
Starting Conditions for Post-Mortem Debugging using Deterministic Replay of
Real-Time Systems

Joel Huselius, Daniel Sundmark and Henrik Thane
Mälardalen Real-Time Research Centre

Department of Computer Science and Engineering
Mälardalen University, V̈aster̊as, Sweden

{joel.huselius, daniel.sundmark, henrik.thane}@mdh.se

Abstract

Repeatable executions are required in order to success-
fully debug a computer system. However, for real-time sys-
tems, interactions with the environment and race conditions
in the execution of multitasking real-time systems software
make reproducible behavior difficult to achieve. Earlier
work on debugging of real-time software has established the
use of a deterministic replay, a record/replay solution, as a
viable approach to reproduce executions.

When combining the deterministic replay approach with
infinite loop recorders (similar to black-box recorders in
airplanes) for post-mortem debugging, it is essential that
the recordings are sufficiently long and detailed in order
to be able to re-execute the system. Basic problems how-
ever, are how to find a well-defined starting point within
the recording, and how to find a reachable state in the re-
booted/restarted system to match that instance? Previous
work has not presented solutions to these fundamental prob-
lems, in this paper we do. We also present some implemen-
tation details from an industrial case study.

1. Introduction

Traditionally, debugging is performed by means ofcyclic
debugging[4]. After that a system has failed during test
or operation, repeated re-executions of the system together
with diagnostics is used to track down the suspected per-
petrator, the bug. Typically the diagnostic process is sim-
plified by basic mechanisms in the debugging environment,
e.g. interactive breakpoints, tracing, etc. Cyclic debugging
of multi-tasking real-time software is distinguished from
cyclic debugging of single tasking non-real time software
by the need to account for race conditions and potential non-
deterministic re-executions, as well as non-deterministic in-
puts [14]. Earlier work on debugging of real-time soft-

ware has established the use ofdeterministic replay, a
record/replay solution, as a viable solution to create repeat-
able executions [1, 6, 13, 17, 15, 19]. When combining the
deterministic replay approach with infinite loop recorders
(analogous to black-box recorders in airplanes) for post-
mortem debugging of embedded systems, it is essential that
the recordings are sufficiently long and detailed in order to
be able to re-execute the system. However, while saving
sufficient amounts of information, the limited amount of re-
sources (temporally and spatially) available must still be re-
spected. Fundamental problems to solve are:

• how to find a well defined starting point in the record-
ing that matches the state of the restarted real-time sys-
tem, and

• how to find/change the startup state of the system to
match one instance within the recording?

In this paper we explain, and present solutions to the two
problems described above, which in previous related works
have not been addressed.

We will also present details from a recent case-study per-
formed on an industrial robot system that is using the Vx-
Works operating system. The case-study was a feasibility
test of the monitoring/replay methodology in general, and
our method in particular.

The remainder of this paper is organized as follows:

Section 2 present some background to the area, after
which Section 3 describe the problems directed in this pa-
per. In Section 4, we present our proposed solution to these
problems. In Section 5, we describe an implementation of
the proposed method that was a part of a recent case-study.
Section 6 provides a short survey of related work. The pa-
per is concluded in Section 7, where we also provide some
discussions on future work.



2. Background

The general idea behind incremental deterministic replay
is to record (tomonitorandlog) sufficient information about
a reference execution, typically one that ended in a failure,
of the non-deterministic system to facilitatereplay. Replay
can be described as the production of a facsimile of the ref-
erence execution based on that recording. While cyclically
replaying thatreplay executionof the system it is possible
to cyclically debug the system.

The level of detail and length of the recording defines the
accuracy of the replayed (facsimile-) execution relative to
the reference execution. Which level of accuracy required
is in turn dictated by thefault hypothesis, i.e. what type
of bugs do we assume may exist, and the infrastructure, i.e.
what type of bugs are possible [14]. The more intricate bugs
we assume can exist in the system, the more information we
need to record. By using our method of recording and deter-
ministically replaying executions, we extend the sequential
failure fault hypothesis to also include ordering-, synchro-
nization and timing failures [14].

Recordings are facilitated by inserting probes into the
system. These probes will produce auxiliary outputs,
buffered into logs during the reference execution. Probes
can be implemented in hardware, software, or be a hybrid
of those two. The difference between the approaches is es-
sentially defined by the amount of perturbation introduced,
i.e. clock cycles consumed or amount of memory used. If
probes are added, removed, or altered over time, so that the
level of perturbation varies, the system will suffer a probe
effect [3], which may change the behavior of the system -
and prove counterproductive (as it will invalidate previous
verification efforts). Thus, probes that incur significant per-
turbation should be left permanently even after deployment
[18]. For more elaborate discussions on this see [4, 14]. The
fact that the overhead incurred by the probes should be ac-
counted for in the schedulability analysis also suggests that
the overhead should be deterministic and limited.

A recording consists of two parts [10]:

• The data-flow describes variations in local and global
variables, as well as inputs or output used by the task
set, while

• The control-flow describes alterations in the execution,
e.g., scheduled preemptions, blocking system calls, or
interrupts.

Together with the system source code, this information de-
fines the execution of the system.

For post-mortem debugging of embedded systems, the
information held by the recordings is essential for a suc-
cessfully produced replay execution. As these systems have
long up-times, if this information was to cover the entire ex-

ecution it would consume large quantities of memory. How-
ever, a trait of these systems is that the amount of resources
(temporally and spatially) available is limited. In order to
minimize the amount of memory needed for a recording that
captures a reference execution it is possible to apply infinite
loop recorders to a system based on finite length cyclic ar-
rays. The problem to solve, however, is how to start the
system and make it behave like during the reference execu-
tion? This problem can also be described by the two ques-
tions formulated in Section 1. Previous related work has not
provided us answers to this.

3. Starting points for replay executions

To deterministically set up the production of a facsim-
ile - to setup a deterministic replay of a recorded reference
execution - we need to do two things:

• First, correlate the recordings and identify potential
starting points for each task. A starting point consists
of a control-flow event and a corresponding and suffi-
cient beginning condition (state, message-body, etc) in
the data-flow recording. (The data-flow entry is named
saturated point, as it describes a sufficient data-state of
the individual task.)

• Second, it is necessary to re-execute the
restarted/rebooted target system to a point in the
program, typically a potentially blocking system
call that matches a saturated point in the recording.
From this point onwards, the target system can
subsequently be deterministically re-executed by a
replay-mechanism until the end of the recording.

3.1. Finding starting points in the recording

To define astarting point for a replay execution it is
required that we have a sufficient set of accurate informa-
tion for replay of the reference execution at the time of that
starting point. That is, the recording at that instant must
have captured the sufficient conditions for a specific task in-
stance, such that from that instant it is possible, with the re-
maining information in the recording, to re-execute the sys-
tem to the end of the recording (e.g. the failure); switching
tasks in and out, substituting the contents of state variables,
messages, and peripheral inputs with the recorded values.
Starting points are defined by the cut set of the data-flow
and the control-flow. Thus, there must, for any valid starting
point in the control-flow recording, exist a corresponding
beginning condition (state, message, etc) in the data-flow
recording. Figure 1 illustrates this cut set.

As the size of the data that describe the full context of
any given task is usually substantial, it is not feasible to al-
low the replay execution to start at an arbitrary point in the



Reference Execution :

-a aq a qa a q a a
Log Contents :

-a qa a q a a
F easible Replay Executions :

-a a q a a
-a a

−Logging control-flow.
−Logging data-flow, external input.a
−Logging data-flow, state variables.q

Figure 1. Replay Execution based on Log from
a Reference Execution.

reference execution (e.g. at preemptions or interrupt hits)
since this would entail saving the entire task context. We
select a set of points from which the start of replay can be-
gin: viable starting points are task activation (first time) and
blocking system calls. This does not mean that we cannot
reproduce preemptions or interrupts, only that we cannot
start at such events.

3.2. Finding starting points for the replay execution

Using some debugging infrastructure, e.g., an ordinary
interactive debugger or a breakpoint interface in the real-
time operating system, breakpoints should initially be set
for all potential starting points: typically all blocking sys-
tem calls and task entries in the restarted/rebooted target
system. This is usually sufficient since preemptions or in-
terrupt hit points are not valid starting points. Each task in
the target system is started with the same parameters as dur-
ing the reference execution. When, eventually, a task makes
a system call, it will hit a breakpoint. As the execution of
the task is halted, all entries in the recording with that sys-
tem call reference and task identity can be used as starting
points for a replay. Thus, if at least one saturated starting
point that matches the system call is found in the record-
ing, the beginning conditions (e.g., message contents, vari-
able contents, etc.) is substituted with the recorded values.
When a starting point has been reached for every task (or
desired sub set) in the recording, we can start replaying the
system.

Note that, as we can see in Figure 2, the replay may be-
gin at different times for different tasks. Replay of task1
is initiated at timet1, while replay of task2 is not initi-
ated untilt2 > t1. In the span betweent1 and t2, task1
may complete a number of iterations. This implies that a
replayed task, which requires input from another task in the
set of replayed tasks, may be forced to rely on the contents
of the accumulated log for the required input.

Reference Execution

-

6

ts t1 t2

1

2

Replay Execution

-

6

ts t1 t2

1

2

Figure 2. Execution-Traces for Reference and
Replay Executions.

3.3. Replay

When the initialization is ready, the replay will step for-
ward as the time index is incremented at each control-flow
event that is successfully matched. In addition, if a sub-
sequent preemption or interrupt event for the current task
is found in the control-flow, its corresponding conditional
breakpoint is set, making it possible to replay this event as
that breakpoint is hit. Once breakpoints representing such
asynchronous events as preemptions and interrupts are hit
and successfully matched, they can be removed in order to
enhance the performance of the replay session. Since we
have eliminated the dependency of the external process in
real-time and replaced the temporal and functional context
of the application with the recorded data- and control-flow
timelines, we can replay the system history repeatedly.

4. Starting point prerequisites

In this section, we define what constitutes a starting point
for a deterministic replay execution in a real-time system.

4.1. Definitions and assumptions

We differ between aglobal and alocal starting point. A
local starting point is a starting point for a specific task, a
global starting point is a set of local starting points which
can be used as starting point for the set of tasks that are to
be replayed. We definesystem call referencesto be calls to
the same system call from the same program counter (PC)
value, andsystem call instancesto be incarnations of calls to
the same system call but possibly from different references.
The set of all system calls is labeledC.

For local starting points, we assume that:
We are able to incorporate probes into the operating

system. Some of the probes must be simplekernel probes
[14], i.e. integrated into the operating system. These re-
ceive some parameters from the operating system, and their
execution protected from interrupts.



System call references are monitored.The set of all
monitored instances of any system call inC is labeledE. A
call by a task from program counter valuepc, to a system
call c ∈ C is denoteden ∈ E, wheren is a unique and
temporally ordered identifier for elements inE. Together
with the entry, it is possible to store also a data-segment
which is a subset of the tasks data-flow.

Interrupts, exceptions, and preemptions are moni-
tored. The set of all monitored interrupts, exceptions, and
preemptions is labeledI. The unionF = E ∪ I is the set of
control-flow events.

A subset of the events inE are of a setEs that can
be used as local starting points,the entry points of these
system calls are labeledpotential local starting points, the
set of which is denotedCs ⊆ C. Simultaneously with the
monitoring of potential starting points, the full data-flow is
also monitored (e.g. state variables). Thus, a monitored
evente ∈ E is a 5-tuplee = 〈n, c, i, pc, d〉, wherei denotes
the task which was executing when the monitoring was per-
formed.

The size of the setF is assumed to be large,some of
the entries are later evicted from memory as the space avail-
able to store them in is relatively small. This eviction is
performed by aneviction scheduler[5]. At the end of the
monitoring session,Flog ⊆ F denotes the set of entries that
still remain in memory - which are still in the log.

A subsetF s
log of the events at potential local starting

points is the set of local starting points.A local starting
point is an event which is inEs and which is still in the log.

A started task will always reach a potential local
starting point without help from the replay engine or other
external process outside the system.

The phase of initialization is deterministic for all
tasks. When a system is restarted, there is a phase of ini-
tialization before the system reaches its first potential local
starting point. That phase is deterministic.

We define a global starting point as a set of local starting
pointsS where it is true that:

There is one and only one local starting point for each
task per global starting point S. If there is more then one
feasible local starting point, one is chosen.

The replay is not dependent on any irreproducible
communication. Given an instance of a communication
between two tasks, where the eventen represents the act
of transmitting a message andem the act of receiving the
same. If the global starting point for the receiving task is
prior toem, it is either true that the global starting point for
the sending task is prior toen, or that one of the two events
are still represented by entries in the log.

4.2. Finding starting points

Using an ordinary interactive debugger, we initially
place breakpoints at all potential starting points. Each task
to be replayed is started with the same parameters as during
the reference execution. As a task calls a system call, such
that that system call is a potential starting point, it will hit
its first breakpoint. As the execution of the task is halted,
all entries inFlog with that system call reference and task
identity can be used as starting points for a replay. Thus, if
at least one such entry is found inFlog, the data-stated of
the task is substituted for the data-state from one such en-
try, after which it is considered that the data-state of the task
and the corresponding data-state of its predecessor from the
reference execution are indistinguishable.

When a local starting point has been reached for every
task in the entire set of tasks to be replayed, the global start-
ing pointS has been established.

Other schemes for replay have allowed such intermediate
messages to be partially supplied by the replayed instance of
the producing task [8, 20] by usingadaptive logging. How-
ever, as previously published solutions make on-line deci-
sions about whether to log or not to log a monitored event
originating from high-perturbing software probes, there is
an increase of the jitter in the system. Jitter will reduce the
testability of the system [16], wherefore gains in time over-
head for the logging-procedure must be balanced with re-
spect to this. It would however be possible to make certain
gains with regard to memory resources required, without
compromising the testability, but that would require evic-
tion strategies such as that presented in [5].

4.3. Multiple consecutive starting points

Above, we posted the assumptions that a started task will
always reach a potential starting point and that the phase of
initialization will always be deterministic. If we assume that
tasks are constructed as control-loops; a setup sequence is
followed by an infinite loop. This, together with a wish to
always be able to replay a reference execution, leads to the
requirement that the first feasible starting point must lie at
the first instruction of the infinite loop. In addition, the setup
sequence cannot be non-deterministic, wherefore it cannot
operate on any semaphores or similar. These are clearly
unfortunate limitations.

If we wish to have other task-constructs, such as the one
in Figure 3, we must take additional steps to ensure the
presence of local starting points in the log. This can be
performed by ensuring that a subset of the collected pool of
recordings is conserved in the recordings from the reference
execution: If at least one entry of every feasible local start-
ing point that is encountered during the reference execution
is kept in the log, together with sufficient information to al-



low a replay to the next consecutive feasible starting point in
the execution, we can allow more complex task-constructs.

Figure 3 shows a setup where both the statesS1 andS2
can be used as local starting points. However, a recording
that has spent too many iterations inS2 may no longer have
entries fromS1 in the log. Wherefore a starting point can-
not be found. Thus, we must separate the logs that store
entries from the two events. A simple approach could be
to have separate circular queues for the two. This will en-
sure that entries that describe the transition fromS1 to S2
are always accessible if they occurred during the reference
execution. Thus, entries fromS2 can always be replayed if
they occurred during the reference execution.

?mS1���- - mS2� ��

Figure 3. A task with a modechange.

Previously proposed schemes for logging data, have ei-
ther been centralized circular queues [11], which is a FIFO-
queue, or have such characteristics that they compromise
testability (see Section 4.2 on adaptive logging). Hence,
such methods cannot be efficiently used in this context.

4.4. Replay

When the global starting pointS has been established,
conditional breakpoints are set at all unique program
counter values where events occurred such that they are inI,
and also still inFlog. These breakpoints represents events
that should be replayed, but have such properties that the
address at which they occur is not deterministic.

Breakpoints are also set at the entry points of all sys-
tem calls which are not potential starting points. Previously
positioned breakpoints at the entry points of all potential
starting points remain in place. Thereafter, the replay can
be commenced.

The replay uses the positioned breakpoints to control the
preemption order implied by the entries in the accumulated
log. Tasks at breakpoints are released in the pattern dictated
by the control-flow. As system calls are encountered, for
which there is a valid entry in the data-flow, that data is
injected into the task at the correct points with respect to
the control-flow.

As feasible starting points (which are references to po-
tentially blocking system calls) are encountered, we can
choose to start from another instance of that system call
reference. This can be describes as jumping forwards or
backwards in time.

5. Implementation

An implementation of this method was part of an in-
dustrial case study [12, 17], which aimed to achieve deter-
ministic replay for post-mortem debugging of an industrial
robot control system. The developer of the investigated sys-
tem is among the largest industrial robot manufacturers in
the world, ABB Robotics. Their system consists of several
computing control systems, signal processing systems and
I/O units. We applied our methods to a part of the system
that consists of a plentitude of tasks, approximately 2.5 mil-
lion lines of C code, and is run on the commercial VxWorks
real-time operating system (RTOS).

As stated earlier, the complete data- and control-flow, to-
gether with the application code defines an unique execu-
tion of the application. In our implementation, control-flow
and data-flow are monitored separately by the use of soft-
ware probes inserted in the application code and in the ker-
nel. Although more elaborate schemes have been proposed
[5], we use basic cyclic buffers for system control-flow and
data-flow logging.

5.1. Data-flow recording

The data-flow probes are made up of simple monitoring
functions, called within the code of each task. During the
reference execution, when called, these probes store the val-
ues of selected static variables, messages received, or exter-
nal sensors read. During the replay execution, however, this
operation is reversed, such that the information is read from
the data-flow log rather than being stored onto it. As the re-
play execution is also executing the deterministic phase of
initialization, we do not have to record the state of variables
that are part of the parameterization. The selection of which
data to store/retrieve at each data-flow probing is managed
by the use of data filters, defined by the developer.

5.2. Control-flow recording

As for the control-flow probes, these are less application-
specific but much more kernel-bound. Since VxWorks does
not ship with complete source-code (yet), we have made use
of the kernel hooks included in the RTOS. Using these, code
can be inserted for execution in task switches, interrupts,
and other kernel events. These hook probes, combined with
a set of system call wrappers, allow us to instrument all task



switches in the sense of determining their cause, internal
ordering and location of the occurrence.

5.3. Correlating data- and control-flow

To be able to perform a replay of the reference execution,
the data-flow and the control-flow logs need to be corre-
lated. For example, a local starting pointes ∈ F s

log is made
up of a log point where the control-flow and data-flow en-
tries for that task coincide.

TaskA()
{

int gvar = 0;

while(FOREVER)
{

msgQReceive(msgQId, &msg,
maxNBytes, timeout1);

probe(MSG_PROBE);
.
subr(gvar);
gvar++;
.
semTake(sem, timeout2);
.
.

}
}

Figure 4. Probed Code Example.

Consider, for instance, the example code in Figure 4.
The potentially blocking system callmsgQReceive is fol-
lowed by a software probe, storing (or retrieving) the con-
tents of the received message. In addition, the value of the
global variablegvar should be stored due to the fact that
it helps define the state of the task in each iteration of the
loop. If the global variable is not stored, the replay execu-
tion will always start with agvar -value of zero, corrupting
the correlation between data- and control-flow of the refer-
ence execution facsimile.

In the case of an empty message queue, the task will
make a transition to a waiting state and thus cause a task
switch, which will be logged as an entry in the control-flow
log. When a message arrives to the queue, the task will be
awakened and the software probe will execute, storing the
received message in the data-flow log. This is an example
of a situation where control- and data-flow log entries coin-
cide, producing a potential local starting point for this task.

On the other hand, look at the next potentially blocking
system call,semTake . When executed, if the semaphore is
taken, this call will cause a running- to waiting- state transi-

tion for this task as well. This transition will be stored in the
control-flow log and will be essential for the deterministic
reproduction of the execution. However, since no data-flow
is stored in conjunction with this, the task state cannot be
restored during the replay execution at this location and the
control-flow log entry is not part of the potential local start-
ing point set,F s.

5.4. Starting the replay execution

As stated earlier, the replay execution is initiated by
breakpoints being set at all potential local starting points
in the code of the system. In VxWorks, this is done by
issuing breakpoint commands to the on-target debug task.
Once these breakpoints are set, the system application can
be started and executed up until all tasks have hit their first
breakpoint. This will leave the entire application in a sus-
pended state, from which we are able to chose, from local
starting points in the log, which task to release for execu-
tion first. The chosen task is released and deterministically
executed up until its next breakpointed location of task in-
terleaving (blocking system call, preemption or interrupt) in
the log. Reaching this location might call for enforcing of
synchronization mechanisms, such as semaphores or mes-
sage queues that did not block during the reference execu-
tion. At this point, a new selection is made, based on the
log sequence, about which task to choose for execution.

5.5. Concerns about the reproduction of inter-task
communication activities

By viewing each task in the replay execution as an fairly
autonomous and isolated entity, we ensure that the state
consistency of the global starting point does not depend on
any irreproducible communication. In our implementation,
a message sent by a taskA to a subsequent taskB is logged
using a data-flow probe in the execution of taskB. Using
this approach, tasksA and B operate in isolated environ-
ments during the replay execution and taskB does not have
to rely on the correct deliverance of messages from taskA
in order to be reproduced deterministically. However, mon-
itoring all inter-task communication explicitly might be a
time-consuming and expensive activity and a more thor-
ough analysis of the system task execution behavior could
let us identify periodic transactions of tasks, within which
some messages can be assumed to be reproducible during
replay [9]. We have chosen not to exploit this fact, which
may allow a reduction in the overhead from the monitor-
ing activities, as the jitter of current technologies [9] will
compromise the testability of the system [16].



6. Related work

With respect to related work in the field of replay debug-
ging of concurrent programs and real-time systems most
references are quite old. Recent advancement in the field
has been meagre. On the special topic of finding starting
points for replay of real-time systems, no comprehensive
studies have been published hitherto. The only work known
to have some similarities [8, 20] is limited to replay of mes-
sage passing in concurrent software, and does not cover
real-time issues like scheduled preemptions, access to criti-
cal sections, or interrupts. Also, the jitter of these solutions
causes the testability to be compromised.

On the general topic of deterministic replay previous
work published has either been relying on special hardware
[2, 19], or on special compilers generating dedicated instru-
mented code [2, 7]. This has limited the applicability of
their solutions on standard hardware and standard real-time
operating system software. Other approaches do not rely on
special compilers or hardware but lack in the respect that
they can only replay concurrent program execution events
like rendezvous, but not real-time specific events like sched-
uled preemptions, asynchronous interrupts or mutual exclu-
sion operations [1, 13, 20]. For a more elaborate discussion
on related work see [4]. Earlier versions of our determinis-
tic replay technique, which supported replay of interrupts,
preemption of tasks and distributed transactions, have been
presented previously [14, 15, 17]. However, none of those
papers elaborated on how to identify starting points.

7. Conclusions

In this paper, we presented a method for initiating a re-
play execution based on a previous reference execution.

The replay execution can, deterministically, be cyclically
repeated, it is possible to stop the execution by inserting
breakpoints at arbitrary positions, and variables used can be
inspected. It is therefore possible to use the replay execu-
tion when cyclically debugging non-deterministic real-time
systems.

Previous work with incremental- and deterministic- re-
play has not been concerned with the problem of initiating
the replay execution; to our knowledge, the method pre-
sented here is the only known to this date.

7.1. Future work

In Section 4.3, we described a simple solution to the
problem of allowing replay of more complex task structures
then simple control loops. In our future work, we will elab-
orate on this, and investigate solutions based on the logging
structure that we presented in [5].

We will also direct the issue, described in Section 5.5, of
re-executing rather then logging intermediate messages.

7.2. Acknowledgements

The work presented in this paper was supported by the
Swedish Foundation for Strategic Research (SSF) via the
research programme SAVE, the Swedish Institute of Com-
puter Science (SICS), and M̈alardalen University.

We would like to thank Ingemar Reiyer and Roger Mel-
lander at ABB Robotics for the opportunity to validate the
method presented here.

References

[1] J.-D. Choi, B. Alpern, T. Ngo, M. Sridharan, and J. Vlissides.
A pertrubation-free replay platform for cross-optimized mul-
tithreaded applications. InIn Proceedings of the 15th In-
ternational Parallel and Distributed Processing Symposium.
IEEE Computer Society, April 2001.

[2] P. Dodd and C. Ravishankar. Monitoring and debugging dis-
tributed real-time programs.Software-Practice and Experi-
ence, 22(10):863 – 877, October 1992.

[3] J. Gait. A probe effect in concurrent programs.Software-
Practice and Experience, 16(3):225–233, March 1986.

[4] J. Huselius. Debugging parallel systems: A state of the art
report. Technical Report 63, M̈alardalen University, De-
partment of Computer Science and Engineering, September
2002.

[5] J. Huselius. Logging without compromising testability.
Technical Report 87, M̈alardalen University, Department of
Computer Science and Engineering, 2002.

[6] T. LeBlanc and J. Mellor-Crummey. Debugging parallel
programs with instant replay.Transactions on Computers,
36(4):471 – 482, April 1987.

[7] J. Mellor-Crummey and T. LeBlanc. A software instruction
counter. InProceedings of the Third International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 78 – 86. ACM, April 1989.

[8] R. Netzer and J. Xu. Adaptive message logging for incre-
mental program replay.Parallel & Distributed Technology,
1(4):32–39, November 1993.

[9] R. Netzer and Y. Xu. Replaying distributed programs with-
out message logging. Inthe 6th International Symposium on
High Performance Distributed Computing, pages 137–147,
August 1997.

[10] B. Plattner. Real-time execution monitoring.IEEE Transac-
tions on Software Engineering, SE-10(6):756 – 764, Novem-
ber 1984.

[11] D. Stewart and M. Gentleman. Non-stop monitoring and de-
bugging on shared-memory multiprocessors. InProceedings
of the 2nd International Workshop on Software Engineering
for Parallel and Distributed Systems, pages 263 – 269. IEEE
Computer Society, May 1997.

[12] D. Sundmark, H. Thane, J. Huselius, A. Pettersson, R. Mel-
lander, I. Reiyer, and M. Kallvi. Replay debugging of com-
plex real-time systems: Experiences from two industrial case
studies. Technical Report 96, Mälardalen University, Depart-
ment of Computer Science and Engineering, April 2002.



[13] K.-C. Tai, R. Carver, and E. Obaid. Debugging concurrent
ada programs by deterministic execution.IEEE Transactions
on Software Engineering, 17(1):280 – 287, Januari 1991.

[14] H. Thane. Monitoring, Testing and Debugging of Dis-
tributed Real-Time Systems. PhD thesis, Kungliga Tekniska
Högskolan, Sweden, May 2000.

[15] H. Thane and H. Hansson. Using deterministic replay for
debugging of distributed real-time systems. InProceedings
of the 12th EUROMICRO Conference on Real-Time Systems,
pages 265 – 272. IEEE Computer Society, June 2000.

[16] H. Thane and H. Hansson. Testing distributed real-time sys-
tems. Journal of Microprocessors and Microsystems, Else-
vier, 24(9):463 – 478, February 2001.

[17] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson.
Replay Debugging of Real-Time Systems using Time Ma-
chines. In1st International Workshop on Parallel and Dis-
tributed Systems: Testing and Debugging, April 2003.

[18] J. Tsai, Y. Bi, S. Yang, and R. Smith.Distributed Real-Time
Systems: Monitoring Visualization and Debugging and Anal-
ysis, chapter 3.1, page 51. Wiley-Interscience, 1996.

[19] J. Tsai, K.-Y. Fang, H.-Y. Chen, and Y.-D. Bi. A noninter-
ference monitoring and replay mechanism for real-time soft-
ware testing and debugging.IEEE Transactions on Software
Engineering, 16(8):897 – 916, August 1990.

[20] F. Zambonelli and R. Netzer. An efficient logging algo-
rithm for incremental replay of message-passing applica-
tions. In Proceedings of the 13th International and 10th
Symposium on Parallel and Distributed Processing, pages
392–398. IEEE, April 1999.


