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Abstract—There are many challenges that are encountered
when existing component models, that are originally designed to
develop vehicle software for single-core embedded systems, are
extended for the software development on multi-core platforms.
Within this context, we target the challenge that is concerned with
the extension of structural hierarchies in the existing component
models. The proposed extensions support the vehicle software
development on multi-core platforms, while ensuring backward
compatibility with legacy single-core systems, as well as antici-
pating forward compatibility to future many-core platforms.

I. INTRODUCTION

Majority of functions in modern vehicles are realized by
software that runs on Electronic Control Units (ECUs). The
size and complexity of the software is continuously increasing
due to the high demand for innovations in the vehicle func-
tionality. Already today, the software in a modern car consists
of millions of lines of code that runs on tens of distributed
ECUs that can be connected by five or more different types
of in-vehicle networks [1]. Moreover, many vehicle functions
are required to meet real-time requirements, i.e., logically
correct functionality should be provided at the times that
are appropriate to the function’s environment. Such times are
dictated by the timing requirements specified on the functions.

Component-based software engineering [2] and model-
driven engineering [3], complemented by real-time scheduling
theory [4], have proven effective in dealing with the software
complexity and real-time challenges in single-core distributed
embedded systems in the vehicular domain [1], [5], [6].
Several Component Models (CMs) have been developed in
this regard, e.g., AUTOSAR [5], Rubus Component Model
(RCM) [6], COMDES [7], just to name a few. However,
the existing single-core platforms fall short in providing high
computational power to support data-intensive sensors and
complex coordination among ECUs that is required to support
many advanced vehicle features. Recently, multi-core ECUs
have been introduced in the vehicular domain to provide
such high levels of computational power [8], [9]. AUTOSAR
has recently introduced guidelines to develop multi-core sys-
tems [10]. Using these guidelines, the modeling and runtime
support for multicore platforms is discussed in [11]. Other
frameworks that are in the scope of this work include EAST-
ADL [12] and AADL [13]. While the existing software
development approaches and tools provide good support for
single-core platforms, such a support for multi-core platforms
in the vehicle industry is yet to mature.

II. RESEARCH CHALLENGES AND PAPER CONTRIBUTION

In this paper we identify and target the challenges that are
concerned with the extension of the existing CMs (originally
designed for signle-core platforms) to support the software

development on multi-core platforms. In particular, we target
the CMs that explicitly support:

1) separation between the control and data flows among
software components,

2) a pipe-and-filter communication style for the interaction
among software components.

These CMs allow end-to-end timing analysis of the systems
earlier during their development [14], [15]. Besides, these CMs
are already used in the vehicle industry. In this work we aim
at answering the following question.
“What extensions are needed in the structural hierarchy of the
existing CMs to support the vehicle software development on
multi-core distributed embedded systems?”

The extensions should ensure backward compatibility with
legacy single-core systems, as well as anticipate the vehicle
software development on future many-core platforms.

We consider RCM as a starting point for our work. RCM
has been used in the vehicle industry for over 20 years, e.g.,
by Volvo CE1 and BAE Systems Hägglunds2. Currently, RCM
supports the development of vehicle functionality only on
single-core platforms. We aim to provide a proof of concept
for our approach by extending RCM to support the modeling
of the software architecture for multi-core platforms as well.

III. EXTENDING THE STRUCTURAL HIERARCHY IN CMS

The paper aims at achieving several important goals while
addressing the question posed in Section II. One goal is to
keep the modeling overhead for the user as small as possible.
In other words, the extended CM for multi-core platforms
should not enforce a lot of extra work for the user who
already uses the existing CM for developing the software on
single-core platforms. Another goal is to support the software
development on legacy single-core and contemporary multi-
core ECUs, while anticipating further extensions of the CM
to support future many-core ECUs that will contain several
tens of cores connected by on-chip networks.

A. Structural Hierarchy in CMs supporting Single-Core ECUs
The structural hierarchy, shown in Fig. 1, is found in the

majority of CMs that use the pipe-and-filter communication
and distinguish between the control and data flows among
software components in the software architecture of single-
core systems [6], [7], [16]. In this structure, the highest-level
hierarchical element is called the system . The system contains
the models of one or more networks and nodes (ECUs). A
network contains the models of Network Specification (NS)
and message objects. The NS is the model representation of a

1https://www.volvoce.com
2http://www.baesystems.com
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physical network. It is unique for each network communication
protocol, e.g., CAN, Flexray and switched Ethernet. Each
message contains a set of signals that are mapped to it.

The node contains one or more models of processor. Each
processor defines a runtime environment for the node. Ba-
sically, a processor represents the hardware and operating
system specific instance of a node. Several processors can be
assigned to a single node, e.g., a real hardware target such
as the ARM processor or a virtual processor that simulates
the instruction set and environment of the hardware target.
Note that only one processor can be selected from each node
during the deployment. The node also includes an interface
that contains one or more network ports that are responsible for
sending/receiving messages to/from the network respectively.
Each processor contains one or more models of modes. A
mode defines different states of the system. A mode may
contain one or more composites. Each composite is a con-
tainer that encapsulates one or more Software Components
(SWCs). An SWC is the lowest-level hierarchical element
that encapsulates basic functions and has run-to-completion
semantics. Each SWC contains only one interface and one or
more behaviors. The interface contains only one input trigger
port and one or more output trigger ports, input data ports and
output data ports. The behavior represents a function, e.g., a
C function or a simulink block.
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Fig. 1. Structural hierarchy in the existing component models for single-core
vehicular distributed embedded systems.

B. Proposed Extensions to the Structural Hierarchy
In order to support seamless software development of the

systems on single-core as well as on multi-core platforms, we
propose extensions to the structural hierarchy of the existing
CMs by introducing the models of core, partition and Intra-
Processor Communicator (IPC) as shown in Fig. 2. Note
that the parts of the structure that are above the processor
and below the mode in the extended hierarchy remain the
same. The model of a processor in the extended hierarchy
contains one or more cores. A core contains at least one
partition. Each partition is assumed to run an instance of the
operating system. Each processor also contains one model of
the IPC object which handles inter-core communication as
well as inter-partition communication within each core. The
IPC object can be adapted for any inter-core communication
platform, e.g, cores communicate via direct connections, cores
communicate via a bus (in the case of multi-core platforms),
and cores communicate via a network (in the case of many-
core platforms). The structure in Fig. 2 is sufficient to support
the software development for multi-core ECUs. Moreover, the
structure can be used to develop the vehicle software on single-
core ECUs by setting the number of cores and partitions

each equal to one. The structure also allows to reuse the
complete models of single-core legacy nodes by allocating the
legacy processor to the partition in a single-partition core. The
proposed partition model is inline with the partition concept in
the ARINC 653 Avionics standard [17]. Hence, the partitions
support the development of single- and multi-core systems that
have different criticality levels in their software architectures.
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Fig. 2. Proposed extensions to the structural hierarchy of existing component
models to support multi-core vehicular distributed embedded systems.

C. Summary of Ongoing Work
Currently, we are developing a hardware model correspond-

ing to the software hierarchy in Fig. 2. We also plan to
provide a software-to-hardware allocation model. Further, we
will provide a proof of concept for the proposed extensions.
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