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Abstract: Fault tolerance has become more and more important in the development of autonomous systems with the aim

to help the system to recover its normal activities even when some failures happen. Yet, one of the concerns

is how to analyze the reliability of a fault tolerance mechanism with regards to the collaboration of multiple

agents to complete a complicated task. To do so, an approach of fault tolerance analysis with the colored time

Petri net framework is proposed in this work, where a task can be represented by a tree of different concurrent

and dependent subtasks to assign to agents. Different subtasks and agents are modeled by color tokens in

Petri network. The time values are added to evaluate the processing performance of the whole system with

respect to its ability to solve a task with fault tolerance ability. The colored time Petri nets are then tested

with simulation of centralized and distributed systems. Finally the experiments are performed to show the

feasibility of the proposed approach. From the basics of this study, a generalized framework in the future can

be developed to address the fault tolerance analysis for a set of agents working with a sophisticated plan to

achieve a common target.

1 INTRODUCTION

Until recently, robots have played an important role
mainly in controlled processes such as manufactur-
ing. However, nowadays there is a shift which points
in the direction of having various types of (semi-
)autonomous agents, or robots, in our daily activities.
This paradigm shift also means that these agents will
most likely interact with each other, sometimes for
collaboration, in most case without having human su-
pervision. In short this is a shift to replace a conven-
tional automatic system with its autonomous coun-
terpart. Unlike an automatic robot that usually per-
forms repetitive tasks within a well-controlled envi-
ronment, an autonomous robot must perform its tasks
with a very high level of automation and may col-
laborate with other robots and human to complete in-
tended tasks. In this work, it is assumed that building
a trustworthy system of collaboration raises a num-
ber of challenging questions, that could be addressed
with the definition of dependability. Originally, de-
pendability is devised from software development ar-
eas and can be stated by Avižienis et al. (Avižienis
et al., 2004) as ”the ability to deliver service that can
justifiably be trusted”. To realize this idea, the de-
pendability is measured by attributes such as avail-

ability, reliability, safety, integrity, or maintainability.
In general, the dependability of a system is assessed
by one, several, or all above attributes. Within the
scope of this paper, the dependability is implemented
with the reliability which presents the continuity of a
system to provide correct services. It is noted that the
things affecting dependability consist of failures, er-
rors, and faults. The link between the above factors
is known as the fault-error-failure chain: The failure
happens when the service provided by a system does
not comply with its specification; The error affects the
services and leads to the failure of the system; The hy-
pothesized cause of an error is a fault. However, the
failures are only detected at the system boundary. As
a system contains a number of interconnected parts,
the system boundary is defined to decide which el-
ements are inside and which are outside the system.
In some cases, the faults cause errors inside the sys-
tem boundary and thus the errors may be not observ-
able immediately but lead to a failure later. There-
fore, the fault is the key that leads to a system fail-
ure and the approach to protect the system’s depend-
ability is to develop means of fault analysis and of
fault removal to prevent failures from the system. For
the sake of simplicity, the concept of agent is used in
this paper to refer to software or hardware (robot) sys-



tems which perform actions to interact with an envi-
ronment. Extensive literature reviews of conventional
works to deal with the means to remain dependabil-
ity of autonomous agents are presented by Guiochet
(Guiochet, 2015). It is noted that not all the faults
from the system always can be analyzed and removed.
Fault tolerance therefore aims at continuing agent ser-
vices even with the presence of faults during the op-
erational stages of autonomous agents. Usually, fault
tolerance is implemented by using redundant agents,
i.e., once a failure is present, the backup agent is acti-
vated to replace the failed one. One limitation of most
conventional works is that there is a lack of investi-
gation on the analysis of fault tolerance mechanism
within the scope of system dependability. Obviously,
the evaluation on the fault tolerance ability of a sys-
tem could provide valuable information to improve
the system performance. This paper therefore pro-
poses a fault tolerance analysis for autonomous agents
within the context of agent-agent collaboration. By
the means of fault analysis, different methods such as
Petri net (PN), fault tree analysis (FTA), failure modes
effects and criticality analysis (FMECA), and hazard
operability (HAZOP) have been developed (Bernardi
et al., 2013). Yet, the PN framework has received a
lot of attention from research community due to its
wide applications for fault prevention in both devel-
opment and operational stages of an agent architec-
ture. Which also includes support for mitigation of
the implementation progress. With regards to those
advantages, an extended PN with colored time PN
(CTPN) for the analysis of fault tolerance mechanism
of collaborative agents has been chosen.

The rest of the paper is organized as follows. Sec-
tion 2 presents extensive literature reviews related to
this work. The analyses of fault tolerance in both cen-
tralized and decentralized approaches together with
PN background are described in Section 3. Exper-
imental results are illustrated in Section 4. Finally,
Section 5 concludes the paper with discussion of fu-
ture works.

2 RELATED WORKS

As aforementioned, the assessment of system depend-
ability is based on the basic attributes. Depending on
the specific applications, different attributes are used
to measure the dependability of a system. In the early
developments of software platforms, a multi-level
view of dependable computing was first developed by
Parhami (Parhami, 1994), in which most dependabil-
ity attributes were implemented. For robotics, with
regards to the safety to assess the dependability, an

intelligent home care robot to assist elderly people
was introduced by (Graf and Gele, 2001). The pro-
posed home care system was equipped with alterna-
tive levels of safety to prevent accidents caused by a
person being hit by the robot. The safety navigation
system consisted of user interface, path planning, and
obstacle avoidance with extensive sensors for motion
detection. In the work of (Mustapic et al., 2004), a
safe platform for industrial robotics has been devel-
oped. The authors have initialized the architectural
level of how to open a platform for quality constraints
and how to implement fault prevention. Although the
aspect of dependability was of major interest, these
papers did not address issues related to collaborative
robots.

For reliability analysis, PN has been applied as
an effective technique to model dependability (Mal-
hotra and Trivedi, 1995). Recently, reliability assess-
ment was introduced with time PN and Markov chains
(Kohlı́k, 2009). The analysis of fault tolerance in
manufacturing systems by using PN was developed
by (Miyagi and Riascos, 2004). In their study, the
hierarchical and modular integration of PN was com-
bined to analyze production process, fault detection
process, and fault treatment process. Meanwhile, the
application of the generalized stochastic PN used on
the navigation of a single service agent was presented
by (Kim and Chung, 2007). The coordination of mul-
tiple controllers for agent navigation was then intro-
duced by (Moon and Chung, 2012). Similarly, PN
was used for the control of a group of robotic agents
(Joaquin et al., 2011).

In another aspect, the development of fault toler-
ance aims at increasing the reliability of a system. In
the work of (Troubitsyna and Javed, 2014), adaptive
fault tolerance was developed with regards to the sys-
tem dependability. A research on fault tolerance for
a group of agents in a cooperative environment was
described by (Haddad and Haddad, 2004). In their re-
search, the authors proposed a communication mech-
anism between the agents in a team to coordinate and
allocate the resources. The PN was used to illustrate
the model of the whole system. However, the research
is limited to a scheduling protocol for an agent team.
Close to our study, the fault tolerance analysis with
PN for a coordination of multi agents was developed
by (Acharya et al., 2014). However the approach pro-
posed by Acharya et al. has just initialized a picture
of how the system may look like. The study lacked
experimental setup for validation. Moreover, the non-
colored and non-hierarchy PN structure used in the
approach made the design complicated and unclear.

In this paper, the colored time PN enhanced with a
hierarchy structure is utilized to analyze the depend-



ability of cooperative autonomous agents. The ef-
fectiveness of color tokens helps to distinguish mul-
tiple agents working together to address a compli-
cated tasks of multiple subtasks. Unlike the origi-
nal Petri nets, the hierarchy structure of colored PN
combined with time value lacks for well-define math-
ematical tools for analysis. To deal with difficulty, the
repeated experiments and recorded data at interested
places and transitions of PN are applied for statistical
analysis. Finally, the proposed approach are exam-
ined with centralized and distributed studies.

3 BACKGROUND AND
PROPOSED APPROACH

3.1 Background of Petri Nets

Petri net (PN)(Yen, 2006) was described as a se-
quence of place-transition-place to move tokens
within a PN network. Well defined mathematic mod-
els with a set of theory and linear algebra have been
developed to analyze the state-transition of PN. Be-
sides, a graphical presentation of PN helps to have a
clear visualization of the modeled system, which may
consist of synchronization, concurrency, and confu-
sion stage within distributed manners.

In mathematical aspect, PN is a bipartite graph de-
fined as a set of three tuples (Γ,Σ,Θ), where Γ and Σ
are the set of finite places and transitions in such a
way that there is no element belonging to both Γ and
Σ,i.e, Γ and Σ are disjoint sets. Θ is the set of arcs
so that an arc connects from a place to a transition
and vice versa and the connections between places or
between transitions are unacceptable. The arcs go-
ing out from a place to a transition are named input
places of transitions, while the arcs going out from a
place are defined as output places of transitions. An
extension of PN adds the weight on the input and out-
put flows of each transition. With regards to the set
of output weights W− and input weights W+, PN is
refined with a set of five tuples (Γ,Σ,Θ,W−,W+).
A marking M of PN assigns a number of tokens to
each place. Let the marking M be expressed by a vec-
tor [M(p1),M(p2), ...,M(pi), ...,M(pn)], where pi is
a place, n the number of places in PN, and M(pi)
the number of tokens at the place pi. Let W− be a
two dimensional matrix of weights W−(pi, t j) from
the place pi to the transition t j. W+ is defined in a
similar way with the weight W+(t j, pi) from the tran-
sition t j to the place pi. Note that 1 ≤ j ≤ m, where m
is the number of transition. With regards to the tran-
sition t, the change of the marking vector from M to

M′ is expressed by

M′(p) = M(p)+W+(t, p)−W−(p, t),∀p. (1)

The tuple (Γ,Σ,Θ,W−,W+) of PN is extended to
(Γ,Σ,Θ,W−,W+,M0) with M0 as the initial mark-
ing. Applying linear algebra based on equation (1),
the reachability from the marking M to M′ can be
checked. Moreover, a full graph of all markings and
possible transition from one marking to another are
described by state-space analysis. As the number of
vertices and edges of the state-space graph increase
dramatically with regards to the number of places and
transitions, state-space analysis is limited to a small
PN network.

The colored PN (CPN) is an extension of PN,
in the sense that CPN has different types of token
marked with color (Jensen, 2003). The transition fires
separately with respect to each kind of token. The
arc expressions built from operators and functions are
further used to decide the transition behavior of differ-
ent colors. Unlike conventional PN, only backward-
compatible CPN is able to be analyzed with avail-
able mathematical models. Other CPNs must rely on
simulation with statical analysis to reveal the visiting
frequencies of tokens at places and availability of a
marking state.

Another extension is the stochastic PN which adds
a time delay at each transition where the firing rate
is determined by a random variable. The state-space
analysis is performed by probabilistic inference in a
Markov chain. Generalized stochastic PN extended
the stochastic PN with the possibility of immediate
transition to forward to token without any time delay.
In this paper, the generalized framework with colored
time PN (CTPN) is utilized to deal with the time de-
lay of both non-deterministic and deterministic vari-
ables. CPNTools (Jensen, 2003) are used to create
CTPN and perform the analysis.

3.2 Fault Tolerance with Cooperative
Agents

In the proposed system, it is supposed that there is
a pool of agents A = {a1,a2, ...,ai, ...,aN}, where N
is the number of agents. A sequence of tasks T =
{T1,T2, ...,Ti...,Tt} are assigned to the set of agents
A to be processed one by one where t is the time
index. For a complicated task, it is convenient to
separate each task into a number of subtasks Ti =
{ti1, ti2, ..., tiG}, where iG is the number of subtasks
of the task Ti. The subtasks are categorized into inde-
pendent subtasks and dependent subtasks. The inde-
pendent subtasks can be processed independently and
concurrently by different agents. Meanwhile, the de-



pendent subtasks, like ti j → tik, requires that the sub-
task ti j must be completed before tik. For fault toler-
ance, the definition of peer agent is introduced. The
two agents ai and a j are peer agents if they are able
to solve the common subtask. Thanks to the avail-
ability of multiple peer agents, once an agent fails to
do a subtask, other peer agents with the similar func-
tion are used to continue the tasks. In this model,
the agents {a1,a2,a3} and the subtasks {t1, t2, t3} are
available. Agent a1 is assigned with the subtasks
{t1, t2}, agent a2 with the subtasks {t2, t3}, and a3 with
the subtasks {t1, t3} respectively.

3.3 CPN Models of Agents for Fault
Tolerance Analysis of Centralized
Systems

In this model, all subtasks are managed by a super-
vision module (SM) (Figure 1) with the tokens t(1),
t(2), and t(3). Once the SM receives a request to
perform a set of subtasks from a task management
module (TMM), it will send the subtasks to available
agents according to the description provided in Sec-
tion 3.2. If one of the agents fails to complete the sub-
task, the SM will assign the subtask to another peer
agent. Meanwhile, the SM will collect all finished
subtasks and send them to the TMM. For each sub-
task tree, the TMM is respectively designed. In this
paper, the design of the TMM for a combined subtask
tree is introduced as an example.
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Figure 1: Design of a supervision module in centralized sys-
tems.

The agents a1, a2, and a3 (Figure 2) share the same

structure. It can be noted that this structure models
the agent modules (AMs) in the SM. If there is an
available agent, that agent will receive a subtask from
the SM. The approximate processing time to finish the
subtask is assumed to be τp (value proctime in agent).
Meanwhile, the fail event of an agent is modeled by
a random variable of the exponential distribution with
the rate λe (value failrate in agent). Once the agent
fails, the failed subtask will be returned to the SM and
it requires a time τr (value fixtime in agent) to recover
the normal activity of the agent. The tokens a(1),
a(2), and a(3) are used to reveal the availability of
the agents. Obviously, the performance of fault toler-
ance mechanism will depend on the tuples (τp,λe,τr)
and the further analyses are presented in Section 4.
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Figure 2: Design of an agent module in centralized systems.

3.4 CPN Models of Agents for Fault
Tolerance Analysis of Distributed
Systems

For a distributed system, in the SM (Figure 3), each
agent will share the information of which subtasks
have been completed and which subtasks are un-
finished by broadcasting messages for any updates.
Whenever an agent decides to do a subtask, it will
send a broadcast message to the other agents. If there
are no conflicts, the agent will start the subtask and
remove the subtask from an uncompleted subtasks
(USs) place to process. Once the subtask is accom-
plished, the agent broadcasts a message to inform the
others to update and append the list in a completed
subtasks (CSs) place with the new completed subtask.



The agent, while doing a task, is being checked for its
availability and will frequently send an ”alive” mes-
sage. All agents will be noticed of the failures of an
agent and the information is updated in the USs place.
In our system, it is assumed that the copy of the list
USs and CSs are available in the memory of every
agents. The design of an AM (Figure 4) is developed
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Figure 3: Design of a supervision module in distributed sys-
tems.

from the centralized systems. Yet, the module is ad-
vanced with the ability to choose and process the sub-
tasks from the USs by itself. Besides, the time delay
with a variable τb (value broadcast in agent) is intro-
duced for the broadcast process.

4 RESULTS

As it is depicted in Figure 5, the different subtask trees
including independent subtasks, dependent subtasks,
and the combination of independent and dependent
subtasks are used for testing CPN models for both
centralized and distributed systems.

4.1 Fault Tolerance Analysis of
Centralized Systems

The TMM (Figure 6) is utilized to handle the com-
plicated tasks requiring the subtask t3 to follow the
accomplishment of the subtask t1 and t2. The TMMs
are designed similarly for the independent subtasks
and dependent subtasks. One hundred tasks are gen-
erated to test the fault tolerance ability of the coop-
erative agents. Each task consists of three concur-
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Figure 5: Subtask trees. (a) Three subtasks t1, t2, and t3 are
independent. (b) The order of processing subtasks is t1, t2,
and then t3. (c) Two subtasks t1 and t2 must be completed
before the subtask t3 is processed.

rent subtasks t1, t2, and t3. Once all the subtasks are
completed, the TMM checks the results to confirm
the accomplishment of the task and requires a new
task for the set of agents. The performance of fault
tolerance is evaluated by the average processing time
needed to process each task. The processing time of
each agent for a subtask is assumed τp = 20. The
longer recovering time τr needed of each agent after
a fail appears, the more time the whole system will
need to finish a task in general. Therefore, three cases
τr/τp = 0.5, τr/τp = 1, and τr/τp = 1.5 were evalu-



ated respectively. The fail rate varies from 10 to 100,
(10 ≤ λe ≤ 100).
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Figure 6: Design of task management module for mixtures
of independent and dependent subtasks in centralized sys-
tems.

The results (Figure 7(a)) reflect what is expected
that the processing time increases when τr/τp in-
creases. Meanwhile, the processing time decreases
when the intervals between two fail events are pro-
longed. Logarithm scale is utilized to present the pro-
cessing time as it is very high with respect to the low
fail rate λe. For dependent subtasks, the same con-
figurations of parameters τp, τr, and λe are used to
perform the simulation results. The similar results
(Figure 7(b)) are obtained that the average processing
time increases according to rising τr/τp and the de-
creasing interval between two fail events. However,
there are not many differences between τr/τp = 1 and
τr/τp = 1.5. This may be due to the similar probabil-
ity of one of all three agents available to take care of
a subtask each time in the two cases. In the case of
combined subtask tree, the similar performance anal-
ysis of the processing time to complete all the tasks
with regards to the ratio τr/τp is acquired as given
in Figure 7(c). In conclusion, the dependency of dif-
ferent subtask within a task will require more time to
complete the task. Besides, the processing time in-
creases with respect to the increasing ratio τr/τp in
all the above studies.

4.2 Fault Tolerance Analysis of
Distributed Systems

As there are not many differences in the design of
the TMM between centralized and distributed sys-
tems, an example of the TMM to deal with the com-
plicated tasks consisting of independent and depen-
dent tasks is shown in Figure 8. The configuration
parameters of τp, τr, and λe are similar to those used
in Section 4.1, thus τb = 2 is used in the following
experiments. The evaluation of fault tolerance perfor-
mance of distributed agents to process the indepen-
dent subtasks is given in Figure 9(a). Similarly, the
average processing time to complete a task is propor-
tional to the ratio τr/τp. However, due to the delay
of broadcasting messages, in overall, the processing
time in distributed system is higher than that in cen-
tralized system. The results (Figure 9(b)) show the
fault tolerance performance of the distributed system
to deal with the tasks of dependent subtasks. How-
ever, the differences of the processing time with re-
gards to the ratio τr/τp in the cases 0.5, 1.0, and 1.5
are not significant. Because all agents take time to
deliver the broadcast messages, a failed agent may be
recovered before a new subtask arrives. Therefore,
the distributed system is less dependent on the recov-
ering time rather than the centralized system. How-
ever, more experiments must be performed to validate
this conclusion. The last experimental results (Figure
9(c)) present how the distributed systems process the
tasks of mixed independent and dependent subtasks.
There are similar conclusions to those presented in
previous simulations.

Finally, an overall evaluation (Figure 10) is used
to assess the fault tolerance ability of cooperative dis-
tributed agents. It can be seen that the appearances of
more dependent subtasks will prolong the whole pro-
cess to perform the task. Besides, the time required
by communication protocol used in distributed pro-
tocol also affected the fault tolerance performance.
In order to investigate further on this concern, the
processing time is evaluated with regards to the time
needed to broadcast messages among agents. Sim-
ilarly, the fixed ratio is in a range τr/τp = 1 and
0.25 ≤ τb/τp ≤ 1.5. The results in Figure 11 clearly
show the effects of communication time with fault tol-
erance ability of the system.

5 CONCLUSIONS

In this paper, the formulation of CTPN has been in-
troduced for the fault tolerance analysis for a group
of agents cooperating to solve complicated tasks. The
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Figure 7: The average processing time to finish a task with respect to τr/τp in centralized systems. (a) Independent subtasks,
(b) Dependent subtasks, and (c) Mixtures of independent and dependent subtasks.
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of independent and dependent subtasks in distributed sys-
tems.

fault tolerance is performed by replacing a failed
agent to continue the unfinished tasks. The CTPN
models have been designed to validate this method
for both centralized and distributed approaches. In
simulations, different trees of independent and depen-
dent subtasks were evaluated. From the experimental
results, the analysis has shown the correlation of the
processing time to finish a complicated task with the
failure rates of an agent. Besides, the experiments re-
vealed that for distributed agents, the communication
protocol also played an important role on the fault tol-

erance success of the whole system.
In future, the proposed approach will be extended

to deal with a more complicated tree of subtasks.
Other fault tolerance mechanisms for the group of
agents are also concerned. Furthermore, experiments
with real robots will be planned to compare the fault
tolerance analysis provided by PN with that acquired
from realistic setup.
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