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Abstract—Mutation analysis has proven to be a strong tech-
nique for software testing. Unfortunately, it is also computation-
ally expensive and researchers have therefore proposed several
different approaches to reduce the effort. None of these reduction
techniques however, focuses on non-functional properties. Given
that our goal is to create a strong test suite for testing a
certain non-functional property, which mutants should be used?
In this paper, we introduce the concept of targeted mutation,
which focuses mutation effort to those parts of the code where
a change can make a difference with respect to the targeted
non-functional property. We show how targeted mutation can be
applied to derive efficient test suites for estimating the Worst-
Case Execution Time (WCET). We use program slicing to direct
the mutations to the parts of the code that are likely to have
the strongest influence on execution time. Finally, we outline an
experimental procedure for how to evaluate the technique.

I. INTRODUCTION

Embedded systems permeate our daily lives. As they are

part of our environment, where they often perform critical

functions, the requirements on them are stronger than on

desktop systems. In particular non-functional properties, such

as performance, efficiency, robustness, safety, and reliability,

are becoming increasingly important. It is thus important to

have good methods for verifying these properties. In particular,

it is important to have good testing practices for this purpose.

The efficient testing for non-functional properties relies on

the existence of effective test suites that target these properties.

What is “efficient” depends on the property in question: for

non-functional resource properties, such as energy consump-

tion or execution time, it is often of interest to find the

extremes. An effective test suite should thus aim at finding

the “corner cases” with a limited set of test cases.

One way to create effective test suites is mutation testing.

Mutation testing injects changes (“mutations”) into the code

of the system under test. The changed programs (“mutants”)

can then be used to check how effective the different test

cases are at detecting the changes (“killing the mutants”).

This information can be used to increase the fault detection

reflectiveness of the test suites.

However, to be useful, mutants should be distinguishable

from the original program with respect to the non-functional

property under investigation. For instance, if testing for execu-

tion time, then a mutant with the same execution time as the

original program will be useless for this purpose, since no test

case will be able to distinguish the mutant from the original

program. Mutations that do not alter the tested property should

thus be avoided.

Resource properties like energy or memory consumption, or

execution time, are often more or less strongly associated with

different parts of the code (e.g., memory allocation statements

for memory consumption). We therefore introduce the concept

of targeted mutation, which will mutate such parts of the

code where a change in the code will likely change the

property under study. The aim is to reduce the number of

indistinguishable (or “equivalent”) mutants, thereby creating a

set of mutants that is more adequate for creating effective test

suites.

In this paper we specifically target the Worst-Case Execu-

tion Time (WCET), which is an important property for real-

time tasks. We propose a form of targeted mutation analysis

where the mutations are applied to the parts of the code that are

most likely to significantly affect the execution time. We also

outline a method for experimental evaluation of the technique,

where the targeted mutations are used to optimize test suites

for WCET estimation.

A. Mutation analysis

Mutation analysis was originally introduced by DeMillo et

al. [1]. In mutation analysis, multiple (often faulty) versions of

the software, mutants are created by systematically applying

rules for changing syntactic elements, mutation operators
(or mutators) [2]. Test suites are run against the mutants to

determine the percentage of mutants the tests will detect,

called the mutation adequacy score. The mutation adequacy

score is a coverage criterion, like statement and data flow

coverage, but has been found to be stronger than other known

criteria and is thus often referred to as a “gold standard” [2].

Mutation is unique among coverage criteria in that it not only

requires a test to reach a location in the program (the mutated

statement), but it also requires the test to create an error in the

program state and in case of strong mutation, propagate that

error to an output of the program. Mutators have been created

for many different languages, including Fortran, Java, and C

[3], [4], [5]. Mutation analysis has also been used for testing

extra-functional properties [6], [7], [8], [9].

Mutation analysis is a strong technique for testing [2] but

it can also be computationally expensive. The major reason
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is the high number of generated mutants and the fact that

most of these mutants do not contribute to the quality of the

analysis [10]. Equivalent mutants are especially difficult since

they cannot be detected by any test [10]. Therefore, strategies

to avoid generating equivalent mutants are of great interest.

B. WCET Analysis for Real-Time Systems

Many embedded systems are real-time systems, where it has

to be verified that timing constraints are met. The verification

is often divided into two levels: system-level analysis, where

the timing of systems of recurring tasks is analyzed, and code-
level analysis where the codes of individual tasks are analyzed

w.r.t. their timing properties. In particular, code-level analysis

seeks to bound the WCET, which in essence is the longest

time to execute a piece of code if it runs uninterrupted on

some given target hardware.

The execution time of an uninterrupted task depends on two

factors: the executed path through the code, and the execution

times for the instructions that are executed on this path. Static
WCET analysis [11] tries to find tight bounds for both these

factors in order to compute a safe and tight WCET bound.

Industrial practice, however, is to rather estimate the WCET

from measured execution times. As it is important not to

underestimate the WCET, effective test suites are needed for

this. Mutation analysis can be used to construct such test suites

by favoring test cases that detect the changes in execution time

caused by the mutations.

II. METHODOLOGY

The goal of the work initiated in this paper is to show

how targeted mutation analysis can be used to improve test

suites for WCET estimation from timing measurements. First

we need to identify the parts of the code that are likely to

have a strong influence on the execution time. Then we create

mutations in those parts, and compare the execution times of

the mutants with the execution time of the original program

for the different test cases. The results can then be used to

prioritize the test cases. This paper presents the initial steps

in this approach.

The key assumption underlying the approach is that the

control flow (e.g., number of loop iterations) will have the

strongest influence on the variability of the execution time of

a program. Thus, mutations that can affect the control flow are

more likely to yield mutants that are not timing-equivalent to

the original program. Other mutations can of course still affect

the execution time due to hardware effects, like altering the

cache state, but these can be expected to affect the execution

time less than, say, a change in the number of loop iterations.

Thus we restrict the mutations to appear only in parts of the

code that may affect the program flow. As the program flow

is determined by the conditions in the program, we apply

static backwards program slicing [12] with respect to these and

perform the mutations only in this slice. Mutation operators

can be defined by empirically investigating the coupling effect

between real faults - leading to temporal failures - and mutants

generated with commonly used mutation operators, as inspired

by the study in [13].

We can improve the selection of targeted code further by

observing that some control flow is input-independent, and

thus will be the same for all test cases. The archetypal example

is a for-loop that always iterates the same number of times.

The effect on execution time from mutations of such code

will be more or less the same for all test cases, and will thus

not be very helpful for prioritization. Therefore, the parts of

the slice that are not dependent on any inputs can also be

removed. Standard methods for program slicing, like PDG-

based slicing [14], will create a dependence graph for the

program that can be used to quickly identify these parts.

The above holds for intra-procedural programs. For pro-

grams with function calls, mutating a call may also affect the

program flow significantly so these mutations must then also

be considered even if not in the slice.

Currently, we are implementing a prototype of our frame-

work for targeted mutation. The framework is mainly com-

prised of (i) a Static Analysis Tool (e.g., SWEET [15]) –

identifying the parts of the code with a strong influence on the

execution time, and (ii) a Mutation Tool (e.g., Proteum [16])

– injecting changes in the identified parts of the code. The

framework basically explores the relationship between mutants

and control flow; therefore, it is based on a pattern matching

between class of control flow (e.g., loops where updates over

program variables are linear expressions) and mutators (e.g.,

conditionals boundary mutators).

III. CASE STUDY: GENERATION OF MUTANTS FOR

TESTING EXECUTION TIME (LIKE WCET)

In the following, we describe an experimental procedure

that we devised in order to (i) illustrate how targeted mutation
may influence effectiveness and efficiency of temporal testing,

and (ii) provide recommendations and guidelines, which stem

from our experience in the field of static WCET analysis

and mutation testing. Specifically, the experimental procedure

aims to confirm or refute the hypothesis that mutation analysis

encourages design of effective test suites for WCET estimation

and that targeted mutation improves efficiency of this process

significantly while maintaining effectiveness. We focus on the

following two research questions.

• RQ1: How effective is targeted mutation for WCET

estimation?

• RQ2: How efficient is targeted mutation compared to

traditional mutation?

To answer RQ1, we propose to compare the WCET esti-

mations given by three different test suites designed by; (i)

random, (ii) traditional mutation analysis, and (iii) targeted

mutation analysis. Our hypothesis is that mutation analysis

gives better WCET estimation than random and that the

traditional and targeted approaches are equally effective.

RQ2 focuses on how much we gain by targeted mutation.

We propose to compare traditional mutation analysis to tar-

geted mutation analysis with respect to; (i) size of test suite,

(ii) number of mutants (generated, stillborn and equivalent),
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(iii) time to generate the mutants, and (iv) time to run the

test suites against the mutants. Our hypothesis is that targeted

mutation is significantly more efficient than traditional even

when taking the time to perform the static analysis and slicing

into account. The size of test suites and the number of mutants

are indicators of the cost for the approach. A comparison of

the time spent in executing the test suite against the generated

mutants can be very interesting if the two sets of mutants

(targeted and traditional) are expected to be different in terms

of how difficult it is to detect them.

To perform WCET estimates, there is the need to make

the right trade-off between the number of executed test cases

and the accuracy of the WCET estimates, i.e., the expected

quality (confidence levels/accuracy) of the WCET depends on

the number of executed test cases. The experimental procedure

consists of the following high-level steps:

1) Generation of mutants for original program.

2) Execution of the test suite against the generated mutants.

To answer our research questions, different metrics can

be use to compare the results with and without slicing;

therefore, examples of comparison steps are (i) the

annotation of the time spent in the test case execution

and the number of executions; (ii) the annotation of the

number of killed mutants by time-out and time spent to

kill them; and (ii) the WCET estimation.

3) If the mutants were executed less than three times, go

to Step 2.

4) Identification of program parts relevant for execution

time by using program slicing.

5) Execution of the test suite against only the mutants

(targeted mutations) related to relevant parts. Similarly

as Step 2, different measures can be collected. Tests that

no longer contribute to mutation score are removed.

6) If the mutants were executed less than three times, go

to Step 5.

Discussion. The ideas presented in this paper are, to the best of

our knowledge, a first attempt to investigate the combination

of static and mutation analysis for testing non-functional

properties. We believe targeted mutation to be a promising

approach, which may outperform existing approaches and

resolve some of their major drawbacks. Even though interest

in the exploration of static analysis techniques as a means

to estimate non-functional properties (e.g., WCET) has grown

rapidly, there are still big research challenges to be addressed.

Existing approaches often make simplifying assumptions (e.g.,

to estimate the number of loop iterations and/or recursion

depth) that may affect the WCET estimation. We believe that

the cost of mutation testing can be effectively addressed by

using static analysis techniques to reduce the search space.

Program slicing has already been proven to be an efficient

strategy for search space reduction in the context of test data

generation [17].

IV. RELATED WORK

WCET analysis by testing is usually referred to as

“measurement-based WCET analysis”. Various methods for

test case generation have been attempted, like path-based

testing [18], and search-based testing, using a combination

of evolutionary algorithms and model-checking [19] or using

multi-objective optimization [20]. Measurement-Based Prob-
abilistic Timing Analysis (MBPTA) applies extreme value

theory to estimate the probability of the WCET estimate being

overrun [21]. Hybrid methods combine measurements with

elements of static WCET analysis [22], [23].

There are a few mutation-based approaches to test time

properties reported [7], [24], [25] but these are model-based

approaches to test at a (sub-)system level. In such models,

assumptions about e.g., the inter-arrival time and execution

time of individual tasks are used. Mutators are then applied

to the modeled constraints on time and order in the task set.

In contrast, our work focuses on mutating the source code

for individual tasks and thus, does not rely on execution time

assumptions.

There are many papers suggesting different approaches to

reduce the number of mutants to speed up the analysis. Several

approaches select a subset of available mutators [26], [27],

[28]. In contrast to to these approaches, we propose to apply

the mutators only to certain slices of the software, which are

relevant to the non-functional property of interest that we aim

to test.

A recent and promising approach to reduce the number of

mutants focuses on identifying subsumption relations between

the mutants [29], [30], [31], [32]. A mutant mi that is

subsumed by another mutant mj can be removed since any

test that detects mj is guaranteed to detect mi. Our proposed

approach is clearly related to this research since we avoid

generating irrelevant mutants. However, the mutants we avoid

in our analysis are irrelevant from a temporal perspective and

not necessarily redundant in terms of their functional behavior.

V. CONCLUSIONS AND FUTURE WORK

We introduced targeted mutation as a paradigm for mutation

testing of non-functional properties, where the mutations are

focused to the parts of the code that are likely to have a

significant impact on the property in question. We applied this

methodology to WCET analysis, arguing that the parts of the

code that can affect the program flow provide the best mutation

targets. These parts are easily identified by program slicing.

We also outline an experimental evaluation of the approach.

This paper presents the main idea of the method of targeted

mutation for testing of non-functional properties, and can as

such be considered as a position paper. We plan two follow-up

studies, outlined below.

1) We will evaluate and refine the targeted mutation ap-

proach. The first step is to run the experiment outlined in Sec-

tion III. This experiment will evaluate our proposed technique

in terms of effectiveness and efficiency for estimating WCET.

During the experiment, we collect data on the mutants (number

of generated, stillborn, equivalent, useful). The second step in

our work will be to analyze this data to identify differences that

can be used to reduce the mutation effort further, e.g., certain

changes that never create useful mutants. This information
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will help us propose reduced mutation with focus on WCET

estimation. Finally, we will identify mutations that current

mutators do not cover and which can be useful for WCET

estimation. Each step will be evaluated empirically.
2) We also plan to apply targeted mutation to testing of other

resource consumption properties. Just as we can identify parts

of the code that are associated with execution time, it should

be possible to identify parts of the code that are associated

with e.g., memory or energy consumption. Conducting an

experiment on targeted mutation that focuses on energy or

memory would give an indication of the value of our approach

in a more general context than just execution time.
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