
failures of LACU, hence their satisfaction is argued under the ArgAbsValPri-
mary strategy. By applying the rules to generate the contract satisfaction
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argument, we further develop the LACU-1 satisfaction goal with identifier
“〈A,G〉LACU − 1 sat”, while we leave the goal “〈A,G〉LACU − 2 sat” un-
developed. The LACU-1 satisfaction goal is divided to argue over the sat-
isfaction of the supporting contracts and supporting evidence in contract
completeness (“〈A,G〉LACU − 1 confidence”). The supporting contracts
of 〈A,G〉LACU−1 include contracts supporting its assumptions and the sup-
porting contracts from LACU subcomponents such as Monitor and LAAP.
When developing the LAAP part of the arguments, the artefacts reused
with LAAP are used to build that part of the argument. While the argu-
ment for the “〈A,G〉LACU − 1 supp sat” goal follows the same pattern as
for goal “〈A,G〉LACU − 1 sat”, we focus on the argument related to the
“〈A,G〉LACU − 1 confidence” goal.

The goal “〈A,G〉LACU − 1 confidence” is clarified by a context state-
ment stating that the contract has been derived from the FPTC analy-
sis. In the rest of the argument we create a goal for each of the attached
artefacts and enrich them with additional evidence information. The goal
“〈A,G〉LACU − 1 1” presents the confidence in the FPTC analysis. Since
we do not have an argument supporting qualification of the tool used to
perform the analysis we attach context statement clarifying that the FPTC
analysis is performed in the CHESS-toolset. We provide an away goal related
to the evidence to support trustworthiness in the analysis by arguing confi-
dence in the FPTC analysis. Further evidence might be provided to present
competences of the engineers that formed the FPTC rules and performed the
analysis.

Since value failures are handled by the LACU component, the AbsValSec-
ondary goal remains undeveloped. Conversely, when generating an argument
based on the HSFM pattern for commission failure, the AbsValSecondary goal
would contain an argument over satisfaction of the 〈B,H〉LACU − 1 con-
tract. This contract indicates that LACU relies on its environment to contain
certain causes of the commission failure in order to mitigate it.

5.6. Discussion

A characteristics of FPTC analysis that supports reuse and the reason
why we have selected FPTC for failure logic analysis is the possibility to
specify FPTC rules for a component in isolation. The support for reuse
is based on the assumption that the FPTC rules of the reusable component
consider the same set of failure modes as the FPTC rules in the target system.
Since the amount of FPTC rules grows exponentially with the increase of
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Figure 15: Argument-fragment based on the HSFM pattern

input ports of a component, skipping some failure modes on the input ports
of such components becomes inevitable [11]. For example, this difficulty was
hard to notice on a smaller application example of FLAR2SAF, but when
moving to the more realistic LACU case, achieving a sufficiently complete
set of FPTC rules became challenging. This is one of the common problems
when dealing with similar inductive safety analysis techniques [27].

Not specifying FPTC rules for certain failure modes threatens the sup-
port for reuse of the FPTC analysis. Although it is reasonable to skip rules
for certain failure modes that might not be possible in certain systems, the
fact is that if the component is reused in a system where such failure mode is
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possible, we cannot afford to assume the failure behaviour of the reused com-
ponent. Instead of assuming interpretations of the skipped FPTC rules [11],
it would be useful to identify if the set of FPTC rules of the reusable com-
ponent is sufficient to perform the FPTC analysis in the particular system.
This can be done by checking if only the failure modes considered by the
FPTC rules of the reused component occur on its input ports in the partic-
ular system. If no other failure modes than those considered by the FPTC
rules occur on the input ports of the component, then the failure behaviour
established by the FPTC rules of that component can be used in the particu-
lar system. The strong and weak contracts can be used to achieve this check.
As demonstrated in the case study, capturing the set of considered failure
modes in the strong contracts allows us to establish whether the FPTC anal-
ysis results achieved in isolation can be reused in the particular system or not.
The strong contract on failure modes alleviates the need for assuming the
interpretation of the skipped failure modes by the FPTC rules of a reusable
component. One way to handle the situation where a skipped failure mode
occurs on the input of a reused component would be to design a wrapper
or a component similar to the Monitor component of the LACU such that
it mitigates or transforms the failure mode not considered. This answers
the first research question RQ1 stated in Section 5.1 that FPTC analysis
can be performed even though not all failures are considered on inputs of
all components, as long as the strong contract assumptions translated with
FLAR2SAF are satisfied.

Associating evidence with contracts enables reasoning about reuse of
such evidence together with the contracts and utilising such evidence for
argument-fragment generation. SEooCMM enables supporting the contracts,
and the failure behaviour they capture, with evidence that provide confidence
that the captured failure behaviour is sufficiently correct and complete. Asso-
ciating the supporting elements (statements and evidence) to the contracts
provides the basis for generating the corresponding argument-fragments.
Moreover, since the contracts allow us to distinguish between the primary and
secondary failures of the component, we have demonstrated in the case study
that it is possible to generate argument-fragments based on the HSFM argu-
ment pattern from such safety contracts. This answers the second research
question RQ2 stated in Section 5.1 that reuse of FPTC-related artefacts is
achievable by using FLAR2SAF and SEooCMM.

The generated argument-fragments represent only a portion of the over-
all argument and can be seen as the skeleton that the overall argument can

39



be built upon [9]. Even after the automated argument-fragment generation,
the need for further manual tailoring of the argument remains. The semi-
automated nature of such generation of an argument preserves the possibility
for customised tailoring of the argument, while enabling benefits of getting
a head start by automated generation of parts of the argument. In con-
trast to fully automated approaches, FLAR2SAF offers less automation and
more manual effort is needed. The critics of a fully automated argument
generation usually point out the issue of validity and veracity of the auto-
matically generated safety arguments from formal models [28], because the
arguments are said to be inherently informal. On the other hand, the critics
of the manual development of an argument argue that it is a painstaking
process of documenting the safety case and it would be better if that effort
could be invested in further safety analysis rather than its documentation
process [29]. With FLAR2SAF we have opted to take the middle road and
automatise portions of the argument and still allow the safety engineer to
tailor the informal aspects of the safety argument.

One of the remaining open issues lies in the failure logic analysis itself.
The translated contracts and the resulting argument-fragments are as correct
and solid as the FLA itself. Establishing the failure behaviour is mainly
a manual process that becomes more tedious and error-prone as the size
of the component increases, especially if done out-of-context. Relating the
expert statements about the failure behaviour of a component directly to the
evidence that backs up the expert judgement is a way to increase confidence
in the specified failure behaviour. Another issue not covered by the contract
translation is the additional assumptions that might have to be made for the
evidence used to support the translated contracts. For example, if we have
supported a contract with a simulation or a test result, such contract should
be enriched to include the assumptions that imply validity of the simulation
and the test result.

5.7. Validity

Our main focus in this case study was on getting a realistic and sufficiently
complex case at a level often found in industry. In cooperation with our
industrial partners we have managed this up to a certain point. Although we
did not have code behind the system models, we have been able to establish
the failure behaviour of the components based on the system description.
Since FPTC analysis is useful even before the implementation [11], we have
been able to build upon such failure behaviour established without having
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access to the actual implementation. The downside is that we were unable
to fully establish the correctness and completeness of the FPTC rules, which
in turn also influenced the completeness and correctness of the contracts.

In our previous work [30] we applied FLAR2SAF on a simpler system
where we assumed that the FPTC rules of the system and the reusable com-
ponent consider the same set of failure modes. It was apparent that this
assumption is difficult to fulfil when applying FLAR2SAF on a realistic case,
as discussed in Section 5.6. To weaken this assumption and still make sure
that FPTC analysis can be performed, we have introduced an additional type
of strong contracts to handle the variable set of the considered failure modes.

In this case study we have been examining feasibility of reuse of FPTC-
related safety artefacts. We have not shown the complete set of contracts for
the reusable component that is required to check feasibility of reuse of the
component itself. For example, to check whether a component is possible to
reuse in a particular system there should be a contract to establish whether
the value and type of the component ports match with the corresponding
ports in its environment. Instead, we have focused on capturing the proper-
ties related to reusability of FPTC-related safety artefacts and utilising these
artefacts for generation of argument-fragments.

The implications of the results of the case study cannot be generalised
to all different reuse scenarios. The feasibility of applying FLAR2SAF to a
particular case depends on the case complexity and whether we can establish
the failure behaviour of the components in isolation as well as in-context.
Still, the case provides evidence for the applicability and usefulness of our
approach. Further investigations are needed to allow more general conclusion
to be drawn. This includes establishing the level of abstraction at which it
is most useful to apply FLAR2SAF. In this particular case we have limited
FLAR2SAF application to a portion of a software controller.

6. Related Work

The use of model-based development in safety-critical systems to support
the development of the system safety case has been the focus of much re-
search. Chen et al. present an approach [31] to integration of model-based
engineering with safety analysis to ease the development of safety cases. To
overcome the difficulty of information management for advanced and com-
plex systems, the authors present how the architecture description language
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EAST-ADL2 can be used to support the development of safety-critical sys-
tems. Moreover, to maximise the traceability between the design data, the
authors propose a safety case meta-model to connect the GSN classes with
EAST-ADL2 entities. Just as in this work, we acknowledge the need for
increased support to information management within the development of
safety-critical systems. In contrast, in our work, we associate the system do-
main with the safety case domain through the safety contracts, which support
multiple viewpoints of the system. Moreover, we align the information man-
agement with the standardised GSN and SACM meta-models to establish
the connections between evidence, system, and the safety case arguments.

Wu presents a framework [32] to handle safety concerns and construct
safety arguments within a system architectural design process. He presents
a set of argument patterns and a method for producing architectural safety
arguments. The proposed framework advocates the use of anti-goals and neg-
ative scenarios alongside the goals and positive scenarios that are generally
used within safety cases. In contrast, we build upon already established argu-
mentation notation and argumentation patterns. Although safety contracts
capture scenarios that can be interpreted both as positive and negative, we
show only the satisfied contracts, i.e., the positive scenarios, in the generated
argument-fragments. The negative scenarios are identified through the safety
contracts that are not satisfied and they are handled outside of the safety
argument.

Basir et al. present an approach [33] for deriving a safety argument from
the actual source code. The authors focus on constructing an argument for
how the actual code complies with specific safety requirements based on the
V&V artefacts. The argument skeleton is generated from a formal analysis
of automatically generated code and integrates different information from
heterogeneous sources into a single safety case. The skeleton argument is ex-
tended by separately specified additional information enriching the argument
with explanatory elements such as contexts, assumptions, justifications etc.
In contrast, in our work, we generate argument-fragments from contracts,
which essentially describe the actual code on a higher level of abstraction.
Moreover, we use the contracts, and their supporting elements captured by
SEooCMM, to connect all the heterogeneous sources, which we then exploit
for generation of safety case argument-fragments. Although FLAR2SAF
facilitates generation of parts of the safety case argument, the contracts
platform can be used to provide support for generating other argument-
fragments. A complete safety case could be compiled by composing the
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different argument-fragments. Instead of waiting for the actual code to start
generating argument-fragments, we utilise the information about the safety-
critical software that is generally available before its development. In this
way we support the idea of the safety case as a living document that can be
built and reviewed throughout the lifecycle of a system.

Denney et al. focus on automating the assembly of safety cases based
on the application of formal reasoning to software [34]. The assembly com-
bines manually created higher-level argument-fragments with automatically
generated lower-level argument-fragments derived from formal verification of
the implementation against a mathematical specification. The authors use
the AutCert tool for formal verification, with the provided specification rep-
resented by formalised software requirements. Moreover, the tool includes a
meta-model aligned to the standardised SACM and GSN meta-models. Al-
though CHESS toolset does not provide as extensive support for safety case
modelling as AutoCert, its integrated support for compositional failure logic
analysis gives it an edge when reusing safety artefacts of safety-relevant com-
ponents. Moreover, we use strong and weak safety contracts as the middle
layer between the code and the safety artefacts to provide better support for
reuse of safety artefacts of safety components developed out-of-context.

Prokhorova et al. present an approach [35] for deriving safety case argu-
ments that relies on the Event-B formal framework. The authors propose a
methodology for formalising the system safety requirements in Event-B and
deriving a corresponding safety case argument from the Event-B specifica-
tion. The authors classify safety requirements by the way they can be repre-
sented in Event-B and propose a set of classification-based argument patterns
to be used for generating specific arguments for each of the requirements
classes. In contrast, we focus on generating argument-fragments for absence
of different failure modes, which can be used to increase confidence in satis-
faction of different types of safety requirements. By capturing the relation-
ships between requirements, architectural elements, and evidence via safety
contracts in SEooCMM, we facilitate capturing of additional information be-
sides the formalised requirements. The increased information management
via SEooCMM enables generation of context-specific argument-fragments for
reusable components based on the existing argumentation patterns.

43



7. Conclusion and Future Work

Reuse within safety-critical systems is not complete without reuse of
safety artefacts such as argument-fragments and supporting evidence, since
they are the key aspects of safety-critical systems development that re-
quire significant efforts. In this work we have presented a method called
FLAR2SAF for generating reusable argument-fragments. The basis for the
argument generation is in the underlying meta-model SEooCMM, which al-
lows for modelling of the out-of-context components together with safety-
relevant information captured within safety contracts and supported by the
accompanying evidence artefacts. FLAR2SAF first derives safety contracts
from failure logic analysis results, and then uses these contracts supported
by evidence to generate reusable pattern-based argument-fragments. The
lessons learned from applying FLAR2SAF to a real-world case confirm that
safety contracts can be derived from failure logic analysis and used to achieve
reuse of failure logic analysis related safety artefacts. Moreover, safety con-
tracts translated from FPTC can assist in safety-relevant component selec-
tion as they clearly indicate which failures are mitigated under which condi-
tions. Finally, we have shown that the safety contracts translated from FPTC
analysis and related to evidence, can be used for generation of context-specific
argument-fragments for assuring absence of a particular hazardous software
failure mode.

As our future work, in the context of the ECSEL AMASS project, we
plan to extend the CHESS toolset to include our methods for derivation of
contracts and generation of argument-fragments. Since the FPTC analy-
sis can be computationally demanding, we are working on porting the FPTC
analysis and the argument-fragment generation to a cloud setting [36]. More-
over, we plan to explore how different types of safety analyses can be used
to derive and support contracts, hence how different types of evidence could
be easily reused. Another interesting future direction would be to explore
how this approach can help with change management and reuse of safety
artefacts in case of changes in the system. More specifically, we are planning
to investigate how the strong and weak safety contracts can be used for the
safety case maintenance, especially for the safety cases that require frequent
updates such as those for autonomous vehicles. While the current approach
mainly focuses on the product aspects of safety cases, we plan to extend
the SEooCMM and FLAR2SAF to support the process part of the safety
cases [37].
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