
Software Evolution Management: Industrial Practices

Antonio Cicchetti
Mälardalen University, IDT
72123, Västerås, Sweden

antonio.cicchetti@mdh.se

Federico Ciccozzi
Mälardalen University, IDT
72123, Västerås, Sweden

federico.ciccozzi@mdh.se

Jan Carlson
Mälardalen University, IDT
72123, Västerås, Sweden
jan.carlson@mdh.se

ABSTRACT
The complexity of modern software systems and the global
competition make the adoption of model-based techniques
unavoidable. A higher level of abstraction not only allows
to mitigate the intricacy of the development, e.g., through
separation of concerns, but it is also expected to permit
shorter round-trip cycles to add new system functionalities,
fix bugs, and refine existing features.

This paper reports practical experiences in the manage-
ment of industrial software evolution collected by means of
semi-structured interviews with software development ex-
perts. All the interviewed companies develop embedded
real-time safety-critical systems and aim at reaching more
agile processes. Interestingly, while model-based method-
ologies appear to be widely accepted, shortening round-trip
cycles due to changes appears still to be a major issue to-
wards a more efficient development process.

CCS Concepts
•Software and its engineering → Software develop-
ment methods; Software development techniques;
Software post-development issues;

Keywords
Industrial software systems; Model-driven engineering; Model-
based development; System evolution; Round-trip engineer-
ing

1. INTRODUCTION
Nowadays software can be practically considered as part of

systems in any application domain. It is typically exploited
to enhance or even substitute electrical and mechanical por-
tions of systems in order to make the final product more ef-
ficient, durable, and appealing from a user’s perspective. In
other words, software is used to smartify systems by adding
complex features thanks to its malleability. This wide adop-
tion does not exclude mission-critical systems, that is sys-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

tems for which a failure can have huge impacts in terms of
money loss and harm to human lives. In this respect, the
development of modern industrial systems is an endeavour
that has to trade off development costs, time-to-market, sys-
tem reliability, and customers’ satisfaction, just to mention
a few.

Model-Driven Engineering (MDE) [14] aims at alleviat-
ing the complexity of building modern software systems by
advocating a model-centric development paradigm. Models
permit to abstract away the unnecessary details and to focus
on the aspects that matter in a particular development stage
and/or in a specific-domain [3]. Moreover, models disclose
unprecedented opportunities for automation, as they can be
exploited to perform early system analysis and validation,
as well as contribute to the creation of the final production
code [9]. However, empirical studies have stressed that one
of the major obstacles to the adoption of MDE in industry
is the lack of adequate tool support [17, 5, 9], which is often
intended as the need for custom modelling languages and
notations, analysis and validation facilities, code generation
transformations, tools able to deal with complex systems,
and so forth [13].

This paper describes the preliminary exploration of in-
dustrial practices related to the evolution of software-related
artefacts, meant as models, documents and production code,
throughout the development process. The aim is to identify
the most relevant factors hampering flawless evolution and
thereby an efficient iterative approach. The general common
development traits emerged from this investigation are:

- all interviewed companies use a centralised document
repository which keeps track of development versions;

- the development flow is top-down, meaning that very
little information on changes is propagated from lower
levels of abstraction up to higher levels;

- the development process is horizontally iterative but
vertically waterfall, meaning that once artefacts at a
certain level of abstraction are considered successfully
completed, they are frozen until the whole process is
iterated again.

The core contribution of the paper is meant to be a set
of findings concerning the main issues with current indus-
trial practices when it comes to evolution of software-related
artefacts. In addition, we provide what we believe are in-
teresting research directions towards tackling the identified
challenges. Despite the collected results not constituting sta-
tistical evidence, the interviews remark the need of a proper

jcn01
Textruta
10th Workshop on Models and Evolution, 2016Published by CEUR-WS



tool chain able to guarantee the consistency across devel-
opment stages and artefacts as the precondition to achieve
MDE promised gains. Otherwise, separation of concerns
ends up in creating several discontinuities [15] that jeop-
ardise the consistency of the integrated system and slows
down the development process. In fact, not only closing
those discontinuities is a time-consuming and error-prone
task, but the existing gaps hamper any opportunity of au-
tomating change impact analysis, thus limiting the chances
of reasoning about system evolution and its side-effects.

The paper is organised as follows: the next section pro-
vides background details about the context in which the
investigation has been performed, while Section 3 discusses
how the interviews have been structured and done. Section 4
provides a deep analysis about the findings that we could ex-
tract from the data gathered via interviews and Section 5
describes our view on how to proceed further for mitigating
identified challenges. Eventually, Section 7 discusses related
investigations on the application of MDE in industrial con-
texts while Section 8 draws conclusive remarks about the
current work.

2. CONTEXT
The development of software shows a trend of increasing

complexity under ever tighter time and budget constraints.
In order to face this scenario, the development process has
necessarily to be as swift as possible and avoid possible stalls
due to inefficiency. Only in this way, product development
can promptly adapt to the continuously changing market
demands. In this respect, agile techniques promise to im-
prove development by reducing the time spent on require-
ments gathering and analysis, and in general by reducing
documentation efforts to a minimum [10].

Software Center (SwC)1 is a joint effort of Swedish indus-
try and academia which aims at rapidly introducing innova-
tion in industry with the support of academic partners.

The results illustrated in this work have been collected
in the context of a SwC project2, which addresses the sup-
port of architectural artefacts evolution; the authors of this
paper represent the research team in the project. The aim
is to shorten system development iterations by means of an
adequate change impact analysis and tracing of the prop-
agation of system evolution effects. The first sprint was
intended to investigate the current state-of-practice inside
the participating companies, in order to better understand
their development processes, evolution pressures, solutions,
and needs. This paper describes the outcome of this first
sprint in terms of industrial practices related of evolution of
software-related artefacts.

3. SEMI-STRUCTURED INTERVIEWS
The project started with a preliminary workshop in which

the participating companies and the researchers had an open
discussion about the topic in order to align the different
points of view and interest. In the workshop, the compa-
nies gave a high-level description of their current situation
in terms of architecture/design activities and the tool chains
supporting them with particular focus on how evolution is

1http://www.software-center.se/.
2http://www.software-center.se/research-themes/
technology-themes/continuous-architecture/Evolution+
Support+for+Architectural+Artefacts.

handled and on migration of information between different
tools, formalisms and storages. The outcome of the work-
shop was that evolution management and migration of var-
ious software-related artefacts was the common point of in-
terest. To gather more specific data on the practices and
problems at each company, we decided to carry out a set of
semi-structured interviews with companies staff. This data
was analysed and represents the ground for the next project
iterations. In this section we describe how we set up and
carried out the semi-structured interviews.

3.1 Interviews preparation
Data was gathered through semi-structured interviews [8]

with staff. The difference between structured and semi-
structured interviews is that in the latter the interviewee
is allowed to divert from an initial set of open questions,
which are considered as a minimal set of well-thought top-
ics, related to software evolution in our case, to be discussed.
Such topics (and questions) were used by the interviewers
as interview guide, and were sent in advance to the intervie-
wees for preparation. During the interviews, questions were
asked in different ways and at different moments, depending
on the interviewee and the flow of discussion. Doing so, we
were able to customise our questions to the specific interview
and interviewee.

The set of topics and questions was the following:

T1 Tools ecosystem – What formalisms, languages and
tools do you use for development and documentation
of design/architecture/implementation?

T2 Artefacts storage – How are artefacts (models/code/do
cuments) stored?

T3 Evolution strategies – How, and how often, do you ex-
change/migrate/synchronise/version information bet-
ween different languages/tools/formats/storages?

T4 Diff/merge and conflict resolution – When exchang-
ing/migrating/synchronising/versioning artefacts, how
is differencing and merging as well as resolution of con-
flicts among artefacts handled?

T5 Concurrent development – How common is it that mul-
tiple persons work on the same artefact (concurrently
or interleaved) and how do you currently organise con-
current work?

T6 Envisioned improvements – What improvements would
you like to see in relation to your current evolution
management practices?

Semi-structured interview was also chosen as data collection
method since, being at an initial phase of investigation, we
did not want to steer the interviews in a predefined direction
through a strict questionnaire. On the contrary, with semi-
structured interviews, we wanted to gather a broader set of
information about practices, problems, ideas about software
evolution in the companies.

3.2 Running the interviews
We interviewed a total of 9 individuals across the 3 com-

panies (3 persons per company); interviewees were chosen
so to represent a reasonable range of different roles involved
in software development. The three companies are large
Swedish enterprises with focus on embedded real-time and



safety-critical systems in different application domains. We
interviewed software engineers, testers, product managers,
and modellers. All interviewees had experience with MDE.
Interviews were conducted on-site by at least two of the au-
thors and in the interviewees’ native language, Swedish. The
set of questions was sent to the interviewees in advance in
order to allow them to raise possible issues and prepare for
the interview by gathering additional information if needed.

The interviews started with a short summary by the in-
terviewers about the SwC project and the interview itself.
This was followed by the interviewee describing shortly her
current role in the company and experience with similar
topics in general. Thanks to the fact that we exploited a
semi-structured format, we could notice that the various in-
terviews took different, and interesting, routes, highlighting
expected and unexpected problems in the industrial software
evolution. In case of unclear statements by the interviewee,
a clarification was always sought and given before going for-
ward to the next topic.

The interviews lasted between 30 and 90 minutes and were
recorded in order for resulting data to be analysed and syn-
thesised. For analysis purposes, the recorded audio of each
interview was listened to by one researcher and transcribed
by question; additional details not related to a specific ques-
tion were annotated separately. The transcribed answers
were discussed extensively within the research team in or-
der to identify the most relevant findings to document and
that would represent the basis for the next project iterations.

4. RESULTS
The interviews gave interesting answers to the posed ques-

tions but also provided unexpected insights thanks to the
semi-structured format. In this section we provide a sum-
mary of the most relevant (shared) findings that the research
team identified by discussing the transcribed interviews.

4.1 Tools ecosystem and artefacts storage
The answers gathered during the interviews clearly show

that at companies there usually exists a plethora of tools,
languages and formalisms used more or less together for re-
quirements specification, software modelling and production
code. Even if standard languages (e.g. ADLs or UML) are
used, the observed trend is working on company-tailored
versions of existing commercial tools. Moreover, different
groups in the same company use different toolchains, even in
joint projects. When it comes to requirements, the common
line is represented by textual descriptions that are main-
tained in various tools. These textual descriptions are man-
ually broken down to a so called “software architecture” de-
fined in terms of graphical models. The architecture usually
defines parts of the software and hardware nodes composing
the entire system as well as allocation of software to hard-
ware, and it is used for early assessment of modelled func-
tionalities. In some cases, dynamic parts of the software sys-
tem are modelled using tools and languages different from
the ones used for architectures. Moreover, in many cases
different parts of the software system are modelled and de-
veloped with different tools and languages. When it comes
to production code, in some cases it is generated from mod-
els, while in others models are just used as blueprint for the
programmers to implement. The common trait is that con-
sistency models-code is regarded as important but currently
hard to achieve since it is not automated (many tools in the

ecosystem do not have automatic bridges): “It happens that,
after a number of years, models are not updated anymore,
thus losing their consistency with up-to-date code.. There is
simply no time to do it.. It feels like the lack of agile ways
to evolve models and related artefacts leads to neglect models
and update only the code.”3

Models, documentation and production code are managed
with different tools but are commonly stored in a central
database. Anyhow, having them in a central database does
not provide tangible advantages when it comes to evolution
since there are still serious issues in bridging the various
tools: “Exchanging information among tools using XMI cre-
ates many problems due to the format misalignment in the
various tools..”.

In synthesis, many heterogeneous tools and languages are
used without effective and automated mechanisms for uni-
vocally going from one to the other and for ensuring that
changes to one artefact are correctly propagated to related
and dependent artefacts. This makes evolution of the var-
ious artefacts (documents, models, code) a manual, error-
prone, tedious and in some cases a shabby task.

4.2 Evolution strategies, diff/merge and con-
flict resolution

Evolution strategies, especially among related artefacts of
different types, are shallow. Changes to code are not always
reproduced in models and documentation since it is a man-
ual effort up to a single individual and there does not seem
to be a strong focus on “consistency maintenance” of less
crucial artefacts (e.g., models and documentations) in the
companies. Running versions of code on products with very
long lifetime are kept as they are as much as possible; only
small fixes are made when unavoidable. Moreover, evolution
happens at different levels and in different tools although af-
fecting the same artefact; while some automation for prop-
agating change from one level and/or one tool to the other
exists, much is still left to manual, unstructured activities.
Instead of improving evolution strategies, all companies try
to minimise the need of evolution by going for a conservative
and add-only strategy as much as possible.

There is usually no efficient support for round-tripping
from code to models. More specifically, companies would
find it beneficial to propagate changes done on code back to
models and documentation (across different tools), for in-
stance in terms of warnings. The impossibility to efficiently
do this, as well as the aforementioned intrinsic difficulties
in bridging the many tools composing the ecosystem, “..
make often software development start from scratch in new
projects rather than reusing models, documents and code (or
parts of them) from previous successful projects.”. Instead,
new projects should be intended as evolutions of previous
ones, with artefacts that evolve from one project to the other
in a unbroken manner.

The common trait with diff/merge is that all companies
try to avoid merging as much as they can. Differencing is,
on the other hand, considered a very important aspect but,
being often a manual task, it is error-prone and tedious.
Implicit diff/merge is done by versioning tools used by the
companies, such as Subversion; also in this case, several is-
sues arise when versioning graphical models exploiting their
textual representation. Moreover, the heterogeneity of for-

3Note that reported extracts from interviews have been
translated by the authors from Swedish to English.



mats among the many different tools and shaky links among
them clearly does not simplify diff/merge and conflict reso-
lution.

4.3 Concurrent development
Concurrent modelling is commonly achieved by partition-

ing models in sub-portions (either physical files or logical
sub-systems) in order to avoid concurrent changes on the
same model portion. While developers do not work with
the same model portion, they usually work on the same
database concurrently and the data is continuously synchro-
nised through automatic database-specific mechanisms so
that everyone has the same overall picture of the up-to-date
product version. There does not seem to be any particu-
lar problems with this practice; this is explained by the fact
that in reality no concurrent modelling ever takes place since
sub-portions are not meant to be concurrently accessed by
multiple persons. Nevertheless, the possibility of disruptive
changes to dependent software modules is still possible both
at model and code level due to (i) human misunderstand-
ings and (ii) because no dependency analysis is done among
different software modules. “These kind of problems do not
come up until testing production code.. for instance by get-
ting compilation errors.”.

4.4 Envisioned improvements
An aspect which seems to be of high priority for the in-

terviewed companies is the need for improving traceability,
that is to say back-tracing of changes done at lower lev-
els of abstraction (e.g., code) to related artefacts at higher
abstraction levels (e.g., models and documents). This is
seen as crucial for being able to enhance traceability as
well as improving versioning and boosting reuse. Particu-
larly important is considered to achieve much more efficient
(and automated) ways to ensure consistency between mod-
els and code in the long run. From our interviews it became
clear that practitioners are starting to perceive the current
fixed tool-centric idea as somewhat obsolete within a model-
driven or model-based development process. Instead, they
put emphasis on the need to move the attention towards
more flexible (meta)model-centric approaches. Functional-
ities get more in number and more complex; additionally,
there is a much higher dependability among different parts
of the software system than before. This complicates evo-
lution, also considering the huge variations among product
versions; legacy running systems must be supported and up-
dated in a smart, non-breaking way. Having a (meta)model-
centric approach would permit to “.. define variation points
in the metamodel that would simplify evolution tasks”..

5. DISCUSSION
So far we described the feedbacks collected during the in-

terviews with companies, grouped by topic. Based on those
feedback, this section highlights a set of relevant issues that
we believe hamper a better management of evolution, to-
gether with a set of possible corresponding research investi-
gation directions in order to improve the current practice.

Challenge 1: Heterogeneity of tools and
languages in the toolchain

Issue Heterogeneity of the many (modelling) tools and
languages typically exploited in an industrial de-
velopment process is a major hinder for effective
evolution due to the lack of appropriate format
exchange and change propagation support.

Investigation directions Introduce more powerful
and automated links between interconnected arte-
facts across different tools and languages, and in
the long run create bidirectional bridges (through
e.g. model transformations) supporting uncer-
tainty.

A critical aspect that seems to be underestimated by cur-
rent empirical investigations on the adoption of MDE in in-
dustry is the transitional nature of such a process [2]. In
fact, usually software is developed by companies whose main
products are not software (e.g., cars, satellites). Therefore,
software development gets intertwined with other engineer-
ing activities and very often imposing a one-step adoption of
a completely (even if fully featured) new development plat-
form is not realistic.

A more realistic scenario is a step-wise adoption of domain-
or task-specific tools that contribute to the development pro-
cess. The process is orchestrated by means of a centralised
storage support, which is format-agnostic, and where tool in-
terconnections are kept through links. Since in general the
tools cannot communicate with each other, change propa-
gation can only be supported in its minimal terms, that is
raising warnings for artefacts linked to entities involved in
evolution activities. Moreover, consistency management be-
comes necessarily a manual task.

The companies solve consistency and change propagation
issues by constraining the development in a waterfall pro-
cess. More precisely, all the artefacts related to a certain
development step or abstraction level (that is, horizontally)
are iteratively developed until they satisfy a planned goal.
After that, those artefacts are frozen, i.e. kept as read-only
until the next development process iteration. In this way,
consistency between abstraction levels is enforced by the
subsequent steps, since each higher abstraction level is input
for lower ones. Besides, whenever there is a need to make
changes outside the specification coming from a higher level
of abstraction, this would be recorded in terms of a change
request to be dealt with in the next iteration.

Given this scenario, we propose two possible investigation
directions: introducing more powerful links in the central
storage and/or creating transformations between tools. The
former can be conceived as a short term solution, since it
does not require many changes in an existing development
process. However, already by adding semantic information
to the links (notably, the degree of dependence between
linked artefacts) it would improve change impact analysis.
This solution would require a company-specific investigation
of the evolution characteristics that artefacts undergo during
a typical development process.

In the long run, tools should be connected by means of
model transformations. These transformations should be
bidirectional to allow the synchronisation on both sides, and
supporting uncertainty to be able to effectively deal with
the intrinsic heterogeneity of the mappings [6, 7]. In this



case, the degree of interconnection between the various tools
should be carefully evaluated, in order to avoid the need of
writing dozens of model transformations.

Challenge 2: Diff/merge at the appropriate
abstraction level

Issue Differencing and merging are mostly manually
performed (when they cannot be avoided) since
currently employed versioning tools are text-based
and not able to effectively operate diff/merge on
complex artefacts, such as graphical models. The
XMI format does not seem to help in this matter.

Investigation directions Introduce diff/merge oper-
ations at the modelling level of abstraction.

Differencing and merging models at an appropriate level
of abstraction is a known problem for the MDE research
community. The proliferation of tools illustrated in the
previous challenge stresses this need since manipulations
might have different interpretations/impacts depending on
the consumer of the modified artefact. Moreover, in general
modelling tools are not equipped with diff/merge features.

Companies tackle this issue by avoiding diff/merge, i.e. by
serialising concurrent manipulations through the exploita-
tion of disjoint sub-portions of models and/or the adoption
of artefact locks. Even more, in some cases code is edited by
hand instead of re-generated after an appropriate modifica-
tion of the source models it originates from, especially in case
of small refinements. This relieves companies from making
an additional effort in understanding how model changes
would propagate to interconnected artefacts at higher ab-
straction levels.

For this challenge we propose the study of appropriate
diff/merge mechanisms. The solutions could be gradually
developed and introduced firstly based on the improved links
discussed in the previous challenge, and hence trying to
detect at least the changes relevant for tool interconnec-
tions. In the long run, change detection should provide
enough information to enable a reliable change impact anal-
ysis and possibly automated propagation through synchro-
nisation transformations.

Challenge 3: Explicit traceability between related
artefacts

Issue The lack of effective support for explicitly keep-
ing track [1] of dependencies among different arte-
facts in the many tools makes round-trip engineer-
ing very difficult and error-prone.

Investigation directions Analyse the changes at var-
ious levels of abstraction, at different development
stages, with respect to the used tools, etc., and
classify them in terms of their impact on other
artefacts. In the long run, produce estimates of
propagation effort due to changes.

The central storage used to coordinate the development
process can be considered as a very basic support for trace-

ability. However, the lack of adequate interconnection infor-
mation makes this tracking support not effective. Notably,
the dependencies among different artefacts in the many tools
can make cautious concurrent modelling still cause disrup-
tive changes that can go unnoticed until production code is
tested. In turn, this slows down the whole process due to the
efforts required to understand the origins of the problem.

Another important issue caused by the lack of traceabil-
ity is the poor support for round-trip engineering. Since the
link between the various artefacts gets typically blurry when
going from an abstraction level to another, it is very difficult
to understand how modifications at lower abstraction levels
should be propagated back to higher levels. The companies
mitigate this issue by adopting the waterfall-like process de-
scribed before, which however slows down the development
process and limits the opportunities for concurrent develop-
ment.

Our proposal is to empirically retrieve historical evolu-
tion information and propose a characterisation of possible
system evolutions. The improved interconnections between
the tools proposed for challenge 1 would support a more
effective synchronisation of artefacts at different levels of
abstraction. Together, these two investigations can create
the potentials for an enhanced round-trip engineering pro-
cess, in which code and other artefacts can be consciously
modified, and the effects of the modifications can be better
analysed and propagated to interconnected artefacts.

6. THREATS TO VALIDITY
When it comes to internal validity, we adopted a system-

atic approach in preparing the study, gathering, analysing
and synthesising data. On the one hand, since we did not
opt for structured interviews with a strict set of questions,
but rather went for semi-structured interviews, the rigour
of the study and its results could be questioned. On the
other hand, less structured methods [8] have already proven
very useful when the interviewer seeks a broad spectrum of
information. This is possible since the interviewee is given
more freedom and somehow participates actively to steer the
discourse even towards unforeseen (but not less interesting)
directions [12]. In order to avoid misinterpretations of an-
swers given by interviewees, interviews were always carried
out by at least two members of the research team. Moreover,
analysis and synthesis of the gathered data as well as elici-
tation of the findings were performed by the entire research
team.

Regarding external validity, the interviewed companies de-
velop large-scale software to run on safety-critical embedded
real-time systems with long lifetime. This means that our
results can happen to not being applicable to very small
business cases or short lifetime products. Moreover, due to
the fact that we did not adopt a strictly structured interview
method and given the rather limited number of interviewees
we do not claim statistical relevance of our results. Nev-
ertheless, we believe that the results coming out from our
study, especially considering the fact that they were agreed
by all interviewed companies, represent a first step towards
understanding the practical issues of evolving software arte-
facts when adopting model-driven or model-based develop-
ment.

7. RELATED WORKS



The last decade has seen an increasing amount of publi-
cations devoted to empirically assess the industrial practices
in adopting MDE and both its good and bad effects [11, 9].
Usually the existing literature surveys the problem from an
overall software development process perspective, analysing
the effects across different applicative domains [5, 17, 4]
and/or target systems [9]. On the contrary, this work specif-
ically targets evolutionary scenarios and the impact of MDE
in their management. In this respect, as mentioned in Sec-
tion 5, even if our data cannot be considered as statistically
relevant, it is possible to notice some trends confirming other
existing results, and also to deduce interesting explanations
about some current challenges in adopting MDE in concrete
industrial settings.

Burden et al. [5] present a study of MDE adoption at
three large companies, two of which are also involved in
this work. It is therefore not surprising that we share sev-
eral observations with the cited paper, especially related
to the development process and the need of freezing arte-
facts/specifications pertaining to an abstraction level (or de-
velopment stage) before proceeding further. More generally,
studies like [5, 4, 16] or the one described in this work re-
mark the distinction between companies producing software
as main business and companies using software in their prod-
ucts: in particular, the latter typically face more problems
due to the need for integration of the software development
with the remaining part of the system realisation process.

It is worth noting that most of the empirical investiga-
tions seem to assume the adoption of MDE as a one step
process, or they observe the effects once the adoption pro-
cess is considered as satisfying/completed. However, MDE
adoption usually happens as a transition [2] in which MDE
methods are incrementally plugged in in the development
process. This also emerges in our interviews, where there
exist several degrees of adoption even when considering dif-
ferent departments in the same company. The consequence
is that issues due to the partial adoption of MDE are re-
vealed through other side-effects and troubles, notably the
lack of modelling competence, the inadequacy of the tools
and their integration, the extra efforts required to boot-strap
MDE-based development processes.

8. CONCLUSIONS
This paper discussed the issues faced in the management

of evolution in industrial software development processes
adopting MDE. These issues have been identified by analysing
the data gathered from semi-structured interviews with prac-
titioners in the context of an industry-academia joint re-
search project aiming at enhancing development processes.

The problems described by the interviewees remarkably
affect the development performances and hamper effective
round-trip engineering. Starting from those problems, in
this paper we list a number of relevant challenges together
with their effects on the development process. Moreover, we
propose a set of corresponding research directions that we
plan to investigate as next steps in the joint research project
mentioned above.

9. ACKNOWLEDGMENTS
The authors would like to thank all the interviewees that

accepted to collaborate in our project and provided useful
and honest insights about the internal development practices

at their companies. The project is supported by Software
Center.

10. REFERENCES
[1] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and

Y. Shaham-Gafni. Model traceability. IBM Systems
Journal, 45(3):515–526, 2006.

[2] J. Aranda, D. Damian, and A. Borici. Transition to
Model-Driven Engineering, pages 692–708. Springer,
Berlin, Heidelberg, 2012.

[3] J. Bezivin. On the Unification Power of Models.
SoSym, 4(2):171–188, 2005.

[4] M. Broy, S. Kirstan, H. Krcmar, and B. Schätz. What
is the Benefit of a Model-Based Design of Embedded
Software Systems in the Car Industry?, pages 343–369.
IGI Global, 2012.

[5] H. Burden, R. Heldal, and J. Whittle. Comparing and
contrasting model-driven engineering at three large
companies. In Procs. of the 8th ACM/IEEE Int.
Symposium on Empirical Software Engineering and
Measurement, ESEM ’14, pages 14:1–14:10, New York,
NY, USA, 2014. ACM.

[6] R. Eramo, A. Pierantonio, and G. Rosa. Managing
uncertainty in bidirectional model transformations. In
Procs. of the 2015 ACM SIGPLAN Int. Conf. on
Software Language Engineering, SLE 2015, pages
49–58, New York, NY, USA, 2015. ACM.

[7] C. Hardebolle and F. Boulanger. Exploring
multi-paradigm modeling techniques. SIMULATION,
85(11-12):688–708, 2009.

[8] S. E. Hove and B. Anda. Experiences from conducting
semi-structured interviews in empirical software
engineering research. In 11th IEEE International
Software Metrics Symposium (METRICS’05), pages
10–23. IEEE, 2005.

[9] G. Liebel, N. Marko, M. Tichy, A. Leitner, and
J. Hansson. Model-based engineering in the embedded
systems domain: an industrial survey on the
state-of-practice. Software & Systems Modeling, pages
1–23, 2016.

[10] R. C. Martin. Agile software development: principles,
patterns, and practices. Prentice Hall PTR, 2003.

[11] P. Mohagheghi and V. Dehlen. Where Is the Proof? -
A Review of Experiences from Applying MDE in
Industry, pages 432–443. Springer, Berlin, Heidelberg,
2008.

[12] K. Musante and B. R. DeWalt. Participant
observation: A guide for fieldworkers. Rowman
Altamira, 2010.

[13] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel,
B. H. C. Cheng, P. Collet, B. Combemale, R. B.
France, R. Heldal, J. Hill, J. Kienzle, M. Schöttle,
F. Steimann, D. Stikkolorum, and J. Whittle. The
Relevance of Model-Driven Engineering Thirty Years
from Now, pages 183–200. Springer International
Publishing, Cham, 2014.

[14] D. C. Schmidt. Guest Editor’s Introduction:
Model-Driven Engineering. Computer, 39(2):25–31,
2006.

[15] B. Selic. The Pragmatics of Model-driven
Development. IEEE Software, (5):19–25, 2003.

[16] M. Staron. Adopting Model Driven Software
Development in Industry – A Case Study at Two
Companies, pages 57–72. Springer, Berlin, Heidelberg,
2006.

[17] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden,
and R. Heldal. Industrial Adoption of Model-Driven
Engineering: Are the Tools Really the Problem?, pages
1–17. Springer, Berlin, Heidelberg, 2013.




