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Abstract. Self-adaptive systems are systems that automatically adapt
in response to environmental and internal changes, such as possible fail-
ures and variations in resource availability. Such systems are often real-
ized by a MAPE-K feedback loop, where Monitor, Analyze, Plan and
Execute components have access to a runtime model of the system and
environment which is kept in the Knowledge component. In order to pro-
vide guarantees on the correctness of a self-adaptive system at runtime,
the MAPE-K feedback loop needs to be extended with assurance tech-
niques. To address this issue, we propose a coordinated actor-based app-
roach to build a reusable and scalable model@runtime for self-adaptive
systems in the domain of track-based traffic control systems. We demon-
strate the approach by implementing an automated Air Traffic Control
system (ATC) using Ptolemy tool. We compare different adaptation poli-
cies on the ATC model based on performance metrics and analyze com-
bination of policies in different configurations of the model. We enriched
our framework with runtime performance analysis such that for any unex-
pected change, subsequent behavior of the model is predicted and results
are used for adaptation at the change-point. Moreover, the developed
framework enables checking safety properties at runtime.

Keywords: Self-adaptive system · Model@runtime · Performance
analysis · Cyber physical system · Air Traffic Control System

1 Introduction

The ubiquitous presence of software systems in everyday life, specially in safety-
critical domains like Healthcare and transportation, makes building reliable
cyber-physical systems (CPS) crucial. Moreover, to guarantee desirable behavior,
systems need to evolve in response to environmental and internal changes, such as
possible failures and variations in resource availability. Therefore, building reli-
able self-adaptive systems that are able to adjust their behavior in accordance
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with their perception of the environment and the system itself is an important
research topic [9,22].

A self-adaptive system is typically realized through one or a collection of
feedback loops that control adaptation of the core system. The MAPE-K feed-
back loop introduced in [17], is a common approach for realizing control feedback
loops where a loop consists of Monitor, Analyze, Plan and Execute components,
together with a Knowledge part, which contains information about the system
and its environment. To guarantee correctness and quality of the self-adaptive
systems, providing quality assurance techniques - in form of verification, vali-
dation and performance analysis- is a complicated and important issue. These
techniques not only have to be applied in off-line manner, but also need to be
used at runtime [8]. For instance, an abstract model of the system and the envi-
ronment can be kept as the model@runtime in the Knowledge component, be
updated periodically, and be analyzed for safety assurance, and also be used for
runtime optimization and (re-)planning.

In order to design reliable self-adaptive systems, a number of the state of the
art approaches benefits from the formal methods at the design time to assure the
correct behavior of systems [13,18,19,30,32] and the behavior of the MAPE-K
feedback loops [4,15]. In contrary, some approaches employ formal methods at
runtime [7,15] or attempt to provide efficient techniques for runtime verification
of systems [10–12]. However, a few of approaches have developed an integrated
framework for constructing the MAPE-K loops and formal models@runtime,
and providing runtime analysis techniques to detect or predict violation of the
system’s goals.

Here, we propose an actor-based [2,14,26] approach augmented with coor-
dination policies for constructing and analyzing self-adaptive track-based traffic
control systems. We create a total solution and build the MAPE-K feedback loop
together with the model@runtime, but the focus of this paper is on building and
analyzing the model@runtime. To this aim, we encapsulate the Analyze and Plan
components of the MAPE-K feedback loop as a coordinator, together with the
Knowledge component which keeps an updated actor-based model of the sys-
tem. Monitor and Execute components can smoothly be added using features
provided by our proposed implementation platform. It is noteworthy that the
presented model@runtime is executable benefiting from java-based definition of
the actors in the proposed implementation platform. The actor-based approach
is aligned with the structure of distributed self-adaptive systems with behavioral
adaptation. Loosely coupled actors as the units of concurrency, with asynchro-
nous message passing, and event-driven computation, are natural candidates for
modeling highly dynamic distributed systems. Moreover, in our problem domain,
track-based traffic control systems, we have a (multiple) centralized control which
is mimicked here as a coordinator. This enhances the properties of our interest
(fidelity), and it is easy to understand and build the model with the least needed
effort (usability).

The problem domain of the proposed framework, track-based traffic control
systems, is a class of traffic control systems in which the traffic is passed through
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pre-specified tracks and is coordinated by a controller, like railways and some air
traffic control systems. These systems follow a common structural and behavioral
pattern founded on the track-based configuration. In our model, actors repre-
sent the tracks and the moving objects are modeled as messages passing among
actors. Our model@runtime has to capture the current configuration which is
mainly the placement of messages within the model. The coordinator in our
model besides governing message passing between the actors, analyzes the cur-
rent configuration of the model, predicts the future configuration and makes a
plan for adaptation purpose. Modeling a coordinator with mentioned features,
separate from functionalities of the actors results in reusability.

To illustrate the applicability of the proposed approach, we model an Air
Traffic Control system (ATC), a large scale cyber-physical system, as our real-
world case study. Our ATC model is a simplified version of North Atlantic Orga-
nized Track System (NAT-OTS) [16], consisting of a set of transatlantic flight
routes, and can easily be generalized to other track-based traffic control systems
(e.g., railway systems). ATCs are responsible for managing the flow of the air
traffic and assuring the safe flight of the aircraft. ATC is a prototypical example
where people in charge are constantly dealing with various kinds of changes in
the environment and system, such as changes in weather, propagating delays,
strikes of the support staff, or unforeseen problems in the aircraft.

Different adaptation policies are implemented to check how changes in envi-
ronment can affect the performance of the system. Furthermore, we carry out a
mechanism in which the performance of the model is predicted using different
policies and the prediction results are used for switching between adaptation
policies at runtime.

Our proposed framework is implemented in Ptolemy [23], which is an actor-
oriented open source platform that provides an extensive actor library for mod-
eling, simulation and analysis of the system feedback loop, provides support for
connecting to the physical world and updating the model@runtime, and also
offers a graphical design environment that aids in visualization of the system
architecture.

Our contributions are summarized as follows.

1. Coordinated Actor-based model@runtime: Proposing a modular, reusable, and
executable coordinated actor-based model@runtime for track-based traffic
control systems,

2. ATC model@runtime: Developing executable model@runtime for automated
ATC as a real-world large scale cyber-physical system,

3. Performance Evaluation: Providing a framework for comparing different
adaptation policies and evaluating their impacts on the performance of the
system,

4. Runtime Prediction: Looking ahead through the model@runtime to explore
the future behavior of a model to predict property violations and select appro-
priate policy at change-points.

The rest of the paper is organized as follows: in Sect. 2, we provide a gen-
eral overview of track-based traffic control systems and introduce ATCs as our
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running example. Section 3 presents coordinated actor-based modeling approach
and shows how it can be used for building and analyzing model@runtime of
track-based traffic control systems, e.g. ATCs. In Sect. 4, Ptolemy platform is
introduced briefly and the implementation of an ATC in Ptolemy is explained.
Section 5 demonstrates analysis results of the implemented system under differ-
ent adaptation policies and runtime performance prediction. We describe related
work in Sect. 6, and compare the proposed approach with the previous studies.
Section 7 concludes the paper and outlines the future work.

2 Track-Based Traffic Control Systems

Transportation systems can be managed in different ways. We focus on those sys-
tems where the traffic can only move on certain tracks, like in railways, subways,
and even roads. Traffic control for such systems follow a common structural and
behavioral pattern. Tracks are generally divided into sub-tracks and the traffic
controller uses this structure to guarantee safety and improve performance.

Air traffic is not necessarily guided through predefined tracks, but the ATC
system in North Atlantic is based on an Organized Track System (OTS) which
follows the same pattern, and is the system we have studied 1. This pattern can
be further generalized, for example a network on chip (NoC) can be considered
as a track-based traffic control system in which a packet (moving object) is
transferred via a set of routers (sub-tracks).

To have a fully automated traffic control system, we need a control algorithm
for managing the traffic, taking into account the environment and congestion con-
ditions. This control algorithm has several decision making capabilities, including
accepting or rejecting traffic into a sub-track, and routing and rerouting traf-
fic. Based on the nature of a system, the control algorithm can be distributed
or centralized. For example, the control algorithm in NoC is distributed among
routers (sub-tracks). In [24], an actor model is used for modeling and analyzing
NoCs where each router (sub-track) is mapped into an actor and packets are
mapped into messages. Railway systems are examples of centralized traffic con-
trol systems. A controller knows the complete map of the traffic network with
the details of the current traffic. This knowledge is updated upon any change in
the system, and is used for online planning.

In our model, sub-tracks can be augmented with decision making abilities.
For example, based on the capacity of a sub-track, it can decide to allow or
reject a moving object to enter the sub-track. This way, the safety of a sub-
track (mutual exclusion) is wired in at design time. But this property can cause
deadlock and fatal problems that has to be avoided. In our framework we use a
centralized coordinator to manage the overall traffic and avoid deadlocks. The
framework can be customized based on different applications. In our current
implementation, the required time for a moving object to pass a sub-track is
computed by the controller based on the speed of the object and the length
1 This system is studied in collaboration with Isavia, the air traffic control company

in Iceland (http://www.isavia.is).

http://www.isavia.is
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of the sub-track. Furthermore, at a certain time, a sub-track is reserved as the
next sub-track of a moving object by the controller. This way collision is avoided
among objects that may request to enter into a sub-track simultaneously. If we
encounter a traffic blockage, the controller handles the situation by rerouting the
traffic objects, asking for changes in traffic speed, etc. We will show in the next
sections how coordinated actor model is used for modeling and analysis of these
cases. To this aim, we use ATC as a running example for easier explanation of
the modeling and the analysis approach.

Air Traffic Control System: ATC is a system equipped with supervision
instruments on the ground and the links for communication, which monitors
and controls flights along the airspace routes and operations in the airports [1].
In real-world, each aircraft has a predefined flight plan, which includes its flight
route (an ordered sequence of the sub-tracks to be traversed from the source to
the destination), speed of flight, and the initial fuel. The aircraft’s flight plan is
generated prior to its take off, but dynamic changes in the weather conditions,
delays in landing and taxiing, etc., requires some modifications in flight plans.
For safety concerns, while changing the original flight plan of an aircraft, several
parameters are carefully considered, for example loss of separation between two
aircraft has to be avoided, and the remaining fuel must be enough for safely
arrival to destination. A number of researches in the ATC domain, such as [3,5,6],
propose mathematical models and solutions for resolving congestion of air spaces,
to achieve the minimum delay and safe movement of the aircraft by taking the
rerouting decisions into account. According to [5], modeling rerouting decisions
is one of the greatest challenges in this field. The framework presented in this
paper (Fig. 3) addresses these challenges by modeling and runtime analysis of
ATC. The structure of North Atlantic Organized Track System (NAT-OTS) [16]
that we consider as our ATC model consists of a set of nearly parallel tracks,
positioned in the light of the prevailing winds to suit the traffic between Europe
and North America.

3 A Coordinated Actor Model for Self-adaptive
Track-Based Traffic Control Systems

To develop a self-adaptive system using the MAPE-K loop, a model is kept in the
Knowledge component, updated by the Monitor component, and analyzed by the
Analyze component. Based on the analysis results, the Plan component makes
decisions for adapting the system to the new configuration and the decisions
are sent to the managed system using the Execute component. To ensure the
correct behavior of self-adaptive systems despite the internal and environmental
changes, keeping its knowledge model updated at runtime is crucial.

Figure 1 illustrates our overall approach for modeling self-adaptive track-
based traffic control systems. As shown in Fig. 1, our proposed coordinated actor
model realizes three components of the MAPE-K loops, Knowledge, Plan, and
Analyze. Using this approach, the model of a self-adaptive system is divided
into two different parts, actors and a coordinator. The model@runtime encloses
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Fig. 1. Modeling self-adaptive track-based traffic control systems with coordinated
actor model

the actors in addition to the part of the coordinator which handles the mes-
sage delivery between the actors; and the Analyze and Plan components are the
decision making parts of the coordinator. Actors communicate via asynchronous
message passing, but unlike the original (Agha’s) actor model, although the sent
messages are immediately delivered to their target actors, the target actors do
not pick messages. Instead, an event is triggered for the coordinator upon any
message sending. The coordinator receives the event related to that message and
puts it into its internal buffer. The internal buffer of the coordinator is sorted
based on some predefined rules, e.g. an event with the least arrival time has the
highest priority. Upon choosing an event with the highest priority, the coordi-
nator can access the target actor, ask about its internal state, change the sent
message, drop it, or execute the target actor to pick the message and process it.
This way, the message passing among the actors is kept as the basic communi-
cation means in the target distributed system but message delivery policies are
integrated in the coordinator. This mechanism gives the coordinator the neces-
sary knowledge about the actors which is used in the decision making part. The
Analyze part of the coordinator is activated when the updated knowledge shows
some pre-specified changes. Analyze is capable of simply analyzing the acquired
knowledge or using complicated methods such as executing the model@runtime
to obtain new knowledge for predictive analysis (more details in Sect. 3.3). Then,
the results of analysis are passed to the Plan part to choose appropriate actions
for adapting the system (Managed Resources in Fig. 1).

3.1 Structure of Self-adaptive Track-Based Traffic
Control Systems Model

In our proposed model to describe a track-based traffic control system, an actor
is associated with each sub-track and the controller is modeled as a coordinator.
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Furthermore, the moving objects are modeled as messages, passed by (through)
the actors and messages carry the necessary information of moving objects, i.e.
traveling route, fuel, and speed. In addition to the track actors and a coordinator,
we distinguish the source and destination actors to model the source and the
destination of moving objects. The coordinator has a complete map of the track
network and current states of the sources and destinations of the traffic. The
knowledge of the coordinator is updated by occurrence of events that change
the internal state of the actors. These events can be environment changes in
sub-tracks, and arrival or departure of moving objects into/from sub-tracks. In
other words, upon accessing the actors by the coordinator, it polls their internal
states and updates its knowledge.

Using the described structure, different adaptation policies are encapsulated
in coordinators. In some traffic control systems, adaptation results in rerouting
of traffic, like in ATCs; and in some others it may result in rescheduling, like in
train control systems. In the following we will show how the rerouting of moving
objects are implemented for our ATC example.

3.2 Adaptation in ATC: Dynamic Reroute Planning

In our ATC model design in Sect. 4, routing an aircraft in the network of track
actors is modeled by a sequence of messages which are sent by adjacent track
actors. To implement rerouting policies, different algorithms can be considered,
affecting the performance of the system in different ways. In the following,
three different policies for ATCs are presented. Assume [T1, T2, T3, · · · , Tn] be
a sequence of sub-tracks which shows the flight route associated with the air-
craft A. In this sequence, T1 is the sub-track started from the source airport
and Tn is the destination airport. Now, when the aircraft A wants to leave T1

based on this flight route and the subsequent sub-track on its flight route (sub-
track T2) is unavailable (i.e. it is stormy or is dedicated to another aircraft), the
coordinator applies one of the following algorithms to reroute the aircraft A.

– Safer Route Policy (SRP): SRP finds the feasible shortest flight route from
T1 to Tn. A feasible flight route is a flight route which does not contain an
unavailable sub-track. If there is no such route, the shortest flight route with
the least number of unavailable sub-tracks is returned.

– Blocked Area Avoidance Policy (BAAP): Similar to the SRP, BAAP
tries to find the feasible shortest flight route from T1 to Tn. If there is no
such route, it finds the shortest route which does not pass a blocked area. As
shown in Fig. 2, a blocked area is a part of airspace in which all its sub-tracks
have been occupied and surrounded by other aircraft at time of rerouting the
aircraft A. In other words, an aircraft in a blocked area may hold its current
sub-track due to the high traffic around it for a long time. Hence, the aircraft
A probably would not be able to pass a sub-track in the blocked area if that
sub-track is selected as a part of the aircraft’s flight route. We consider three
arrangements of the aircraft in the airspace which form the blocked areas.
These arrangements are shown in Fig. 2. For instance, if four aircraft hold the
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Fig. 2. Three different arrangements of the aircraft in the airspace which form blocked
areas. The blocked areas containing unavailable sub-tracks are shown with the dotted-
rectangles. The blocked areas are avoided in the BAAP rerouting policy.

sub-tracks such that the left shape of Fig. 2 appears in the airspace, a blocked
area, shown by a dotted-rectangle, is formed. Since BAAP avoids areas with
higher traffic, it is expected to impose less flight duration comparing to SRP.

– Shrinking Search Policy (SSP): This policy employs a multi step searching
algorithm. At the first step, SSP tries to find a feasible shortest flight route
from T1 to Tn. If there is no such route, it tries to find a feasible shortest flight
route from T1 to Tn−1 and so on. If a route is not found, aircraft A holds its
position in T1 for some amount of time, attempts to continue flying based on
its initial flight route. Since SSP attempts to find the feasible shortest flight
route for the largest possible part of the flight route, it is expected to result
in less blocking probability for the aircraft in the airspace.

To improve the adaptation mechanism, one may enrich both planer and ana-
lyzer of the coordinator to select a rerouting policy from a pool of policies.
For instance, assume that the analyzer is enriched with the ability of detecting
blocked area in the whole airspace. This way, planer is able to use SRP as the
default rerouting policy but upon increasing the number of blocked areas to a
threshold, planer is informed to switch to BAAP to avoid passing the aircraft
from the blocked areas.

3.3 Adaptation in ATC: Runtime Performance Prediction

The main purpose of runtime performance prediction is predicting the subse-
quent behavior of the system after occurrence of any unexpected changes and
using the prediction results to adapt the system to the new configuration. To
this aim, the required performance metrics and safety issues of the system are
defined and a proper adaption takes place to fulfill them.

In the runtime performance prediction, the analyzer looks ahead through the
executable model@runtime to explore the future behavior of the model to predict
property violations. To this aim, upon detecting any safety violation or crossing
the thresholds of the performance metrics, the planner is triggered and tries to
adapt the system using its set of predefined prediction based adaptation poli-
cies. So, the models@runtime have to be augmented with techniques to record
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the states of the models at the change points (taking snapshots of models), look
ahead and backtrack as follows. In the coordinated actor model, the state of
the model is defined as the local states of actors along with the state of the
coordinator. The state of each actor is defined as the assigned values to its vari-
ables and the coordinator state is defined as the assigned values to its variables,
communicated messages between the actors together with the triggered events,
and the time. So, when a change happens (based on the coordinator knowledge),
state of the model is stored by the analyzer, and model proceeds with its exe-
cution to the end. At the final step, the values of performance metrics which
are gathered during the execution of the model are gathered by the analyzer.
These values are used by the planner part of the coordinator to choose the most
suitable adaptation policy for the change.

4 Coordinated Actor Model of ATC in Ptolemy

Ptolemy II is an actor-oriented open-source modeling framework. A Ptolemy
model is made up of actors that communicate through ports via message pass-
ing. Actors are implemented in Java with a well-defined interface, which includes
ports and parameters. Ports are communication points of actors and parameters
are used to configure the internal behavior. Parameter values can be changed
dynamically during the execution of model. In Ptolemy, the semantics of inter-
actions and communications of actors is defined by a Model of Computation
(MoC), implemented by a special component called a Director. Different MoCs
are implemented in Ptolemy which can be composed to yield heterogeneous mod-
els. Ptolemy is open-source and new MoCs can be created by extending or mod-
ifying existing MoC implementations. Heterogeneous hierarchical actor-oriented
design capabilities in Ptolemy provides a strong modeling and simulation toolkit
for CPS design [23]. One of the most widely used MoCs in Ptolemy is Discrete-
Event (DE). Actors governed by a DE director communicate via time-stamped
events (i.e. time-stamped messages of actors), where events are processed by each
actor in time-stamp order. Considering different MoCs in Ptolemy, we choose DE
for ATC model, because time-stamped events are natural for representing the
decision points in a track-based traffic control system.

Following the coordinated actor model presented in Sect. 3, we model coor-
dinator of ATCs as a new Ptolemy DE director, we call ATCDirector. Here,
airports and tracks are modeled using actors of Ptolemy and their interconnec-
tions showed by wiring of actors’ ports. The model of a simplified ATC model is
presented in Fig. 3. In this model traffic is passed from west to east. As shown in
Fig. 3, there is a network of tracks where each track is shown by a white aircraft.
To present a track which is associated to an aircraft, the distinct color of that
aircraft is used for that track. Tracks affected by thunderstorms are highlighted
with a red circle around them. As shown in Fig. 3, connections of a track to its
neighbors are illustrated as the output ports of the track and ids of its neigh-
bors are set as the parameter of the track. Arrival and departure airports are
also modeled by Ptolmey actors, shown by blocks with captions of Airport and
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Fig. 3. ATC model in Ptolemy (Color figure online)

Destination Airport in Fig. 3. ATCDirector of this model is shown as a green
rectangle with caption of the ATCDirector in Fig. 3.

To execute the ATC model, departure of the aircraft and weather changes
are simulated as follows. In this model flights are initialized by Arrival and
CSVReader actors. The Arrival actor is a discrete clock that determines the
departure time of aircraft. CSVReader reads flight plans and other detailed
information of the aircraft from a text file. In Fig. 3 three more actors are
implemented for simulating the weather condition changes, called TrackSelec-
tion, ChangeValue, and StormHandling. TrackSelection selects a track (with a
predetermined probability) and ChangeValue decides about how the weather
condition of the selected track must be changed. ChangeValue has the role of
both generating and removing storms. StormHandling applies the made decision
of ChangeValue on its target track. The ATC model also can be fed by real
values from real-world sensors using features of Ptolemy.

5 Safety Check and Performance Analysis

In this section, we study the effectiveness of our approach by evaluating and com-
paring various performance criteria for rerouting policies described in Sect. 3.2.
Our results show that applying runtime performance prediction improves the
performance metrics2.

2 The source code which is used for these experiments is uploaded in http://rebeca.
cs.ru.is/files/ATC.zip.

http://rebeca.cs.ru.is/files/ATC.zip
http://rebeca.cs.ru.is/files/ATC.zip
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5.1 The Experimental Settings

The performance metrics of the ATC are measured when an aircraft reaches
its destination. In our experiments, the performance metrics are the number of
aircraft arrived to their destinations, the number of missing aircraft (the aircraft
that are stuck in a traffic blockage in the airspace and cannot find a route to
their destinations using the rerouting policies), the number of aircraft blocked
in their source airports, the average delay of the aircraft in their source airports,
the average flight duration of the aircraft, and the throughput. Throughput is
defined as the number of aircraft arrived in their destination airports in a specific
period of time.

We assumed one unit of time for the takeoff/landing of an aircraft in addition
to passing a sub-track. An aircraft sends a request to enter into a sub-track 0.2
unit of time before its planned arrival time. If the aircraft is asked to stay in its
current sub-track, it waits for one more unit of time and sends a new request to
enter into the same sub-track again. In addition, we assume that each airport
has one runway and each sub-track can contain at most one aircraft at a time.

The ATC model in our experiments contains two source airports, eight desti-
nation airports and thirty tracks. There are fifty aircraft that intend to fly from
a north airport to one of the three south destination airports and the same num-
ber of aircraft plan to fly from the west airport to the five destination airports
in the east. The initial flight route of an aircraft is the shortest route from its
source airport to its destination. For each source airport, twenty batches of flight
plans are generated and each batch contains the flight plans for fifty aircraft.
The departure times of the aircraft, and the times of the weather changes are
produced using Poisson processes with parameters λ in {0.5, 2, 3.5} (the mean
interval time between two events) and 1 as μ, respectively.

5.2 Safety Checking

In the experiments, we check deadlock-freedom and a few safety issues. Deadlock
is detected if none of the aircraft in the airspace change their current sub-tracks
within a pre-determined time. This means that the aircraft are stuck in a traffic
blockage and cannot find a route to their destinations. As safety issues, the
separation between the aircraft, and safe rerouting in stormy weather are checked
and guaranteed by the model. A sub-track in our model denotes the minimum
separation between two aircraft, so, two aircraft must never be in a sub-track
at the same time. The guarantee of this property is built-in in the behavior of
the coordinator at design time. The coordinator never triggers a track actor to
process a new message (aircraft) while the track actor is handling a message
(another aircraft), neither when it is stormy. Also, the remaining fuel level of an
aircraft is checked as another safety issue of the ATC. If the fuel level becomes
less than a threshold, a notification is raised.
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Table 1. Performance metrics in the SRP, BAAP, SSP rerouting policies, Combined
Rerouting Policies (CRP), and the Runtime Performance Prediction (RPP)

Policy λ Throughput Number
of arrived
aircraft

Avg. flight
duration

Avg. delay
in source
airport

Number of
missing
aircraft

Aircraft
blocked in
the airport

SRP 0.5 0.65 39.60 10.43 14.39 16.94 43.45

2 0.60 44.73 9.84 4.59 16.28 38.98

3.5 0.45 65.52 8.95 1.91 10.26 24.21

BAAP 0.5 0.65 38.05 10.28 13.61 18.02 43.92

2 0.59 43.54 9.84 4.39 17.21 39.23

3.5 0.45 63.96 8.88 1.92 10.96 25.06

SSP 0.5 0.68 43.84 10.37 16.49 13.86 42.29

2 0.62 48.38 9.97 5.04 13.04 38.57

3.5 0.46 66.03 8.94 1.92 8.21 25.74

CRP 0.5 0.65 41.34 10.08 16.06 7.12 51.52

2 0.60 45.32 9.81 5.39 6.98 47.69

3.5 0.46 63.23 8.94 2.01 5.39 31.36

RPP 0.5 0.66 44.72 10.72 17.98 13.09 42.18

2 0.61 47.67 9.99 5.17 13.04 39.28

3.5 0.46 67.37 8.96 2.11 7.95 24.67

5.3 Performance Evaluation of Dynamic Reroute Planning

The model mentioned in Sect. 5.1 is executed 150 times per each value of λ
and the average of the performance metrics are calculated. Table 1 illustrates
the results of executing different rerouting policies under the above-mentioned
conditions. Setting the number of departing aircraft to a constant value (100), by
increasing the value of λ and increasing the total duration time of the simulation,
we expect increasing in the number of arrived aircraft. This is because of the
fact that increasing the value of λ results in making the traffic lighter, ends in
decreasing delays in the source airports and the flight durations.

Table 1 shows the performance metrics for SSP, BAAP, SRP, CRP and RPP.
In the CRP policy, the three basic rerouting policies are combined and used
dynamically according to a set of predefined policies. The number of missing
aircraft in all policies indicates that in our setting the deadlock is inevitable; the
reason is that we increase the crossovers of aircraft intentionally to be able to
see the differences among different policies. However, designing rerouting policies
without a deadlock is not impossible, but it is beyond the scope of this paper.
This table shows that the BAAP rerouting policy performs better than SSP
and SRP policies based on the metrics of average delay in the source airports
and the average flight duration. The SSP has a better performance in terms
of the number of missing aircraft in the sub-tracks and the number of blocked
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aircraft in the source airports. The cause is that SSP attempts to find the feasible
shortest flight route for the longest part of the flight route. However, as SSP is
a conservative policy in comparison with the other policies in finding a route,
it increases the average delay in the source airport. The reason is that it holds
an aircraft in its source airports until it finds a route for the rejected aircraft
holding their position in the sub-tracks. The BAAP policy reduces the average
flight duration, because if it cannot find a feasible shortest route for a rejected
aircraft, it tries to find a route, avoiding to pass the aircraft from the blocked
areas. When the aircraft are not allowed to pass from the blocked areas, they
rarely need to change their route and also hold the sub-tracks for a fewer time.
Consequently the average delay of the aircraft in the source airport decreases.

In our implementation of the CRP, the analyzer continuously monitors the
configuration of the model and the planner chooses a suitable rerouting policy
to be applied in that configuration. As an example, assume that the coordinator
starts rerouting the aircraft using the SRP policy. Upon detecting a blocked area
in the airspace, the coordinator switches to BAAP to reduce the flight durations
of aircraft by avoiding the blocked area. Moreover, if the number of rejected
arrivals to the sub-tracks passes a predefined threshold (that sets to 20 in our
experiments), and at least a number of the sub-tracks are occupied (10 in our
case), the coordinator will switch to SSP and decreases the airspace load by
restricting the number of takeoffs from the source airports. When a predefined
percentage of the aircraft arrive to their destinations (50% in our experiments),
the coordinator switches to its former policy and the aircraft blocked in the
source airport are permitted to takeoff. As shown in Table 1, CRP increases the
aircraft delay in ground but decreases the average flight duration and the number
of the missing aircraft.

The last row of Table 1, presents the performance evaluation results of rerout-
ing with runtime performance prediction. In our experiments the SSP policy is
the default rerouting policy of the coordinator. As shown in Table 1, SSP per-
forms better than BAAP in terms of the number of the missing aircraft but has
a higher average flight duration compared to BAAP. If a storm happens, the
runtime performance prediction method is applied; if the predicted number of
the missing aircraft using SSP exceeds 18 and its average delay in the airport
exceeds 13.61, the planner switches its routing policy to BAAP. Furthermore, if
the coordinator reroutes the aircraft using the BAAP rerouting policy, the pre-
dicted number of the missing aircraft becomes greater than 13.86, and the aver-
age delay in an airport becomes greater than 16.49, the coordinator switches to
SSP. As a result, the number of the missing aircraft decreases and consequently,
the number of the aircraft arrived at the destination airports increases.

6 Related Work

In this section we discuss the most related and recent state of the art in the
modeling and analysis of self-adaptive systems. At first, different approaches
in modeling feedback control loops are presented and then the applications of
formal verification methods in analyzing model@runtime are addressed.
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Modeling and analyzing feedback loop: Feedback loops are the most crucial
elements of self-adaptive systems which have to be modeled explicitly [27]. The
MAPE-K feedback loop is a widely used approach for realizing self-adaptive
systems. In order to model the MAPE-K loops, different solutions have been
proposed. ActiveFORM is introduced in [15] together with a tool for verifying
adaptation goals at runtime as well as the design time. It also provides possi-
bility of changing the system goals at runtime dynamically. ActiveFORM uses
timed automata to model each component of the MAPE-K loop and TCTL for
specifying properties of the adaptation behavior. To realize self-adaptation, pro-
vided models are transformed to codes which are executable on a virtual machine.
According to [28], dependencies between the MAPE components and the Knowl-
edge component in ActiveFORM are modeled by signal passing through timed
automata; thus, they are only available in an implicit form. Unlike ActiveFORM,
our approach does not focus on modeling and verifying MAPE-K loops and does
not provide Analyze and Plan components separately. Instead, our focus is on
analyzing the models@runtime. Furthermore, encapsulating Analyze and Plan
components in a coordinator makes our approach more faithful to the real-world
applications in our problem domain comparing to the timed automata.

Vogel et al. [27] presented EUREMA, a model-driven engineering approach
to specify and execute multiple feedback loops, runtime models and the depen-
dencies between the feedback loops and the adaptable software. The EUREMA
modeling language provides behavioral feedback loop diagram (FLD) to model
the feedback loop components and runtime models. It benefits from structural
layer diagram (LD) to describe the wiring of FLDs and adaptable software. For
executing feedback loops, EUREMA models are interpreted at runtime. Inter-
pretation impacts on the efficiency of the approach but the overhead is negli-
gible. Since our proposed model@runtime is executable, the Analyze activity of
the MAPE-K feedback loop is capable of predicting a property violation, while
EUREMA has not addressed this feature. EUREMA supports specifying multi-
ple feedback loops which is a part of our future work.

Another approach proposed in [20], introduces Feedback Control Definition
Language (FCDL) based on the actor model for modeling adaptable feedback
control loops (FCL). In FCL, sensors, actuators, filters, and decision mak-
ers are represented by actors. Different FCLs can be organized hierarchically
or coordinate with each other. Modeling, structural consistency checking, and
code generation using this approach is facilitated by ACTRESS toolkit [21].
ACTRESS transforms FCDL models into Promela models and verifies connec-
tivity and reachability properties of the FCLs using SPIN. As our approach uses
the Ptolemy platform, there is no need for more effort to generate executable
code, while in ACTRESS an executable application is provided through a set of
model-to-model transformation. Furthermore, unlike our approach, there is not
model@runtime in ACTRESS.

Multi-agent Abstract State Machine (ASM) is proposed in [4] for modeling
and verification of decentralized MAPE-K feedback loops at design time. In this
approach, computations of one loop can be distributed over several agents and
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the behavior of each MAPE-K loop component is specified by ASM transition
rules. In the proposed approach, a system exposes a number of MAPE-K loops,
one per each adaptation concern. The model is verified using AsmetaSMV tool
with the aim of detecting interferences between different feedback loops. This
approach models one MAPE-K loop per each adaptation concern, while in our
approach for each sub-system a MAPE-K loop is generated. Furthermore, unlike
ASM, our approach does not focus on verifying the MAPE-K feedback loops.
Instead it focuses on analyzing the model@runtime.

Model@runtime analysis: Forejt et al. [12] proposed an approach for incre-
mental runtime verification of Markov Decision Process (MDP) models which are
described in PRISM. In this approach, runtime changes are limited to vary para-
meters of PRISM models. The MDP of models are constructed incrementally by
inferring a set of states, needed to be rebuilt. The constructed MDPs are verified
using the incremental verification technique. Besides, QoSMOS is proposed in [7]
for the development of adaptive service-based systems. QoSMOS integrates a set
of pre-existing tools to model MAPE-K loop. It adapts system in a predictable
way by the aim of optimizing quality of service requirements. Model@runtime
is expressed in PRISM and is verified in the analysis step. Results of the veri-
fication are used to adapt the configuration of systems. Our coordinated actor
model is in a higher level of abstract comparing to the state-based model of
PRISM. This reduces the semantic gap between the model and the real-world
applications in our problem domain and increases the fidelity.

A parametric approach is presented in [10,11] for the runtime verification of
Discrete Time Markov Chains (DTMCs). In this method, probabilities of the
transitions are given as variables instead of constant values. Then, the model is
analyzed and a set of symbolic expressions is reported as the result. This way,
the verification at runtime is reduced to calculating the values of the symbolic
expressions by substituting real values of variables.

Designing a self-adaptive software as a dynamic software product line (DSPL)
is proposed in [13]. In this approach an instance of DSPL is chosen at run-
time considering the environmental changes. This approach separately models
common behavior of the products and each variation point by the parametric
DTMC. So, there is no need for the verification of each configuration separately.
In comparison with both of the above approaches, our actor-based model is more
reusable and easy to build comparing to the state-based models such as DTMCs.

Wuttke et al. in [31] worked on the effectiveness of developing frameworks to
compare and evaluate different adaptation policies, proposed for self-adaptation.
To this aim, the authors developed a Java-based simulator for comparing dif-
ferent adaptation policies in automated traffic routing. In addition to it, Weyns
et al. in [29] provided an implementation of the Tele Assistance systems and
compared the effect of different adaptation policies in this application.
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7 Discussion, Conclusion and Future Work

We proposed coordinated actor models for modeling and analyzing self-adaptive
track-based traffic control systems. The coordinator encompasses Analyze and
Plan components of the MAPE-K loop as well as managing interactions between
the actors. The proposed coordinated actor model is augmented with a run-
time performance prediction mechanism. Track-based traffic control systems
were targeted, as the widely used application domain in cyber-physical systems.
We designed an automated adaptive model for these systems which specialized
and implemented for ATCs. We used Ptolemy platform to design and analyze
model@runtime. Ptolemy enabled our proposed coordinated actor model to be
executed at runtime.

In a nutshell, we can describe the highlights of our approach as follows.

– Fidelity and usability of the model@runtime is built-in because of the actor-
based modeling. Compared to the analytical state-based models, actor-based
modeling decreases the semantic gap between the real-world and the model.
This makes the model more understandable and usable and easy to build for
software engineers. The level of abstraction can be tuned, and efficient analysis
techniques can be used.

– Concurrency, modularity and reusability are provided as the model@runtime
is based on actors.

– Scalability results from simplicity, usability and modularity of the approach.
In other words, model@runtime can be the model of a large scale self-adaptive
system. However, scalability suffers from the bottleneck produced by the coor-
dinator as the message passing between the actors is governed through the
coordinator in a centralized way. In our future work we will address this prob-
lem by having multiple coordinators.

– As actors in Ptolemy are implemented in Java, the step for transforming the
MAPE-K loop and model@runtime to code is already covered.

– The suggested framework allows defining any behavioral adaptation policies
which leads to high flexibility.

– The model leads to a correct by construction design because the coordinator
performs safety checks (e.g. to avoid collision), and enforces a set of time
constraints on handling the messages by the actors that prevent the aircraft
to enter a sub-track (and hence lose the safe distance) simultaneously.

The whole air space is divided into multiple air space regions and is con-
trolled by multiple air traffic controllers. As our future work, we will extend our
proposed architecture and model@runtime to capture the decentralized nature
of ATC when spread over different air space regions. We will develop multiple
coordinated actor models (multiple MAPE-K feedback loops) interacting with
each other. Moreover, we will define the formal semantics of the coordinated
actor model and extend our previous results [25] to provide formal verification
of the model@runtime.
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