

On the Teaching of Distributed Software Development

Ivica Crnkovic1, Igor Cavrak2, Johan Fredriksson1,

Rikard Land1, Mario Žagar2, Mikael Åkerholm1

1Mälardalen University, Department of Computer Science and Engineering

PO Box 883, SE-721 23 Västerås, Sweden
+46 21 {10 70 35, 10 70 35, 15 17 62}

{ivica.crnkovic, johan.fredriksson, rikard.land, mikael.akerholm}@mdh.se

2University of Zagreb, Faculty of Electrical Engineering and Computing
HR-10000 Zagreb, Croatia

+385 1 6129 861
{igor.cavrak, mario.zagar}@fer.hr

Abstract. As the software industry moves
towards software development projects involving
several sites around the world, universities
should incorporate this trend into their software
engineering curricula. This paper describes the
experiences from the development of a university
course in distributed software development.
Some of the problems of distributed development
make it inherently difficult to transfer this
domain to the university environment. Also, the
concept of “distribution” has penetrated not only
the contents of the course but many other levels
as well.

Keywords. Global Software Development,
Distributed Software Development, Software
Engineering Education.

1. Introduction

Hard competition, a strive for shorter time to
market, an increasingly globalized market and
internationalized products, and a shortage of
software professionals are some of the factors
that have lead software enterprises to become
globalized [5,15]. Such international software
companies devote themselves to mastodon
engineering projects as ambitious as did the
people of Babel, who started building an
enormous tower, supposed to reach unto heaven
[1]. Their engineering effort was however
spoiled as soon as they started speaking different
languages. The software companies of today still
face the same challenges as did the inhabitants of
Babel, and more: not only are there different

languages involved, but also cultural differences,
social differences, physical distance, possibly
different time zones, different business
considerations, etc.

As distributed software development is
becoming widespread in practice, and as it meet
many problems, universities should incorporate
this trend as well into their curriculum [18]. The
need for preparing computer science students to
the “real world” software engineering problems
has already been recognized and is addressed by
introducing practical projects and teamwork as a
regular part of software engineering courses
[8,9,11,12, 13,19]. To our knowledge however,
teaching distributed software development at
university is very rare, and is restricted either to
existing software engineering courses [3] or to
case studies and student projects [2]. We have
accepted the challenge to develop a university
course in distributed software development.
Since this subject arguably cannot be realistically
taught at one site we are currently developing the
course to be simultaneously held in Västerås,
Sweden, and Zagreb, Croatia [10]. Throughout
the course development, it has been apparent that
properties inherent in distributed software
development not only pose large challenges to
industry, but also make its introduction at
university a complex task. In the present paper
we describe the issues arising during such a
course development.

Section 2 describes course details, section 3
describes how the concept of “distribution” has
affected the course on several levels, and section
4 concludes the paper.

2. Course Description

The course is currently under development
and will be held for the first time during fall
2003. It will follow the traditional course
structure consisting of theory and practice. The
theoretical part will be in the form of lectures
and self-studies and aims at introducing students
to the problems of development distribution and
presenting them a roadmap for the practical part
of the course. The practical part will be the larger
part, and will involve students in one or more
distributed projects.

2.1. Course Contents

There are numberous challenges of
distributed software development that we intend
to teach, and these challenges will be addressed
both during the lectures part and the projects
part. While they in a sense constrain the course,
they are at the same time the aspects we want to
teach:

Communication media. The type of
communication and the communication media
used are crucial issues to be addressed when
working in a distributed manner; although
meeting in person is invaluable, one has to rely
on video or voice conferences, email,
collaboration software etc. [5,15]. Students will
(most likely) never meet in person due to funding
restrictions, but will have to use low-cost
communication media extensively.

Configuration management. Although
important already in local development, the need
for mature configuration and version manage-
ment of files increase when work is distributed.
In the project part, the students will need to share
code and documents using configuration and
version management tools.

System architecture design. An architecture
of a system is not only a result of a technical
solution, but it also reflects the structure of the
development organization and its development
processes. In distributed development the system
architecture is an important factor for a
successful development process. To understand
this the students will have to identify a
development process and design an architecture
suitable for distributed development.

Formal system specifications. In a
distributed development informal information
exchange is much more difficult. Further the

amount and frequency of the exchange
information is limited. For this reason it is
important that the system specification is done
more accurate and more precisely. This requires
better specification of the requirements and the
system (in particular the interfaces between the
system parts). The aim of the course is to train
students in precise specifications, and more
formal processing of changes.

Foreign language. When collaborating
internationally, there is a language barrier; in the
software area the de facto standard language is
English. None of the students are native English
speaking, but to be able to cooperate they will be
forced to use English language both in
communication and documentation.

Cultural differences. Cultural distance has
been pointed out as one important barrier to
overcome in international collaboration [5,6,15].
This includes everything from religion, holidays,
and working hours, to cultural “codes” such as
whether you should look the person you speak to
in the eyes. There are usually different “company
cultures” as well (and “university cultures” for
that matter). Croatia and Sweden are not too
different culturally and people moving between
these countries usually adapt very well. Still,
there are differences and perhaps prejudices that
students will meet.

Synchronous communication. When
collaboration is carried out across time zones, the
“window of opportunity” of synchronous
communication becomes limited or non-existent.
Sweden and Croatia are located in the same time
zone, but still the ability to communicate
synchronously is limited due to flexible working
hours. We expect that much of the students will
work at home and/or in the evenings, which
makes low-cost synchronous communication
infrastructure (i.e. fast Internet links) located at
the universities inaccessible.

Technologies. The division of work is
heavily dependent on an architectural design that
allows this, to allow different components to be
developed at different sites. It is not yet sure
whether the students should design the
architecture themselves or be given an
architectural design description (to minimize
risk). Technologies for distributed applications,
if such a product is chosen for the project part,
have to be taught as well; this includes e.g.
middleware and Internet-based communication.

2.2. The Two Universities

The Department of Computer Science and
Engineering at Mälardalen University in
Västerås, Sweden, currently offers two
undergraduate curricula: one with focus towards
programming and algorithms, and the other
emphasizing system theory with a traditional
hardware/software approach. The research and
education at the department is oriented towards
industrial engineering, with embedded and real-
time systems, and software engineering as two
main directions. The students are free to choose
courses, but recommendations from the
department, requirements for graduation, and
relations between courses in practise result in
relatively predictable paths of courses. The
Swedish can either graduate with a B.Sc. degree
after three years, or with a M.Sc. degree after
four. The students’ knowledge is concentrated on
computer related topics, and classical
engineering subjects like physics and mechanics
are minimized. Most courses contain a practical
part and are lab intensive, rather than being
theoretically oriented. Teamwork by the means
of small project assignments is usually included
at the end of each course.

Computing studies at the Faculty of Electrical
Engineering and Computing at the University of
Zagreb, Croatia, last for nine semesters and aims
at the degree Diploma Engineer. The first three
semesters are common to both computing and
electrical engineering students and consist of
classical courses like mathematics, physics and
foundations of electrical engineering. There are
also some general computing classes such as
algorithms and data structures, basic
programming, basic computer usage etc. From
the fourth semester on the studies become
focused on specific courses. For computing, the
basic course structure consists of mandatory
courses which are progressively replaced by
elective courses towards the end of studies, thus
allowing slight study profiling. The last semester
is dedicated to graduation theses. During the
studies students are introduced both to low-level
(hardware) and high-level (software) aspects of
computer systems. Low-level oriented courses
include hardware design and low-level
programming; intermediate courses include
computer networks, operating systems, etc.
High-level courses focus on intelligent systems,
databases and programming issues – languages
and methods, and more. All courses are lab-
intensive and large percent of the final grade is

based on the student’s lab performance. Two
tendencies can be identified in the structure of
lab work organization. The first one (and the
prevailing one) consists of firmly defined
exercises and their results, with individual
student work or work in small teams (2-3
students). The second one, more present in
elective software-based courses is project work.

The curricula and teaching style are thus
similar at the two universities, but some
differences are worth pointing out. Both
universities hold elective software engineering
courses, but while the Swedish students usually
attend this course during their third year, the
Croatian students attend it during their fourth.
The course in distributed software development
will be given during the fourth year for Swedish
students and the fifth year for the Croatian. The
slight difference in educational profile at the two
universities implies that division of work can and
should be done considering the students’
different knowledge. The semester structure and
number of parallel courses per semester are
different, so there has been a certain amount of
“puzzling” to make the course fit into both
universities’ semester structure. The start and
end dates must be coordinated, as well as
holidays. There are also differences in
availability of e.g. lab rooms; at Mälardalen
University there are more resources per student,
which are available until late in the evening.

2.3. Theoretical Part

The contents of the theoretical part have
several aims:
• First, to make the students aware of driving

forces behind work distribution, through
means of theoretical principles used in
different domains of software engineering and
from examples from software industry.

• Second, to describe the challenges involved,
and what methods and tools can be used to
alleviate distance problems (as was described
in section 2.1).

• Third, to prepare them for the project part, by
introducing the tools to use, and the
assignment.
Although the previous knowledge cannot be

assumed to be identical when the course starts,
the theoretical part of the course can indeed be
made identical. At the very least, the same
literature and lecture slides can be used. But
there is also the opportunity to fully make even
this part of the course distributed: students can

attend lectures held at the other site by means of
distance learning tools. Both universities
involved are actively pursuing distance learning
for domestic students, so this would be a natural
continuation of that direction.

2.4. Practical Part

The practical part of the course will be in the
form of a project aiming at developing a software
product, as is common in many software
engineering courses [8,9,11,12,13,19]. Since we
intend to teach distributed software development
it is important that the students already are
familiar with e.g. project planning and
configuration management. We want the
problems the students will face to rather be
related to the distributed project work.

This part of the course will be focused on
analyzing, designing, developing and testing of
one or several projects ordered by a “customer”
and will last about seven weeks. Members of the
staff on one or both universities will play the role
of the customer. As most software efforts of
today involves such activities as maintaining,
modifying, or integrating legacy systems, using
an API (Application Programmer’s Interface),
and extending or reusing (parts of) existing
software, we believe an “advanced” software
engineering course such as this should introduce
these elements as well. We therefore intend the
projects to extend or integrate existing software
to increase their value. When choosing
application domain, it is important that the
source code is legally available, or that there is
an API (not necessarily well-documented, since
we want to give the students a realistic
experience). We are currently discussing
building applications on top of, possibly even
integrate, the following software: Bugzilla [4],
CVS (Concurrent Versions System) [7], ICQ
[14], Microsoft NetMeeting [16], and MSN
Messenger [17] . The tools will thus be within
the domain of distributed collaboration. One way
to extend them is to store communication
sessions in some sort of context, thus providing
project traceability and visibility; another is to
build a tool that uses CVS data to analyze project
work (e.g. who did what and when).

To give the students a sense of the problems
they may run into during the actual project, they
will be encouraged to spend some time learning
about “the other” country – Croatian students
will study Sweden and vice versa. Also,
depending on the project they are allocated to,

students will have the time to familiarize
themselves with required technologies. Self-
study and/or small task-force teams will be the
primary organizational units during this phase
which is not expected to last more than 2-3
weeks, depending on the site and the time
available.

At the end of the project, the students will
present not only their products, but also analyze
the project work. What problems did they have?
How did they solve them? These experiences
will be forwarded to next year’s course. Product
requirements will also be continuously
“inherited” by next year’s course. The students’
analysis will be used as a basis for requirements.
In this way requirements and resulting products
are “bootstrapped” along subsequent courses
(and possibly graduation theses).

3. Distribution

In this section we elaborate on how the
subject “distributed software development” has
affected not only the contents of the course, but
how the concept of “distribution” has penetrated
many other aspects of the course as well. Some
consequences have been inevitable while others
have been consciously included for educational
reasons. Each of the five “levels of distribution”
is discussed below.

First, the theoretical part is rather simple: the
challenges and solutions to efficient distributed
software development are presented to the
students in the familiar lecture form.

Second, to give the students a realistic
practical experience, practical collaboration
between two parties is necessary. Involving an
industrial counterpart makes focus shift from
project to product, from education to end
product. Although other courses in distributed
software development have employed real-world
customers [2,3], we believe that in the long term
it is essential that externally managed resources
do not present a too high risk to the course itself,
which is why we have chosen not to involve
industrial partners. Although we want to teach
distributed software development in as realistic
environment as possible, there are limitations on
what is possible. As we have chosen not to
involve an industrial counterpart, the most
obvious drawback is the amount of funding. The
use of mid- and high-cost methods such as
telephone-conferencing and travel [2,3], although
found unavoidable in “real-world” projects, will
therefore be limited. Another difference is that

there is neither the option of assigning more
people, nor can the delivery date be late; we
therefore have to minimize risks by e.g. giving
them reasonable requirements and monitor their
architectural design carefully (or perform this
design ourselves). We also run the risk of
students drop out in the middle of the course,
jeopardizing project completion.

Third, the problem domain for the software to
be developed in the practical part was chosen to
be distributed collaboration as well. The tools
developed will be used in the course to the
greatest extent possible; it will e.g. be possible to
use a “project analyzer” built on top of CVS to
analyze the project building this tool. Since the
students use the tools themselves, their
evaluation of the products at the end of the
course will be realistic and more valuable than if
the product was intended for virtual users. We
plan to make the products available to the public
community, thus employing a potentially large
number of users in testing the product usability
and quality. This will provide feedback used as
part of the requirements for the next course.
Maintenance and refinement of the products will
be (at least partially) ensured by assigning
product-related graduation thesis to some of the
students participating in the project.

Fourth, the products might, or might not, be
implemented as distributed systems, e.g. in the
client-server style or in more sophisticated
configurations. Distributed systems and
distributed development both rely heavily on a
successful architecture. However, as said above,
all projects where components dependent on
each other are developed at different sites run a
considerable risk, whether or not they will
execute at different nodes.

Fifth, since the course will involve two
universities, the actual development of the course
has to be carried out in a distributed manner. One
of the Swedish course teachers have visited
Zagreb for six months to develop the course
jointly with one of the Croatian teachers, forming
a “bridgehead” [6] between the two sites helping
to alleviate organizational and cultural problems
that arise along the way. The course teachers in
Sweden have been involved through
videoconferences, email, and document sharing.
This setting enabled the teachers to get “first-
hand experience” of the problems involved in
distributed course development, if not distributed
software development. Some problems
experienced have been of a technical nature
(such as poor sound quality during video

conferences), others of a more personal character
(such as discussing different people’s ideas and
distributing work). These experiences are
invaluable when it comes to teaching this
subject.

4. Conclusion

Simulating the real world at university is a
challenging task. The more complex phenomena
to be taught, the greater the challenge. In this
paper, we have presented the challenges
encountered during development of a university
course aimed at teaching distributed software
development. To provide a realistic environment,
it is not sufficient to develop a course locally at
one university. Either should two (or more)
universities be involved, or a university and a
remote industrial partner. In a university
environment, one has to tradeoff the resources
made available by involving an industrial partner
for the risk in terms of focus shift towards
product instead of project and education.

The “distributed” aspect of the course affects
the course development on several different
levels, in some ways unavoidable, in some ways
as a conscious decision. Apart from teaching the
subject theoretically, the students will work
practically in as realistic setting as can be
provided. To increase the educational value, the
product or products to be developed during the
practical part of the course are tools used for
distributed work. The tools may be implemented
as distributed systems. And finally, the course
development itself had to be carried out in a
distributed manner, since there are two
counterparts (in our case two universities)
involved.

We hope that our effort of teaching students
how to face the challenges of distributed
software development will equip them with
knowledge sufficient to successfully take part in
or lead distributed projects, both us and them
being able to handle the challenges of physical
and cultural distance better than the people of
Babel did.

5. References

[1] Book of Genesis, Chapter 11, verses 1-9
[2] Brereton P., Lees S., Bedson R., Boldyreff

C., Drummond S., Layzell P., Macaulay L.,
Young R., “Student Collaboration across
universities: A Case Study in Software
Engineering”, Proceedings of 13th

Conference on Software Engineering
Education and Training (CSEE&T), IEEE,
2000.

[3] Bruegge, B., Dutoit, A.H., Kobylinski, R.
and Teubner, G. “Transatlantic project
course in a university environment”,
Proceedings of 7th Asia-Pacific Software
Engineering Conference (APSEC), 2000.

[4] “Bugzilla Project Home Page”, web page,
URL: http://www.bugzilla.org/

[5] Carmel E., “Global Software Teams:
Collaborating Across Borders and Time
Zones”, ISBN 0-1392-4218-X, Prentice-
Hall, Upper Saddle River, NJ, 1998.

[6] Carmel E., Agarwal R., “Tactical
Approaches for Alleviating Distance in
Global Software Development”, IEEE
Software, volume 18, issue 2 , IEEE, 2001

[7] “Concurrent Versions System”, web page,
URL: http://www.cvshome.org/

[8] Crnkovic I., Larsson M., and Lüders F.,
“Implementation of a Software Engineering
Course for Computer Science Students”,
Proceedings of 7th Asia-Pacific Software
Engineering Conference (APSEC), 2000.

[9] Crnkovic I., Land R., and Sjögren A., “Is
Software Engineering Training Enough for
Software Engineers?”, Proceedings of 16th
Conference on Software Engineering
Education and Training (CSEE&T), IEEE,
2003.

[10] Cavrak I., Land R., “Taking Global Software
Development from Industry to University
and Back Again”, Proceedings of ICSE
International Workshop on Global Software
Development (GSD), 2003.

[11] Daniels M., Faulkner X., and Newman I.,
“Open ended group projects, motivating
students and preparing them for the ‘real
world’”, Proceedings of 15th Conference on
Software Engineering Education and
Training (CSEE&T), IEEE, 2002.

[12] Dawson R.J., Newsham R. W., and Fernley
B. W., “Bringing the 'real world' of software
engineering to university undergraduate
courses”, IEE Proceedings In Software
Engineering, volume 144, issue 5, 1997.

[13] Dawson R., “Twenty Dirty Tricks to Train
Software Engineers”, Proceedings of 22nd
International Conference on Software
Engineering (ICSE), ACM, 2000.

[14] “ICQ”, web page, URL: http://web.icq.com/
[15] Karolak D., “Global Software Development:

Managing Virtual Teams and
Environments”, ISBN 0-8186-8701-0, IEEE
Computer Society Press, Los Alamitos, CA,
1998.

[16] “NetMeeting Home”, web page, URL:
http://www.microsoft.com/windows/netmeeting/

[17] “MSN Messenger”, web page, URL:
http://messenger.msn.com/

[18] Shaw M., “Software Engineering Education:
A Roadmap”, Proceedings of the 22nd
International Conference on Software
Engineering, ACM Press, New York, NY,
2000.

[19] Wohlin C. and Regnell B., “Achieving
industrial relevance in software engineering
education”, Proceedings of 12th Conference
on Software Engineering Education and
Training (CSEE&T), IEEE, 1999.

