
Analyzing End-to-End Delays in Automotive Systems at
Various Levels of Timing Information∗

Matthias Becker1, Dakshina Dasari2, Saad Mubeen1, Moris Behnam1, Thomas Nolte1

1Mälardalen University, Västerås, Sweden
{matthias.becker, saad.mubeen, moris.behnam, thomas.nolte}@mdh.se

2Robert Bosch GmbH, Renningen, Germany
dakshina.dasari@de.bosch.com

ABSTRACT
Software design for automotive systems is highly complex
due to the presence of strict data age constraints for event
chains in addition to task specific requirements. These age
constraints define the maximum time for the propagation
of data through an event chain consisting of independently
triggered tasks. Tasks in event chains can have different pe-
riods, introducing over- and under-sampling effects, which
additionally aggravates their timing analysis. Furthermore,
different functionality in these systems, is developed by dif-
ferent suppliers before the final system integration on the
ECU. The software itself is developed in a hardware ag-
nostic manner and this uncertainty and limited information
at the early design phases may not allow effective analysis
of end-to-end delays during that phase. In this paper, we
present a method to compute end-to-end delays given the
information available in the design phases, thereby enabling
timing analysis throughout the development process. The
presented methods are evaluated with extensive experiments
where the decreasing pessimism with increasing system in-
formation is shown.

1. INTRODUCTION
Automotive systems are getting complex with respect to

traditional components like the Engine Management Sys-
tem (EMS) as well as modern features like assisted driving.
While the increase in the EMS complexity is attributed to
newer hybrid engines and stricter emission norms, assisted
driving requires the perfect convergence of various technolo-
gies to provide safe, efficient and accurate guidance. This
has led to software intensive cars containing several million
lines of code, spread over up to hundred Electronic Control
Units (ECU) [10].

Given this complexity, over the last decades, standards
like AUTOSAR [5] have been formulated in order to provide
a common platform for the development of automotive soft-
ware. These standards allow software components provided
by different suppliers to be integrated on the same ECU,
since they provide for a hardware agnostic software devel-
opment. Such robust interfaces enable designers to design
software at early stages without knowledge of the concrete
hardware platform on which it will be eventually executed.
Thus, during the development it is often not known which
other applications share the same execution platform.

Most of these automotive applications typically have strict

∗Copyright retained by the authors

real-time requirements – it is not only important that a com-
putation result is the correct result, but also that the result
is presented at the correct time. In addition to the timing
requirements for each task execution (i.e. the tasks dead-
line), these applications often have constraints for the data
propagation through a chain of tasks, so called end-to-end
timing constraints, one of which is the age constraint. The
age constraint specifies the maximum time from reading a
sensor value until the corresponding output value is pro-
duced at the end of the chain. This kind of constraint is
especially important for control systems, such as the EMS,
where it directly influences the quality of control.

Many design decisions have direct influence on the data
age. Thus, bounding the data age of a chain early during
the design process can potentially avoid costly software re-
designs at later development stages. The analysis gets com-
plex as a chain may consist of tasks with different periods
leading to over- and under-sampling situations. Most of the
available analysis methods for such systems analyze exist-
ing schedules [11] and thus they are not applicable during
early phases. In [8], a generic framework to calculate the
data age of a cause-effect chain is presented, which targets
single processor systems and is agnostic of the scheduling
algorithm used. In this paper we show how this analysis
can be extended to cater the needs of the complete develop-
ment process of automotive applications. The increased sys-
tem information during the design process can thus be used
to obtain end-to-end latencies with decreasing pessimism at
various levels of timing information.

Contributions: In this work, we extend our earlier work
on analyzing end-to-end delays among multi-rate effect
chains [8] to utilize the information available in different
development stages. Specifically, we highlight the generic
nature of the framework by showing how extensions with
varied levels of information can be used to compute the
maximum data age given the:

1. Knowledge of offsets: The analysis for systems without
knowledge of the schedule is extended to allow for task
release-offset specifications.

2. Knowledge of the scheduling algorithm (like Fixed Pri-
ority Scheduling (FPS)): Most ECUs utilize operating
systems which schedule tasks based on FPS. This al-
lows to utilize existing analysis for such systems to
determine worst-case response times of the individual
tasks. It is then shown how the concepts of the analysis
can be adapted to account for this information.



3. Knowledge of the exact schedule: Similar to most of
the existing end-to-end delay analyses, we show how
the exact schedule can be used to determine the exact
delays with low computational overheads.

4. Knowledge of the communication semantic: We extend
the analysis to incorporate Logical Execution Time
(LET), an important paradigm guiding how and when
data is exchanged between tasks of an automotive ap-
plication [12].

Finally, we compare these different scenarios with extensive
evaluations, considering i) the tightness of the computed
bounds and ii) the computation time for the analysis.

2. RELATED WORK
The end-to-end timing constraints found in automotive

multi-rate systems were first described in [19]. Here, the
authors describe the different design phases and link them
to EAST-ADL [4] and AUTOSAR [5]. An increased level
of system knowledge during the consecutive design phases is
outlined.

A method to compute the different end-to-end delays of
multi-rate cause-effect chains is presented in [11]. In ad-
dition, the authors relate the reaction delay to ”button to
reaction” functionality and the maximum data age delay to
”control” functionality. In this work the focus lies on the
maximum data age and hence on control applications.

A model-checking based technique to compute the end-
to-end latencies in automotive systems is proposed in [17].
The authors generate a formal model based on the system
description which is then analyzed.

The end-to-end timing analysis in an industrial tool suite
is discussed in [16]. Two different activation methods are dis-
cussed; trigger chains, where a predecessor task triggers the
release of a successor task, and data chains, where tasks are
individually triggered and hence over- and under-sampling
may occur. In this work we focus on chains with the latter
activations.

End-to-end delays in heterogeneous multiprocessor sys-
tems are analyzed in [18]. Ashjae et al. [7] propose a model
for end-to-end resource reservation in distributed embedded
systems, and also present the analysis, based on [11], for
end-to-end delays under their model.

Additionally, several industrial tools implement the end-
to-end delay analysis for multi-rate effect chains [20, 6, 21].
However all of the discussed works require system informa-
tion which is only available in the implementation level.
In [8], a scheduling agnostic end-to-end delay analysis for
data age is described, where only information about the
tasks of the cause-effect chains is required. In this work,
we extend the results presented in [8], and show that by
augmenting information available during the different design
phases, we can analyze the maximum data age with decreas-
ing degree of pessimism.

3. SYSTEM MODEL
This section introduces the application model, inter task

communication mechanisms, and the notion of cause-effect
chains as used in this work.

3.1 Application Model
We model the application as a set of periodic tasks Γ.

Each task τi ∈ Γ can be described by the tuple {Ci, Ti,Ψi},

where Ci is the task’s Worst Case Execution Time (WCET),
and Ti is the task’s period. All tasks have implicit deadlines,
i.e. the deadline of τi is equal to Ti. A task can further have
a release offset Ψi. For all tasks executing on a processor,
the hyperperiod can be defined as the least common multiple
of all periods, HP = LCM(∀Ti, i ∈ Γ). Hence, a task τi
executes a number of jobs during one HP , where the jth

job is denoted as τi,j .

3.2 Communication between Tasks
In this work inter-task communication is realized via

shared registers. This is a common form of communication
and can be found in many industrial application areas.
In such a communication model, a sending task writes an
output value to a shared register. Similarly, a receiving task
reads the current value of this register. Hence, there is no
signaling between the communicating tasks, and a receiving
task always consumes the newest value (i.e. last-is-best).

In order to increase determinism, tasks operate on the
read-execute-write model. Meaning, a task reads all its in-
put values into local copies before the execution starts. Dur-
ing the execution phase only those local copies are accessed.
Finally, at the end of the execution the task writes the out-
put values to the shared registers, making them available
to other tasks. In short, reading and writing of input and
output values is done at deterministic points in time, at the
beginning and end of the tasks execution respectively. This
is a common communication form found in several industrial
standards (i.e. in AUTOSAR this model is defined as the
implicit communication [3]. Also the standard IEC 61131-3
for the automation systems defines similar communication
mechanisms [1]).

3.3 Cause-Effect Chains
For many systems it is not only important that the indi-

vidual tasks execute within their timing constraints but also
that the data propagates through a chain of tasks within
certain time bounds. One example is the Air Intake Sys-
tem (AIS), which is part of the Engine Management System
(EMS) in a modern car. For a smooth operation, the air
and fuel mixture inside the engine must be controlled and
the AIS is responsible for injecting the correct amount of
air. To do so, an initial sensor task periodically samples the
position of the pedal, followed by a number of control tasks
that process this information, and finally an actuator task
actuates the throttle to regulate the amount of air inside
the engine. For the control algorithm, it is important that
the sensed input data is fresh in order to reach the required
control quality. Hence, the time from reading the data until
the actuation is subject to delay constraints in addition to
the task’s individual timing constraints.

In AUTOSAR such constraints are described by the cause-
effect chains [2]. For a task set Γ, a set of cause-effect chains
Π can be specified. Where Π contains the individual cause-
effect chains ζi. A chain ζi is represented by a Directed
Acyclic Graph (DAG) {V, E}. The nodes of the graph are
represented by the set V and contain the tasks involved in
the cause-effect chain. The set E includes all edges between
the nodes. An edge from τi to τk implies that τi has at least
one output variable which is consumed by τk. A cause-effect
chain can have forks and joins, but the first and the last task
in the chain must be the same for all possible data paths.
To simplify the analysis, chains with fork/join operations
are decomposed into individual sequential chains. Hence,



!"

!#

!$
t

Hyperperiod

2 4 6
Maximum	Data	Age

Task	arrival
Task	execution
Data	propagation
Overwritten	data

Figure 1: Data propagation between tasks of a cause-effect
chain in a real-time system with maximum data age speci-
fied.

all cause-effect chains in Π are sequential.

End-to-End Timing Requirements
For each cause-effect chain, an end-to-end timing require-
ment can be specified. Several end-to-end timing require-
ments are defined for automotive systems [2, 4]. In this work
the data age, as the most important timing requirements for
control systems, is examined. A detailed discussion of end-
to-end delays is provided in [11].

For the data age, the maximum time from sampling an
initial input value at the beginning of the cause-effect chain,
until the last time this value has influence on the produced
output of the cause-effect chain is of interest. Fig. 1 de-
picts an example with three tasks, τ1, τ2, and τ3. All tasks
are part of a cause-effect chain in this order. Note that τ1
and τ3 are activated with a period of T = 2, while τ3 is
activated with a period of T = 4. This leads to over- and
under-sampling between the different tasks. While the out-
put value of the first instance of τ1 is consumed by the first
instance of τ2, the data produced by the second instance of
τ1 is overwritten before τ2 has the chance to consume it.
Similarly, the data produced by the first instance of τ2 is
consumed by the first instance of τ3. Since no new data is
produced before the second instance of τ3 is scheduled the
same data is consumed. In the example, this constitutes the
maximum data age, from sampling of the first instance of
τ1 until the last appearance of the data at the output of the
second instance of τ3.

4. RECAP: CALCULATION OF DATA
PROPAGATION PATHS

In this section we recapitulate the calculations of data
propagation paths for systems without prior knowledge of
the schedule, as this is basis for the work presented in this
paper. For a more in depth explanation a reader is referred
to [8].

4.1 Reachability between Jobs
The main concept to decide if data can be propagated be-

tween two distinct jobs are the read interval and the data
interval. For a job τi,j , the read interval is defined as the
interval starting from the earliest time a job can poten-
tially read its input data (Rmin(τi,j)) until the last possible
time a job can do so without violating its timing constraints
(Rmax(τi,j)). Similarly, the data interval is defined as the in-
terval from the earliest time the output data of a job can be
available (Dmin(τi,j)) up to the latest time a successor job of
the same task overwrites the data (Dmax(τi,j)). Hence, the
read interval RIi,j is the interval [Rmin(τi,j), Rmax(τi,j)],
and the data interval is [Dmin(τi,j), Dmax(τi,j)). These con-
cepts are depicted in Fig. 2 for jobs of a task τi. For a system

without any knowledge of the scheduling decisions one has
to assume that a job can be scheduled anywhere, as long as
it starts not before its release and finishes not after its dead-
line. In [8], the notations to define the intervals for systems
without offset are defined as follows:

Rmin(τi,j) = (j − 1) · Ti (1)

Rmax(τi,j) = Rmin(τi,j+1)− Ci (2)

Dmin(τi,j) = Rmin(τi,j) + Ci (3)

Dmax(τi,j) = Rmax(τi,j+1) + Ci (4)

Ci

t

RIi,k+1

DIi,k

DIi,k+1DIi,k�1

RIi,k+2

Ci

RIi,k

Ci

Figure 1: Read and data intervals of consecutive jobs of ⌧i.
Figure 2: Read and data intervals of consecutive jobs of τi
if no scheduling information is available.

4.1.1 Deciding Reachability Between Jobs
In order for a job τk,l to consume data of a job τi,j the

data interval of τi,j must intersect with the read interval of
τk,l. The function Follows(τi,j , τk,l) is defined to return true
if this is the case:

Follows(τi,j , τk,l) =

{
true, if RIi,j ∩DIi,j 6= ∅
false, otherwise

4.1.2 Adjusting the Data Interval for Long Chains
In order to capture the characteristics of data propagation

in a cause-effect chain of length > 2, the data interval needs
to be modified. Assume the first job of τi, as shown in
Fig. 2 is followed by a job of a task τk. τk is released with
the same period as that of τi, but the execution time of τi
is shorter than the one of τk. Follows(τi,1, τk,1) returns true
and indicates that τk,1 can potentially consume the data of
τi,1. However, in order to decide reachability between the
τk,1 and a third task in the chain the data interval of τk,1
must be modified. This is the case because τk,1 can consume
the data of τi,j earliest at time Dmin(τi,j). Consequently,
this data can earliest be available as output data of τk,l at
time Dmin(τi,j) + Ck. D′min(τk,l, τi,j) defines the starting
time of the data interval of τk,l if the data produced by τi,j
shall be considered as well:

D′min(τk,l, τi,j) = max(Dmin(τi,j) + Ck, Dmin(τk,l))

Note that the data interval only needs to be adjusted if
Dmin(τk,l) is smaller than Dmin(τi,j) +Ck. These modifica-
tions are local for the specific data path, hence, if another
combination of jobs is involved then the original data inter-
val must be used.

4.2 Calculating Data Paths
To calculate all possible data propagation paths in a sys-

tem, a recursive function is used. This function constructs
all possible data propagation paths from a job of the first
node in a cause-effect chain up to the job of a last node of
the chain. Consequently this needs to be done for all jobs of
the first task of a chain, inside the hyperperiod of the chain.

The function starts at the first level of the cause-effect
chain, for the initial job all jobs of the second task of the



Table 1: Description of the read and data interval for different systems with different levels of timing information.

No Knowledge Exact Schedule Known WCRT Known LET Execution Model

Rmin(τi,j) Ψi + (j − 1) · Ti starti,j Ψi + (j − 1) · Ci (j − 1) · Ti
Rmax(τi,j) j · Ti − Ci Rmin(τi,j) Rmin(τi,j) +WCRTi−Ci Rmin(τi,j)

Dmin(τi,j) Rmin(τi,j) + Ci endi,j Rmin(τi,j) + Ci j · Ti
Dmax(τi,j) Rmax(τi,j+1) + Ci endi,j+1 Rmax(τi,j+1) + Ci (j + 1) · Ti

chain are found where Follows() returns true. To these
nodes a logical data path is created. The same principle
is applied from each of these nodes to the jobs of the next
lower level of the cause-effect chain. Once the last level is
reached all possible paths are calculated and the function
returns. Interested readers are referred to [8] for a detailed
explanation.

4.3 Constructing Data Propagation Paths and
Maximum Data Age

For one data path the maximum end-to-end latency, and
thus the data age, can be computed as follows, where τstart
is a job of the first task of the cause-effect chain, and τstop
is a job of the last task of a cause-effect chain:

AgeMax(τstart, τend) = (Rmax(τend) +Cend)−Rmin(τstart)

In order to compute the maximum data age for any possible
path in the system, AgeMax() must be computed for all
computed data paths. The maximum of these values is the
maximum data age of the cause-effect chain.

5. REACHABILITY BETWEEN JOBS IN
DIFFERENT SYSTEMS

The basic computation of data age latencies without prior
knowledge of the schedule can result in pessimistic results.
Many of the computed data propagation paths may not oc-
cur since scheduling algorithms impose a recurring order of
jobs in each hyperperiod of the task set. In this section,
modifications of the read and data interval are presented to
reflect the behavior of systems with more elaborate knowl-
edge on the scheduling decisions. One key observation is
that the presented method to calculate the different data
paths and the maximum data age is independent of the con-
crete system model as long as the read and data intervals are
adjusted accordingly. Table 1 depicts the required changes
to the read and data interval for different levels of system
information. The remainder of this section discusses these
required modifications in more detail.

5.1 Knowledge of Task Release Offsets
In our earlier work [8], no task release offsets were consid-

ered in the analysis. In order to account for known offsets,
the read interval needs to be adjusted. Given an offset Ψ,
a job of a task can now read its input data only after Ψ
time units after the start of its period. The end of the read
interval is unchanged at C time units before the next period
starts. Since Dmin and Dmax are described by Rmin and
Rmax, no direct changes are required in the formulation.

5.2 Reachability in known Schedules
Many real-time systems deploy time-triggered schedules

in order to guarantee a deterministic system behavior. In
such a schedule it is known at design time when the differ-
ent jobs of the different tasks are executed. Thus, a complete

knowledge of the system is available. On the other hand, for
dynamically scheduled systems it is often possible to com-
pute the Worst-Case Response Time (WCRT). In that case
the exact execution times of a task are not known but the
earliest and latest time a task can execute is known.

5.2.1 Schedule is Available
Let’s assume an offline schedule is available for the system.

So for each job τi,j of the task set its exact start time is
known as starti,j , and similarly its finishing time is known
as endi,j , see Fig. 3. With this additional knowledge the
read and data interval can be adjusted as shown in Table 1.

Since the start of the jobs execution, and hence the time it
reads its input data, is known, the read interval collapses to
a point. This also leads to smaller data intervals, resulting
to no overlap between consecutive jobs.

t

RIi,k+1

DIi,k

DIi,k+1DIi,k�1

RIi,k+2

Ci

RIi,k

t

⌧i

Figure 1: Read and data intervals of consecutive jobs of ⌧i.
Figure 3: Read and data intervals of consecutive jobs of τi
if the exact schedule is available.

5.2.2 Worst Case Response Time is Available
For systems where the WCRT of a task τi is known as

WCRTi, the read and data interval can be adjusted to
account for this more accurate system information (see
Fig. 4). The modifications of the read interval mainly
reflect the possible execution of a job during its execution
window (bounded by the WCRT).

t

RIi,k+1

DIi,k

DIi,k+1DIi,k�1

RIi,k+2

Ci

RIi,k

t

⌧i

WCRTi

Ci

Figure 1: Read and data intervals of consecutive jobs of ⌧i.
Figure 4: Read and data intervals of consecutive jobs of τi
if WCRT of the tasks are available.

5.3 Reachability in the LET model
The LET model provides an abstraction to the system de-

signer by temporally decoupling the communication among
tasks from the tasks execution. In this model, the input val-
ues of a task are always read at the release of the task. The



output values become available once the next period starts.
In Fig. 5 these points are highlighted by the thick orange line
below the arrows marking the job releases. This temporal
decoupling of communication and execution has significant
advantages for the end-to-end delay calculations.

The periodic access to all input variables at the beginning
of the period collapses the read interval to a point. The data
interval is also defined, making the output data available for
exactly the period after the jobs execution. These modifica-
tions are shown in Table 1. As can be seen, all descriptions
are independent of the actual execution time of the job.

t

RIi,k+1

DIi,k

DIi,k+1DIi,k�1

RIi,k+2

Ci

RIi,k

t

⌧i

Figure 1: Read and data intervals of consecutive jobs of ⌧i.Figure 5: Read and data intervals of consecutive jobs of τi
if the system operates based on the LET model.

5.4 Discussion
All presented modifications affect solely the read and/or

data intervals of the jobs. Hence, the existing calculations
for the maximum data age, as presented in [8] and recapit-
ulated in Section 4, can be applied without modification.
This fact allows the system designer to perform the calcula-
tion of maximum data age during early design phases, where
only limited knowledge is present, or during the end of the
system design where more complete system knowledge can
be obtained.

A tradeoff between required system knowledge and accu-
racy of the obtained maximum data age exists. For systems
with exact knowledge, and for the LET system, it can be
observed, that data intervals of different jobs of the same
task are never overlapping with each other. This means
that it is always certain which data is consumed by a job
and thus, all data paths which are computed are observed
in the execution of the system.

Lemma 1. If it holds for all tasks in a chain, that the read
intervals of a task are reduced to a point (i.e. Rmin(τi,j) =
Rmax(τi,j), then the calculated end-to-end delays are exact.
Here ”exact” means that all calculated end-to-end delays are
observed during the execution of the real system.

Proof. From the definition of the read- and data-interval
in Section 5 we can see that once Rmin(τi,j) = Rmax(τi,j)
the resulting data intervals of consecutive jobs are not
overlapping. Given that data intervals are not overlapping
and read intervals are reduced to points, the function
Follows(τi,j , τk,l) only returns true for the jobs which
actually consume the respective data during the execution
of the real system.

6. EVALUATION
This section presents the evaluation of the proposed ap-

proaches to analyze the end-to-end delay based on various
levels of system knowledge. First the computed worst-case
data-age based on various information levels is compared.
Further the required computation time to perform the anal-
ysis at the presented information states are evaluated.

6.1 Experimental Setup
The analyzed cause-effect chains for the experiments

are generated according to the automotive benchmarks
described in [14]. The task periods are uniformly selected
out of the set {1, 2, 5, 10, 20, 50, 100, 200, 1000}ms. The
individual task utilization is computed by UUnifast [9]. As
stated in [14], an individual cause-effect chain is comprised
of either 2 or 3 different periods, where tasks of the same
period appear in sequence in the chain. Note that not
all period-pairs are valid predecessors in a cause-effect
chain [14], which is accounted for during the random gen-
eration of the cause-effect chain. For each of the presented
data points 1000 random cause-effect chains are examined.

Fixed priority scheduling is used as scheduling algorithm
in order to compute the response times and the information
for the exact schedule of the tasks. Priorities are assigned
based on the Rate Monotonic [15] policy, where priorities
between tasks of the same period are assigned in arbitrary
order. For the evaluation of the systems with required re-
sponse times or known schedule, the response times are cal-
culated based on the well-known analysis for task scheduling
presented in [13], and the schedule is generated by simula-
tion of the tasks execution.

6.2 Pessimism during the Individual Design
Phases

The first experiment examines systems under all four pre-
sented information states, no information, response times,
known schedule, and LET model. The same cause-effect
chain is analyzed with increased available system informa-
tion. The system contains 30 tasks while the cause-effect
chain is comprised of 4 to 10 tasks in the case of two acti-
vation patterns (i.e. periods), and 6 to 15 tasks in the case
of three activation patterns and the system utilization is set
to 80%. The results are presented in Fig. 6. The calculated
end-to-end latencies are normalized in respect to the chains
hyperperiod and shown on the y-axis. The decreased pes-
simism in the analysis with increased system knowledge is
visible for all experiments. The computed worst-case data
age of the same scenario includes lesser pessimism from sys-
tems with no prior information to systems with known re-
sponse times up to systems where the schedule is available.
Additionally, we present the maximum data age under the
LET model, which behaves close to the computed results
based on response times in our setting. The difference of the
execution semantic becomes visible when comparing with
the results for known schedules. Both results are exact re-
sults under the respective execution semantic but the ob-
served maximum data age for the LET model is two times
as large as the value for the known schedule.

6.3 Analysis of the Computation Time
One of the main improvements behind the presented ap-

proaches is to only modify the input set while the analysis
framework is unchanged. In this experiment we evaluate the
required computation time for the analysis under the differ-
ent levels of system knowledge. The system contains 30 tasks
while the cause-effect chain under analysis has a length of 4
to 10 tasks with two involved activation pattern. All exper-
iments were performed on a system containing an Intel i7
CPU (4 cores at 2,8GHz), and 16GB of RAM. The results
are shown in Fig. 7. The two scenarios with exact knowl-
edge (i.e. the known schedule and the LET model) have very



0

2

4

6

8

10

12

4 5 6 7 8 9 10

M
ax
	D
at
a	
Ag

e	
in
	C
ha

in
-H
P

Number	of	Tasks	in	Chain

No	Information
Response	Times
Known	Schedule
LET

(a) Cause-effect chains with 2 involved periods.

0

2

4

6

8

10

12

6 7 8 9 10 1 12 13 14 15

M
ax
.	D

at
a	
Ag

e	
in
	C
ha

in
-H
P

Number	of	Tasks	in	Chain

No	Information
Response	Times
Known	Schedule
LET

(b) Cause-effect chains with 3 involved periods.

Figure 6: Comparison of the max. data age (normalized to the chains HP) for chains with 2 and 3 activation patterns under
various levels of system knowledge.

low analysis times with almost no increase with increasing
length of the chain under analysis. On the other hand, the
scenarios with less system information experience an expo-
nential increase in analysis time. This can be explained by
the increased uncertainty due to overlapping data-intervals,
which leads to multiple possible successors which all need to
be checked by the algorithm.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

Av
rg
.		
An

al
ys
is	
Co

m
pu

ta
tio

n	
Ti
m
e	
in
	m

s

Number	of	Tasks	in	the	Chain

No	Information
Response	Times
Known	Schedule
LET

4 5 6 7 8 9 10

Figure 7: Average analysis time for cause-effect chains with
2 involved periods.

7. CONCLUSION AND OUTLOOK
In this work we have shown how to utilize the different

levels of system information available during the design of
automotive systems in order to compute the maximum data
age of a cause-effect chain. This is done by extending the
analysis method presented in [8] by adjusting the read- and
data-intervals, which are used as input values of the analysis,
to reflect the increase in system knowledge. A clear trade-
off can be observed between the required information for the
analysis and the pessimism in the obtained results. Future
work focuses on the analysis of maximum data age over a
cause-effect chain which is distributed over multiple nodes,
connected by a network.

Acknowledgment
The work presented in this paper is supported by the Swedish
Knowledge Foundation (KKS) through the projects PREMISE,
DPAC, and PreView.

8. REFERENCES
[1] IEC 61131-3, 2003.
[2] AUTOSAR - Spec. of Timing Extensions, 2014.
[3] AUTOSAR - Specification of RTE, 2014.
[4] EAST-ADL - Domain Model Specification, 2014.
[5] AUTOSAR, last access October 2016. Available at

www.autosar.org.

[6] Arcticus Systems. Rubus ICE, [Online]
https://www.arcticus-systems.com/products/, last visited
25.10.2016.

[7] M. Ashjaei, S. Mubeen, M. Behnam, L. Almeida, and
T. Nolte. End-to-end resource reservations in distributed
embedded systems. In the 22th RTCSA, pages 1 – 11, 2016.

[8] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and
T. Nolte. Synthesizing job-level dependencies for
automotive multi-rate effect chains. In the 22th RTCSA,
pages 159–169, 2016.

[9] E. Bini and G. Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems Journal,
30(1-2):129–154, 2005.

[10] M. Broy. Challenges in automotive software engineering. In
the 28th ICSE, pages 33–42, 2006.

[11] N. Feiertag, K. Richter, J. Norlander, and J. Jonsson. A
compositional framework for end-to-end path delay
calculation of automotive systems under different path
semantics. In the 1st CRTS, 2008.

[12] J. Hennig, H. Hasseln, H. Mohammad, S. Resmerita,
S. Lukesch, and A. Naderlinger. Towards parallelizing
legacy embedded control software using the LET
programming paradigm. In RTAS WiP, 2016.

[13] M. Joseph and P. Pandya. Finding response times in a
real-time system. The Computer Journal, 1986.

[14] S. Kramer, D. Ziegenbein, and A. Hamann. Real world
automotive benchmarks for free. In the 6th WATERS, 2015.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the ACM, 1973.

[16] S. Mubeen, J. Mäki-Turja, and M. Sjödin. Support for
end-to-end response-time and delay analysis in the
industrial tool suite: Issues, experiences and a case study.
Computer Science and Information Systems, 10(1), 2013.

[17] A. C. Rajeev, S. Mohalik, M. G. Dixit, D. B. Chokshi, and
S. Ramesh. Schedulability and end-to-end latency in
distributed ecu networks: Formal modeling and precise
estimation. In the 10th EMSOFT, pages 129–138, 2010.

[18] S. Schliecker and R. Ernst. A recursive approach to
end-to-end path latency computation in heterogeneous
multiprocessor systems. In the 7th CODES, pages 433–442,
2009.

[19] F. Stappert, J. Jonsson, J. Mottok, and R. Johansson. A
design framework for end-to-end timing constrained
automotive applications. In the 2nd ERTS.

[20] Symtavision GmbH. SymTA/S and TraceAnalyzer for
ECUs, [Online]
https://www.symtavision.com/products/ecu-timing/, last
visited 25.10.2016.

[21] Timing Architects. Timing Architects Inspector, [Online]
https://www.timing-architects.com/ta-tool-
suite/inspector/, last visited
25.10.2016.


