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ABSTRACT According to the model-driven engineering paradigm, one of the entry requirements when
realizing a seamless tool chain for the development of software is the definition of metamodels, to regulate
the specification of models, and model transformations, for automating manipulations of models. In this
context, we present a metamodel definition for the Rubus component model, an industrial solution used
for the development of vehicular embedded systems. The metamodel includes the definition of structural
elements as well as elements for describing timing information. In order to show how, using model-driven
engineering, the integration between different modeling levels can be automated, we present a model-to-
model transformation between models conforming to EAST-ADL and models described by means of the
Rubus component model. To validate our solution, we exploit a set of industrial automotive applications to
show the applicability of both the Rubus component model metamodel and the model transformation.

INDEX TERMS Computer applications, computer aided analysis, computer aided engineering, embedded
software, software systems, software engineering, software architecture, model-driven development vehi-
cles, metamodeling, system modeling language.

I. INTRODUCTION
During the last decades, industrial demands on vehicular
embedded systems have constantly grown causing an incre-
ment in complexity of the related software. It has been esti-
mated that current vehicles can have more than 70 embedded
systems running up to 100 million lines of code [1]. On the
one hand, industry needs efficient processes to cope with the
size of these systems for optimising software development
cost and time-to-market. On the other hand, most vehicular
embedded systems have extra-functional requirements that
have to be taken into account from the early stages of the
development.More specifically, vehicular embedded systems
are real-time systems [2], meaning that theymust deliver their
functionality within their timing deadlines. Consequently,
timing requirements are crucial for these systems.

Lately, Model-Driven Engineering (MDE) has gained both
academic and industrial recognition as an effective prac-
tice for dealing with the increasing complexity of mod-
ern embedded software [3]. MDE [4] is an engineering
paradigm that addresses software development as the process

of (i) designing models and (ii) refining them, starting from
higher and moving towards lower levels of abstraction, via
the so-called model transformations. Moreover, it allows to
cope with extra-functional properties, e.g., timing properties,
by annotating the models with properties and constraints,
e.g., Worst Case Execution Time (WCET), thus enabling
model-based analysis, e.g., end-to-end response time and
delay analysis [5]. AUTOSAR [6] and the Rubus Component
Model (RCM) [7], to name a few, are examples of well-
known and established solutions used within the vehicular
domain. Lately, AUTOSAR has been complemented with the
EAST-ADL methodology [8]. EAST-ADL is an architectural
description language which provides concepts and methods
for managing and organising the various artefacts produced
along the software development of vehicular embedded sys-
tems [9]. It promotes the separation of concerns through
a top-down software development process relying on four
different abstraction levels, i.e., vehicle, analysis, design
and implementation. In the latter, EAST-ADL makes use of
AUTOSAR.While EAST-ADL has been proven successful in
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coping with the complexity and size of vehicular embedded
software, it still provides limited support for dealing with
timing requirements. In fact, by employing AUTOSAR at
the implementation level, most of the timing, implementation
and communication details are hidden by the so-called Vir-
tual Function Bus (VFB). This information is necessary for
verifying timing requirements. For this reason, an increasing
number of vehicular manufacturers (e.g., Volvo CE, BAE
Systems) is using RCM as an alternative to AUTOSAR.

Since heterogeneous languages are used in the develop-
ment process (e.g., EAST-ADL, AUTOSAR, RCM), in order
to allow a smooth interplay between them, proper automated
mechanisms are needed for the translation among the vari-
ous artefacts specified using the various languages. Manual
mechanisms, in fact, are not only tedious, time consuming
and error-prone, but even infeasible in most cases due to the
size and complexity of industrial artefacts. From a broader
perspective, interoperability among languages is a key factor
within the software development, as acknowledged by several
international projects.1

In this paper, we leverage MDE for automating the transi-
tion between EAST-ADL and RCM with the aim of reducing
software development cost and time to market [10]. To this
end, in order to embrace the MDE paradigm and benefit
from its features, we propose (i) a metamodel definition for
RCM (called RubusMM in the remainder of this paper) and
(ii) a model-to-model transformation between EAST-ADL
and RCM (DL2RCM). We define RubusMM bearing in mind
the following aspects:
backward compatibility: the metamodel should not hinder

the migration of legacy RCM artefacts;
extensibility: the metamodel should disclose the opportu-

nity to integrate, in a smooth way the RCM mod-
elling environment, in a typical automotive development
chain.

Finally, we leverage an industrial automotive application for
showing the usability and applicability of RubusMM and
DL2RCM.

The rest of the paper is organised as follows. Section II
presents the context of this work together with its related
works. Section III introduces RubusMM and its extensions
for timing elements. Section IV shows the DL2RCM trans-
formation while Section V discusses its applicability on a
case study. Finally, Section VI provides details on the vali-
dation of our solution and highlights the benefits of having
a metamodel definition for RCM while Section VII draws
conclusions and discusses future works.

II. BACKGROUND AND RELATED WORK
In this section, we describe the context of this research and
the related works. In Section II-A we discuss the use of MDE
and CBSE paradigms in the vehicular domain. In Section II-B
we describe timing analyses and timing models while in

1OSLC: http://open-services.net; CRYSTAL: http://
www.crystal-artemis.eu

Section II-C we discuss the paper contributions in relation
with authors’ previous works.

A. MDE AND CBSE IN THE AUTOMOTIVE DOMAIN
MDE is a paradigm which aims at raising the level of abstrac-
tion of software development by focusing onmodelling activ-
ities rather than coding. In this context, MDE promotes
models and model transformations as first-class citizens.
Models represent an abstraction of the system under develop-
ment, from a particular point of view [11]. The set of rules and
constraints needed for building a valid model is specified in
the so-called metamodel. Formally, a metamodel defines the
abstract syntax of a well-formed model; the relation between
metamodel and models is called conformance. Model trans-
formations represent the means of refinement by which
models are manipulated [12]. In fact, model transformations
translate a sourcemodel into a target model keeping their con-
formance to the respective metalled intact. According to the
MDE paradigm, starting from amodel and bymeans ofmodel
transformations it is possible to automatically obtain a variety
of artefacts, such as newmodels, code, etc. In this context, the
entire software development can be seen as a transformation
process where low level abstraction models are automatically
obtained by transforming higher-level abstraction models.
Within the automotive domain, the adoption of MDE and
CBSE paradigms led to the standardisation of an architectural
description language, namely EAST-ADL [8]. EAST-ADL
proposes a view over the development process composed by
four different abstraction levels. Figure 1 shows the abstrac-
tion levels together with methodologies and languages used
at each one of them.

FIGURE 1. EAST-ADL abstraction levels.

The vehicle level is the highest abstraction level and cap-
tures information regarding the system’s functionality. At this
level, featuremodels can be used for showingwhat the system
provides in terms of functionality. In addition, these models
are decorated with requirements. The vehicle level is also
known as end-to-end level as it serves to capture requirements
and features on the end-to-end vehicle functionality. At the
analysis level, vehicle functions are expressed, using formal
notations, in terms of behaviours and interfaces. Yet, design
and implementation details are omitted. The artefact devel-
oped at this level is called Functional Analysis Architecture.
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At this stage, high level analysis for functional verification
can be performed. At the design level, the analysis-level
artefacts are refined with design-oriented details: while the
analysis level does not differentiate among software, mid-
dleware and hardware, the design level explicitly separates
them. Allocation of software functions to hardware nodes is
expressed at this level too. The artefacts developed at this
level include Functional Design Architecture and Hardware
Design Architecture. At the implementation level, artefacts
introduced at the design level are refined with implementa-
tion details. The output of this level is a complete software
architecture which can be used for code generation. At this
stage component models as RCM and AUTOSAR, are used
to model the system in terms of components and interactions
among them.

AUTOSAR is an industrial initiative to provide standard-
ised software architecture for the software development of
vehicular embedded systems. Within AUTOSAR, the soft-
ware architecture is defined in terms of AUTOSAR software
components (AutosarSWCs) and VFB. VFB is a black box
component which handles the virtual integration and com-
munication among AutosarSWCs, hiding low-level imple-
mentation details [13]. AUTOSAR describes the software at
a high level of abstraction focusing on the functional and
structural aspects of the architecture. Also, it does not distin-
guish between data and control flow, as well as between inter-
and intra-node communication. Lately, AUTOSAR has been
provided with a timing model within the two EU research
projects TIMMO [14] and TIMMO-2-USE [15], respectively.
To this end, TIMMO provides a predictable methodology and
language, called TADL [16] for expressing timing require-
ments and constraints. TADL is inspired by MARTE [17],
which is a UML profile for modelling and analysis of real-
time embedded systems. The TIMMO methodology makes
use of EAST-ADL and AUTOSAR interplay, where the for-
mer is used for the software functional modelling at higher
abstraction levels, while the latter is used for the modelling of
software architecture and execution information at the imple-
mentation level. TIMMO-2-USE [15], a follow up project,
presents a major redefinition of TADL in TADL2 [18]. The
purpose of this project is to include new functionality for sup-
porting the AUTOSAR extensions regarding timing model.
Although both TIMMOand TIMMO-2-USE attempt to anno-
tate AUTOSAR with a timing model, AUTOSAR is still not
expressive enough for representing timing, implementation
and communication information of the software architecture
as this information is hidden by VFB. In this context, an
increasing number of vehicular manufacturers, e.g., Volvo
CE, BAE systems, prefers RCM to AUTOSAR.

RCM is developed by Arcticus Systems in collabora-
tion with Mälardalen University and it is used for model-
and component-based development of resource-constrained
embedded real-time systems. The main goal of RCM is to
express the software architecture in terms of software func-
tions and interactions among them. In RCM, the basic entity
is the so-called software circuit (SWC) which represents

the lowest-level hierarchical element in RCM and encapsu-
lates basic software functions. Each SWC is defined by its
behaviour and interface. Interfaces manage the interactions
among SWCs via ports. RCM distinguishes between data and
control flow. Therefore, the interfaces have two types of ports:
data ports for the data flow and trigger ports for the con-
trol flow, respectively. The SWC is characterised by run-to-
completion semantics, meaning that, upon triggering, it reads
data from the data input ports, executes its behaviour and
writes data on the data output ports. SWCs can be grouped
and organised in assemblies, decomposing the system in a
hierarchical manner. Modes are used to represent different
configurations of the software architecture. Target entities are
used for grouping modes that are deployed on the same Elec-
tronic Control Unit (ECU). Moreover, they provide details
regarding hardware and operating system. Node is a hard-
ware and operating-system independent abstraction of a tar-
get entity. Finally, System is the top-level hierarchical entity,
which describes software architecture for the complete vehic-
ular system. RCM facilitates analysis and reuse of compo-
nents in different contexts by separating functional code from
the infrastructure that implements the execution environment.
Compared to AUTOSAR, RCM allows the developer to spec-
ify and handle timing information at design time. It also
distinguishes between data and control flow as well as inter-
and intra-node communication. To this end, RCM has been
recently extended with special network interface components
for modelling the inter-node communication [19]. The RCM
pipe-and-filter communication mechanism is very similar to
the AUTOSAR sender-receiver communication mechanism.
In short, RCMwas specifically designed for expressing all the
low-level information needed for extracting the timing model
from the software architecture.

B. END-TO-END TIMING MODELS AND ANALYSES
End-to-end timing analysis is a key activity for the verifica-
tion and validation of vehicular real-time systems. Therefore,
a tool chain that is used for the model- and component-
based development of vehicular systems shall support such
an analysis. To support it an appropriate system view, called
end-to-end timing model, should be extracted from the soft-
ware architecture. In particular, an end-to-end timing model
comprises timing properties, requirements, dependencies and
linking information concerning all tasks, messages and task
chains in a distributed embedded system under analysis.2 An
end-to-end timing model is composed of two models namely
a timing model and a linking model. In order to elaborate this,
consider a task chain distributed over three nodes connected
by a network as shown in Figure 2.

The system timing model captures all the timing infor-
mation about the three nodes and the network. Whereas
the linking model includes all the linking information in
the task chains, including the control and data flows. The
analysis engine uses these models for performing end-to-end

2We refer the reader to [19] for details about the timing model.
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FIGURE 2. Example showing end-to-end response time.

timing analyses. We refer the reader to [5] for further details
about the end-to-end timing analysis. The analysis results
consist of response times of tasks and messages as well as
system utilisation. Also, the analysis calculates end-to-end
response times and delays.

The end-to-end response time of a task chain is equal to the
elapsed time between the arrival of a stimulus, e.g., the brake
pedal sensor input in the sensor node, and the response to it,
e.g., the brake actuation signal in the actuation node as shown
in Figure 2. Within a task chain, if the tasks are triggered by
independent sources, then it is important to calculate different
types of delays such as age and reaction.

FIGURE 3. A task chain with independent activations of tasks.

An age delay corresponds to the freshness of data. It
finds its importance in control systems used in the vehicles.
Whereas, the reaction delay corresponds to the first reaction
for a given stimulus. This delay finds its application in body
electronics in the vehicles. In order to explain these delays,
consider a task chain in a single-node system as shown in
Figure 3. There are two tasks in the chain denoted by τ1
and τ2. The tasks are triggered by independent clocks of
periods 15ms and 5ms, respectively. Let the WCETs of these
tasks be 2ms and 1ms, respectively. τ1 reads data from the
register Reg-1 and writes data to Reg-2. Similarly, τ2 reads
data from the Reg-2 and writes data to Reg-3. Since the tasks
are activated independently by different clocks, there can be
multiple outputs (Reg-3) corresponding to one input (Reg-1)
to the chain as shown by several uni-directional arrows
in Figure 4. The age and reaction delays are depicted in
Figure 4. The age delay is equal to the time elapsed between
the current non-overwritten release of τ1 and corresponding
last response of τ2 among all valid data paths. Whereas, the
reaction delay is equal to the time elapsed between the pre-
vious non-overwritten release of τ1 and the first response of
τ2 corresponding to the current non-overwritten release of τ1.
These delays are equally important in distributed embedded
systems.

We consider the end-to-end timing model that corresponds
to the holistic schedulability analysis for distributed embed-
ded systems [20]. Stappert et al. [21] described end-to-end

FIGURE 4. Example showing end-to-end delays.

timing constrains for multi-rate automotive embedded sys-
tems. In [22], Feiertag et al. presented a framework (devel-
oped as part of the TIMMO project) for the calculations
of end-to-end delays. A scalable technique, based on model
checking, for the computation of end-to-end latencies is
described in [23].

C. PAPER CONTRIBUTIONS AND RELATION WITH
AUTHORS’ PREVIOUS WORK
This paper extends our previous work [24] where we pre-
sented a preliminary metamodel definition of the RCM core
elements only (the so-called backbone). There, we discussed
the general benefits of having a metamodel definition for
RCM rather than making EAST-ADL and RCM to interop-
erate. The metamodel presented in this paper extends the
previous one with 13 new metaclasses, which are needed for
modelling control and data flows as well as for the specifi-
cation of timing properties and constraints for different types
of delay for single-node and distributed embedded systems.
While the initial version of the metamodel, presented in [24],
was useful for brainstorming and running rudimental exper-
iments in terms of modelling of static definitions of simple
applications, the extensions to the metamodel presented in
this paper enable its use in practice for both modelling and
analysis purposes in real-world use cases. In [25], we dis-
cussed the idea of translating timing constraints from EAST-
ADL to RCM. However, that work did not provide any
support for either the (meta-)modelling definition of these
constraints nor any automation in terms of model-to-model
transformation for the translation of constraints from EAST-
ADL to RCM. Moreover, in this paper we present – for the
first time – the DL2RCM model-to-model transformation
which enables the automatic translation of artefacts specified
using EAST-ADL to artefacts specified using RubusMM.
Additionally, we discuss the applicability of RubusMM and
DL2RCM by leveraging an industrial automotive application
and we validate RubusMM’s expressiveness by exploiting
several real-life automotive models.

III. A METAMODEL DEFINITION FOR THE
RUBUS COMPONENT MODEL
In this section, we describe RubusMM (a metamodel defini-
tion for RCM) by comparing it with the previous metamodel
definition given in [24], thus highlighting differences and
commonalities. For the sake of readability, we present the
metamodel in four fragments; however, these fragments can
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be combined by matching metaclasses with the same names
and this combination represents the complete RubusMM.
Figure 12 in section A shows the metamodel’s backbone.
The top metaclass is System, which acts as a container for
the whole architecture. System, as all the metaclasses in the
metamodel, inherits from the abstract metaclass NamedEle-
ment. A System element contains one or more elements of
type Node. A Node element is an abstraction of a Target
element independent of hardware and operating-system; it
groups all the software architecture elements which realise
a specific function. Its reference activeTarget defines which
target, among those specified, is active for a certain node. Tar-
get is a hardware and operating-system specific instance of a
Node; it serves for modelling the deployment of the software
architecture. This means that it contains all the functions to
be deployed on the same ECU. Consequently, a Node can be
realised by different Target elements, depending on the hard-
ware and the operating system used for the deployment, for
example, PowerPC with Rubus Operating System, Simulated
target with Windows operating system. A Target element
contains one or more elements of typeMode. A Mode repre-
sents a specific application of the software architecture as, for
instance, start-up or low-power mode. AMode element might
contain elements of type Circuit and Assembly. A Circuit
is the lowest-level hierarchical element which encapsulates
basic functions. It contains an element of type Interface and
one or more elements of type Behavior. An Interface groups
all the data and trigger ports of a certain circuit while a
Behavior contains the code to be executed by the specific
Circuit. The reference activeBehavior is used for specifying
which behaviour is active for the related circuit. Assembly
elements do not add any semantics to the architecture: they
are used for grouping and organising circuits and assemblies
in a hierarchical fashion. Figure 5 depicts a RCM model
consisting of a circuit element Circuit containing a behavior
element Behavior and an interface element Interface. In turns,
Interface contains two trigger ports namely PotTrigIn and
PotTrigOut. A Connector realises the actual communication
between two ports. ConnectorData and ConnectorTrigmeta-
classes are used for modelling the communication between
data ports and control ports, respectively. RCM explicitly
separates data and control flow. Both ConnectorData and
ConnectorTrig metaclasses inherit from the abstract meta-
class Connector. Please note that all the metaclasses in this
fragment were part of the previous metamodel definition.

FIGURE 5. RCM model consisting of circuit, behavior, interface and
control port elements.

Figure 13 in section A shows the metamodel fragment
containing the concepts used for modelling the data flow.

The abstract metaclass PortData models a generic data port.
It has three attributes: dataPassingMethod specifies how data
is passed to the port, dimension expresses the size of the port
while initialValue specifies its initial value. The metaclass
PortData is specialised by the metaclasses PortDataIn and
PortDataOut, which model an input and output data port,
respectively. They are contained in the Interface and the
Assembly metaclasses for modelling the data communica-
tion among circuits and assemblies, respectively. Figure 11
depicts PortData elements as white circles on the border of the
circuit elements. As aforesaid, the metaclass ConnectorData
is used for modelling the actual communication between
two data ports. In this respect, the references sourcePort
and targetPort are used for specifying the ports involved in
the communication. Figure 11 also depicts ConnectorData
elements as black arrows among PortData elements. Please
note that the metaclasses Connector, ConnectorData and
dataPassingMethod were not part of the previous definition
of the metamodel. Adding the aforesaid three metaclasses,
give us the possibility to explicitly model the data connection
among circuit elements.

Figure 14 in section A shows the metamodel fragment
containing the concepts that can be used to represent the
control flow. The metaclasses PortTrigIn and PortTrigOut
describe an input trigger port and an output trigger port,
respectively. They both inherit from the metaclass PortTrig,
which describes a generic trigger port. Modes, assemblies
and interfaces are composed of input and output trigger ports
for modelling the control flow among modes, assemblies
and circuits, respectively. In Figure 6, the trigger ports of
the mode elements Mode1 and Mode2 are represented as
white triangles on the border of the mode elements. The
ConnectorTrigmetaclass inherits from the abstract metaclass
Connector. It has two references, sourcePort and targetPort,
used for modelling the actual communication between trigger
ports. Figure 6 depicts three ConnectorTrig elements as blue
arrows linking the trigger ports. Clock and Sink elements
are responsible to start and end the execution of a software
circuit, respectively. Clock elements have a Period attribute
for expressing the period of the clock in milliseconds. Fig-
ure 11 depicts Clock and Sink elements as blue boxes with
a red clock and blue boxes, respectively. Please note that the
metaclasses Connector, ConnectorTrig, Clock and Sink were
not part of the previous definition of the metamodel. Also,
the hierarchy of trigger ports has been substantially stream-
lined passing from 9 metaclasses of the previous metamodel
definition to the 3 of the current one.

FIGURE 6. RCM model consisting of mode, connector and control port
elements.

Figure 15 in section A depicts an excerpt of the RCM
metamodel containing the metalements representing timing
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TABLE 1. Main relations holding in the DL2RCM transformation.

constraints and properties for different types of delays in
event chains. The notion of different delay types is mean-
ingful in multi-rate systems where components in the event
chain can be triggered with independent clocks. Hence,
there can be multiple occurrences of response correspond-
ing to a single occurrence of stimulus in the chain. In
RCM, these constraints are specified by means of two model
elements placed at the beginning and at the end of the
event chain. The metaclasses which represent the data reac-
tion constraint are DataReactionStart and DataReactionEnd,
while the metaclasses which model the data age constraint
are the DataAgeStart and DataAgeEnd. DataAgeStart and
DataReactionStart inherit from the abstract metaclassDataS-
tart, while DataAgeEnd and DataReactionEnd inherit from
the abstract metaclass DataEnd. The deadline attribute of
the DataEnd metaclass specifies the maximum value for the
related reaction along the enclosed chain expressed in mil-
liseconds. DataStart and DataEnd inherit from the abstract
metaclass Data, which models a generic delay constraint. It
contains a data input port and a data output port, meaning that
the data traveling along the data chain must traverse the delay
constraint for activating it. Figure 11 depicts the aforesaid
delay constraints as grey squares along the circuit chains.
Please note that the whole timing fragment was not part of
the previous definition of the metamodel.

Please note that the complete specifications of RCM and
RubusMM are not publicly available. Arcticus Systems AB,
in fact, remains the only specifications owner. However, the
interested reader might refer to [7] for checking the com-
pleteness of RubusMM with respect to RCM. Moreover, the
RubusMM was developed together with Arcticus Systems
AB for ensuring its adherence to RCM.

IV. DL2RCM MODEL TRANSFORMATION
In this section we present DL2RCM, a model-to-model trans-
formation from the EAST-ADL Design Level metamodel
to RubusMM. The intent is to show how, having a proper

metamodel for RCM, it is possible to realise a seamless
tool chain and complement EAST-ADL with the RCM’s
timing analysis capabilities. In Section II, we showed how
the EAST-ADL methodology (EAST-ADL complemented
by AUTOSAR at the implementation level) uses the four
abstraction levels for implementing a top-down development
process. In this respect, we presented RCM and AUTOSAR
to be technologies used at the bottom abstraction level, i.e.,
implementation level. In our previous work we proposed
RCM as an alternative to AUTOSAR within an EAST-ADL
development methodology. To this end, we believe it is cru-
cial to show that RCM fully integrates within the EAST-
ADL methodology. That is, considering the EAST-ADL four
abstraction levels, it is possible to synthesise an EAST-ADL
Design Level model to a corresponding RCM model. The
DL2RCM transformation is used for performing such an inte-
gration automatically. The benefits of realising this in an auto-
matic manner become more visible when considering that the
involved technologies, EAST-ADL and RCM, are used for
representing complex architectures, for which manual trans-
lations are not only tedious, time consuming, and error-prone,
but they might even become unfeasible. The DL2RCM trans-
formation is a unidirectional model-to-model transformation
from the EAST-ADLDesign Level metamodel to RubusMM.
The latter has been presented in Section III. The former has
been described in [8] and implemented as a UML profile
within the Eclipse Papyrus project.3 Figure 16 in section A
shows the except of the EAST-ADL metamodel containing
the concepts involved by the DL2RCM transformation, 4 thus
the concepts from the EAST-ADL FunctionalModeling and
TimingContraints 5 packages. The relation underneath the

3http://eclipse.org/papyrus/
4The explanation of theEAST-ADLmetamodel is outside the scope of this

work. The interested reader may refer to [8].
5Timing constraints, occurrences and events are part of the TADL2 [18]

language. Starting from the V2.1.11 release, EAST-ADL incorporates
TADL2 language in its specification.

9010 VOLUME 5, 2017



A. Bucaioni et al.: Metamodel for the Rubus Component Model

Algorithm 1 DL2RCM Transformation
1: functionMODEL2SYSTEM(Model m)
2: Mode mo = createHierarchy(m);
3: FDP(m.functionalDesignPrototype,mo)
4: TC2TC(fdp,mo)
5: end function
6:

7: function FDP(DesignFunctionPrototype fdp,Mode mo)
8: if fdp is not elementary then
9: Assembly a = createAssembly(fdp,mo);
10: for connector in fdp do
11: c2c(connector, a)
12: end for
13: for part in fdp do
14: if part is not elementary then
15: Assembly as = DP2A(part, a);
16: else
17: Circuit ci = DP2C(part, a);
18: end if
19: end for
20: else
21: Circuit c = createCircuit(fdp,mo);
22: end if
23: end function

transformation is non-bijective meaning that there is not a
one-to-one mapping between the elements involved in the
transformation. In this respect, in order to preserve as much
information as possible, assumptions are needed when defin-
ing the relations composing the transformations. Table 1
summarises these assumptions 6 together with the involved
EAST-ADL and RubusMM elements. Please note that the
intent of the DL2RCM transformation is not to map the whole
EAST-ADL metamodel to RubusMM, rather to map only the
part of the EAST-ADL metamodel needed for synthesising
RCM models along with the timing information needed for
running high-precision timing analysis.

The DL2RCM model transformation has been imple-
mented by means ofmedini QVT.7 Medini QVT is an Eclipse
Modeling Framework tool set for model to model trans-
formations, which implements the OMG’s QVT Relations
standard [27]. For the sake of simplicity, algorithm 1 shows
the DL2RCM transformation in pseudocode. 8 TheMODEL-
2SYSTEM function is the entry point of the transformation.
It is responsible for translating an EAST-ADLModel element
into a hierarchy of RubusMM elements consisting of System,
Node, Target and Mode elements (line 2). This step can
be skipped when considering all EAST-ADL abstraction
levels, since the RubusMM elements would be translated
from the equivalent EAST-ADL elements. In our case, since

6The interested reader can find a detailed discussion on the assumptions
and the constraints used for defining the DL2RCM transformation in [26].

7http://projects.ikv.de/qvt
8The interested reader can find the actual QVT code for the DL2RCM

transformation at http://www.mrtc.mdh.se/DL2RCM.qvt.

Algorithm 1 DL2RCM Transformation
24: function C2C(FunctionConnector fc, Assembly a)
25: ConnectorData con = createConnectorData(fc, a);
26: for end in fc do
27: if end .functionPrototype is not elementary then
28: Assembly as =

DP2A(end .functionPrototype, a);
29: if end .functionPort is FunctionFlowPort

then
30: if end .functionPort is in then
31: ConnectorTrig conTC = createCon-

trolFlowIn(fc, a);
32: PortDataIn pdi = CreatePort-

DataIn(fc.functionPort, as);
33: else
34: ConnectorTrig conTS = createCon-

trolFlowOut(fc, a);
35: PortDataOut pdo = CreatePort-

DataOut(fc.functionPort, as);
36: end if
37: else
38: end if
39: else
40: Circuit c = DP2C(e.functionPrototype, a);
41: if end .functionPort is FunctionFlowPort

then
42: if end .functionPort is in then
43: ConnectorTrig conTC = createCon-

trolFlowIn(fc, a);
44: PortDataIn pdi = CreatePort-

DataIn(fc.functionPort, c);
45: else
46: ConnectorTrig conTS = createCon-

trolFlowOut(fc, a);
47: PortDataOut pdo = CreatePort-

DataOut(fc.functionPort, c);
48: end if
49: else
50: end if
51: end if
52: end for
53: end function

we are considering just the EAST-ADL design level, this
step is needed to build a correct hierarchy in the Rubus
model, conforming to the RubusMM. One of the major
difficulties in defining the DL2RCM transformation is that
EAST-ADL implements the type-prototype pattern: aDesign-
FunctionPrototype element is considered to be a specific
instance of the DesignFunctionType element which in turn
might contain other prototypes and connectors realising its
inner architecture (see Figure 16). This means that the inner
architecture of a prototype is defined through its related
type. Such a pattern, not leveraged in RubusMM, required
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Algorithm 1 DL2RCM Transformation
54: function DP2A(DesignFunctionPrototype dfp,

Assembly a)
55: Assembly as = createAssembly(dfp, a);
56: for connector in dfp do
57: c2c(connector, a)
58: end for
59: for part in dfp do
60: if part is not elementary then
61: Assembly as1 = DP2A(part, as);
62: else
63: Circuit c1 = DP2C(part, as);
64: end if
65: end for
66: return as;
67: end function
68: function DP2C(DesignFunctionPrototype dfp,

Assembly a)
69: Circuit c = createCircuit(dfp, a);
70: ConnectorTrig conTC = createCon-

trolFlowIn(dfp, c, a);
71: ConnectorTrig conTS = createCon-

trolFlowOut(dfp, c, a);
72: return c;
73: end function
74: function TC2TC(FunctionalDesignPrototype fdp,Mode

mo)
75: for tc in fdp do
76: Event startTC = tc.scope.stimulus;
77: Event endTC = tc.scope.response;
78: ConnectorData conS =

find(mo.assembly, startTC);
79: ConnectorData conE =

find(mo.assembly, endTC);
80: if tc is AgeConstraint then
81: DataAgeStart startA = createDataAgeS-

tart(tc);
82: DataAgeEnd endA= createDataAgeEnd(tc);
83: assignPorts(startA, endA, conS, conE)
84: else
85: end if
86: if tc is ReactionConstraint then
87: DataReactionStart startR= createDataReac-

tionStart(tc);
88: DataReactionEnd endR = createDataReac-

tionEnd(tc);
89: assignPorts(startR, endR, conS, conE)
90: else
91: end if
92: end for
93: for part in fdp do
94: TC2TC(part,mo.assembly)
95: end for
96: end function

FIGURE 7. Architecture of the steer-by-wire system.

FIGURE 8. Software architecture of WC ECU modeled with EAST-ADL and
TADL2.

additional effort in designing the transformation, as each
DesignFunctionPrototype has to be checked against its type
before to be transformed. These negligible low-level details
are omitted from the pseudocode in Algorithm 1 for the sake
of readability. For the same reason, in the pseudocode we
make use of helper functions (e.g., CREATEHIERARCHY,
CREATEASSEMBLY)which are responsible for the creation
of the related elements and their inner architecture. The FDP
function is responsible for translating an EAST-ADLDesign-
FunctionPrototype element into a RCM Assembly or Circuit
element depending on whether its related DesignFunction-
Type is an elementary element (meaning that it does not
contain any other DesignFunctionProtype element). In the
case it is not an elementary element (line 14), all the contained
DesignFunctionProtype elements are transformed too. This
translation is performed in two steps. First, FDP calls theC2C
function on all its FunctionConnector elements (lines 10-12),
for the translation of the elements linked via connectors.
Afterwards, the FDP function calls DP2A or DP2C on its
spare DesignFunctionProtype elements; if they are elemen-
tary elements then they are transformed into circuits by the
DP2C function (line 17), otherwise they are transformed into
assemblies through the DP2A function (line 15). Figure 9
shows the Ecore model serialising the above mentioned
architecture. The C2C function translates an EAST-ADL
FunctionConnector element into a RCMDataConnector ele-
ment. More precisely, for each FunctionConnector element,
the C2C function creates a DataConnector element (line
26) together with the connected Assembly/Circuit elements
by calling the functions DP2A (line 29) and DP2C (line
41), respectively. Port elements are created and connected
accordingly (lines 33, 36, 45, 48). Control flow information
is not explicitly modelled at EAST-ADL design level. There-
fore, we assume that each SWC is triggered independently.
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FIGURE 9. Serialized model of the EAST-ADL WC ECU architecture.

FIGURE 10. Serialized model of the RCM WC ECU architecture.

To this end, the C2C function generates the needed Clock
(lines 32, 44) and Sink (lines 35, 47) elements together with
the ConnectorTrig elements. With a logic similar to FDP,
functions DP2C and DP2A translate an EAST-ADL Design-
FunctionPrototype into RCM Circuit and RCM Assembly,
respectively. The function TC2TC is responsible for trans-
lating the timing (age and reaction) constraints. Starting
from the outerDesignFunctionPrototype, it iterates on all the
specified timing constraints (line 78). For each of them, it uses
the start and end events (stimulus and response in Figure 16)
for searching, within the RCMmodel, the connector attached
to the port and specified by the stimulus or response events
(lines 79-82). After DataAgeStart, DataReactionStart,
DataAgeEnd andDataReactionEnd elements are created
(lines 84, 85, 90, 91), they are connected to the related data
ports (lines 86, 92).

V. APPLICATION TO THE STEER-BY-WIRE SYSTEM
In order to show the applicability of the DL2RCM transfor-
mation, we exploit a portion of the Steer-By-Wire (SBW)

FIGURE 11. Translated software architecture of WC ECU in RCM.

system, which represents a vehicular feature that substitutes
mechanical and hydraulic components with electronic com-
ponents in the steering system of a vehicle.

A partial architecture of the SBW system is shown in
Figure 7. There are two ECUs (rest of the ECUs are not
shown for simplicity) that are connected to a single Con-
troller Area Network (CAN) bus. The Steering Control (SC)
ECU receives inputs from steering angle, steering torque and
vehicle speed sensors. It also receives a CAN message from
the Wheel Control (WC) ECU. It sends two CAN messages:
one carries steer angle and torque signal, while the other
carries feedback signals. Based on all the inputs, it calculates
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FIGURE 12. Fragment of the RCM metamodel representing the backbone elements.

the feedback steering torque and sends it to the feedback
torque actuator which is responsible for producing the turning
effect of the steering. Similarly, the WC ECU receives inputs
from wheel angle and torque sensors. Depending upon these
signals and CAN messages received from the SC ECU, it
calculates the wheel torque and produces actuation signals
for the wheel actuators. It also sends one CAN message
carrying wheel torque signal. For the sake of simplicity and
intuitive presentation of the transformation, the simplified
internal software architecture of WC ECU is modelled with
EAST-ADL using EAST-ADL Rubus Designer9 as shown in
Figure 8. There are four EAST-ADL Software Components
(EastSWCs) in the simplified software architecture. We spec-
ify two timing constraints, namely age and reaction using
TADL2. These constraints put a restriction of 20 ms on the
time between the acquisition of sensor signals at theWCECU
and the production of wheel actuation signals by the actuator
EastSWC. These constraints are internally referenced to the
components onwhich they are specified. For convenience, the
start and end points for these constraints are identified using
the solid-line arrow.

Applying the DL2RCM transformation presented in
Section IV, the Ecore model in Figure 10 is obtained.Without
going into the details of the transformation process, it can be
noted how the RCMelements were translated from the related

9http://www.arcticus-systems.com

EAST-ADL elements. For instance, the RCM SWC SFN_FT
has been translated from the EAST-ADL DesignFunction-
Type SFN_FT by means of the C2C function. The same
applies to all the RCM elements. A representation, given in
Rubus Designer concrete syntax, of the model showed in
Figure 10, is presented in Figure 11. The specified TADL2
timing constraints (i.e., Age and Reaction) in Figure 8 are
also translated to RCM timing constraints shown by ‘‘Age
Start’’, ‘‘Age End’’, ‘‘DR Start’’, and ‘‘DR End’’ objects in
Figure 11.Wemake three assumptions to support the analysis
of the translated software architecture in RubusMM. The first
assumption concerns the priority of the four tasks (run-time
entities) that correspond to the four EastSWCs in Figure 11.
EAST-ADL does not support specification of priorities on
the software components. In order to consider the worst-
case scenario, where each of the four tasks is assumed to
be interfered by the rest of the tasks, we assume that the
priorities of the four tasks are equal. Secondly, we assume
that the four tasks are the highest priority tasks and these tasks
do not experience any blocking from the other tasks in the
WC ECU. This assumption is needed to support the analysis
since we have considered the reduced software architecture in
Figure 10. The third assumption concerns the WCETs of the
components shown in Figure 11. The WCETs are selected,
based on the experience from similar cases studies, between
the range 60 µs - 2000 µs. The analysis engines calculate
the age and reaction delays for only those component chains
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FIGURE 13. Fragment of the RCM metamodel representing the data flow elements.

(represented by task chains at runtime) on which the timing
constraints are specified (there is only one component chain
in Figure 11 on which these delays are specified). The cal-
culated age and reaction delays are 5360 µs and 15360 µs
respectively. A comparison between the specified constraints
and calculated delays shows that the system satisfies the
specified timing constraints.

VI. VALIDATION AND DISCUSSION
The mismatch between the structural and semantic assump-
tions of the plethora of different modelling languages
currently used in the software development hampers interop-
erability. In the automotive domain, an example of this phe-
nomenon is the semantic gap between modelling languages
used for functional modelling (e.g., EAST-ADL) and those
used for implementation modelling (e.g., RCM). One way
to ensure interoperability is to employ MDE for defining
automatic translations of the models specified using, e.g.,
EAST-ADL and RCM. In this respect defining appropri-
ate metamodels is a fundamental step towards enabling the
implementation of MDE techniques. As a consequence, the
RCM metamodel has been developed with two aspects in
mind: backward compatibility and extensibility. The first
aspect has been addressed by reverse engineering the internal

representation of RCM into the Rubus Integrated Component
Model Development Environment (RUBUS ICE). Redundan-
cies, due to the lower level of abstraction, have been polished
and model traversals improved. These activities resulted in
the addition of 6 elements and the refinement of 5 hierar-
chy elements. Please note that the refinement activities done
within the RubusMM definition do not affect its expressive-
ness which has been discussed and validated already in [7].
The correctness of the metamodel illustrated in this paper
has been checked against several existing industrial system
designs, e.g., modelling of i) Autonomous Cruise Control
System that consists of 4 nodes (ECUs), 17 assemblies and
36 SWCs [5], ii) Intelligent Parking Assist (IPA) System that
consists of 2 nodes and 42 SWCs [28], simplified IPA system
consisting of 2 nodes and 7 SWCs [29] and iii) simplified
Steer-by-wire System consisting of 1 node and 6 SWCs [30].
Extensibility targets the general trend of incrementally adopt-
ing higher abstraction level approaches to deal with the devel-
opment of industrial systems (see also the discussion that
follows in the remainder of this section). In our specific cases,
it requires RUBUS ICE to be open enough to be integrated in
a tool chain.

The proposed metamodel-based solution supports tool
integration contexts by permitting the definition of model
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FIGURE 14. Fragment of the RCM metamodel representing the control flow elements.

transformations acting as import/export utilities from a tool to
another. The transformation from EAST-ADL to RubusMM
and its application illustrated in Section IV and V, respec-
tively, are a practical demonstration of the tool integra-
tion potentials disclosed by the adoption of a model-driven
approach.Writing and testing the tool integration transforma-
tion is a one time effort; then the translation can be used for
all the models defined in the tools, as long as the metamodels
are not modified. The correctness of the model transforma-
tion has been tested upon the above mentioned industrial
systems designs. Moreover, we have used synthetic models
for verifying possible unexpected behaviours of the transfor-
mation. To this end, we created class of models containing
13, 40, 187 and 1000 elements, respectively. These models
were also used for validating the transformation performance
and scalability. In particular, the transformation has been run
10 times for each class of models. Table 2 reports, for each
class of model, the average of the ten execution times.10

Table 2 also shows the size of the target models generated

10The interested reader can find here http://www.mrtc.mdh.se/
DL2RCMExecutionTime.pdf the extended report containing all the
data from all the transformation executions.

TABLE 2. Execution times of the DL2RCM transformation.

by the DL2RCM transformation. It is worth mentioning that
the growth in size of the generated target models is not
linear to the growth in size of the source models, when
source models have dense connections. In fact, each Func-
tionConnector (together with its own inner architecture) in the
source models would be translated in a DataConnector and
TrigConnector.

However, with source models with less dense connec-
tions, it is possible to observe a reduction on the size of the
generated target models. This is due to the type-prototype
pattern used in EAST-ADL, but absent in RubusMM. With
respect to themaintainability aspect, building-up the develop-
ment environment on the RCM metamodel allows to decou-
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FIGURE 15. Fragment of the RCM metamodel representing the timing constraints and properties for different types of delay in
event chains.

ple modelling concepts from their rendering and from the
automated features provided as part of the tool. This means
that extensions/refinements of RCM cause modifications of
the current metamodel, which in turn trigger co-evolutions of
interconnected artefacts [31]. Despite managing metamodel
evolutions is not always straightforward, having an explicit
link between RCM changes and metamodel manipulations
allows to perform an impact analysis of the refinements and to
precisely locate where changes will affect existing artefacts.
Notably, especially in industrial contexts the need for local
customisations of tools requiring ad hoc adaptations can
arise. On the one hand, operating at a higher level of abstrac-
tion allows to show/hide modelling elements, increase/reduce
the number of modelling views, and so on. On the other
hand, the need for metamodel modifications limits the dan-
gerous practice of hardcoding customisations directly on the
implementation code of the modelling environment, which
hinders its maintainability in the long run. From a broader
perspective, introducing approaches leveraging higher level
of abstraction for the development of complex systems is an

indisputable trend in modern software engineering practice.
In this respect, industry is very often facing the issue of
integrating new task-specific tools with legacy systems and
development environments. In particular, if the constellation
of adopted tools is not integrated in a seamless chain, man-
ual effort is required to close the gap between tools and
perform needed translations. Even if feasible, this practice
can become time-consuming and error-prone in the long run,
especially when the size of the system grows and there are
semantics aspects involved in the translations. Model trans-
formations automate the integration process between tools by
translation means and can provide explicit traceability of the
translations. Traces not only allow to explicitly represent the
correspondences between one tool and another, but they also
enable the propagation of information from one domain-
specific perspective to another. Notably, in the example pre-
sented in Section V the forward transformation allows to get
an Rubus model from EAST-ADL, and carries the rationale
underlying the mapping across these two languages. More-
over, the trace links created during the transformation process
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FIGURE 16. Fragment of the EAST-ADL metamodel for Function Modelling at the design level.

allow, for example, to map timing analysis results back to
EAST-ADL models.

VII. CONCLUSIONS AND FUTURE WORK
In the last twenty years, CBSE has enhanced the software
development for vehicular embedded systems. Nevertheless,
industry needs to move further towards a seamless devel-
opment chain for reducing software development costs and
time-to-market. Intertwining of MDE and CBSE has been
proven to be effective towards this goal.

In this work, by exploiting the interplay between MDE
and CBSE, we took initial steps towards the realization of
the aforesaid seamless development chain. In details, we
i) motivated the usage of RCM in the vehicular domain, by
highlighting its unique features against other CMs, ii) for-
malized ametamodel based on RCMcomprising the concepts
able to represent both the software architecture and the related
timing constraints,, iii) presented a model-to-model transfor-
mation between EAST-ADL Design level and RCM and iv)

discussed the application of our solution to an automotive
industrial application. The formalization of the metamodel
serves as basis for embracing the MDE vision as well as
for restoring the separation of concerns that had been lost
during the evolution of the RCM. Due to space limitations,
we did not discuss the complete RCM timing package, but
we rather focused on the elements representing timing con-
straints, information and analyses practically used within the
industrial automotive domain. The DL2RCM transformation
outlines the potential benefits gained in having a proper meta-
model for RCM, in terms of compliance with the EASTADL
based methodology.

As future work, we plan to minimize the assumptions
needed in performing the transformation, by using model
transformation languages able to fully and practically support
non-bijective model transformations. Additionally, we will
consider the possibility of using these non-bijective model
transformations for design-space exploration. Finallywewill,
together with our industrial partners, cover the identification

9018 VOLUME 5, 2017



A. Bucaioni et al.: Metamodel for the Rubus Component Model

of additional languages used along the software development
for the vehicular embedded systems, with the aim of formal-
izing their metamodels and hence enable model transforma-
tions for supporting a more extensive tool chain.
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